• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2010-2019, NVIDIA CORPORATION.  All rights reserved.
4  */
5 
6 /* Tegra SoC common clock control functions */
7 
8 #include <common.h>
9 #include <div64.h>
10 #include <dm.h>
11 #include <errno.h>
12 #include <time.h>
13 #include <asm/io.h>
14 #include <asm/arch/clock.h>
15 #include <asm/arch/tegra.h>
16 #include <asm/arch-tegra/ap.h>
17 #include <asm/arch-tegra/clk_rst.h>
18 #include <asm/arch-tegra/pmc.h>
19 #include <asm/arch-tegra/timer.h>
20 
21 /*
22  * This is our record of the current clock rate of each clock. We don't
23  * fill all of these in since we are only really interested in clocks which
24  * we use as parents.
25  */
26 static unsigned pll_rate[CLOCK_ID_COUNT];
27 
28 /*
29  * The oscillator frequency is fixed to one of four set values. Based on this
30  * the other clocks are set up appropriately.
31  */
32 static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
33 	13000000,
34 	19200000,
35 	12000000,
36 	26000000,
37 	38400000,
38 	48000000,
39 };
40 
41 /* return 1 if a peripheral ID is in range */
42 #define clock_type_id_isvalid(id) ((id) >= 0 && \
43 		(id) < CLOCK_TYPE_COUNT)
44 
45 char pllp_valid = 1;	/* PLLP is set up correctly */
46 
47 /* return 1 if a periphc_internal_id is in range */
48 #define periphc_internal_id_isvalid(id) ((id) >= 0 && \
49 		(id) < PERIPHC_COUNT)
50 
51 /* number of clock outputs of a PLL */
52 static const u8 pll_num_clkouts[] = {
53 	1,	/* PLLC */
54 	1,	/* PLLM */
55 	4,	/* PLLP */
56 	1,	/* PLLA */
57 	0,	/* PLLU */
58 	0,	/* PLLD */
59 };
60 
clock_get_osc_bypass(void)61 int clock_get_osc_bypass(void)
62 {
63 	struct clk_rst_ctlr *clkrst =
64 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
65 	u32 reg;
66 
67 	reg = readl(&clkrst->crc_osc_ctrl);
68 	return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT;
69 }
70 
71 /* Returns a pointer to the registers of the given pll */
get_pll(enum clock_id clkid)72 static struct clk_pll *get_pll(enum clock_id clkid)
73 {
74 	struct clk_rst_ctlr *clkrst =
75 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
76 
77 	assert(clock_id_is_pll(clkid));
78 	if (clkid >= (enum clock_id)TEGRA_CLK_PLLS) {
79 		debug("%s: Invalid PLL %d\n", __func__, clkid);
80 		return NULL;
81 	}
82 	return &clkrst->crc_pll[clkid];
83 }
84 
clock_get_simple_pll(enum clock_id clkid)85 __weak struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid)
86 {
87 	return NULL;
88 }
89 
clock_ll_read_pll(enum clock_id clkid,u32 * divm,u32 * divn,u32 * divp,u32 * cpcon,u32 * lfcon)90 int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
91 		u32 *divp, u32 *cpcon, u32 *lfcon)
92 {
93 	struct clk_pll *pll = get_pll(clkid);
94 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
95 	u32 data;
96 
97 	assert(clkid != CLOCK_ID_USB);
98 
99 	/* Safety check, adds to code size but is small */
100 	if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB)
101 		return -1;
102 	data = readl(&pll->pll_base);
103 	*divm = (data >> pllinfo->m_shift) & pllinfo->m_mask;
104 	*divn = (data >> pllinfo->n_shift) & pllinfo->n_mask;
105 	*divp = (data >> pllinfo->p_shift) & pllinfo->p_mask;
106 	data = readl(&pll->pll_misc);
107 	/* NOTE: On T210, cpcon/lfcon no longer exist, moved to KCP/KVCO */
108 	*cpcon = (data >> pllinfo->kcp_shift) & pllinfo->kcp_mask;
109 	*lfcon = (data >> pllinfo->kvco_shift) & pllinfo->kvco_mask;
110 
111 	return 0;
112 }
113 
clock_start_pll(enum clock_id clkid,u32 divm,u32 divn,u32 divp,u32 cpcon,u32 lfcon)114 unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
115 		u32 divp, u32 cpcon, u32 lfcon)
116 {
117 	struct clk_pll *pll = NULL;
118 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
119 	struct clk_pll_simple *simple_pll = NULL;
120 	u32 misc_data, data;
121 
122 	if (clkid < (enum clock_id)TEGRA_CLK_PLLS) {
123 		pll = get_pll(clkid);
124 	} else {
125 		simple_pll = clock_get_simple_pll(clkid);
126 		if (!simple_pll) {
127 			debug("%s: Uknown simple PLL %d\n", __func__, clkid);
128 			return 0;
129 		}
130 	}
131 
132 	/*
133 	 * pllinfo has the m/n/p and kcp/kvco mask and shift
134 	 * values for all of the PLLs used in U-Boot, with any
135 	 * SoC differences accounted for.
