• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 // TODO(b/129481165): remove the #pragma below and fix conversion issues
18 #pragma clang diagnostic push
19 #pragma clang diagnostic ignored "-Wconversion"
20 
21 //#define LOG_NDEBUG 0
22 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
23 
24 #include "SurfaceFlinger.h"
25 
26 #include <android-base/properties.h>
27 #include <android/configuration.h>
28 #include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h>
29 #include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h>
30 #include <android/hardware/configstore/1.1/types.h>
31 #include <android/hardware/power/1.0/IPower.h>
32 #include <android/native_window.h>
33 #include <binder/IPCThreadState.h>
34 #include <binder/IServiceManager.h>
35 #include <binder/PermissionCache.h>
36 #include <compositionengine/CompositionEngine.h>
37 #include <compositionengine/CompositionRefreshArgs.h>
38 #include <compositionengine/Display.h>
39 #include <compositionengine/DisplayColorProfile.h>
40 #include <compositionengine/DisplayCreationArgs.h>
41 #include <compositionengine/LayerFECompositionState.h>
42 #include <compositionengine/OutputLayer.h>
43 #include <compositionengine/RenderSurface.h>
44 #include <compositionengine/impl/OutputCompositionState.h>
45 #include <configstore/Utils.h>
46 #include <cutils/compiler.h>
47 #include <cutils/properties.h>
48 #include <dlfcn.h>
49 #include <dvr/vr_flinger.h>
50 #include <errno.h>
51 #include <gui/BufferQueue.h>
52 #include <gui/DebugEGLImageTracker.h>
53 #include <gui/GuiConfig.h>
54 #include <gui/IDisplayEventConnection.h>
55 #include <gui/IProducerListener.h>
56 #include <gui/LayerDebugInfo.h>
57 #include <gui/LayerMetadata.h>
58 #include <gui/LayerState.h>
59 #include <gui/Surface.h>
60 #include <input/IInputFlinger.h>
61 #include <layerproto/LayerProtoParser.h>
62 #include <log/log.h>
63 #include <private/android_filesystem_config.h>
64 #include <private/gui/SyncFeatures.h>
65 #include <renderengine/RenderEngine.h>
66 #include <statslog.h>
67 #include <sys/types.h>
68 #include <ui/ColorSpace.h>
69 #include <ui/DebugUtils.h>
70 #include <ui/DisplayConfig.h>
71 #include <ui/DisplayInfo.h>
72 #include <ui/DisplayStatInfo.h>
73 #include <ui/DisplayState.h>
74 #include <ui/GraphicBufferAllocator.h>
75 #include <ui/PixelFormat.h>
76 #include <ui/UiConfig.h>
77 #include <utils/StopWatch.h>
78 #include <utils/String16.h>
79 #include <utils/String8.h>
80 #include <utils/Timers.h>
81 #include <utils/Trace.h>
82 #include <utils/misc.h>
83 
84 #include <algorithm>
85 #include <cinttypes>
86 #include <cmath>
87 #include <cstdint>
88 #include <functional>
89 #include <mutex>
90 #include <optional>
91 #include <unordered_map>
92 
93 #include "BufferLayer.h"
94 #include "BufferQueueLayer.h"
95 #include "BufferStateLayer.h"
96 #include "Client.h"
97 #include "Colorizer.h"
98 #include "ContainerLayer.h"
99 #include "DisplayDevice.h"
100 #include "DisplayHardware/ComposerHal.h"
101 #include "DisplayHardware/DisplayIdentification.h"
102 #include "DisplayHardware/FramebufferSurface.h"
103 #include "DisplayHardware/HWComposer.h"
104 #include "DisplayHardware/VirtualDisplaySurface.h"
105 #include "EffectLayer.h"
106 #include "Effects/Daltonizer.h"
107 #include "FrameTracer/FrameTracer.h"
108 #include "Layer.h"
109 #include "LayerVector.h"
110 #include "MonitoredProducer.h"
111 #include "NativeWindowSurface.h"
112 #include "Promise.h"
113 #include "RefreshRateOverlay.h"
114 #include "RegionSamplingThread.h"
115 #include "Scheduler/DispSync.h"
116 #include "Scheduler/DispSyncSource.h"
117 #include "Scheduler/EventControlThread.h"
118 #include "Scheduler/EventThread.h"
119 #include "Scheduler/LayerHistory.h"
120 #include "Scheduler/MessageQueue.h"
121 #include "Scheduler/PhaseOffsets.h"
122 #include "Scheduler/Scheduler.h"
123 #include "StartPropertySetThread.h"
124 #include "SurfaceFlingerProperties.h"
125 #include "SurfaceInterceptor.h"
126 #include "TimeStats/TimeStats.h"
127 #include "android-base/parseint.h"
128 #include "android-base/stringprintf.h"
129 
130 #define MAIN_THREAD ACQUIRE(mStateLock) RELEASE(mStateLock)
131 
132 #define ON_MAIN_THREAD(expr)                                       \
133     [&] {                                                          \
134         LOG_FATAL_IF(std::this_thread::get_id() != mMainThreadId); \
135         UnnecessaryLock lock(mStateLock);                          \
136         return (expr);                                             \
137     }()
138 
139 #undef NO_THREAD_SAFETY_ANALYSIS
140 #define NO_THREAD_SAFETY_ANALYSIS \
141     _Pragma("GCC error \"Prefer MAIN_THREAD macros or {Conditional,Timed,Unnecessary}Lock.\"")
142 
143 namespace android {
144 
145 using namespace std::string_literals;
146 
147 using namespace android::hardware::configstore;
148 using namespace android::hardware::configstore::V1_0;
149 using namespace android::sysprop;
150 
151 using android::hardware::power::V1_0::PowerHint;
152 using base::StringAppendF;
153 using ui::ColorMode;
154 using ui::Dataspace;
155 using ui::DisplayPrimaries;
156 using ui::Hdr;
157 using ui::RenderIntent;
158 
159 namespace hal = android::hardware::graphics::composer::hal;
160 
161 namespace {
162 
163 #pragma clang diagnostic push
164 #pragma clang diagnostic error "-Wswitch-enum"
165 
isWideColorMode(const ColorMode colorMode)166 bool isWideColorMode(const ColorMode colorMode) {
167     switch (colorMode) {
168         case ColorMode::DISPLAY_P3:
169         case ColorMode::ADOBE_RGB:
170         case ColorMode::DCI_P3:
171         case ColorMode::BT2020:
172         case ColorMode::DISPLAY_BT2020:
173         case ColorMode::BT2100_PQ:
174         case ColorMode::BT2100_HLG:
175             return true;
176         case ColorMode::NATIVE:
177         case ColorMode::STANDARD_BT601_625:
178         case ColorMode::STANDARD_BT601_625_UNADJUSTED:
179         case ColorMode::STANDARD_BT601_525:
180         case ColorMode::STANDARD_BT601_525_UNADJUSTED:
181         case ColorMode::STANDARD_BT709:
182         case ColorMode::SRGB:
183             return false;
184     }
185     return false;
186 }
187 
188 #pragma clang diagnostic pop
189 
190 template <typename Mutex>
191 struct SCOPED_CAPABILITY ConditionalLockGuard {
ConditionalLockGuardandroid::__anon37919fc30111::ConditionalLockGuard192     ConditionalLockGuard(Mutex& mutex, bool lock) ACQUIRE(mutex) : mutex(mutex), lock(lock) {
193         if (lock) mutex.lock();
194     }
195 
RELEASEandroid::__anon37919fc30111::ConditionalLockGuard196     ~ConditionalLockGuard() RELEASE() {
197         if (lock) mutex.unlock();
198     }
199 
200     Mutex& mutex;
201     const bool lock;
202 };
203 
204 using ConditionalLock = ConditionalLockGuard<Mutex>;
205 
206 struct SCOPED_CAPABILITY TimedLock {
TimedLockandroid::__anon37919fc30111::TimedLock207     TimedLock(Mutex& mutex, nsecs_t timeout, const char* whence) ACQUIRE(mutex)
208           : mutex(mutex), status(mutex.timedLock(timeout)) {
209         ALOGE_IF(!locked(), "%s timed out locking: %s (%d)", whence, strerror(-status), status);
210     }
211 
RELEASEandroid::__anon37919fc30111::TimedLock212     ~TimedLock() RELEASE() {
213         if (locked()) mutex.unlock();
214     }
215 
lockedandroid::__anon37919fc30111::TimedLock216     bool locked() const { return status == NO_ERROR; }
217 
218     Mutex& mutex;
219     const status_t status;
220 };
221 
222 struct SCOPED_CAPABILITY UnnecessaryLock {
ACQUIREandroid::__anon37919fc30111::UnnecessaryLock223     explicit UnnecessaryLock(Mutex& mutex) ACQUIRE(mutex) {}
RELEASEandroid::__anon37919fc30111::UnnecessaryLock224     ~UnnecessaryLock() RELEASE() {}
225 };
226 
227 // TODO(b/141333600): Consolidate with HWC2::Display::Config::Builder::getDefaultDensity.
228 constexpr float FALLBACK_DENSITY = ACONFIGURATION_DENSITY_TV;
229 
getDensityFromProperty(const char * property,bool required)230 float getDensityFromProperty(const char* property, bool required) {
231     char value[PROPERTY_VALUE_MAX];
232     const float density = property_get(property, value, nullptr) > 0 ? std::atof(value) : 0.f;
233     if (!density && required) {
234         ALOGE("%s must be defined as a build property", property);
235         return FALLBACK_DENSITY;
236     }
237     return density;
238 }
239 
240 // Currently we only support V0_SRGB and DISPLAY_P3 as composition preference.
