• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1/*
2 * Copyright (c) 2013-2019, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7#include <platform_def.h>
8
9#include <arch.h>
10#include <common/bl_common.h>
11#include <el3_common_macros.S>
12#include <lib/pmf/aarch64/pmf_asm_macros.S>
13#include <lib/runtime_instr.h>
14#include <lib/xlat_tables/xlat_mmu_helpers.h>
15
16	.globl	bl31_entrypoint
17	.globl	bl31_warm_entrypoint
18
19	/* -----------------------------------------------------
20	 * bl31_entrypoint() is the cold boot entrypoint,
21	 * executed only by the primary cpu.
22	 * -----------------------------------------------------
23	 */
24
25func bl31_entrypoint
26	/* ---------------------------------------------------------------
27	 * Stash the previous bootloader arguments x0 - x3 for later use.
28	 * ---------------------------------------------------------------
29	 */
30	mov	x20, x0
31	mov	x21, x1
32	mov	x22, x2
33	mov	x23, x3
34
35#if !RESET_TO_BL31
36	/* ---------------------------------------------------------------------
37	 * For !RESET_TO_BL31 systems, only the primary CPU ever reaches
38	 * bl31_entrypoint() during the cold boot flow, so the cold/warm boot
39	 * and primary/secondary CPU logic should not be executed in this case.
40	 *
41	 * Also, assume that the previous bootloader has already initialised the
42	 * SCTLR_EL3, including the endianness, and has initialised the memory.
43	 * ---------------------------------------------------------------------
44	 */
45	el3_entrypoint_common					\
46		_init_sctlr=0					\
47		_warm_boot_mailbox=0				\
48		_secondary_cold_boot=0				\
49		_init_memory=0					\
50		_init_c_runtime=1				\
51		_exception_vectors=runtime_exceptions		\
52		_pie_fixup_size=BL31_LIMIT - BL31_BASE
53#else
54
55	/* ---------------------------------------------------------------------
56	 * For RESET_TO_BL31 systems which have a programmable reset address,
57	 * bl31_entrypoint() is executed only on the cold boot path so we can
58	 * skip the warm boot mailbox mechanism.
59	 * ---------------------------------------------------------------------
60	 */
61	el3_entrypoint_common					\
62		_init_sctlr=1					\
63		_warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS	\
64		_secondary_cold_boot=!COLD_BOOT_SINGLE_CPU	\
65		_init_memory=1					\
66		_init_c_runtime=1				\
67		_exception_vectors=runtime_exceptions		\
68		_pie_fixup_size=BL31_LIMIT - BL31_BASE
69
70	/* ---------------------------------------------------------------------
71	 * For RESET_TO_BL31 systems, BL31 is the first bootloader to run so
72	 * there's no argument to relay from a previous bootloader. Zero the
73	 * arguments passed to the platform layer to reflect that.
74	 * ---------------------------------------------------------------------
75	 */
76	mov	x20, 0
77	mov	x21, 0
78	mov	x22, 0
79	mov	x23, 0
80#endif /* RESET_TO_BL31 */
81
82	/* --------------------------------------------------------------------
83	 * Perform BL31 setup
84	 * --------------------------------------------------------------------
85	 */
86	mov	x0, x20
87	mov	x1, x21
88	mov	x2, x22
89	mov	x3, x23
90	bl	bl31_setup
91
92#if ENABLE_PAUTH
93	/* --------------------------------------------------------------------
94	 * Program APIAKey_EL1 and enable pointer authentication
95	 * --------------------------------------------------------------------
96	 */
97	bl	pauth_init_enable_el3
98#endif /* ENABLE_PAUTH */
99
100	/* --------------------------------------------------------------------
101	 * Jump to main function
102	 * --------------------------------------------------------------------
103	 */
104	bl	bl31_main
105
106	/* --------------------------------------------------------------------
107	 * Clean the .data & .bss sections to main memory. This ensures
108	 * that any global data which was initialised by the primary CPU
109	 * is visible to secondary CPUs before they enable their data
110	 * caches and participate in coherency.
