• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2013-2020, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stdbool.h>
9 #include <string.h>
10 
11 #include <platform_def.h>
12 
13 #include <arch.h>
14 #include <arch_helpers.h>
15 #include <arch_features.h>
16 #include <bl31/interrupt_mgmt.h>
17 #include <common/bl_common.h>
18 #include <context.h>
19 #include <lib/el3_runtime/context_mgmt.h>
20 #include <lib/el3_runtime/pubsub_events.h>
21 #include <lib/extensions/amu.h>
22 #include <lib/extensions/mpam.h>
23 #include <lib/extensions/spe.h>
24 #include <lib/extensions/sve.h>
25 #include <lib/utils.h>
26 #include <plat/common/platform.h>
27 #include <smccc_helpers.h>
28 
29 
30 /*******************************************************************************
31  * Context management library initialisation routine. This library is used by
32  * runtime services to share pointers to 'cpu_context' structures for the secure
33  * and non-secure states. Management of the structures and their associated
34  * memory is not done by the context management library e.g. the PSCI service
35  * manages the cpu context used for entry from and exit to the non-secure state.
36  * The Secure payload dispatcher service manages the context(s) corresponding to
37  * the secure state. It also uses this library to get access to the non-secure
38  * state cpu context pointers.
39  * Lastly, this library provides the api to make SP_EL3 point to the cpu context
40  * which will used for programming an entry into a lower EL. The same context
41  * will used to save state upon exception entry from that EL.
42  ******************************************************************************/
cm_init(void)43 void __init cm_init(void)
44 {
45 	/*
46 	 * The context management library has only global data to intialize, but
47 	 * that will be done when the BSS is zeroed out
48 	 */
49 }
50 
51 /*******************************************************************************
52  * The following function initializes the cpu_context 'ctx' for
53  * first use, and sets the initial entrypoint state as specified by the
54  * entry_point_info structure.
55  *
56  * The security state to initialize is determined by the SECURE attribute
57  * of the entry_point_info.
58  *
59  * The EE and ST attributes are used to configure the endianness and secure
60  * timer availability for the new execution context.
61  *
62  * To prepare the register state for entry call cm_prepare_el3_exit() and
63  * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
64  * cm_e1_sysreg_context_restore().
65  ******************************************************************************/
cm_setup_context(cpu_context_t * ctx,const entry_point_info_t * ep)66 void cm_setup_context(cpu_context_t *ctx, const entry_point_info_t *ep)
67 {
68 	unsigned int security_state;
69 	u_register_t scr_el3;
70 	el3_state_t *state;
71 	gp_regs_t *gp_regs;
72 	u_register_t sctlr_elx, actlr_elx;
73 
74 	assert(ctx != NULL);
75 
76 	security_state = GET_SECURITY_STATE(ep->h.attr);
77 
78 	/* Clear any residual register values from the context */
79 	zeromem(ctx, sizeof(*ctx));
80 
81 	/*
82 	 * SCR_EL3 was initialised during reset sequence in macro
83 	 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
84 	 * affect the next EL.
85 	 *
86 	 * The following fields are initially set to zero and then updated to
87 	 * the required value depending on the state of the SPSR_EL3 and the
88 	 * Security state and entrypoint attributes of the next EL.
89 	 */
90 	scr_el3 = read_scr();
91 	scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
92 			SCR_ST_BIT | SCR_HCE_BIT);
93 	/*
94 	 * SCR_NS: Set the security state of the next EL.
95 	 */
96 	if (security_state != SECURE)
97 		scr_el3 |= SCR_NS_BIT;
98 	/*
99 	 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
100 	 *  Exception level as specified by SPSR.
101 	 */
102 	if (GET_RW(ep->spsr) == MODE_RW_64)
103 		scr_el3 |= SCR_RW_BIT;
104 	/*
105 	 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
106 	 *  Secure timer registers to EL3, from AArch64 state only, if specified
107 	 *  by the entrypoint attributes.
108 	 */
109 	if (EP_GET_ST(ep->h.attr) != 0U)
110 		scr_el3 |= SCR_ST_BIT;
111 
112 #if !HANDLE_EA_EL3_FIRST
113 	/*
114 	 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
115 	 *  to EL3 when executing at a lower EL. When executing at EL3, External
116 	 *  Aborts are taken to EL3.