validateCompositionDataspace(Dataspace dataspace)241 bool validateCompositionDataspace(Dataspace dataspace) {
242     return dataspace == Dataspace::V0_SRGB || dataspace == Dataspace::DISPLAY_P3;
243 }
244 
245 class FrameRateFlexibilityToken : public BBinder {
246 public:
FrameRateFlexibilityToken(std::function<void ()> callback)247     FrameRateFlexibilityToken(std::function<void()> callback) : mCallback(callback) {}
~FrameRateFlexibilityToken()248     virtual ~FrameRateFlexibilityToken() { mCallback(); }
249 
250 private:
251     std::function<void()> mCallback;
252 };
253 
254 }  // namespace anonymous
255 
256 // ---------------------------------------------------------------------------
257 
258 const String16 sHardwareTest("android.permission.HARDWARE_TEST");
259 const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
260 const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
261 const String16 sDump("android.permission.DUMP");
262 const char* KERNEL_IDLE_TIMER_PROP = "graphics.display.kernel_idle_timer.enabled";
263 
264 // ---------------------------------------------------------------------------
265 int64_t SurfaceFlinger::dispSyncPresentTimeOffset;
266 bool SurfaceFlinger::useHwcForRgbToYuv;
267 uint64_t SurfaceFlinger::maxVirtualDisplaySize;
268 bool SurfaceFlinger::hasSyncFramework;
269 bool SurfaceFlinger::useVrFlinger;
270 int64_t SurfaceFlinger::maxFrameBufferAcquiredBuffers;
271 uint32_t SurfaceFlinger::maxGraphicsWidth;
272 uint32_t SurfaceFlinger::maxGraphicsHeight;
273 bool SurfaceFlinger::hasWideColorDisplay;
274 ui::Rotation SurfaceFlinger::internalDisplayOrientation = ui::ROTATION_0;
275 bool SurfaceFlinger::useColorManagement;
276 bool SurfaceFlinger::useContextPriority;
277 Dataspace SurfaceFlinger::defaultCompositionDataspace = Dataspace::V0_SRGB;
278 ui::PixelFormat SurfaceFlinger::defaultCompositionPixelFormat = ui::PixelFormat::RGBA_8888;
279 Dataspace SurfaceFlinger::wideColorGamutCompositionDataspace = Dataspace::V0_SRGB;
280 ui::PixelFormat SurfaceFlinger::wideColorGamutCompositionPixelFormat = ui::PixelFormat::RGBA_8888;
281 bool SurfaceFlinger::useFrameRateApi;
282 
getHwcServiceName()283 std::string getHwcServiceName() {
284     char value[PROPERTY_VALUE_MAX] = {};
285     property_get("debug.sf.hwc_service_name", value, "default");
286     ALOGI("Using HWComposer service: '%s'", value);
287     return std::string(value);
288 }
289 
useTrebleTestingOverride()290 bool useTrebleTestingOverride() {
291     char value[PROPERTY_VALUE_MAX] = {};
292     property_get("debug.sf.treble_testing_override", value, "false");
293     ALOGI("Treble testing override: '%s'", value);
294     return std::string(value) == "true";
295 }
296 
decodeDisplayColorSetting(DisplayColorSetting displayColorSetting)297 std::string decodeDisplayColorSetting(DisplayColorSetting displayColorSetting) {
298     switch(displayColorSetting) {
299         case DisplayColorSetting::kManaged:
300             return std::string("Managed");
301         case DisplayColorSetting::kUnmanaged:
302             return std::string("Unmanaged");
303         case DisplayColorSetting::kEnhanced:
304             return std::string("Enhanced");
305         default:
306             return std::string("Unknown ") +
307                 std::to_string(static_cast<int>(displayColorSetting));
308     }
309 }
310 
SurfaceFlingerBE()311 SurfaceFlingerBE::SurfaceFlingerBE() : mHwcServiceName(getHwcServiceName()) {}
312 
SurfaceFlinger(Factory & factory,SkipInitializationTag)313 SurfaceFlinger::SurfaceFlinger(Factory& factory, SkipInitializationTag)
314       : mFactory(factory),
315         mInterceptor(mFactory.createSurfaceInterceptor(this)),
316         mTimeStats(std::make_shared<impl::TimeStats>()),
317         mFrameTracer(std::make_unique<FrameTracer>()),
318         mEventQueue(mFactory.createMessageQueue()),
319         mCompositionEngine(mFactory.createCompositionEngine()),
320         mInternalDisplayDensity(getDensityFromProperty("ro.sf.lcd_density", true)),
321         mEmulatedDisplayDensity(getDensityFromProperty("qemu.sf.lcd_density", false)) {}
322 
SurfaceFlinger(Factory & factory)323 SurfaceFlinger::SurfaceFlinger(Factory& factory) : SurfaceFlinger(factory, SkipInitialization) {
324     ALOGI("SurfaceFlinger is starting");
325 
326     hasSyncFramework = running_without_sync_framework(true);
327 
328     dispSyncPresentTimeOffset = present_time_offset_from_vsync_ns(0);
329 
330     useHwcForRgbToYuv = force_hwc_copy_for_virtual_displays(false);
331 
332     maxVirtualDisplaySize = max_virtual_display_dimension(0);
333 
334     // Vr flinger is only enabled on Daydream ready devices.
335     useVrFlinger = use_vr_flinger(false);
336 
337     maxFrameBufferAcquiredBuffers = max_frame_buffer_acquired_buffers(2);
338 
339     maxGraphicsWidth = std::max(max_graphics_width(0), 0);
340     maxGraphicsHeight = std::max(max_graphics_height(0), 0);
341 
342     hasWideColorDisplay = has_wide_color_display(false);
343 
344     useColorManagement = use_color_management(false);
345 
346     mDefaultCompositionDataspace =
347             static_cast<ui::Dataspace>(default_composition_dataspace(Dataspace::V0_SRGB));
348     mWideColorGamutCompositionDataspace = static_cast<ui::Dataspace>(wcg_composition_dataspace(
349             hasWideColorDisplay ? Dataspace::DISPLAY_P3 : Dataspace::V0_SRGB));
350     defaultCompositionDataspace = mDefaultCompositionDataspace;
351     wideColorGamutCompositionDataspace = mWideColorGamutCompositionDataspace;
352     defaultCompositionPixelFormat = static_cast<ui::PixelFormat>(
353             default_composition_pixel_format(ui::PixelFormat::RGBA_8888));
354     wideColorGamutCompositionPixelFormat =
355             static_cast<ui::PixelFormat>(wcg_composition_pixel_format(ui::PixelFormat::RGBA_8888));
356 
357     mColorSpaceAgnosticDataspace =
358             static_cast<ui::Dataspace>(color_space_agnostic_dataspace(Dataspace::UNKNOWN));
359 
360     useContextPriority = use_context_priority(true);
361 
362     using Values = SurfaceFlingerProperties::primary_display_orientation_values;
363     switch (primary_display_orientation(Values::ORIENTATION_0)) {
364         case Values::ORIENTATION_0:
365             break;
366         case Values::ORIENTATION_90:
367             internalDisplayOrientation = ui::ROTATION_90;
368             break;
369         case Values::ORIENTATION_180:
370             internalDisplayOrientation = ui::ROTATION_180;
371             break;
372         case Values::ORIENTATION_270:
373             internalDisplayOrientation = ui::ROTATION_270;
374             break;
375     }
376     ALOGV("Internal Display Orientation: %s", toCString(internalDisplayOrientation));
377 
378     mInternalDisplayPrimaries = sysprop::getDisplayNativePrimaries();
379 
380     // debugging stuff...
381     char value[PROPERTY_VALUE_MAX];
382 
383     property_get("ro.bq.gpu_to_cpu_unsupported", value, "0");
384     mGpuToCpuSupported = !atoi(value);
385 
386     property_get("ro.build.type", value, "user");
387     mIsUserBuild = strcmp(value, "user") == 0;
388 
389     property_get("debug.sf.showupdates", value, "0");
390     mDebugRegion = atoi(value);
391 
392     ALOGI_IF(mDebugRegion, "showupdates enabled");
393 
394     // DDMS debugging deprecated (b/120782499)
395     property_get("debug.sf.ddms", value, "0");
396     int debugDdms = atoi(value);
397     ALOGI_IF(debugDdms, "DDMS debugging not supported");
398 
399     property_get("debug.sf.disable_backpressure", value, "0");
400     mPropagateBackpressure = !atoi(value);
401     ALOGI_IF(!mPropagateBackpressure, "Disabling backpressure propagation");
402 
403     property_get("debug.sf.enable_gl_backpressure", value, "0");
404     mPropagateBackpressureClientComposition = atoi(value);
405     ALOGI_IF(mPropagateBackpressureClientComposition,
406              "Enabling backpressure propagation for Client Composition");
407 
408     property_get("debug.sf.enable_hwc_vds", value, "0");
409     mUseHwcVirtualDisplays = atoi(value);
410     ALOGI_IF(mUseHwcVirtualDisplays, "Enabling HWC virtual displays");
411 
412     property_get("ro.sf.disable_triple_buffer", value, "0");
413     mLayerTripleBufferingDisabled = atoi(value);
414     ALOGI_IF(mLayerTripleBufferingDisabled, "Disabling Triple Buffering");
415 
416     property_get("ro.surface_flinger.supports_background_blur", value, "0");
417     bool supportsBlurs = atoi(value);
418     mSupportsBlur = supportsBlurs;
419     ALOGI_IF(!mSupportsBlur, "Disabling blur effects, they are not supported.");
420     property_get("ro.sf.blurs_are_expensive", value, "0");
421     mBlursAreExpensive = atoi(value);
422 
423     const size_t defaultListSize = ISurfaceComposer::MAX_LAYERS;
424     auto listSize = property_get_int32("debug.sf.max_igbp_list_size", int32_t(defaultListSize));
425     mMaxGraphicBufferProducerListSize = (listSize > 0) ? size_t(listSize) : defaultListSize;
426 
427     property_get("debug.sf.luma_sampling", value, "1");
428     mLumaSampling = atoi(value);
429 
430     property_get("debug.sf.disable_client_composition_cache", value, "0");
431     mDisableClientCompositionCache = atoi(value);
432 
433     // We should be reading 'persist.sys.sf.color_saturation' here
434     // but since /data may be encrypted, we need to wait until after vold
435     // comes online to attempt to read the property. The property is
436     // instead read after the boot animation
437 
438     if (useTrebleTestingOverride()) {
439         // Without the override SurfaceFlinger cannot connect to HIDL
440         // services that are not listed in the manifests.  Considered
441         // deriving the setting from the set service name, but it
442         // would be brittle if the name that's not 'default' is used
443         // for production purposes later on.
444         setenv("TREBLE_TESTING_OVERRIDE", "true", true);
445     }
446 
447     useFrameRateApi = use_frame_rate_api(true);
448 
449     mKernelIdleTimerEnabled = mSupportKernelIdleTimer = sysprop::support_kernel_idle_timer(false);
450     base::SetProperty(KERNEL_IDLE_TIMER_PROP, mKernelIdleTimerEnabled ? "true" : "false");
451 }
452 
453 SurfaceFlinger::~SurfaceFlinger() = default;
454 
onFirstRef()455 void SurfaceFlinger::onFirstRef() {
456     mEventQueue->init(this);
457 }
458 
binderDied(const wp<IBinder> &)459 void SurfaceFlinger::binderDied(const wp<IBinder>&) {
460     // the window manager died on us. prepare its eulogy.
461     mBootFinished = false;
462 
463     // restore initial conditions (default device unblank, etc)
464     initializeDisplays();
465 
466     // restart the boot-animation
467     startBootAnim();
468 }
469 
run()470 void SurfaceFlinger::run() {
471     while (true) {
472         mEventQueue->waitMessage();
473     }
474 }
475 
476 template <typename F, typename T>
schedule(F && f)477 inline std::future<T> SurfaceFlinger::schedule(F&& f) {
478     auto [task, future] = makeTask(std::move(f));
479     mEventQueue->postMessage(std::move(task));
480     return std::move(future);
481 }
482 
createConnection()483 sp<ISurfaceComposerClient> SurfaceFlinger::createConnection() {
484     const sp<Client> client = new Client(this);
485     return client->initCheck() == NO_ERROR ? client : nullptr;
486 }
487 
createDisplay(const String8 & displayName,bool secure)488 sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName, bool secure) {
489     class DisplayToken : public BBinder {
490         sp<SurfaceFlinger> flinger;
491         virtual ~DisplayToken() {
492              // no more references, this display must be terminated
493              Mutex::Autolock _l(flinger->mStateLock);
494              flinger->mCurrentState.displays.removeItem(this);
495              flinger->setTransactionFlags(eDisplayTransactionNeeded);
496          }
497      public:
498         explicit DisplayToken(const sp<SurfaceFlinger>& flinger)
499             : flinger(flinger) {
500         }
501     };
502 
503     sp<BBinder> token = new DisplayToken(this);
504 
505     Mutex::Autolock _l(mStateLock);
506     // Display ID is assigned when virtual display is allocated by HWC.