136 	 *
137 	 * Preserve EN_LOCKDET, etc.
138 	 */
139 	if (pll)
140 		misc_data = readl(&pll->pll_misc);
141 	else
142 		misc_data = readl(&simple_pll->pll_misc);
143 	misc_data &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift);
144 	misc_data |= cpcon << pllinfo->kcp_shift;
145 	misc_data &= ~(pllinfo->kvco_mask << pllinfo->kvco_shift);
146 	misc_data |= lfcon << pllinfo->kvco_shift;
147 
148 	data = (divm << pllinfo->m_shift) | (divn << pllinfo->n_shift);
149 	data |= divp << pllinfo->p_shift;
150 	data |= (1 << PLL_ENABLE_SHIFT);	/* BYPASS s/b 0 already */
151 
152 	if (pll) {
153 		writel(misc_data, &pll->pll_misc);
154 		writel(data, &pll->pll_base);
155 	} else {
156 		writel(misc_data, &simple_pll->pll_misc);
157 		writel(data, &simple_pll->pll_base);
158 	}
159 
160 	/* calculate the stable time */
161 	return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
162 }
163 
clock_ll_set_source_divisor(enum periph_id periph_id,unsigned source,unsigned divisor)164 void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
165 			unsigned divisor)
166 {
167 	u32 *reg = get_periph_source_reg(periph_id);
168 	u32 value;
169 
170 	value = readl(reg);
171 
172 	value &= ~OUT_CLK_SOURCE_31_30_MASK;
173 	value |= source << OUT_CLK_SOURCE_31_30_SHIFT;
174 
175 	value &= ~OUT_CLK_DIVISOR_MASK;
176 	value |= divisor << OUT_CLK_DIVISOR_SHIFT;
177 
178 	writel(value, reg);
179 }
180 
clock_ll_set_source_bits(enum periph_id periph_id,int mux_bits,unsigned source)181 int clock_ll_set_source_bits(enum periph_id periph_id, int mux_bits,
182 			     unsigned source)
183 {
184 	u32 *reg = get_periph_source_reg(periph_id);
185 
186 	switch (mux_bits) {
187 	case MASK_BITS_31_30:
188 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK,
189 				source << OUT_CLK_SOURCE_31_30_SHIFT);
190 		break;
191 
192 	case MASK_BITS_31_29:
193 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_29_MASK,
194 				source << OUT_CLK_SOURCE_31_29_SHIFT);
195 		break;
196 
197 	case MASK_BITS_31_28:
198 		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_28_MASK,
199 				source << OUT_CLK_SOURCE_31_28_SHIFT);
200 		break;
201 
202 	default:
203 		return -1;
204 	}
205 
206 	return 0;
207 }
208 
clock_ll_get_source_bits(enum periph_id periph_id,int mux_bits)209 static int clock_ll_get_source_bits(enum periph_id periph_id, int mux_bits)
210 {
211 	u32 *reg = get_periph_source_reg(periph_id);
212 	u32 val = readl(reg);
213 
214 	switch (mux_bits) {
215 	case MASK_BITS_31_30:
216 		val >>= OUT_CLK_SOURCE_31_30_SHIFT;
217 		val &= OUT_CLK_SOURCE_31_30_MASK;
218 		return val;
219 	case MASK_BITS_31_29:
220 		val >>= OUT_CLK_SOURCE_31_29_SHIFT;
221 		val &= OUT_CLK_SOURCE_31_29_MASK;
222 		return val;
223 	case MASK_BITS_31_28:
224 		val >>= OUT_CLK_SOURCE_31_28_SHIFT;
225 		val &= OUT_CLK_SOURCE_31_28_MASK;
226 		return val;
227 	default:
228 		return -1;
229 	}
230 }
231 
clock_ll_set_source(enum periph_id periph_id,unsigned source)232 void clock_ll_set_source(enum periph_id periph_id, unsigned source)
233 {
234 	clock_ll_set_source_bits(periph_id, MASK_BITS_31_30, source);
235 }
236 
237 /**
238  * Given the parent's rate and the required rate for the children, this works
239  * out the peripheral clock divider to use, in 7.1 binary format.