117 	 */
118 	scr_el3 &= ~SCR_EA_BIT;
119 #endif
120 
121 #if FAULT_INJECTION_SUPPORT
122 	/* Enable fault injection from lower ELs */
123 	scr_el3 |= SCR_FIEN_BIT;
124 #endif
125 
126 #if !CTX_INCLUDE_PAUTH_REGS
127 	/*
128 	 * If the pointer authentication registers aren't saved during world
129 	 * switches the value of the registers can be leaked from the Secure to
130 	 * the Non-secure world. To prevent this, rather than enabling pointer
131 	 * authentication everywhere, we only enable it in the Non-secure world.
132 	 *
133 	 * If the Secure world wants to use pointer authentication,
134 	 * CTX_INCLUDE_PAUTH_REGS must be set to 1.
135 	 */
136 	if (security_state == NON_SECURE)
137 		scr_el3 |= SCR_API_BIT | SCR_APK_BIT;
138 #endif /* !CTX_INCLUDE_PAUTH_REGS */
139 
140 	/*
141 	 * Enable MTE support. Support is enabled unilaterally for the normal
142 	 * world, and only for the secure world when CTX_INCLUDE_MTE_REGS is
143 	 * set.
144 	 */
145 #if CTX_INCLUDE_MTE_REGS
146 	assert(get_armv8_5_mte_support() == MTE_IMPLEMENTED_ELX);
147 	scr_el3 |= SCR_ATA_BIT;
148 #else
149 	unsigned int mte = get_armv8_5_mte_support();
150 	if (mte == MTE_IMPLEMENTED_EL0) {
151 		/*
152 		 * Can enable MTE across both worlds as no MTE registers are
153 		 * used
154 		 */
155 		scr_el3 |= SCR_ATA_BIT;
156 	} else if (mte == MTE_IMPLEMENTED_ELX && security_state == NON_SECURE) {
157 		/*
158 		 * Can only enable MTE in Non-Secure world without register
159 		 * saving
160 		 */
161 		scr_el3 |= SCR_ATA_BIT;
162 	}
163 #endif
164 
165 #ifdef IMAGE_BL31
166 	/*
167 	 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ routing as
168 	 *  indicated by the interrupt routing model for BL31.
169 	 */
170 	scr_el3 |= get_scr_el3_from_routing_model(security_state);
171 #endif
172 
173 	/*
174 	 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
175 	 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
176 	 * next mode is Hyp.
177 	 */
178 	if (((GET_RW(ep->spsr) == MODE_RW_64) && (GET_EL(ep->spsr) == MODE_EL2))
179 	    || ((GET_RW(ep->spsr) != MODE_RW_64)
180 		&& (GET_M32(ep->spsr) == MODE32_hyp))) {
181 		scr_el3 |= SCR_HCE_BIT;
182 	}
183 
184 	/* Enable S-EL2 if the next EL is EL2 and security state is secure */
185 	if ((security_state == SECURE) && (GET_EL(ep->spsr) == MODE_EL2)) {
186 		if (GET_RW(ep->spsr) != MODE_RW_64) {
187 			ERROR("S-EL2 can not be used in AArch32.");
188 			panic();
189 		}
190 
191 		scr_el3 |= SCR_EEL2_BIT;
192 	}
193 
194 	/*
195 	 * Initialise SCTLR_EL1 to the reset value corresponding to the target
196 	 * execution state setting all fields rather than relying of the hw.
197 	 * Some fields have architecturally UNKNOWN reset values and these are
198 	 * set to zero.
199 	 *
200 	 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
201 	 *
202 	 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
203 	 *  required by PSCI specification)
204 	 */
205 	sctlr_elx = (EP_GET_EE(ep->h.attr) != 0U) ? SCTLR_EE_BIT : 0U;
206 	if (GET_RW(ep->spsr) == MODE_RW_64)
207 		sctlr_elx |= SCTLR_EL1_RES1;
208 	else {
209 		/*
210 		 * If the target execution state is AArch32 then the following
211 		 * fields need to be set.
212 		 *
213 		 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
214 		 *  instructions are not trapped to EL1.
215 		 *
216 		 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
217 		 *  instructions are not trapped to EL1.
218 		 *
219 		 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
220 		 *  CP15DMB, CP15DSB, and CP15ISB instructions.