507     DisplayDeviceState state;
508     state.isSecure = secure;
509     state.displayName = displayName;
510     mCurrentState.displays.add(token, state);
511     mInterceptor->saveDisplayCreation(state);
512     return token;
513 }
514 
destroyDisplay(const sp<IBinder> & displayToken)515 void SurfaceFlinger::destroyDisplay(const sp<IBinder>& displayToken) {
516     Mutex::Autolock lock(mStateLock);
517 
518     const ssize_t index = mCurrentState.displays.indexOfKey(displayToken);
519     if (index < 0) {
520         ALOGE("%s: Invalid display token %p", __FUNCTION__, displayToken.get());
521         return;
522     }
523 
524     const DisplayDeviceState& state = mCurrentState.displays.valueAt(index);
525     if (state.physical) {
526         ALOGE("%s: Invalid operation on physical display", __FUNCTION__);
527         return;
528     }
529     mInterceptor->saveDisplayDeletion(state.sequenceId);
530     mCurrentState.displays.removeItemsAt(index);
531     setTransactionFlags(eDisplayTransactionNeeded);
532 }
533 
getPhysicalDisplayIds() const534 std::vector<PhysicalDisplayId> SurfaceFlinger::getPhysicalDisplayIds() const {
535     Mutex::Autolock lock(mStateLock);
536 
537     const auto internalDisplayId = getInternalDisplayIdLocked();
538     if (!internalDisplayId) {
539         return {};
540     }
541 
542     std::vector<PhysicalDisplayId> displayIds;
543     displayIds.reserve(mPhysicalDisplayTokens.size());
544     displayIds.push_back(internalDisplayId->value);
545 
546     for (const auto& [id, token] : mPhysicalDisplayTokens) {
547         if (id != *internalDisplayId) {
548             displayIds.push_back(id.value);
549         }
550     }
551 
552     return displayIds;
553 }
554 
getPhysicalDisplayToken(PhysicalDisplayId displayId) const555 sp<IBinder> SurfaceFlinger::getPhysicalDisplayToken(PhysicalDisplayId displayId) const {
556     Mutex::Autolock lock(mStateLock);
557     return getPhysicalDisplayTokenLocked(DisplayId{displayId});
558 }
559 
getColorManagement(bool * outGetColorManagement) const560 status_t SurfaceFlinger::getColorManagement(bool* outGetColorManagement) const {
561     if (!outGetColorManagement) {
562         return BAD_VALUE;
563     }
564     *outGetColorManagement = useColorManagement;
565     return NO_ERROR;
566 }
567 
getHwComposer() const568 HWComposer& SurfaceFlinger::getHwComposer() const {
569     return mCompositionEngine->getHwComposer();
570 }
571 
getRenderEngine() const572 renderengine::RenderEngine& SurfaceFlinger::getRenderEngine() const {
573     return mCompositionEngine->getRenderEngine();
574 }
575 
getCompositionEngine() const576 compositionengine::CompositionEngine& SurfaceFlinger::getCompositionEngine() const {
577     return *mCompositionEngine.get();
578 }
579 
bootFinished()580 void SurfaceFlinger::bootFinished()
581 {
582     if (mBootFinished == true) {
583         ALOGE("Extra call to bootFinished");
584         return;
585     }
586     mBootFinished = true;
587     if (mStartPropertySetThread->join() != NO_ERROR) {
588         ALOGE("Join StartPropertySetThread failed!");
589     }
590     const nsecs_t now = systemTime();
591     const nsecs_t duration = now - mBootTime;
592     ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
593 
594     mFrameTracer->initialize();
595     mTimeStats->onBootFinished();
596 
597     // wait patiently for the window manager death
598     const String16 name("window");
599     mWindowManager = defaultServiceManager()->getService(name);
600     if (mWindowManager != 0) {
601         mWindowManager->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
602     }
603 
604     if (mVrFlinger) {
605       mVrFlinger->OnBootFinished();
606     }
607 
608     // stop boot animation
609     // formerly we would just kill the process, but we now ask it to exit so it
610     // can choose where to stop the animation.
611     property_set("service.bootanim.exit", "1");
612 
613     const int LOGTAG_SF_STOP_BOOTANIM = 60110;
614     LOG_EVENT_LONG(LOGTAG_SF_STOP_BOOTANIM,
615                    ns2ms(systemTime(SYSTEM_TIME_MONOTONIC)));
616 
617     sp<IBinder> input(defaultServiceManager()->getService(String16("inputflinger")));
618 
619     static_cast<void>(schedule([=] {
620         if (input == nullptr) {
621             ALOGE("Failed to link to input service");
622         } else {
623             mInputFlinger = interface_cast<IInputFlinger>(input);
624         }
625 
626         readPersistentProperties();
627         mPowerAdvisor.onBootFinished();
628         mBootStage = BootStage::FINISHED;
629 
630         if (property_get_bool("sf.debug.show_refresh_rate_overlay", false)) {
631             enableRefreshRateOverlay(true);
632         }
633     }));
634 }
635 
getNewTexture()636 uint32_t SurfaceFlinger::getNewTexture() {
637     {
638         std::lock_guard lock(mTexturePoolMutex);
639         if (!mTexturePool.empty()) {
640             uint32_t name = mTexturePool.back();
641             mTexturePool.pop_back();
642             ATRACE_INT("TexturePoolSize", mTexturePool.size());
643             return name;
644         }
645 
646         // The pool was too small, so increase it for the future
647         ++mTexturePoolSize;
648     }
649 
650     // The pool was empty, so we need to get a new texture name directly using a
651     // blocking call to the main thread
652     return schedule([this] {
653                uint32_t name = 0;
654                getRenderEngine().genTextures(1, &name);
655                return name;
656            })
657             .get();
658 }
659 
deleteTextureAsync(uint32_t texture)660 void SurfaceFlinger::deleteTextureAsync(uint32_t texture) {
661     std::lock_guard lock(mTexturePoolMutex);
662     // We don't change the pool size, so the fix-up logic in postComposition will decide whether
663     // to actually delete this or not based on mTexturePoolSize
664     mTexturePool.push_back(texture);
665     ATRACE_INT("TexturePoolSize", mTexturePool.size());
666 }
667 
668 // Do not call property_set on main thread which will be blocked by init
669 // Use StartPropertySetThread instead.
init()670 void SurfaceFlinger::init() {
671     ALOGI(  "SurfaceFlinger's main thread ready to run. "
672             "Initializing graphics H/W...");
673     Mutex::Autolock _l(mStateLock);
674 
675     // Get a RenderEngine for the given display / config (can't fail)
676     // TODO(b/77156734): We need to stop casting and use HAL types when possible.
677     // Sending maxFrameBufferAcquiredBuffers as the cache size is tightly tuned to single-display.
678     mCompositionEngine->setRenderEngine(renderengine::RenderEngine::create(
679             renderengine::RenderEngineCreationArgs::Builder()
680                 .setPixelFormat(static_cast<int32_t>(defaultCompositionPixelFormat))
681                 .setImageCacheSize(maxFrameBufferAcquiredBuffers)
682                 .setUseColorManagerment(useColorManagement)
683                 .setEnableProtectedContext(enable_protected_contents(false))
684                 .setPrecacheToneMapperShaderOnly(false)
685                 .setSupportsBackgroundBlur(mSupportsBlur)
686                 .setContextPriority(useContextPriority
687                         ? renderengine::RenderEngine::ContextPriority::HIGH
688                         : renderengine::RenderEngine::ContextPriority::MEDIUM)
689                 .build()));
690     mCompositionEngine->setTimeStats(mTimeStats);
691 
692     LOG_ALWAYS_FATAL_IF(mVrFlingerRequestsDisplay,
693             "Starting with vr flinger active is not currently supported.");
694     mCompositionEngine->setHwComposer(getFactory().createHWComposer(getBE().mHwcServiceName));
695     mCompositionEngine->getHwComposer().setConfiguration(this, getBE().mComposerSequenceId);
696     // Process any initial hotplug and resulting display changes.
697     processDisplayHotplugEventsLocked();
698     const auto display = getDefaultDisplayDeviceLocked();
699     LOG_ALWAYS_FATAL_IF(!display, "Missing internal display after registering composer callback.");
700     LOG_ALWAYS_FATAL_IF(!getHwComposer().isConnected(*display->getId()),
701                         "Internal display is disconnected.");
702 
703     if (useVrFlinger) {
704         auto vrFlingerRequestDisplayCallback = [this](bool requestDisplay) {
705             // This callback is called from the vr flinger dispatch thread. We
706             // need to call signalTransaction(), which requires holding
707             // mStateLock when we're not on the main thread. Acquiring
708             // mStateLock from the vr flinger dispatch thread might trigger a
709             // deadlock in surface flinger (see b/66916578), so post a message
710             // to be handled on the main thread instead.