240  *
241  * @param divider_bits	number of divider bits (8 or 16)
242  * @param parent_rate	clock rate of parent clock in Hz
243  * @param rate		required clock rate for this clock
244  * @return divider which should be used
245  */
clk_get_divider(unsigned divider_bits,unsigned long parent_rate,unsigned long rate)246 static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate,
247 			   unsigned long rate)
248 {
249 	u64 divider = parent_rate * 2;
250 	unsigned max_divider = 1 << divider_bits;
251 
252 	divider += rate - 1;
253 	do_div(divider, rate);
254 
255 	if ((s64)divider - 2 < 0)
256 		return 0;
257 
258 	if ((s64)divider - 2 >= max_divider)
259 		return -1;
260 
261 	return divider - 2;
262 }
263 
clock_set_pllout(enum clock_id clkid,enum pll_out_id pllout,unsigned rate)264 int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate)
265 {
266 	struct clk_pll *pll = get_pll(clkid);
267 	int data = 0, div = 0, offset = 0;
268 
269 	if (!clock_id_is_pll(clkid))
270 		return -1;
271 
272 	if (pllout + 1 > pll_num_clkouts[clkid])
273 		return -1;
274 
275 	div = clk_get_divider(8, pll_rate[clkid], rate);
276 
277 	if (div < 0)
278 		return -1;
279 
280 	/* out2 and out4 are in the high part of the register */
281 	if (pllout == PLL_OUT2 || pllout == PLL_OUT4)
282 		offset = 16;
283 
284 	data = (div << PLL_OUT_RATIO_SHIFT) |
285 			PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN;
286 	clrsetbits_le32(&pll->pll_out[pllout >> 1],
287 			PLL_OUT_RATIO_MASK << offset, data << offset);
288 
289 	return 0;
290 }
291 
292 /**
293  * Given the parent's rate and the divider in 7.1 format, this works out the
294  * resulting peripheral clock rate.
295  *
296  * @param parent_rate	clock rate of parent clock in Hz
297  * @param divider which should be used in 7.1 format
298  * @return effective clock rate of peripheral
299  */
get_rate_from_divider(unsigned long parent_rate,int divider)300 static unsigned long get_rate_from_divider(unsigned long parent_rate,
301 					   int divider)
302 {
303 	u64 rate;
304 
305 	rate = (u64)parent_rate * 2;
306 	do_div(rate, divider + 2);
307 	return rate;
308 }
309 
clock_get_periph_rate(enum periph_id periph_id,enum clock_id parent)310 unsigned long clock_get_periph_rate(enum periph_id periph_id,
311 		enum clock_id parent)
312 {
313 	u32 *reg = get_periph_source_reg(periph_id);
314 	unsigned parent_rate = pll_rate[parent];
315 	int div = (readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT;
316 
317 	switch (periph_id) {
318 	case PERIPH_ID_UART1:
319 	case PERIPH_ID_UART2:
320 	case PERIPH_ID_UART3:
321 	case PERIPH_ID_UART4:
322 	case PERIPH_ID_UART5:
323 #ifdef CONFIG_TEGRA20
324 		/* There's no divider for these clocks in this SoC. */
325 		return parent_rate;
326 #else
327 		/*
328 		 * This undoes the +2 in get_rate_from_divider() which I
329 		 * believe is incorrect. Ideally we would fix
330 		 * get_rate_from_divider(), but... Removing the +2 from
331 		 * get_rate_from_divider() would probably require remove the -2
332 		 * from the tail of clk_get_divider() since I believe that's
333 		 * only there to invert get_rate_from_divider()'s +2. Observe
334 		 * how find_best_divider() uses those two functions together.