221 		 */
222 		sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
223 					| SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
224 	}
225 
226 #if ERRATA_A75_764081
227 	/*
228 	 * If workaround of errata 764081 for Cortex-A75 is used then set
229 	 * SCTLR_EL1.IESB to enable Implicit Error Synchronization Barrier.
230 	 */
231 	sctlr_elx |= SCTLR_IESB_BIT;
232 #endif
233 
234 	/*
235 	 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
236 	 * and other EL2 registers are set up by cm_prepare_ns_entry() as they
237 	 * are not part of the stored cpu_context.
238 	 */
239 	write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
240 
241 	/*
242 	 * Base the context ACTLR_EL1 on the current value, as it is
243 	 * implementation defined. The context restore process will write
244 	 * the value from the context to the actual register and can cause
245 	 * problems for processor cores that don't expect certain bits to
246 	 * be zero.
247 	 */
248 	actlr_elx = read_actlr_el1();
249 	write_ctx_reg((get_sysregs_ctx(ctx)), (CTX_ACTLR_EL1), (actlr_elx));
250 
251 	/*
252 	 * Populate EL3 state so that we've the right context
253 	 * before doing ERET
254 	 */
255 	state = get_el3state_ctx(ctx);
256 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
257 	write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
258 	write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
259 
260 	/*
261 	 * Store the X0-X7 value from the entrypoint into the context
262 	 * Use memcpy as we are in control of the layout of the structures
263 	 */
264 	gp_regs = get_gpregs_ctx(ctx);
265 	memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
266 }
267 
268 /*******************************************************************************
269  * Enable architecture extensions on first entry to Non-secure world.
270  * When EL2 is implemented but unused `el2_unused` is non-zero, otherwise
271  * it is zero.
272  ******************************************************************************/
enable_extensions_nonsecure(bool el2_unused)273 static void enable_extensions_nonsecure(bool el2_unused)
274 {
275 #if IMAGE_BL31
276 #if ENABLE_SPE_FOR_LOWER_ELS
277 	spe_enable(el2_unused);
278 #endif
279 
280 #if ENABLE_AMU
281 	amu_enable(el2_unused);
282 #endif
283 
284 #if ENABLE_SVE_FOR_NS
285 	sve_enable(el2_unused);
286 #endif
287 
288 #if ENABLE_MPAM_FOR_LOWER_ELS
289 	mpam_enable(el2_unused);
290 #endif
291 #endif
292 }
293 
294 /*******************************************************************************
295  * The following function initializes the cpu_context for a CPU specified by
296  * its `cpu_idx` for first use, and sets the initial entrypoint state as
297  * specified by the entry_point_info structure.
298  ******************************************************************************/
cm_init_context_by_index(unsigned int cpu_idx,const entry_point_info_t * ep)299 void cm_init_context_by_index(unsigned int cpu_idx,
300 			      const entry_point_info_t *ep)
301 {
302 	cpu_context_t *ctx;
303 	ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
304 	cm_setup_context(ctx, ep);
305 }
306 
307 /*******************************************************************************
308  * The following function initializes the cpu_context for the current CPU
309  * for first use, and sets the initial entrypoint state as specified by the
310  * entry_point_info structure.
311  ******************************************************************************/
cm_init_my_context(const entry_point_info_t * ep)312 void cm_init_my_context(const entry_point_info_t *ep)
313 {
314 	cpu_context_t *ctx;
315 	ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
316 	cm_setup_context(ctx, ep);
317 }
318 
319 /*******************************************************************************
320  * Prepare the CPU system registers for first entry into secure or normal world
321  *
322  * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
323  * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
324  * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
325  * For all entries, the EL1 registers are initialized from the cpu_context
326  ******************************************************************************/
cm_prepare_el3_exit(uint32_t security_state)327 void cm_prepare_el3_exit(uint32_t security_state)
328 {
329 	u_register_t sctlr_elx, scr_el3, mdcr_el2;
330 	cpu_context_t *ctx = cm_get_context(security_state);
331 	bool el2_unused = false;
332 	uint64_t hcr_el2 = 0U;
333 
334 	assert(ctx != NULL);
335 
336 	if (security_state == NON_SECURE) {
337 		scr_el3 = read_ctx_reg(get_el3state_ctx(ctx),
338 						 CTX_SCR_EL3);
339 		if ((scr_el3 & SCR_HCE_BIT) != 0U) {
340 			/* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
341 			sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
342 							   CTX_SCTLR_EL1);
343 			sctlr_elx &= SCTLR_EE_BIT;
344 			sctlr_elx |= SCTLR_EL2_RES1;
345 #if ERRATA_A75_764081
346 			/*
347 			 * If workaround of errata 764081 for Cortex-A75 is used
348 			 * then set SCTLR_EL2.IESB to enable Implicit Error
349 			 * Synchronization Barrier.