711             static_cast<void>(schedule([=] {
712                 ALOGI("VR request display mode: requestDisplay=%d", requestDisplay);
713                 mVrFlingerRequestsDisplay = requestDisplay;
714                 signalTransaction();
715             }));
716         };
717         mVrFlinger = dvr::VrFlinger::Create(getHwComposer().getComposer(),
718                                             getHwComposer()
719                                                     .fromPhysicalDisplayId(*display->getId())
720                                                     .value_or(0),
721                                             vrFlingerRequestDisplayCallback);
722         if (!mVrFlinger) {
723             ALOGE("Failed to start vrflinger");
724         }
725     }
726 
727     // initialize our drawing state
728     mDrawingState = mCurrentState;
729 
730     // set initial conditions (e.g. unblank default device)
731     initializeDisplays();
732 
733     char primeShaderCache[PROPERTY_VALUE_MAX];
734     property_get("service.sf.prime_shader_cache", primeShaderCache, "1");
735     if (atoi(primeShaderCache)) {
736         getRenderEngine().primeCache();
737     }
738 
739     // Inform native graphics APIs whether the present timestamp is supported:
740 
741     const bool presentFenceReliable =
742             !getHwComposer().hasCapability(hal::Capability::PRESENT_FENCE_IS_NOT_RELIABLE);
743     mStartPropertySetThread = getFactory().createStartPropertySetThread(presentFenceReliable);
744 
745     if (mStartPropertySetThread->Start() != NO_ERROR) {
746         ALOGE("Run StartPropertySetThread failed!");
747     }
748 
749     ALOGV("Done initializing");
750 }
751 
readPersistentProperties()752 void SurfaceFlinger::readPersistentProperties() {
753     Mutex::Autolock _l(mStateLock);
754 
755     char value[PROPERTY_VALUE_MAX];
756 
757     property_get("persist.sys.sf.color_saturation", value, "1.0");
758     mGlobalSaturationFactor = atof(value);
759     updateColorMatrixLocked();
760     ALOGV("Saturation is set to %.2f", mGlobalSaturationFactor);
761 
762     property_get("persist.sys.sf.native_mode", value, "0");
763     mDisplayColorSetting = static_cast<DisplayColorSetting>(atoi(value));
764 
765     property_get("persist.sys.sf.color_mode", value, "0");
766     mForceColorMode = static_cast<ColorMode>(atoi(value));
767 
768     property_get("persist.sys.sf.disable_blurs", value, "0");
769     bool disableBlurs = atoi(value);
770     mDisableBlurs = disableBlurs;
771     ALOGI_IF(disableBlurs, "Disabling blur effects, user preference.");
772 }
773 
startBootAnim()774 void SurfaceFlinger::startBootAnim() {
775     // Start boot animation service by setting a property mailbox
776     // if property setting thread is already running, Start() will be just a NOP
777     mStartPropertySetThread->Start();
778     // Wait until property was set
779     if (mStartPropertySetThread->join() != NO_ERROR) {
780         ALOGE("Join StartPropertySetThread failed!");
781     }
782 }
783 
getMaxTextureSize() const784 size_t SurfaceFlinger::getMaxTextureSize() const {
785     return getRenderEngine().getMaxTextureSize();
786 }
787 
getMaxViewportDims() const788 size_t SurfaceFlinger::getMaxViewportDims() const {
789     return getRenderEngine().getMaxViewportDims();
790 }
791 
792 // ----------------------------------------------------------------------------
793 
authenticateSurfaceTexture(const sp<IGraphicBufferProducer> & bufferProducer) const794 bool SurfaceFlinger::authenticateSurfaceTexture(
795         const sp<IGraphicBufferProducer>& bufferProducer) const {
796     Mutex::Autolock _l(mStateLock);
797     return authenticateSurfaceTextureLocked(bufferProducer);
798 }
799 
authenticateSurfaceTextureLocked(const sp<IGraphicBufferProducer> & bufferProducer) const800 bool SurfaceFlinger::authenticateSurfaceTextureLocked(
801         const sp<IGraphicBufferProducer>& bufferProducer) const {
802     sp<IBinder> surfaceTextureBinder(IInterface::asBinder(bufferProducer));
803     return mGraphicBufferProducerList.count(surfaceTextureBinder.get()) > 0;
804 }
805 
getSupportedFrameTimestamps(std::vector<FrameEvent> * outSupported) const806 status_t SurfaceFlinger::getSupportedFrameTimestamps(
807         std::vector<FrameEvent>* outSupported) const {
808     *outSupported = {
809         FrameEvent::REQUESTED_PRESENT,
810         FrameEvent::ACQUIRE,
811         FrameEvent::LATCH,
812         FrameEvent::FIRST_REFRESH_START,
813         FrameEvent::LAST_REFRESH_START,
814         FrameEvent::GPU_COMPOSITION_DONE,
815         FrameEvent::DEQUEUE_READY,
816         FrameEvent::RELEASE,
817     };
818     ConditionalLock _l(mStateLock,
819             std::this_thread::get_id() != mMainThreadId);
820     if (!getHwComposer().hasCapability(hal::Capability::PRESENT_FENCE_IS_NOT_RELIABLE)) {
821         outSupported->push_back(FrameEvent::DISPLAY_PRESENT);
822     }
823     return NO_ERROR;
824 }
825 
getDisplayState(const sp<IBinder> & displayToken,ui::DisplayState * state)826 status_t SurfaceFlinger::getDisplayState(const sp<IBinder>& displayToken, ui::DisplayState* state) {
827     if (!displayToken || !state) {
828         return BAD_VALUE;
829     }
830 
831     Mutex::Autolock lock(mStateLock);
832 
833     const auto display = getDisplayDeviceLocked(displayToken);
834     if (!display) {
835         return NAME_NOT_FOUND;
836     }
837 
838     state->layerStack = display->getLayerStack();
839     state->orientation = display->getOrientation();
840 
841     const Rect viewport = display->getViewport();
842     state->viewport = viewport.isValid() ? viewport.getSize() : display->getSize();
843 
844     return NO_ERROR;
845 }
846 
getDisplayInfo(const sp<IBinder> & displayToken,DisplayInfo * info)847 status_t SurfaceFlinger::getDisplayInfo(const sp<IBinder>& displayToken, DisplayInfo* info) {
848     if (!displayToken || !info) {
849         return BAD_VALUE;
850     }
851 
852     Mutex::Autolock lock(mStateLock);
853 
854     const auto display = getDisplayDeviceLocked(displayToken);
855     if (!display) {
856         return NAME_NOT_FOUND;
857     }
858 
859     if (const auto connectionType = display->getConnectionType())
860         info->connectionType = *connectionType;
861     else {
862         return INVALID_OPERATION;
863     }
864 
865     if (mEmulatedDisplayDensity) {
866         info->density = mEmulatedDisplayDensity;
867     } else {
868         info->density = info->connectionType == DisplayConnectionType::Internal
869                 ? mInternalDisplayDensity
870                 : FALLBACK_DENSITY;
871     }
872     info->density /= ACONFIGURATION_DENSITY_MEDIUM;
873 
874     info->secure = display->isSecure();
875     info->deviceProductInfo = getDeviceProductInfoLocked(*display);
876 
877     return NO_ERROR;
878 }
879 
getDisplayConfigs(const sp<IBinder> & displayToken,Vector<DisplayConfig> * configs)880 status_t SurfaceFlinger::getDisplayConfigs(const sp<IBinder>& displayToken,
881                                            Vector<DisplayConfig>* configs) {
882     if (!displayToken || !configs) {
883         return BAD_VALUE;
884     }
885 
886     Mutex::Autolock lock(mStateLock);
887 
888     const auto displayId = getPhysicalDisplayIdLocked(displayToken);
889     if (!displayId) {
890         return NAME_NOT_FOUND;
891     }
892 
893     const bool isInternal = (displayId == getInternalDisplayIdLocked());
894 
895     configs->clear();
896 
897     for (const auto& hwConfig : getHwComposer().getConfigs(*displayId)) {
898         DisplayConfig config;
899 
900         auto width = hwConfig->getWidth();
901         auto height = hwConfig->getHeight();
902 
903         auto xDpi = hwConfig->getDpiX();
904         auto yDpi = hwConfig->getDpiY();
905 
906         if (isInternal &&
907             (internalDisplayOrientation == ui::ROTATION_90 ||
908              internalDisplayOrientation == ui::ROTATION_270)) {
909             std::swap(width, height);
910             std::swap(xDpi, yDpi);
911         }
912 
913         config.resolution = ui::Size(width, height);
914 
915         if (mEmulatedDisplayDensity) {
916             config.xDpi = mEmulatedDisplayDensity;
917             config.yDpi = mEmulatedDisplayDensity;
918         } else {
919             config.xDpi = xDpi;
920             config.yDpi = yDpi;
921         }
922 
923         const nsecs_t period = hwConfig->getVsyncPeriod();
924         config.refreshRate = 1e9f / period;
925 
926         const auto offsets = mPhaseConfiguration->getOffsetsForRefreshRate(config.refreshRate);
927         config.appVsyncOffset = offsets.late.app;
928         config.sfVsyncOffset = offsets.late.sf;
929         config.configGroup = hwConfig->getConfigGroup();
930 
931         // This is how far in advance a buffer must be queued for
932         // presentation at a given time.  If you want a buffer to appear
933         // on the screen at time N, you must submit the buffer before
934         // (N - presentationDeadline).
935         //
936         // Normally it's one full refresh period (to give SF a chance to
937         // latch the buffer), but this can be reduced by configuring a
938         // DispSync offset.  Any additional delays introduced by the hardware
939         // composer or panel must be accounted for here.
940         //
941         // We add an additional 1ms to allow for processing time and
942         // differences between the ideal and actual refresh rate.
943         config.presentationDeadline = period - config.sfVsyncOffset + 1000000;
944 
945         configs->push_back(config);
946     }
947 
948     return NO_ERROR;
949 }
950 
getDisplayStats(const sp<IBinder> &,DisplayStatInfo * stats)951 status_t SurfaceFlinger::getDisplayStats(const sp<IBinder>&, DisplayStatInfo* stats) {
952     if (!stats) {
953         return BAD_VALUE;
954     }
955 
956     mScheduler->getDisplayStatInfo(stats);
957     return NO_ERROR;
958 }
959 
getActiveConfig(const sp<IBinder> & displayToken)960 int SurfaceFlinger::getActiveConfig(const sp<IBinder>& displayToken) {
961     int activeConfig;
962     bool isPrimary;
963 
964     {
965         Mutex::Autolock lock(mStateLock);
966 
967         if (const auto display = getDisplayDeviceLocked(displayToken)) {
968             activeConfig = display->getActiveConfig().value();
969             isPrimary = display->isPrimary();
970         } else {
971             ALOGE("%s: Invalid display token %p", __FUNCTION__, displayToken.get());
972             return NAME_NOT_FOUND;
973         }
974     }
975 
976     if (isPrimary) {
977         if (const auto config = getDesiredActiveConfig()) {
978             return config->configId.value();
979         }
980     }
981 
982     return activeConfig;
983 }
984 
setDesiredActiveConfig(const ActiveConfigInfo & info)985 void SurfaceFlinger::setDesiredActiveConfig(const ActiveConfigInfo& info) {
986     ATRACE_CALL();
987     auto& refreshRate = mRefreshRateConfigs->getRefreshRateFromConfigId(info.configId);
988     ALOGV("setDesiredActiveConfig(%s)", refreshRate.getName().c_str());
989 
990     std::lock_guard<std::mutex> lock(mActiveConfigLock);
991     if (mDesiredActiveConfigChanged) {
992         // If a config change is pending, just cache the latest request in
993         // mDesiredActiveConfig
994         const Scheduler::ConfigEvent prevConfig = mDesiredActiveConfig.event;
995         mDesiredActiveConfig = info;
996         mDesiredActiveConfig.event = mDesiredActiveConfig.event | prevConfig;
997     } else {
998         // Check is we are already at the desired config
999         const auto display = getDefaultDisplayDeviceLocked();
1000         if (!display || display->getActiveConfig() == refreshRate.getConfigId()) {
1001             return;
1002         }
1003 
1004         // Initiate a config change.
1005         mDesiredActiveConfigChanged = true;
1006         mDesiredActiveConfig = info;
1007 
1008         // This will trigger HWC refresh without resetting the idle timer.
1009         repaintEverythingForHWC();
1010         // Start receiving vsync samples now, so that we can detect a period
1011         // switch.
1012         mScheduler->resyncToHardwareVsync(true, refreshRate.getVsyncPeriod());
1013         // As we called to set period, we will call to onRefreshRateChangeCompleted once
1014         // DispSync model is locked.