335 		 * However, doing so breaks other stuff, such as Seaboard's
336 		 * display, likely due to clock_set_pllout()'s call to
337 		 * clk_get_divider(). Attempting to fix that by making
338 		 * clock_set_pllout() subtract 2 from clk_get_divider()'s
339 		 * return value doesn't help. In summary this clock driver is
340 		 * quite broken but I'm afraid I have no idea how to fix it
341 		 * without completely replacing it.
342 		 *
343 		 * Be careful to avoid a divide by zero error.
344 		 */
345 		if (div >= 1)
346 			div -= 2;
347 		break;
348 #endif
349 	default:
350 		break;
351 	}
352 
353 	return get_rate_from_divider(parent_rate, div);
354 }
355 
356 /**
357  * Find the best available 7.1 format divisor given a parent clock rate and
358  * required child clock rate. This function assumes that a second-stage
359  * divisor is available which can divide by powers of 2 from 1 to 256.
360  *
361  * @param divider_bits	number of divider bits (8 or 16)
362  * @param parent_rate	clock rate of parent clock in Hz
363  * @param rate		required clock rate for this clock
364  * @param extra_div	value for the second-stage divisor (not set if this
365  *			function returns -1.
366  * @return divider which should be used, or -1 if nothing is valid
367  *
368  */
find_best_divider(unsigned divider_bits,unsigned long parent_rate,unsigned long rate,int * extra_div)369 static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
370 				unsigned long rate, int *extra_div)
371 {
372 	int shift;
373 	int best_divider = -1;
374 	int best_error = rate;
375 
376 	/* try dividers from 1 to 256 and find closest match */
377 	for (shift = 0; shift <= 8 && best_error > 0; shift++) {
378 		unsigned divided_parent = parent_rate >> shift;
379 		int divider = clk_get_divider(divider_bits, divided_parent,
380 						rate);
381 		unsigned effective_rate = get_rate_from_divider(divided_parent,
382 						divider);
383 		int error = rate - effective_rate;
384 
385 		/* Given a valid divider, look for the lowest error */
386 		if (divider != -1 && error < best_error) {
387 			best_error = error;
388 			*extra_div = 1 << shift;
389 			best_divider = divider;
390 		}
391 	}
392 
393 	/* return what we found - *extra_div will already be set */
394 	return best_divider;
395 }
396 
397 /**
398  * Adjust peripheral PLL to use the given divider and source.