350 			 */
351 			sctlr_elx |= SCTLR_IESB_BIT;
352 #endif
353 			write_sctlr_el2(sctlr_elx);
354 		} else if (el_implemented(2) != EL_IMPL_NONE) {
355 			el2_unused = true;
356 
357 			/*
358 			 * EL2 present but unused, need to disable safely.
359 			 * SCTLR_EL2 can be ignored in this case.
360 			 *
361 			 * Set EL2 register width appropriately: Set HCR_EL2
362 			 * field to match SCR_EL3.RW.
363 			 */
364 			if ((scr_el3 & SCR_RW_BIT) != 0U)
365 				hcr_el2 |= HCR_RW_BIT;
366 
367 			/*
368 			 * For Armv8.3 pointer authentication feature, disable
369 			 * traps to EL2 when accessing key registers or using
370 			 * pointer authentication instructions from lower ELs.
371 			 */
372 			hcr_el2 |= (HCR_API_BIT | HCR_APK_BIT);
373 
374 			write_hcr_el2(hcr_el2);
375 
376 			/*
377 			 * Initialise CPTR_EL2 setting all fields rather than
378 			 * relying on the hw. All fields have architecturally
379 			 * UNKNOWN reset values.
380 			 *
381 			 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
382 			 *  accesses to the CPACR_EL1 or CPACR from both
383 			 *  Execution states do not trap to EL2.
384 			 *
385 			 * CPTR_EL2.TTA: Set to zero so that Non-secure System
386 			 *  register accesses to the trace registers from both
387 			 *  Execution states do not trap to EL2.
388 			 *
389 			 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
390 			 *  to SIMD and floating-point functionality from both
391 			 *  Execution states do not trap to EL2.
392 			 */
393 			write_cptr_el2(CPTR_EL2_RESET_VAL &
394 					~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
395 					| CPTR_EL2_TFP_BIT));
396 
397 			/*
398 			 * Initialise CNTHCTL_EL2. All fields are
399 			 * architecturally UNKNOWN on reset and are set to zero
400 			 * except for field(s) listed below.
401 			 *
402 			 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
403 			 *  Hyp mode of Non-secure EL0 and EL1 accesses to the
404 			 *  physical timer registers.
405 			 *
406 			 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
407 			 *  Hyp mode of  Non-secure EL0 and EL1 accesses to the
408 			 *  physical counter registers.
409 			 */
410 			write_cnthctl_el2(CNTHCTL_RESET_VAL |
411 						EL1PCEN_BIT | EL1PCTEN_BIT);
412 
413 			/*
414 			 * Initialise CNTVOFF_EL2 to zero as it resets to an
415 			 * architecturally UNKNOWN value.
416 			 */
417 			write_cntvoff_el2(0);
418 
419 			/*
420 			 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
421 			 * MPIDR_EL1 respectively.
422 			 */
423 			write_vpidr_el2(read_midr_el1());
424 			write_vmpidr_el2(read_mpidr_el1());
425 
426 			/*
427 			 * Initialise VTTBR_EL2. All fields are architecturally
428 			 * UNKNOWN on reset.
429 			 *
430 			 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
431 			 *  2 address translation is disabled, cache maintenance
432 			 *  operations depend on the VMID.
433 			 *
434 			 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
435 			 *  translation is disabled.
436 			 */
437 			write_vttbr_el2(VTTBR_RESET_VAL &
438 				~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
439 				| (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
440 
441 			/*
442 			 * Initialise MDCR_EL2, setting all fields rather than
443 			 * relying on hw. Some fields are architecturally
444 			 * UNKNOWN on reset.
445 			 *
446 			 * MDCR_EL2.HLP: Set to one so that event counter
447 			 *  overflow, that is recorded in PMOVSCLR_EL0[0-30],
448 			 *  occurs on the increment that changes
449 			 *  PMEVCNTR<n>_EL0[63] from 1 to 0, when ARMv8.5-PMU is
450 			 *  implemented. This bit is RES0 in versions of the
451 			 *  architecture earlier than ARMv8.5, setting it to 1
452 			 *  doesn't have any effect on them.