1015         mVSyncModulator->onRefreshRateChangeInitiated();
1016 
1017         mPhaseConfiguration->setRefreshRateFps(refreshRate.getFps());
1018         mVSyncModulator->setPhaseOffsets(mPhaseConfiguration->getCurrentOffsets());
1019         mScheduler->setConfigChangePending(true);
1020     }
1021 
1022     if (mRefreshRateOverlay) {
1023         mRefreshRateOverlay->changeRefreshRate(refreshRate);
1024     }
1025 }
1026 
setActiveConfig(const sp<IBinder> & displayToken,int mode)1027 status_t SurfaceFlinger::setActiveConfig(const sp<IBinder>& displayToken, int mode) {
1028     ATRACE_CALL();
1029 
1030     if (!displayToken) {
1031         return BAD_VALUE;
1032     }
1033 
1034     auto future = schedule([=]() -> status_t {
1035         const auto display = ON_MAIN_THREAD(getDisplayDeviceLocked(displayToken));
1036         if (!display) {
1037             ALOGE("Attempt to set allowed display configs for invalid display token %p",
1038                   displayToken.get());
1039             return NAME_NOT_FOUND;
1040         } else if (display->isVirtual()) {
1041             ALOGW("Attempt to set allowed display configs for virtual display");
1042             return INVALID_OPERATION;
1043         } else {
1044             const HwcConfigIndexType config(mode);
1045             const float fps = mRefreshRateConfigs->getRefreshRateFromConfigId(config).getFps();
1046             const scheduler::RefreshRateConfigs::Policy policy{config, {fps, fps}};
1047             constexpr bool kOverridePolicy = false;
1048 
1049             return setDesiredDisplayConfigSpecsInternal(display, policy, kOverridePolicy);
1050         }
1051     });
1052 
1053     return future.get();
1054 }
1055 
setActiveConfigInternal()1056 void SurfaceFlinger::setActiveConfigInternal() {
1057     ATRACE_CALL();
1058 
1059     const auto display = getDefaultDisplayDeviceLocked();
1060     if (!display) {
1061         return;
1062     }
1063 
1064     auto& oldRefreshRate =
1065             mRefreshRateConfigs->getRefreshRateFromConfigId(display->getActiveConfig());
1066 
1067     std::lock_guard<std::mutex> lock(mActiveConfigLock);
1068     mRefreshRateConfigs->setCurrentConfigId(mUpcomingActiveConfig.configId);
1069     mRefreshRateStats->setConfigMode(mUpcomingActiveConfig.configId);
1070     display->setActiveConfig(mUpcomingActiveConfig.configId);
1071 
1072     auto& refreshRate =
1073             mRefreshRateConfigs->getRefreshRateFromConfigId(mUpcomingActiveConfig.configId);
1074     if (refreshRate.getVsyncPeriod() != oldRefreshRate.getVsyncPeriod()) {
1075         mTimeStats->incrementRefreshRateSwitches();
1076     }
1077     mPhaseConfiguration->setRefreshRateFps(refreshRate.getFps());
1078     mVSyncModulator->setPhaseOffsets(mPhaseConfiguration->getCurrentOffsets());
1079     ATRACE_INT("ActiveConfigFPS", refreshRate.getFps());
1080 
1081     if (mUpcomingActiveConfig.event != Scheduler::ConfigEvent::None) {
1082         const nsecs_t vsyncPeriod =
1083                 mRefreshRateConfigs->getRefreshRateFromConfigId(mUpcomingActiveConfig.configId)
1084                         .getVsyncPeriod();
1085         mScheduler->onPrimaryDisplayConfigChanged(mAppConnectionHandle, display->getId()->value,
1086                                                   mUpcomingActiveConfig.configId, vsyncPeriod);
1087     }
1088 }
1089 
desiredActiveConfigChangeDone()1090 void SurfaceFlinger::desiredActiveConfigChangeDone() {
1091     std::lock_guard<std::mutex> lock(mActiveConfigLock);
1092     mDesiredActiveConfig.event = Scheduler::ConfigEvent::None;
1093     mDesiredActiveConfigChanged = false;
1094 
1095     const auto& refreshRate =
1096             mRefreshRateConfigs->getRefreshRateFromConfigId(mDesiredActiveConfig.configId);
1097     mScheduler->resyncToHardwareVsync(true, refreshRate.getVsyncPeriod());
1098     mPhaseConfiguration->setRefreshRateFps(refreshRate.getFps());
1099     mVSyncModulator->setPhaseOffsets(mPhaseConfiguration->getCurrentOffsets());
1100     mScheduler->setConfigChangePending(false);
1101 }
1102 
performSetActiveConfig()1103 void SurfaceFlinger::performSetActiveConfig() {
1104     ATRACE_CALL();
1105     ALOGV("performSetActiveConfig");
1106     // Store the local variable to release the lock.
1107     const auto desiredActiveConfig = getDesiredActiveConfig();
1108     if (!desiredActiveConfig) {
1109         // No desired active config pending to be applied
1110         return;
1111     }
1112 
1113     auto& refreshRate =
1114             mRefreshRateConfigs->getRefreshRateFromConfigId(desiredActiveConfig->configId);
1115     ALOGV("performSetActiveConfig changing active config to %d(%s)",
1116           refreshRate.getConfigId().value(), refreshRate.getName().c_str());
1117     const auto display = getDefaultDisplayDeviceLocked();
1118     if (!display || display->getActiveConfig() == desiredActiveConfig->configId) {
1119         // display is not valid or we are already in the requested mode
1120         // on both cases there is nothing left to do
1121         desiredActiveConfigChangeDone();
1122         return;
1123     }
1124 
1125     // Desired active config was set, it is different than the config currently in use, however
1126     // allowed configs might have change by the time we process the refresh.
1127     // Make sure the desired config is still allowed
1128     if (!isDisplayConfigAllowed(desiredActiveConfig->configId)) {
1129         desiredActiveConfigChangeDone();
1130         return;
1131     }
1132 
1133     mUpcomingActiveConfig = *desiredActiveConfig;
1134     const auto displayId = display->getId();
1135     LOG_ALWAYS_FATAL_IF(!displayId);
1136 
1137     ATRACE_INT("ActiveConfigFPS_HWC", refreshRate.getFps());
1138 
1139     // TODO(b/142753666) use constrains
1140     hal::VsyncPeriodChangeConstraints constraints;
1141     constraints.desiredTimeNanos = systemTime();
1142     constraints.seamlessRequired = false;
1143 
1144     hal::VsyncPeriodChangeTimeline outTimeline;
1145     auto status =
1146             getHwComposer().setActiveConfigWithConstraints(*displayId,
1147                                                            mUpcomingActiveConfig.configId.value(),
1148                                                            constraints, &outTimeline);
1149     if (status != NO_ERROR) {
1150         // setActiveConfigWithConstraints may fail if a hotplug event is just about
1151         // to be sent. We just log the error in this case.
1152         ALOGW("setActiveConfigWithConstraints failed: %d", status);
1153         return;
1154     }
1155 
1156     mScheduler->onNewVsyncPeriodChangeTimeline(outTimeline);
1157     // Scheduler will submit an empty frame to HWC if needed.
1158     mSetActiveConfigPending = true;
1159 }
1160 
getDisplayColorModes(const sp<IBinder> & displayToken,Vector<ColorMode> * outColorModes)1161 status_t SurfaceFlinger::getDisplayColorModes(const sp<IBinder>& displayToken,
1162                                               Vector<ColorMode>* outColorModes) {
1163     if (!displayToken || !outColorModes) {
1164         return BAD_VALUE;
1165     }
1166 
1167     std::vector<ColorMode> modes;
1168     bool isInternalDisplay = false;
1169     {
1170         ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId);
1171 
1172         const auto displayId = getPhysicalDisplayIdLocked(displayToken);
1173         if (!displayId) {
1174             return NAME_NOT_FOUND;
1175         }
1176 
1177         modes = getHwComposer().getColorModes(*displayId);
1178         isInternalDisplay = displayId == getInternalDisplayIdLocked();
1179     }
1180     outColorModes->clear();
1181 
1182     // If it's built-in display and the configuration claims it's not wide color capable,
1183     // filter out all wide color modes. The typical reason why this happens is that the
1184     // hardware is not good enough to support GPU composition of wide color, and thus the
1185     // OEMs choose to disable this capability.
1186     if (isInternalDisplay && !hasWideColorDisplay) {
1187         std::remove_copy_if(modes.cbegin(), modes.cend(), std::back_inserter(*outColorModes),
1188                             isWideColorMode);
1189     } else {
1190         std::copy(modes.cbegin(), modes.cend(), std::back_inserter(*outColorModes));
1191     }
1192 
1193     return NO_ERROR;
1194 }
1195 
getDisplayNativePrimaries(const sp<IBinder> & displayToken,ui::DisplayPrimaries & primaries)1196 status_t SurfaceFlinger::getDisplayNativePrimaries(const sp<IBinder>& displayToken,
1197                                                    ui::DisplayPrimaries &primaries) {
1198     if (!displayToken) {
1199         return BAD_VALUE;
1200     }
1201 
1202     // Currently we only support this API for a single internal display.
1203     if (getInternalDisplayToken() != displayToken) {
1204         return NAME_NOT_FOUND;
1205     }
1206 
1207     memcpy(&primaries, &mInternalDisplayPrimaries, sizeof(ui::DisplayPrimaries));
1208     return NO_ERROR;
1209 }
1210 
getActiveColorMode(const sp<IBinder> & displayToken)1211 ColorMode SurfaceFlinger::getActiveColorMode(const sp<IBinder>& displayToken) {
1212     Mutex::Autolock lock(mStateLock);
1213 
1214     if (const auto display = getDisplayDeviceLocked(displayToken)) {
1215         return display->getCompositionDisplay()->getState().colorMode;
1216     }
1217     return static_cast<ColorMode>(BAD_VALUE);
1218 }
1219 
setActiveColorMode(const sp<IBinder> & displayToken,ColorMode mode)1220 status_t SurfaceFlinger::setActiveColorMode(const sp<IBinder>& displayToken, ColorMode mode) {
1221     schedule([=]() MAIN_THREAD {
1222         Vector<ColorMode> modes;
1223         getDisplayColorModes(displayToken, &modes);
1224         bool exists = std::find(std::begin(modes), std::end(modes), mode) != std::end(modes);
1225         if (mode < ColorMode::NATIVE || !exists) {
1226             ALOGE("Attempt to set invalid active color mode %s (%d) for display token %p",
1227                   decodeColorMode(mode).c_str(), mode, displayToken.get());
1228             return;
1229         }
1230         const auto display = getDisplayDeviceLocked(displayToken);
1231         if (!display) {
1232             ALOGE("Attempt to set active color mode %s (%d) for invalid display token %p",
1233                   decodeColorMode(mode).c_str(), mode, displayToken.get());
1234         } else if (display->isVirtual()) {
1235             ALOGW("Attempt to set active color mode %s (%d) for virtual display",
1236                   decodeColorMode(mode).c_str(), mode);
1237         } else {
1238             display->getCompositionDisplay()->setColorProfile(
1239                     compositionengine::Output::ColorProfile{mode, Dataspace::UNKNOWN,
1240                                                             RenderIntent::COLORIMETRIC,
1241                                                             Dataspace::UNKNOWN});
1242         }
1243     }).wait();
1244 
1245     return NO_ERROR;
1246 }
1247 
getAutoLowLatencyModeSupport(const sp<IBinder> & displayToken,bool * outSupport) const1248 status_t SurfaceFlinger::getAutoLowLatencyModeSupport(const sp<IBinder>& displayToken,
1249                                                       bool* outSupport) const {
1250     if (!displayToken) {
1251         return BAD_VALUE;
1252     }
1253 
1254     Mutex::Autolock lock(mStateLock);
1255 
1256     const auto displayId = getPhysicalDisplayIdLocked(displayToken);
1257     if (!displayId) {
1258         return NAME_NOT_FOUND;
1259     }
1260     *outSupport =
1261             getHwComposer().hasDisplayCapability(*displayId,
1262                                                  hal::DisplayCapability::AUTO_LOW_LATENCY_MODE);
1263     return NO_ERROR;
1264 }
1265 
setAutoLowLatencyMode(const sp<IBinder> & displayToken,bool on)1266 void SurfaceFlinger::setAutoLowLatencyMode(const sp<IBinder>& displayToken, bool on) {
1267     static_cast<void>(schedule([=]() MAIN_THREAD {
1268         if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) {
1269             getHwComposer().setAutoLowLatencyMode(*displayId, on);
1270         } else {
1271             ALOGE("%s: Invalid display token %p", __FUNCTION__, displayToken.get());
1272         }
1273     }));
1274 }
1275 
getGameContentTypeSupport(const sp<IBinder> & displayToken,bool * outSupport) const1276 status_t SurfaceFlinger::getGameContentTypeSupport(const sp<IBinder>& displayToken,
1277                                                    bool* outSupport) const {
1278     if (!displayToken) {
1279         return BAD_VALUE;
1280     }
1281 
1282     Mutex::Autolock lock(mStateLock);
1283 
1284     const auto displayId = getPhysicalDisplayIdLocked(displayToken);
1285     if (!displayId) {
1286         return NAME_NOT_FOUND;
1287     }
1288 
1289     std::vector<hal::ContentType> types;
1290     getHwComposer().getSupportedContentTypes(*displayId, &types);
1291 
1292     *outSupport = std::any_of(types.begin(), types.end(),
1293                               [](auto type) { return type == hal::ContentType::GAME; });
1294     return NO_ERROR;
1295 }
1296 
setGameContentType(const sp<IBinder> & displayToken,bool on)1297 void SurfaceFlinger::setGameContentType(const sp<IBinder>& displayToken, bool on) {
1298     static_cast<void>(schedule([=]() MAIN_THREAD {
1299         if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) {
1300             const auto type = on ? hal::ContentType::GAME : hal::ContentType::NONE;
1301             getHwComposer().setContentType(*displayId, type);
1302         } else {
1303             ALOGE("%s: Invalid display token %p", __FUNCTION__, displayToken.get());
1304         }
1305     }));
1306 }
1307 
clearAnimationFrameStats()1308 status_t SurfaceFlinger::clearAnimationFrameStats() {
1309     Mutex::Autolock _l(mStateLock);
1310     mAnimFrameTracker.clearStats();
1311     return NO_ERROR;
1312 }
1313 
getAnimationFrameStats(FrameStats * outStats) const1314 status_t SurfaceFlinger::getAnimationFrameStats(FrameStats* outStats) const {
1315     Mutex::Autolock _l(mStateLock);
1316     mAnimFrameTracker.getStats(outStats);
1317     return NO_ERROR;
1318 }
1319 
getHdrCapabilities(const sp<IBinder> & displayToken,HdrCapabilities * outCapabilities) const1320 status_t SurfaceFlinger::getHdrCapabilities(const sp<IBinder>& displayToken,
1321                                             HdrCapabilities* outCapabilities) const {
1322     Mutex::Autolock lock(mStateLock);
1323 
1324     const auto display = getDisplayDeviceLocked(displayToken);
1325     if (!display) {
1326         ALOGE("%s: Invalid display token %p", __FUNCTION__, displayToken.get());
1327         return NAME_NOT_FOUND;
1328     }
1329 
1330     // At this point the DisplayDevice should already be set up,
1331     // meaning the luminance information is already queried from
1332     // hardware composer and stored properly.