399  *
400  * @param periph_id	peripheral to adjust
401  * @param source	Source number (0-3 or 0-7)
402  * @param mux_bits	Number of mux bits (2 or 4)
403  * @param divider	Required divider in 7.1 or 15.1 format
404  * @return 0 if ok, -1 on error (requesting a parent clock which is not valid
405  *		for this peripheral)
406  */
adjust_periph_pll(enum periph_id periph_id,int source,int mux_bits,unsigned divider)407 static int adjust_periph_pll(enum periph_id periph_id, int source,
408 				int mux_bits, unsigned divider)
409 {
410 	u32 *reg = get_periph_source_reg(periph_id);
411 
412 	clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
413 			divider << OUT_CLK_DIVISOR_SHIFT);
414 	udelay(1);
415 
416 	/* work out the source clock and set it */
417 	if (source < 0)
418 		return -1;
419 
420 	clock_ll_set_source_bits(periph_id, mux_bits, source);
421 
422 	udelay(2);
423 	return 0;
424 }
425 
clock_get_periph_parent(enum periph_id periph_id)426 enum clock_id clock_get_periph_parent(enum periph_id periph_id)
427 {
428 	int err, mux_bits, divider_bits, type;
429 	int source;
430 
431 	err = get_periph_clock_info(periph_id, &mux_bits, &divider_bits, &type);
432 	if (err)
433 		return CLOCK_ID_NONE;
434 
435 	source = clock_ll_get_source_bits(periph_id, mux_bits);
436 
437 	return get_periph_clock_id(periph_id, source);
438 }
439 
clock_adjust_periph_pll_div(enum periph_id periph_id,enum clock_id parent,unsigned rate,int * extra_div)440 unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
441 		enum clock_id parent, unsigned rate, int *extra_div)
442 {
443 	unsigned effective_rate;
444 	int mux_bits, divider_bits, source;
445 	int divider;
446 	int xdiv = 0;
447 
448 	/* work out the source clock and set it */
449 	source = get_periph_clock_source(periph_id, parent, &mux_bits,
450 					 &divider_bits);
451 
452 	divider = find_best_divider(divider_bits, pll_rate[parent],
453 				    rate, &xdiv);
454 	if (extra_div)
455 		*extra_div = xdiv;
456 
457 	assert(divider >= 0);
458 	if (adjust_periph_pll(periph_id, source, mux_bits, divider))
459 		return -1U;
460 	debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
461 		get_periph_source_reg(periph_id),
462 		readl(get_periph_source_reg(periph_id)));
463 
464 	/* Check what we ended up with. This shouldn't matter though */
465 	effective_rate = clock_get_periph_rate(periph_id, parent);
466 	if (extra_div)
467 		effective_rate /= *extra_div;
468 	if (rate != effective_rate)
469 		debug("Requested clock rate %u not honored (got %u)\n",
470 			rate, effective_rate);
471 	return effective_rate;
472 }
473 
clock_start_periph_pll(enum periph_id periph_id,enum clock_id parent,unsigned rate)474 unsigned clock_start_periph_pll(enum periph_id periph_id,
475 		enum clock_id parent, unsigned rate)
476 {
477 	unsigned effective_rate;
478 
479 	reset_set_enable(periph_id, 1);
480 	clock_enable(periph_id);
481 	udelay(2);
482 
483 	effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
484 						 NULL);
485 
486 	reset_set_enable(periph_id, 0);
487 	return effective_rate;
488 }
489 
clock_enable(enum periph_id clkid)490 void clock_enable(enum periph_id clkid)
491 {
492 	clock_set_enable(clkid, 1);
493 }
494 
clock_disable(enum periph_id clkid)495 void clock_disable(enum periph_id clkid)
496 {
497 	clock_set_enable(clkid, 0);
498 }
499 
reset_periph(enum periph_id periph_id,int us_delay)500 void reset_periph(enum periph_id periph_id, int us_delay)
501 {
502 	/* Put peripheral into reset */
503 	reset_set_enable(periph_id, 1);
504 	udelay(us_delay);
505 
506 	/* Remove reset */
507 	reset_set_enable(periph_id, 0);
508 
509 	udelay(us_delay);
510 }
511 
reset_cmplx_set_enable(int cpu,int which,int reset)512 void reset_cmplx_set_enable(int cpu, int which, int reset)
513 {
514 	struct clk_rst_ctlr *clkrst =
515 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
516 	u32 mask;
517 
518 	/* Form the mask, which depends on the cpu chosen (2 or 4) */
519 	assert(cpu >= 0 && cpu < MAX_NUM_CPU);
520 	mask = which << cpu;
521 
522 	/* either enable or disable those reset for that CPU */
523 	if (reset)
524 		writel(mask, &clkrst->crc_cpu_cmplx_set);
525 	else
526 		writel(mask, &clkrst->crc_cpu_cmplx_clr);
527 }
528 
clk_m_get_rate(unsigned int parent_rate)529 unsigned int __weak clk_m_get_rate(unsigned int parent_rate)
530 {
531 	return parent_rate;
532 }
533 
clock_get_rate(enum clock_id clkid)534 unsigned clock_get_rate(enum clock_id clkid)
535 {
536 	struct clk_pll *pll;
537 	u32 base, divm;
538 	u64 parent_rate, rate;
539 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
540 
541 	parent_rate = osc_freq[clock_get_osc_freq()];
542 	if (clkid == CLOCK_ID_OSC)
543 		return parent_rate;
544 
545 	if (clkid == CLOCK_ID_CLK_M)
546 		return clk_m_get_rate(parent_rate);
547 
548 	pll = get_pll(clkid);
549 	if (!pll)
550 		return 0;
551 	base = readl(&pll->pll_base);
552 
553 	rate = parent_rate * ((base >> pllinfo->n_shift) & pllinfo->n_mask);
554 	divm = (base >> pllinfo->m_shift) & pllinfo->m_mask;
555 	/*
556 	 * PLLU uses p_mask/p_shift for VCO on all but T210,
557 	 * T210 uses normal DIVP. Handled in pllinfo table.