453 			 *
454 			 * MDCR_EL2.TTRF: Set to zero so that access to Trace
455 			 *  Filter Control register TRFCR_EL1 at EL1 is not
456 			 *  trapped to EL2. This bit is RES0 in versions of
457 			 *  the architecture earlier than ARMv8.4.
458 			 *
459 			 * MDCR_EL2.HPMD: Set to one so that event counting is
460 			 *  prohibited at EL2. This bit is RES0 in versions of
461 			 *  the architecture earlier than ARMv8.1, setting it
462 			 *  to 1 doesn't have any effect on them.
463 			 *
464 			 * MDCR_EL2.TPMS: Set to zero so that accesses to
465 			 *  Statistical Profiling control registers from EL1
466 			 *  do not trap to EL2. This bit is RES0 when SPE is
467 			 *  not implemented.
468 			 *
469 			 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
470 			 *  EL1 System register accesses to the Debug ROM
471 			 *  registers are not trapped to EL2.
472 			 *
473 			 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
474 			 *  System register accesses to the powerdown debug
475 			 *  registers are not trapped to EL2.
476 			 *
477 			 * MDCR_EL2.TDA: Set to zero so that System register
478 			 *  accesses to the debug registers do not trap to EL2.
479 			 *
480 			 * MDCR_EL2.TDE: Set to zero so that debug exceptions
481 			 *  are not routed to EL2.
482 			 *
483 			 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
484 			 *  Monitors.
485 			 *
486 			 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
487 			 *  EL1 accesses to all Performance Monitors registers
488 			 *  are not trapped to EL2.
489 			 *
490 			 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
491 			 *  and EL1 accesses to the PMCR_EL0 or PMCR are not
492 			 *  trapped to EL2.
493 			 *
494 			 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
495 			 *  architecturally-defined reset value.
496 			 */
497 			mdcr_el2 = ((MDCR_EL2_RESET_VAL | MDCR_EL2_HLP |
498 				     MDCR_EL2_HPMD) |
499 				   ((read_pmcr_el0() & PMCR_EL0_N_BITS)
500 				   >> PMCR_EL0_N_SHIFT)) &
501 				   ~(MDCR_EL2_TTRF | MDCR_EL2_TPMS |
502 				     MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT |
503 				     MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT |
504 				     MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT |
505 				     MDCR_EL2_TPMCR_BIT);
506 
507 			write_mdcr_el2(mdcr_el2);
508 
509 			/*
510 			 * Initialise HSTR_EL2. All fields are architecturally
511 			 * UNKNOWN on reset.
512 			 *
513 			 * HSTR_EL2.T<n>: Set all these fields to zero so that
514 			 *  Non-secure EL0 or EL1 accesses to System registers
515 			 *  do not trap to EL2.
516 			 */
517 			write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
518 			/*
519 			 * Initialise CNTHP_CTL_EL2. All fields are
520 			 * architecturally UNKNOWN on reset.
521 			 *
522 			 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
523 			 *  physical timer and prevent timer interrupts.
524 			 */
525 			write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
526 						~(CNTHP_CTL_ENABLE_BIT));
527 		}
528 		enable_extensions_nonsecure(el2_unused);
529 	}
530 
531 	cm_el1_sysregs_context_restore(security_state);
532 	cm_set_next_eret_context(security_state);
533 }
534 
535 /*******************************************************************************
536  * The next four functions are used by runtime services to save and restore
537  * EL1 context on the 'cpu_context' structure for the specified security
538  * state.