1333     const HdrCapabilities& capabilities = display->getHdrCapabilities();
1334     *outCapabilities = HdrCapabilities(capabilities.getSupportedHdrTypes(),
1335                                        capabilities.getDesiredMaxLuminance(),
1336                                        capabilities.getDesiredMaxAverageLuminance(),
1337                                        capabilities.getDesiredMinLuminance());
1338 
1339     return NO_ERROR;
1340 }
1341 
getDeviceProductInfoLocked(const DisplayDevice & display) const1342 std::optional<DeviceProductInfo> SurfaceFlinger::getDeviceProductInfoLocked(
1343         const DisplayDevice& display) const {
1344     // TODO(b/149075047): Populate DeviceProductInfo on hotplug and store it in DisplayDevice to
1345     // avoid repetitive HAL IPC and EDID parsing.
1346     const auto displayId = display.getId();
1347     LOG_FATAL_IF(!displayId);
1348 
1349     const auto hwcDisplayId = getHwComposer().fromPhysicalDisplayId(*displayId);
1350     LOG_FATAL_IF(!hwcDisplayId);
1351 
1352     uint8_t port;
1353     DisplayIdentificationData data;
1354     if (!getHwComposer().getDisplayIdentificationData(*hwcDisplayId, &port, &data)) {
1355         ALOGV("%s: No identification data.", __FUNCTION__);
1356         return {};
1357     }
1358 
1359     const auto info = parseDisplayIdentificationData(port, data);
1360     if (!info) {
1361         return {};
1362     }
1363     return info->deviceProductInfo;
1364 }
1365 
getDisplayedContentSamplingAttributes(const sp<IBinder> & displayToken,ui::PixelFormat * outFormat,ui::Dataspace * outDataspace,uint8_t * outComponentMask) const1366 status_t SurfaceFlinger::getDisplayedContentSamplingAttributes(const sp<IBinder>& displayToken,
1367                                                                ui::PixelFormat* outFormat,
1368                                                                ui::Dataspace* outDataspace,
1369                                                                uint8_t* outComponentMask) const {
1370     if (!outFormat || !outDataspace || !outComponentMask) {
1371         return BAD_VALUE;
1372     }
1373 
1374     Mutex::Autolock lock(mStateLock);
1375 
1376     const auto displayId = getPhysicalDisplayIdLocked(displayToken);
1377     if (!displayId) {
1378         return NAME_NOT_FOUND;
1379     }
1380 
1381     return getHwComposer().getDisplayedContentSamplingAttributes(*displayId, outFormat,
1382                                                                  outDataspace, outComponentMask);
1383 }
1384 
setDisplayContentSamplingEnabled(const sp<IBinder> & displayToken,bool enable,uint8_t componentMask,uint64_t maxFrames)1385 status_t SurfaceFlinger::setDisplayContentSamplingEnabled(const sp<IBinder>& displayToken,
1386                                                           bool enable, uint8_t componentMask,
1387                                                           uint64_t maxFrames) {
1388     return schedule([=]() MAIN_THREAD -> status_t {
1389                if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) {
1390                    return getHwComposer().setDisplayContentSamplingEnabled(*displayId, enable,
1391                                                                            componentMask,
1392                                                                            maxFrames);
1393                } else {
1394                    ALOGE("%s: Invalid display token %p", __FUNCTION__, displayToken.get());
1395                    return NAME_NOT_FOUND;
1396                }
1397            })
1398             .get();
1399 }
1400 
getDisplayedContentSample(const sp<IBinder> & displayToken,uint64_t maxFrames,uint64_t timestamp,DisplayedFrameStats * outStats) const1401 status_t SurfaceFlinger::getDisplayedContentSample(const sp<IBinder>& displayToken,
1402                                                    uint64_t maxFrames, uint64_t timestamp,
1403                                                    DisplayedFrameStats* outStats) const {
1404     Mutex::Autolock lock(mStateLock);
1405 
1406     const auto displayId = getPhysicalDisplayIdLocked(displayToken);
1407     if (!displayId) {
1408         return NAME_NOT_FOUND;
1409     }
1410 
1411     return getHwComposer().getDisplayedContentSample(*displayId, maxFrames, timestamp, outStats);
1412 }
1413 
getProtectedContentSupport(bool * outSupported) const1414 status_t SurfaceFlinger::getProtectedContentSupport(bool* outSupported) const {
1415     if (!outSupported) {
1416         return BAD_VALUE;
1417     }
1418     *outSupported = getRenderEngine().supportsProtectedContent();
1419     return NO_ERROR;
1420 }
1421 
isWideColorDisplay(const sp<IBinder> & displayToken,bool * outIsWideColorDisplay) const1422 status_t SurfaceFlinger::isWideColorDisplay(const sp<IBinder>& displayToken,
1423                                             bool* outIsWideColorDisplay) const {
1424     if (!displayToken || !outIsWideColorDisplay) {
1425         return BAD_VALUE;
1426     }
1427 
1428     Mutex::Autolock lock(mStateLock);
1429     const auto display = getDisplayDeviceLocked(displayToken);
1430     if (!display) {
1431         return NAME_NOT_FOUND;
1432     }
1433 
1434     *outIsWideColorDisplay =
1435             display->isPrimary() ? hasWideColorDisplay : display->hasWideColorGamut();
1436     return NO_ERROR;
1437 }
1438 
enableVSyncInjections(bool enable)1439 status_t SurfaceFlinger::enableVSyncInjections(bool enable) {
1440     schedule([=] {
1441         Mutex::Autolock lock(mStateLock);
1442 
1443         if (const auto handle = mScheduler->enableVSyncInjection(enable)) {
1444             mEventQueue->setEventConnection(
1445                     mScheduler->getEventConnection(enable ? handle : mSfConnectionHandle));
1446         }
1447     }).wait();
1448 
1449     return NO_ERROR;
1450 }
1451 
injectVSync(nsecs_t when)1452 status_t SurfaceFlinger::injectVSync(nsecs_t when) {
1453     Mutex::Autolock lock(mStateLock);
1454     return mScheduler->injectVSync(when, calculateExpectedPresentTime(when)) ? NO_ERROR : BAD_VALUE;
1455 }
1456 
getLayerDebugInfo(std::vector<LayerDebugInfo> * outLayers)1457 status_t SurfaceFlinger::getLayerDebugInfo(std::vector<LayerDebugInfo>* outLayers) {
1458     outLayers->clear();
1459     schedule([=] {
1460         const auto display = ON_MAIN_THREAD(getDefaultDisplayDeviceLocked());
1461         mDrawingState.traverseInZOrder([&](Layer* layer) {
1462             outLayers->push_back(layer->getLayerDebugInfo(display.get()));
1463         });
1464     }).wait();
1465     return NO_ERROR;
1466 }
1467 
getCompositionPreference(Dataspace * outDataspace,ui::PixelFormat * outPixelFormat,Dataspace * outWideColorGamutDataspace,ui::PixelFormat * outWideColorGamutPixelFormat) const1468 status_t SurfaceFlinger::getCompositionPreference(
1469         Dataspace* outDataspace, ui::PixelFormat* outPixelFormat,
1470         Dataspace* outWideColorGamutDataspace,
1471         ui::PixelFormat* outWideColorGamutPixelFormat) const {
1472     *outDataspace = mDefaultCompositionDataspace;
1473     *outPixelFormat = defaultCompositionPixelFormat;
1474     *outWideColorGamutDataspace = mWideColorGamutCompositionDataspace;
1475     *outWideColorGamutPixelFormat = wideColorGamutCompositionPixelFormat;
1476     return NO_ERROR;
1477 }
1478 
addRegionSamplingListener(const Rect & samplingArea,const sp<IBinder> & stopLayerHandle,const sp<IRegionSamplingListener> & listener)1479 status_t SurfaceFlinger::addRegionSamplingListener(const Rect& samplingArea,
1480                                                    const sp<IBinder>& stopLayerHandle,
1481                                                    const sp<IRegionSamplingListener>& listener) {
1482     if (!listener || samplingArea == Rect::INVALID_RECT) {
1483         return BAD_VALUE;
1484     }
1485 
1486     const wp<Layer> stopLayer = fromHandle(stopLayerHandle);
1487     mRegionSamplingThread->addListener(samplingArea, stopLayer, listener);
1488     return NO_ERROR;
1489 }
1490 
removeRegionSamplingListener(const sp<IRegionSamplingListener> & listener)1491 status_t SurfaceFlinger::removeRegionSamplingListener(const sp<IRegionSamplingListener>& listener) {
1492     if (!listener) {
1493         return BAD_VALUE;
1494     }
1495     mRegionSamplingThread->removeListener(listener);
1496     return NO_ERROR;
1497 }
1498 
getDisplayBrightnessSupport(const sp<IBinder> & displayToken,bool * outSupport) const1499 status_t SurfaceFlinger::getDisplayBrightnessSupport(const sp<IBinder>& displayToken,
1500                                                      bool* outSupport) const {
1501     if (!displayToken || !outSupport) {
1502         return BAD_VALUE;
1503     }
1504 
1505     Mutex::Autolock lock(mStateLock);
1506 
1507     const auto displayId = getPhysicalDisplayIdLocked(displayToken);
1508     if (!displayId) {
1509         return NAME_NOT_FOUND;
1510     }
1511     *outSupport =
1512             getHwComposer().hasDisplayCapability(*displayId, hal::DisplayCapability::BRIGHTNESS);
1513     return NO_ERROR;
1514 }
1515 
setDisplayBrightness(const sp<IBinder> & displayToken,float brightness)1516 status_t SurfaceFlinger::setDisplayBrightness(const sp<IBinder>& displayToken, float brightness) {
1517     if (!displayToken) {
1518         return BAD_VALUE;
1519     }
1520 
1521     return promise::chain(schedule([=]() MAIN_THREAD {
1522                if (const auto displayId = getPhysicalDisplayIdLocked(displayToken)) {
1523                    return getHwComposer().setDisplayBrightness(*displayId, brightness);
1524                } else {
1525                    ALOGE("%s: Invalid display token %p", __FUNCTION__, displayToken.get());
1526                    return promise::yield<status_t>(NAME_NOT_FOUND);
1527                }
1528            }))
1529             .then([](std::future<status_t> task) { return task; })
1530             .get();
1531 }
1532 
notifyPowerHint(int32_t hintId)1533 status_t SurfaceFlinger::notifyPowerHint(int32_t hintId) {
1534     PowerHint powerHint = static_cast<PowerHint>(hintId);
1535 
1536     if (powerHint == PowerHint::INTERACTION) {
1537         mScheduler->notifyTouchEvent();
1538     }
1539 
1540     return NO_ERROR;
1541 }
1542 
1543 // ----------------------------------------------------------------------------
1544 
createDisplayEventConnection(ISurfaceComposer::VsyncSource vsyncSource,ISurfaceComposer::ConfigChanged configChanged)1545 sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection(
1546         ISurfaceComposer::VsyncSource vsyncSource, ISurfaceComposer::ConfigChanged configChanged) {
1547     const auto& handle =
1548             vsyncSource == eVsyncSourceSurfaceFlinger ? mSfConnectionHandle : mAppConnectionHandle;
1549 
1550     return mScheduler->createDisplayEventConnection(handle, configChanged);
1551 }
1552 
signalTransaction()1553 void SurfaceFlinger::signalTransaction() {
1554     mScheduler->resetIdleTimer();
1555     mPowerAdvisor.notifyDisplayUpdateImminent();
1556     mEventQueue->invalidate();
1557 }
1558 
signalLayerUpdate()1559 void SurfaceFlinger::signalLayerUpdate() {
1560     mScheduler->resetIdleTimer();
1561     mPowerAdvisor.notifyDisplayUpdateImminent();
1562     mEventQueue->invalidate();
1563 }
1564 
signalRefresh()1565 void SurfaceFlinger::signalRefresh() {
1566     mRefreshPending = true;
1567     mEventQueue->refresh();
1568 }
1569 
getVsyncPeriodFromHWC() const1570 nsecs_t SurfaceFlinger::getVsyncPeriodFromHWC() const {
1571     const auto displayId = getInternalDisplayIdLocked();
1572     if (!displayId || !getHwComposer().isConnected(*displayId)) {
1573         return 0;
1574     }
1575 
1576     return getHwComposer().getDisplayVsyncPeriod(*displayId);
1577 }
1578 
onVsyncReceived(int32_t sequenceId,hal::HWDisplayId hwcDisplayId,int64_t timestamp,std::optional<hal::VsyncPeriodNanos> vsyncPeriod)1579 void SurfaceFlinger::onVsyncReceived(int32_t sequenceId, hal::HWDisplayId hwcDisplayId,
1580                                      int64_t timestamp,
1581                                      std::optional<hal::VsyncPeriodNanos> vsyncPeriod) {
1582     ATRACE_NAME("SF onVsync");
1583 
1584     Mutex::Autolock lock(mStateLock);
1585     // Ignore any vsyncs from a previous hardware composer.
