• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <assert.h>
7 #include <math.h>
8 #include <stddef.h>
9 #include <stdint.h>
10 #include <stdlib.h>
11 
12 #include <xnnpack.h>
13 #include <xnnpack/allocator.h>
14 #include <xnnpack/operator.h>
15 #include <xnnpack/log.h>
16 #include <xnnpack/params.h>
17 
18 
xnn_create_channel_pad_nc_x32(size_t input_channels,size_t pad_before_channels,size_t pad_after_channels,size_t input_stride,size_t output_stride,const void * pad_value,uint32_t flags,xnn_operator_t * channel_pad_op_out)19 enum xnn_status xnn_create_channel_pad_nc_x32(
20     size_t input_channels,
21     size_t pad_before_channels,
22     size_t pad_after_channels,
23     size_t input_stride,
24     size_t output_stride,
25     const void* pad_value,
26     uint32_t flags,
27     xnn_operator_t* channel_pad_op_out)
28 {
29   xnn_operator_t channel_pad_op = NULL;
30   enum xnn_status status = xnn_status_uninitialized;
31 
32   if (!xnn_params.initialized) {
33     xnn_log_error("failed to create Channel Pad operator: XNNPACK is not initialized");
34     goto error;
35   }
36 
37   status = xnn_status_invalid_parameter;
38 
39   if (input_channels == 0) {
40     xnn_log_error(
41       "failed to create Channel Pad operator with %zu input channels: number of channels must be non-zero",
42       input_channels);
43     goto error;
44   }
45 
46   if (input_stride < input_channels) {
47     xnn_log_error(
48       "failed to create Channel Pad operator with input element stride of %zu: "
49       "stride must be at least as large as the number of input channels (%zu)",
50       input_stride, input_channels);
51     goto error;
52   }
53 
54   const size_t output_channels = pad_before_channels + input_channels + pad_after_channels;
55   if (output_stride < output_channels) {
56     xnn_log_error(
57       "failed to create Channel Pad operator with output element stride of %zu: "
58       "stride must be at least as large as the number of output channels (%zu+%zu+%zu)",
59       output_stride, pad_before_channels, input_channels, pad_after_channels);
60     goto error;
61   }
62 
63   status = xnn_status_out_of_memory;
64 
65   channel_pad_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator));
66   if (channel_pad_op == NULL) {
67     xnn_log_error("failed to allocate %zu bytes for Channel Pad operator descriptor", sizeof(struct xnn_operator));
68     goto error;
69   }
70 
71   channel_pad_op->channels = input_channels;
72   channel_pad_op->pad_before_channels = pad_before_channels;
73   channel_pad_op->pad_after_channels = pad_after_channels;
74   channel_pad_op->input_pixel_stride = input_stride;
75   channel_pad_op->output_pixel_stride = output_stride;
76   channel_pad_op->pad_value = *((const uint32_t*) pad_value);
77 
78   channel_pad_op->type = xnn_operator_type_channel_pad_nc_x32;
79   channel_pad_op->ukernel.type = xnn_ukernel_type_pad;
80 
81   channel_pad_op->state = xnn_run_state_invalid;
82 
83   *channel_pad_op_out = channel_pad_op;
84   return xnn_status_success;
85 
86 error:
87   xnn_delete_operator(channel_pad_op);
88   return status;
89 }
90 
xnn_setup_channel_pad_nc_x32(xnn_operator_t channel_pad_op,size_t batch_size,const void * input,void * output,pthreadpool_t threadpool)91 enum xnn_status xnn_setup_channel_pad_nc_x32(
92     xnn_operator_t channel_pad_op,
93     size_t batch_size,
94     const void* input,
95     void* output,
96     pthreadpool_t threadpool)
97 {
98   if (channel_pad_op->type != xnn_operator_type_channel_pad_nc_x32) {
99     xnn_log_error("failed to setup Channel Pad (X32) operator: operator type mismatch");
100     return xnn_status_invalid_parameter;
101   }
102   channel_pad_op->state = xnn_run_state_invalid;
103 
104   if (!xnn_params.initialized) {
105     xnn_log_error("failed to setup Channel Pad operator: XNNPACK is not initialized");
106     return xnn_status_uninitialized;
107   }
108 
109   if (batch_size == 0) {
110     channel_pad_op->state = xnn_run_state_skip;
111     return xnn_status_success;
112   }
113 
114   channel_pad_op->batch_size = batch_size;
115   channel_pad_op->input = input;
116   channel_pad_op->output = output;
117 
118   channel_pad_op->context.channel_pad = (struct channel_pad_context) {
119     .x = input,
120     .x_stride = channel_pad_op->input_pixel_stride * sizeof(uint32_t),
121     .y = output,
122     .y_stride = channel_pad_op->output_pixel_stride * sizeof(uint32_t),
123     .n = channel_pad_op->channels * sizeof(uint32_t),
124     .l = channel_pad_op->pad_before_channels * sizeof(uint32_t),
125     .r = channel_pad_op->pad_after_channels * sizeof(uint32_t),
126     .c = channel_pad_op->pad_value,
127     .ukernel = xnn_params.x32.pad.ukernel,
128   };
129   channel_pad_op->compute.type = xnn_parallelization_type_1d_tile_1d;
130   channel_pad_op->compute.task_1d_tile_1d =
131       (pthreadpool_task_1d_tile_1d_t) xnn_compute_channel_pad;
132   channel_pad_op->compute.range[0] = batch_size;
133   channel_pad_op->compute.tile[0] = xnn_params.x32.pad.mr;
134   channel_pad_op->state = xnn_run_state_ready;
135 
136   return xnn_status_success;
137 }
138