558 	 */
559 #ifdef CONFIG_TEGRA210
560 	/*
561 	 * PLLP's primary output (pllP_out0) on T210 is the VCO, and divp is
562 	 * not applied. pllP_out2 does have divp applied. All other pllP_outN
563 	 * are divided down from pllP_out0. We only support pllP_out0 in
564 	 * U-Boot at the time of writing this comment.
565 	 */
566 	if (clkid != CLOCK_ID_PERIPH)
567 #endif
568 		divm <<= (base >> pllinfo->p_shift) & pllinfo->p_mask;
569 	do_div(rate, divm);
570 	return rate;
571 }
572 
573 /**
574  * Set the output frequency you want for each PLL clock.
575  * PLL output frequencies are programmed by setting their N, M and P values.
576  * The governing equations are:
577  *     VCO = (Fi / m) * n, Fo = VCO / (2^p)
578  *     where Fo is the output frequency from the PLL.
579  * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
580  *     216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
581  * Please see Tegra TRM section 5.3 to get the detail for PLL Programming
582  *
583  * @param n PLL feedback divider(DIVN)
584  * @param m PLL input divider(DIVN)
585  * @param p post divider(DIVP)
586  * @param cpcon base PLL charge pump(CPCON)
587  * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
588  *		be overridden), 1 if PLL is already correct
589  */
clock_set_rate(enum clock_id clkid,u32 n,u32 m,u32 p,u32 cpcon)590 int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
591 {
592 	u32 base_reg, misc_reg;
593 	struct clk_pll *pll;
594 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[clkid];
595 
596 	pll = get_pll(clkid);
597 
598 	base_reg = readl(&pll->pll_base);
599 
600 	/* Set BYPASS, m, n and p to PLL_BASE */
601 	base_reg &= ~(pllinfo->m_mask << pllinfo->m_shift);
602 	base_reg |= m << pllinfo->m_shift;
603 
604 	base_reg &= ~(pllinfo->n_mask << pllinfo->n_shift);
605 	base_reg |= n << pllinfo->n_shift;
606 
607 	base_reg &= ~(pllinfo->p_mask << pllinfo->p_shift);
608 	base_reg |= p << pllinfo->p_shift;
609 
610 	if (clkid == CLOCK_ID_PERIPH) {
611 		/*
612 		 * If the PLL is already set up, check that it is correct
613 		 * and record this info for clock_verify() to check.