111	 * --------------------------------------------------------------------
112	 */
113	adr	x0, __DATA_START__
114	adr	x1, __DATA_END__
115	sub	x1, x1, x0
116	bl	clean_dcache_range
117
118	adr	x0, __BSS_START__
119	adr	x1, __BSS_END__
120	sub	x1, x1, x0
121	bl	clean_dcache_range
122
123	b	el3_exit
124endfunc bl31_entrypoint
125
126	/* --------------------------------------------------------------------
127	 * This CPU has been physically powered up. It is either resuming from
128	 * suspend or has simply been turned on. In both cases, call the BL31
129	 * warmboot entrypoint
130	 * --------------------------------------------------------------------
131	 */
132func bl31_warm_entrypoint
133#if ENABLE_RUNTIME_INSTRUMENTATION
134
135	/*
136	 * This timestamp update happens with cache off.  The next
137	 * timestamp collection will need to do cache maintenance prior
138	 * to timestamp update.
139	 */
140	pmf_calc_timestamp_addr rt_instr_svc, RT_INSTR_EXIT_HW_LOW_PWR
141	mrs	x1, cntpct_el0
142	str	x1, [x0]
143#endif
144
145	/*
146	 * On the warm boot path, most of the EL3 initialisations performed by
147	 * 'el3_entrypoint_common' must be skipped:
148	 *
149	 *  - Only when the platform bypasses the BL1/BL31 entrypoint by
150	 *    programming the reset address do we need to initialise SCTLR_EL3.
151	 *    In other cases, we assume this has been taken care by the
152	 *    entrypoint code.
153	 *
154	 *  - No need to determine the type of boot, we know it is a warm boot.
155	 *
156	 *  - Do not try to distinguish between primary and secondary CPUs, this
157	 *    notion only exists for a cold boot.
158	 *
159	 *  - No need to initialise the memory or the C runtime environment,
160	 *    it has been done once and for all on the cold boot path.
161	 */
162	el3_entrypoint_common					\
163		_init_sctlr=PROGRAMMABLE_RESET_ADDRESS		\
164		_warm_boot_mailbox=0				\
165		_secondary_cold_boot=0				\
166		_init_memory=0					\
167		_init_c_runtime=0				\
168		_exception_vectors=runtime_exceptions		\
169		_pie_fixup_size=0
170
171	/*
172	 * We're about to enable MMU and participate in PSCI state coordination.
173	 *
174	 * The PSCI implementation invokes platform routines that enable CPUs to
175	 * participate in coherency. On a system where CPUs are not
176	 * cache-coherent without appropriate platform specific programming,
177	 * having caches enabled until such time might lead to coherency issues
178	 * (resulting from stale data getting speculatively fetched, among
179	 * others). Therefore we keep data caches disabled even after enabling
180	 * the MMU for such platforms.
181	 *
182	 * On systems with hardware-assisted coherency, or on single cluster
183	 * platforms, such platform specific programming is not required to
184	 * enter coherency (as CPUs already are); and there's no reason to have
185	 * caches disabled either.
186	 */
187#if HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY
188	mov	x0, xzr
189#else
190	mov	x0, #DISABLE_DCACHE
191#endif
192	bl	bl31_plat_enable_mmu
193
194#if ENABLE_PAUTH
195	/* --------------------------------------------------------------------
196	 * Program APIAKey_EL1 and enable pointer authentication
197	 * --------------------------------------------------------------------
198	 */
199	bl	pauth_init_enable_el3
200#endif /* ENABLE_PAUTH */
201
202	bl	psci_warmboot_entrypoint
203
204#if ENABLE_RUNTIME_INSTRUMENTATION
205	pmf_calc_timestamp_addr rt_instr_svc, RT_INSTR_EXIT_PSCI
206	mov	x19, x0
207
208	/*
209	 * Invalidate before updating timestamp to ensure previous timestamp
210	 * updates on the same cache line with caches disabled are properly
211	 * seen by the same core. Without the cache invalidate, the core might
212	 * write into a stale cache line.
213	 */
214	mov	x1, #PMF_TS_SIZE
215	mov	x20, x30
216	bl	inv_dcache_range
217	mov	x30, x20
218
219	mrs	x0, cntpct_el0
220	str	x0, [x19]
221#endif
222	b	el3_exit
223endfunc bl31_warm_entrypoint
224