1586     if (sequenceId != getBE().mComposerSequenceId) {
1587         return;
1588     }
1589 
1590     if (!getHwComposer().onVsync(hwcDisplayId, timestamp)) {
1591         return;
1592     }
1593 
1594     if (hwcDisplayId != getHwComposer().getInternalHwcDisplayId()) {
1595         // For now, we don't do anything with external display vsyncs.
1596         return;
1597     }
1598 
1599     bool periodFlushed = false;
1600     mScheduler->addResyncSample(timestamp, vsyncPeriod, &periodFlushed);
1601     if (periodFlushed) {
1602         mVSyncModulator->onRefreshRateChangeCompleted();
1603     }
1604 }
1605 
getCompositorTiming(CompositorTiming * compositorTiming)1606 void SurfaceFlinger::getCompositorTiming(CompositorTiming* compositorTiming) {
1607     std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock);
1608     *compositorTiming = getBE().mCompositorTiming;
1609 }
1610 
isDisplayConfigAllowed(HwcConfigIndexType configId) const1611 bool SurfaceFlinger::isDisplayConfigAllowed(HwcConfigIndexType configId) const {
1612     return mRefreshRateConfigs->isConfigAllowed(configId);
1613 }
1614 
changeRefreshRateLocked(const RefreshRate & refreshRate,Scheduler::ConfigEvent event)1615 void SurfaceFlinger::changeRefreshRateLocked(const RefreshRate& refreshRate,
1616                                              Scheduler::ConfigEvent event) {
1617     const auto display = getDefaultDisplayDeviceLocked();
1618     if (!display || mBootStage != BootStage::FINISHED) {
1619         return;
1620     }
1621     ATRACE_CALL();
1622 
1623     // Don't do any updating if the current fps is the same as the new one.
1624     if (!isDisplayConfigAllowed(refreshRate.getConfigId())) {
1625         ALOGV("Skipping config %d as it is not part of allowed configs",
1626               refreshRate.getConfigId().value());
1627         return;
1628     }
1629 
1630     setDesiredActiveConfig({refreshRate.getConfigId(), event});
1631 }
1632 
onHotplugReceived(int32_t sequenceId,hal::HWDisplayId hwcDisplayId,hal::Connection connection)1633 void SurfaceFlinger::onHotplugReceived(int32_t sequenceId, hal::HWDisplayId hwcDisplayId,
1634                                        hal::Connection connection) {
1635     ALOGV("%s(%d, %" PRIu64 ", %s)", __FUNCTION__, sequenceId, hwcDisplayId,
1636           connection == hal::Connection::CONNECTED ? "connected" : "disconnected");
1637 
1638     // Ignore events that do not have the right sequenceId.
1639     if (sequenceId != getBE().mComposerSequenceId) {
1640         return;
1641     }
1642 
1643     // Only lock if we're not on the main thread. This function is normally
1644     // called on a hwbinder thread, but for the primary display it's called on
1645     // the main thread with the state lock already held, so don't attempt to
1646     // acquire it here.
1647     ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId);
1648 
1649     mPendingHotplugEvents.emplace_back(HotplugEvent{hwcDisplayId, connection});
1650 
1651     if (std::this_thread::get_id() == mMainThreadId) {
1652         // Process all pending hot plug events immediately if we are on the main thread.
1653         processDisplayHotplugEventsLocked();
1654     }
1655 
1656     setTransactionFlags(eDisplayTransactionNeeded);
1657 }
1658 
onVsyncPeriodTimingChangedReceived(int32_t sequenceId,hal::HWDisplayId,const hal::VsyncPeriodChangeTimeline & updatedTimeline)1659 void SurfaceFlinger::onVsyncPeriodTimingChangedReceived(
1660         int32_t sequenceId, hal::HWDisplayId /*display*/,
1661         const hal::VsyncPeriodChangeTimeline& updatedTimeline) {
1662     Mutex::Autolock lock(mStateLock);
1663     if (sequenceId != getBE().mComposerSequenceId) {
1664         return;
1665     }
1666     mScheduler->onNewVsyncPeriodChangeTimeline(updatedTimeline);
1667 }
1668 
onSeamlessPossible(int32_t,hal::HWDisplayId)1669 void SurfaceFlinger::onSeamlessPossible(int32_t /*sequenceId*/, hal::HWDisplayId /*display*/) {
1670     // TODO(b/142753666): use constraints when calling to setActiveConfigWithConstrains and
1671     // use this callback to know when to retry in case of SEAMLESS_NOT_POSSIBLE.
1672 }
1673 
onRefreshReceived(int sequenceId,hal::HWDisplayId)1674 void SurfaceFlinger::onRefreshReceived(int sequenceId, hal::HWDisplayId /*hwcDisplayId*/) {
1675     Mutex::Autolock lock(mStateLock);
1676     if (sequenceId != getBE().mComposerSequenceId) {
1677         return;
1678     }
1679     repaintEverythingForHWC();
1680 }
1681 
setPrimaryVsyncEnabled(bool enabled)1682 void SurfaceFlinger::setPrimaryVsyncEnabled(bool enabled) {
1683     ATRACE_CALL();
1684 
1685     // Enable / Disable HWVsync from the main thread to avoid race conditions with
1686     // display power state.
1687     static_cast<void>(schedule([=]() MAIN_THREAD { setPrimaryVsyncEnabledInternal(enabled); }));
1688 }
1689 
setPrimaryVsyncEnabledInternal(bool enabled)1690 void SurfaceFlinger::setPrimaryVsyncEnabledInternal(bool enabled) {
1691     ATRACE_CALL();
1692 
1693     mHWCVsyncPendingState = enabled ? hal::Vsync::ENABLE : hal::Vsync::DISABLE;
1694 
1695     if (const auto displayId = getInternalDisplayIdLocked()) {
1696         sp<DisplayDevice> display = getDefaultDisplayDeviceLocked();
1697         if (display && display->isPoweredOn()) {
1698             getHwComposer().setVsyncEnabled(*displayId, mHWCVsyncPendingState);
1699         }
1700     }
1701 }
1702 
resetDisplayState()1703 void SurfaceFlinger::resetDisplayState() {
1704     mScheduler->disableHardwareVsync(true);
1705     // Clear the drawing state so that the logic inside of
1706     // handleTransactionLocked will fire. It will determine the delta between
1707     // mCurrentState and mDrawingState and re-apply all changes when we make the
1708     // transition.
1709     mDrawingState.displays.clear();
1710     mDisplays.clear();
1711 }
1712 
updateVrFlinger()1713 void SurfaceFlinger::updateVrFlinger() {
1714     ATRACE_CALL();
1715     if (!mVrFlinger)
1716         return;
1717     bool vrFlingerRequestsDisplay = mVrFlingerRequestsDisplay;
1718     if (vrFlingerRequestsDisplay == getHwComposer().isUsingVrComposer()) {
1719         return;
1720     }
1721 
1722     if (vrFlingerRequestsDisplay && !getHwComposer().getComposer()->isRemote()) {
1723         ALOGE("Vr flinger is only supported for remote hardware composer"
1724               " service connections. Ignoring request to transition to vr"
1725               " flinger.");
1726         mVrFlingerRequestsDisplay = false;
1727         return;
1728     }
1729 
1730     Mutex::Autolock _l(mStateLock);
1731 
1732     sp<DisplayDevice> display = getDefaultDisplayDeviceLocked();
1733     LOG_ALWAYS_FATAL_IF(!display);
1734 
1735     const hal::PowerMode currentDisplayPowerMode = display->getPowerMode();
1736 
1737     // Clear out all the output layers from the composition engine for all
1738     // displays before destroying the hardware composer interface. This ensures
1739     // any HWC layers are destroyed through that interface before it becomes
1740     // invalid.
1741     for (const auto& [token, displayDevice] : mDisplays) {
1742         displayDevice->getCompositionDisplay()->clearOutputLayers();
1743     }
1744 
1745     // This DisplayDevice will no longer be relevant once resetDisplayState() is
1746     // called below. Clear the reference now so we don't accidentally use it
1747     // later.
1748     display.clear();
1749 
1750     if (!vrFlingerRequestsDisplay) {
1751         mVrFlinger->SeizeDisplayOwnership();
1752     }
1753 
1754     resetDisplayState();
1755     // Delete the current instance before creating the new one
1756     mCompositionEngine->setHwComposer(std::unique_ptr<HWComposer>());
1757     mCompositionEngine->setHwComposer(getFactory().createHWComposer(
1758             vrFlingerRequestsDisplay ? "vr" : getBE().mHwcServiceName));
1759     mCompositionEngine->getHwComposer().setConfiguration(this, ++getBE().mComposerSequenceId);
1760 
1761     LOG_ALWAYS_FATAL_IF(!getHwComposer().getComposer()->isRemote(),
1762                         "Switched to non-remote hardware composer");
1763 
1764     if (vrFlingerRequestsDisplay) {
1765         mVrFlinger->GrantDisplayOwnership();
1766     }
1767 
1768     mVisibleRegionsDirty = true;
1769     invalidateHwcGeometry();
1770 
1771     // Re-enable default display.