614 		 */
615 		if (base_reg & PLL_BASE_OVRRIDE_MASK) {
616 			base_reg |= PLL_ENABLE_MASK;
617 			if (base_reg != readl(&pll->pll_base))
618 				pllp_valid = 0;
619 			return pllp_valid ? 1 : -1;
620 		}
621 		base_reg |= PLL_BASE_OVRRIDE_MASK;
622 	}
623 
624 	base_reg |= PLL_BYPASS_MASK;
625 	writel(base_reg, &pll->pll_base);
626 
627 	/* Set cpcon (KCP) to PLL_MISC */
628 	misc_reg = readl(&pll->pll_misc);
629 	misc_reg &= ~(pllinfo->kcp_mask << pllinfo->kcp_shift);
630 	misc_reg |= cpcon << pllinfo->kcp_shift;
631 	writel(misc_reg, &pll->pll_misc);
632 
633 	/* Enable PLL */
634 	base_reg |= PLL_ENABLE_MASK;
635 	writel(base_reg, &pll->pll_base);
636 
637 	/* Disable BYPASS */
638 	base_reg &= ~PLL_BYPASS_MASK;
639 	writel(base_reg, &pll->pll_base);
640 
641 	return 0;
642 }
643 
clock_ll_start_uart(enum periph_id periph_id)644 void clock_ll_start_uart(enum periph_id periph_id)
645 {
646 	/* Assert UART reset and enable clock */
647 	reset_set_enable(periph_id, 1);
648 	clock_enable(periph_id);
649 	clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */
650 
651 	/* wait for 2us */
652 	udelay(2);
653 
654 	/* De-assert reset to UART */
655 	reset_set_enable(periph_id, 0);
656 }
657 
658 #if CONFIG_IS_ENABLED(OF_CONTROL)
clock_decode_periph_id(struct udevice * dev)659 int clock_decode_periph_id(struct udevice *dev)
660 {
661 	enum periph_id id;
662 	u32 cell[2];
663 	int err;
664 
665 	err = dev_read_u32_array(dev, "clocks", cell, ARRAY_SIZE(cell));
666 	if (err)
667 		return -1;
668 	id = clk_id_to_periph_id(cell[1]);
669 	assert(clock_periph_id_isvalid(id));
670 	return id;
671 }
672 #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
673 
clock_verify(void)674 int clock_verify(void)
675 {
676 	struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
677 	u32 reg = readl(&pll->pll_base);
678 
679 	if (!pllp_valid) {
680 		printf("Warning: PLLP %x is not correct\n", reg);
681 		return -1;
682 	}
683 	debug("PLLP %x is correct\n", reg);
684 	return 0;
685 }
686 
clock_init(void)687 void clock_init(void)
688 {
689 	int i;
690 
691 	pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
692 	pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
693 	pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
694 	pll_rate[CLOCK_ID_USB] = clock_get_rate(CLOCK_ID_USB);
695 	pll_rate[CLOCK_ID_DISPLAY] = clock_get_rate(CLOCK_ID_DISPLAY);
696 	pll_rate[CLOCK_ID_XCPU] = clock_get_rate(CLOCK_ID_XCPU);
697 	pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
698 	pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
699 	pll_rate[CLOCK_ID_CLK_M] = clock_get_rate(CLOCK_ID_CLK_M);
700 
701 	debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
702 	debug("CLKM = %d\n", pll_rate[CLOCK_ID_CLK_M]);
703 	debug("PLLC = %d\n", pll_rate[CLOCK_ID_CGENERAL]);
704 	debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
705 	debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
706 	debug("PLLU = %d\n", pll_rate[CLOCK_ID_USB]);
707 	debug("PLLD = %d\n", pll_rate[CLOCK_ID_DISPLAY]);
708 	debug("PLLX = %d\n", pll_rate[CLOCK_ID_XCPU]);
709 
710 	for (i = 0; periph_clk_init_table[i].periph_id != -1; i++) {
711 		enum periph_id periph_id;
712 		enum clock_id parent;
713 		int source, mux_bits, divider_bits;
714 
715 		periph_id = periph_clk_init_table[i].periph_id;
716 		parent = periph_clk_init_table[i].parent_clock_id;
717 
718 		source = get_periph_clock_source(periph_id, parent, &mux_bits,
719 						 &divider_bits);
720 		clock_ll_set_source_bits(periph_id, mux_bits, source);
721 	}
722 }
723 
set_avp_clock_source(u32 src)724 static void set_avp_clock_source(u32 src)
725 {
726 	struct clk_rst_ctlr *clkrst =
727 			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
728 	u32 val;
729 
730 	val = (src << SCLK_SWAKEUP_FIQ_SOURCE_SHIFT) |
731 		(src << SCLK_SWAKEUP_IRQ_SOURCE_SHIFT) |
732 		(src << SCLK_SWAKEUP_RUN_SOURCE_SHIFT) |
733 		(src << SCLK_SWAKEUP_IDLE_SOURCE_SHIFT) |
734 		(SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT);
735 	writel(val, &clkrst->crc_sclk_brst_pol);
736 	udelay(3);
737 }
738 
739 /*
740  * This function is useful on Tegra30, and any later SoCs that have compatible
741  * PLLP configuration registers.