539  ******************************************************************************/
cm_el1_sysregs_context_save(uint32_t security_state)540 void cm_el1_sysregs_context_save(uint32_t security_state)
541 {
542 	cpu_context_t *ctx;
543 
544 	ctx = cm_get_context(security_state);
545 	assert(ctx != NULL);
546 
547 	el1_sysregs_context_save(get_sysregs_ctx(ctx));
548 
549 #if IMAGE_BL31
550 	if (security_state == SECURE)
551 		PUBLISH_EVENT(cm_exited_secure_world);
552 	else
553 		PUBLISH_EVENT(cm_exited_normal_world);
554 #endif
555 }
556 
cm_el1_sysregs_context_restore(uint32_t security_state)557 void cm_el1_sysregs_context_restore(uint32_t security_state)
558 {
559 	cpu_context_t *ctx;
560 
561 	ctx = cm_get_context(security_state);
562 	assert(ctx != NULL);
563 
564 	el1_sysregs_context_restore(get_sysregs_ctx(ctx));
565 
566 #if IMAGE_BL31
567 	if (security_state == SECURE)
568 		PUBLISH_EVENT(cm_entering_secure_world);
569 	else
570 		PUBLISH_EVENT(cm_entering_normal_world);
571 #endif
572 }
573 
574 /*******************************************************************************
575  * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
576  * given security state with the given entrypoint
577  ******************************************************************************/
cm_set_elr_el3(uint32_t security_state,uintptr_t entrypoint)578 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
579 {
580 	cpu_context_t *ctx;
581 	el3_state_t *state;
582 
583 	ctx = cm_get_context(security_state);
584 	assert(ctx != NULL);
585 
586 	/* Populate EL3 state so that ERET jumps to the correct entry */
587 	state = get_el3state_ctx(ctx);
588 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
589 }
590 
591 /*******************************************************************************
592  * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
593  * pertaining to the given security state
594  ******************************************************************************/
cm_set_elr_spsr_el3(uint32_t security_state,uintptr_t entrypoint,uint32_t spsr)595 void cm_set_elr_spsr_el3(uint32_t security_state,
596 			uintptr_t entrypoint, uint32_t spsr)
597 {
598 	cpu_context_t *ctx;
599 	el3_state_t *state;
600 
601 	ctx = cm_get_context(security_state);
602 	assert(ctx != NULL);
603 
604 	/* Populate EL3 state so that ERET jumps to the correct entry */
605 	state = get_el3state_ctx(ctx);
606 	write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
607 	write_ctx_reg(state, CTX_SPSR_EL3, spsr);
608 }
609 
610 /*******************************************************************************
611  * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
612  * pertaining to the given security state using the value and bit position
613  * specified in the parameters. It preserves all other bits.
614  ******************************************************************************/
cm_write_scr_el3_bit(uint32_t security_state,uint32_t bit_pos,uint32_t value)615 void cm_write_scr_el3_bit(uint32_t security_state,
616 			  uint32_t bit_pos,
617 			  uint32_t value)
618 {
619 	cpu_context_t *ctx;
620 	el3_state_t *state;
621 	u_register_t scr_el3;
622 
623 	ctx = cm_get_context(security_state);
624 	assert(ctx != NULL);
625 
626 	/* Ensure that the bit position is a valid one */
627 	assert(((1U << bit_pos) & SCR_VALID_BIT_MASK) != 0U);
628 
629 	/* Ensure that the 'value' is only a bit wide */
630 	assert(value <= 1U);
631 
632 	/*
633 	 * Get the SCR_EL3 value from the cpu context, clear the desired bit
634 	 * and set it to its new value.
635 	 */
636 	state = get_el3state_ctx(ctx);
637 	scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
638 	scr_el3 &= ~(1U << bit_pos);
639 	scr_el3 |= (u_register_t)value << bit_pos;
640 	write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
641 }
642 
643 /*******************************************************************************
644  * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
645  * given security state.
646  ******************************************************************************/
cm_get_scr_el3(uint32_t security_state)647 u_register_t cm_get_scr_el3(uint32_t security_state)
648 {
649 	cpu_context_t *ctx;
650 	el3_state_t *state;
651 
652 	ctx = cm_get_context(security_state);
653 	assert(ctx != NULL);
654 
655 	/* Populate EL3 state so that ERET jumps to the correct entry */
656 	state = get_el3state_ctx(ctx);
657 	return read_ctx_reg(state, CTX_SCR_EL3);
658 }
659 
660 /*******************************************************************************
661  * This function is used to program the context that's used for exception
662  * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
663  * the required security state
664  ******************************************************************************/
cm_set_next_eret_context(uint32_t security_state)665 void cm_set_next_eret_context(uint32_t security_state)
666 {
667 	cpu_context_t *ctx;
668 
669 	ctx = cm_get_context(security_state);
670 	assert(ctx != NULL);
671 
672 	cm_set_next_context(ctx);
673 }
674