742  * NOTE: Not used on Tegra210 - see tegra210_setup_pllp in T210 clock.c
743  */
tegra30_set_up_pllp(void)744 void tegra30_set_up_pllp(void)
745 {
746 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
747 	u32 reg;
748 
749 	/*
750 	 * Based on the Tegra TRM, the system clock (which is the AVP clock) can
751 	 * run up to 275MHz. On power on, the default sytem clock source is set
752 	 * to PLLP_OUT0. This function sets PLLP's (hence PLLP_OUT0's) rate to
753 	 * 408MHz which is beyond system clock's upper limit.
754 	 *
755 	 * The fix is to set the system clock to CLK_M before initializing PLLP,
756 	 * and then switch back to PLLP_OUT4, which has an appropriate divider
757 	 * configured, after PLLP has been configured
758 	 */
759 	set_avp_clock_source(SCLK_SOURCE_CLKM);
760 
761 	/*
762 	 * PLLP output frequency set to 408Mhz
763 	 * PLLC output frequency set to 228Mhz
764 	 */
765 	switch (clock_get_osc_freq()) {
766 	case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
767 		clock_set_rate(CLOCK_ID_PERIPH, 408, 12, 0, 8);
768 		clock_set_rate(CLOCK_ID_CGENERAL, 456, 12, 1, 8);
769 		break;
770 
771 	case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
772 		clock_set_rate(CLOCK_ID_PERIPH, 408, 26, 0, 8);
773 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
774 		break;
775 
776 	case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
777 		clock_set_rate(CLOCK_ID_PERIPH, 408, 13, 0, 8);
778 		clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
779 		break;
780 	case CLOCK_OSC_FREQ_19_2:
781 	default:
782 		/*
783 		 * These are not supported. It is too early to print a
784 		 * message and the UART likely won't work anyway due to the
785 		 * oscillator being wrong.
786 		 */
787 		break;
788 	}
789 
790 	/* Set PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */
791 
792 	/* OUT1, 2 */
793 	/* Assert RSTN before enable */
794 	reg = PLLP_OUT2_RSTN_EN | PLLP_OUT1_RSTN_EN;
795 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
796 	/* Set divisor and reenable */
797 	reg = (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO)
798 		| PLLP_OUT2_OVR | PLLP_OUT2_CLKEN | PLLP_OUT2_RSTN_DIS
799 		| (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO)
800 		| PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS;
801 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
802 
803 	/* OUT3, 4 */
804 	/* Assert RSTN before enable */
805 	reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN;
806 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
807 	/* Set divisor and reenable */
808 	reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO)
809 		| PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS
810 		| (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO)
811 		| PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS;
812 	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
813 
814 	set_avp_clock_source(SCLK_SOURCE_PLLP_OUT4);
815 }
816 
clock_external_output(int clk_id)817 int clock_external_output(int clk_id)
818 {
819 	u32 val;
820 
821 	if (clk_id >= 1 && clk_id <= 3) {
822 		val = tegra_pmc_readl(offsetof(struct pmc_ctlr,
823 				      pmc_clk_out_cntrl));
824 		val |= 1 << (2 + (clk_id - 1) * 8);
825 		tegra_pmc_writel(val,
826 				 offsetof(struct pmc_ctlr,
827 				 pmc_clk_out_cntrl));
828 
829 	} else {
830 		printf("%s: Unknown output clock id %d\n", __func__, clk_id);
831 		return -EINVAL;
832 	}
833 
834 	return 0;
835 }
836 
clock_early_init_done(void)837 __weak bool clock_early_init_done(void)
838 {
839 	return true;
840 }
841