1772     display = getDefaultDisplayDeviceLocked();
1773     LOG_ALWAYS_FATAL_IF(!display);
1774     setPowerModeInternal(display, currentDisplayPowerMode);
1775 
1776     // Reset the timing values to account for the period of the swapped in HWC
1777     const nsecs_t vsyncPeriod = mRefreshRateConfigs->getCurrentRefreshRate().getVsyncPeriod();
1778     mAnimFrameTracker.setDisplayRefreshPeriod(vsyncPeriod);
1779 
1780     // The present fences returned from vr_hwc are not an accurate
1781     // representation of vsync times.
1782     mScheduler->setIgnorePresentFences(getHwComposer().isUsingVrComposer() || !hasSyncFramework);
1783 
1784     // Use phase of 0 since phase is not known.
1785     // Use latency of 0, which will snap to the ideal latency.
1786     DisplayStatInfo stats{0 /* vsyncTime */, vsyncPeriod};
1787     setCompositorTimingSnapped(stats, 0);
1788 
1789     mScheduler->resyncToHardwareVsync(false, vsyncPeriod);
1790 
1791     mRepaintEverything = true;
1792     setTransactionFlags(eDisplayTransactionNeeded);
1793 }
1794 
previousFrameFence()1795 sp<Fence> SurfaceFlinger::previousFrameFence() {
1796     // We are storing the last 2 present fences. If sf's phase offset is to be
1797     // woken up before the actual vsync but targeting the next vsync, we need to check
1798     // fence N-2
1799     return mVSyncModulator->getOffsets().sf > 0 ? mPreviousPresentFences[0]
1800                                                 : mPreviousPresentFences[1];
1801 }
1802 
previousFramePending(int graceTimeMs)1803 bool SurfaceFlinger::previousFramePending(int graceTimeMs) {
1804     ATRACE_CALL();
1805     const sp<Fence>& fence = previousFrameFence();
1806 
1807     if (fence == Fence::NO_FENCE) {
1808         return false;
1809     }
1810 
1811     const status_t status = fence->wait(graceTimeMs);
1812     // This is the same as Fence::Status::Unsignaled, but it saves a getStatus() call,
1813     // which calls wait(0) again internally
1814     return status == -ETIME;
1815 }
1816 
previousFramePresentTime()1817 nsecs_t SurfaceFlinger::previousFramePresentTime() {
1818     const sp<Fence>& fence = previousFrameFence();
1819 
1820     if (fence == Fence::NO_FENCE) {
1821         return Fence::SIGNAL_TIME_INVALID;
1822     }
1823 
1824     return fence->getSignalTime();
1825 }
1826 
calculateExpectedPresentTime(nsecs_t now) const1827 nsecs_t SurfaceFlinger::calculateExpectedPresentTime(nsecs_t now) const {
1828     DisplayStatInfo stats;
1829     mScheduler->getDisplayStatInfo(&stats);
1830     const nsecs_t presentTime = mScheduler->getDispSyncExpectedPresentTime(now);
1831     // Inflate the expected present time if we're targetting the next vsync.
1832     return mVSyncModulator->getOffsets().sf > 0 ? presentTime : presentTime + stats.vsyncPeriod;
1833 }
1834 
onMessageReceived(int32_t what,nsecs_t expectedVSyncTime)1835 void SurfaceFlinger::onMessageReceived(int32_t what, nsecs_t expectedVSyncTime) {
1836     ATRACE_CALL();
1837     switch (what) {
1838         case MessageQueue::INVALIDATE: {
1839             onMessageInvalidate(expectedVSyncTime);
1840             break;
1841         }
1842         case MessageQueue::REFRESH: {
1843             onMessageRefresh();
1844             break;
1845         }
1846     }
1847 }
1848 
onMessageInvalidate(nsecs_t expectedVSyncTime)1849 void SurfaceFlinger::onMessageInvalidate(nsecs_t expectedVSyncTime) {
1850     ATRACE_CALL();
1851 
1852     const nsecs_t frameStart = systemTime();
1853     // calculate the expected present time once and use the cached
1854     // value throughout this frame to make sure all layers are
1855     // seeing this same value.
1856     const nsecs_t lastExpectedPresentTime = mExpectedPresentTime.load();
1857     mExpectedPresentTime = expectedVSyncTime;
1858 
1859     // When Backpressure propagation is enabled we want to give a small grace period
1860     // for the present fence to fire instead of just giving up on this frame to handle cases
1861     // where present fence is just about to get signaled.
1862     const int graceTimeForPresentFenceMs =
1863             (mPropagateBackpressure &&
1864              (mPropagateBackpressureClientComposition || !mHadClientComposition))
1865             ? 1
1866             : 0;
1867 
1868     // Pending frames may trigger backpressure propagation.
1869     const TracedOrdinal<bool> framePending = {"PrevFramePending",
1870                                               previousFramePending(graceTimeForPresentFenceMs)};
1871 
1872     // Frame missed counts for metrics tracking.
1873     // A frame is missed if the prior frame is still pending. If no longer pending,
1874     // then we still count the frame as missed if the predicted present time
1875     // was further in the past than when the fence actually fired.
1876 
1877     // Add some slop to correct for drift. This should generally be
1878     // smaller than a typical frame duration, but should not be so small
1879     // that it reports reasonable drift as a missed frame.
1880     DisplayStatInfo stats;
1881     mScheduler->getDisplayStatInfo(&stats);
1882     const nsecs_t frameMissedSlop = stats.vsyncPeriod / 2;
1883     const nsecs_t previousPresentTime = previousFramePresentTime();
1884     const TracedOrdinal<bool> frameMissed = {"PrevFrameMissed",
1885                                              framePending ||
1886                                                      (previousPresentTime >= 0 &&
1887                                                       (lastExpectedPresentTime <
1888                                                        previousPresentTime - frameMissedSlop))};
1889     const TracedOrdinal<bool> hwcFrameMissed = {"PrevHwcFrameMissed",
1890                                                 mHadDeviceComposition && frameMissed};
1891     const TracedOrdinal<bool> gpuFrameMissed = {"PrevGpuFrameMissed",
1892                                                 mHadClientComposition && frameMissed};
1893 
1894     if (frameMissed) {
1895         mFrameMissedCount++;
1896         mTimeStats->incrementMissedFrames();
1897         if (mMissedFrameJankCount == 0) {
1898             mMissedFrameJankStart = systemTime();
1899         }
1900         mMissedFrameJankCount++;
1901     }
1902 
1903     if (hwcFrameMissed) {
1904         mHwcFrameMissedCount++;
1905     }
1906 
1907     if (gpuFrameMissed) {
1908         mGpuFrameMissedCount++;
1909     }
1910 
1911     // If we are in the middle of a config change and the fence hasn't
1912     // fired yet just wait for the next invalidate
1913     if (mSetActiveConfigPending) {
1914         if (framePending) {
1915             mEventQueue->invalidate();
1916             return;
1917         }
1918 
1919         // We received the present fence from the HWC, so we assume it successfully updated
1920         // the config, hence we update SF.
1921         mSetActiveConfigPending = false;
1922         ON_MAIN_THREAD(setActiveConfigInternal());
1923     }
1924 
1925     if (framePending && mPropagateBackpressure) {
1926         if ((hwcFrameMissed && !gpuFrameMissed) || mPropagateBackpressureClientComposition) {
1927             signalLayerUpdate();
1928             return;
1929         }
1930     }
1931 
1932     // Our jank window is always at least 100ms since we missed a
1933     // frame...
1934     static constexpr nsecs_t kMinJankyDuration =
1935             std::chrono::duration_cast<std::chrono::nanoseconds>(100ms).count();
1936     // ...but if it's larger than 1s then we missed the trace cutoff.
1937     static constexpr nsecs_t kMaxJankyDuration =
1938             std::chrono::duration_cast<std::chrono::nanoseconds>(1s).count();
1939     nsecs_t jankDurationToUpload = -1;
1940     // If we're in a user build then don't push any atoms
1941     if (!mIsUserBuild && mMissedFrameJankCount > 0) {
1942         const auto display = ON_MAIN_THREAD(getDefaultDisplayDeviceLocked());
1943         // Only report jank when the display is on, as displays in DOZE
1944         // power mode may operate at a different frame rate than is
1945         // reported in their config, which causes noticeable (but less
1946         // severe) jank.
1947         if (display && display->getPowerMode() == hal::PowerMode::ON) {
1948             const nsecs_t currentTime = systemTime();
1949             const nsecs_t jankDuration = currentTime - mMissedFrameJankStart;
1950             if (jankDuration > kMinJankyDuration && jankDuration < kMaxJankyDuration) {
1951                 jankDurationToUpload = jankDuration;
1952             }
1953 
1954             // We either reported a jank event or we missed the trace
1955             // window, so clear counters here.
1956             if (jankDuration > kMinJankyDuration) {
1957                 mMissedFrameJankCount = 0;
1958                 mMissedFrameJankStart = 0;
1959             }
1960         }
1961     }
1962 
1963     // Now that we're going to make it to the handleMessageTransaction()
1964     // call below it's safe to call updateVrFlinger(), which will
1965     // potentially trigger a display handoff.
1966     updateVrFlinger();
1967 
1968     if (mTracingEnabledChanged) {
1969         mTracingEnabled = mTracing.isEnabled();
1970         mTracingEnabledChanged = false;
1971     }
1972 
1973     bool refreshNeeded;
1974     {
1975         ConditionalLockGuard<std::mutex> lock(mTracingLock, mTracingEnabled);
1976 
1977         refreshNeeded = handleMessageTransaction();
1978         refreshNeeded |= handleMessageInvalidate();
1979         if (mTracingEnabled) {
1980             mAddCompositionStateToTrace =
1981                     mTracing.flagIsSetLocked(SurfaceTracing::TRACE_COMPOSITION);
1982             if (mVisibleRegionsDirty && !mAddCompositionStateToTrace) {
1983                 mTracing.notifyLocked("visibleRegionsDirty");
1984             }
1985         }
1986     }
1987 
1988     // Layers need to get updated (in the previous line) before we can use them for
1989     // choosing the refresh rate.
1990     // Hold mStateLock as chooseRefreshRateForContent promotes wp<Layer> to sp<Layer>
1991     // and may eventually call to ~Layer() if it holds the last reference
1992     {
1993         Mutex::Autolock _l(mStateLock);
1994         mScheduler->chooseRefreshRateForContent();
1995     }
1996 
1997     ON_MAIN_THREAD(performSetActiveConfig());
1998 
1999     updateCursorAsync();
2000     updateInputFlinger();
2001 
2002     refreshNeeded |= mRepaintEverything;
2003     if (refreshNeeded && CC_LIKELY(mBootStage != BootStage::BOOTLOADER)) {
2004         mLastJankDuration = jankDurationToUpload;
2005         // Signal a refresh if a transaction modified the window state,
2006         // a new buffer was latched, or if HWC has requested a full
2007         // repaint
2008         if (mFrameStartTime <= 0) {
2009             // We should only use the time of the first invalidate
2010             // message that signals a refresh as the beginning of the
2011             // frame. Otherwise the real frame time will be
2012             // underestimated.
2013             mFrameStartTime = frameStart;
2014         }
2015         signalRefresh();
2016     }
2017 }
2018 
handleMessageTransaction()2019 bool SurfaceFlinger::handleMessageTransaction() {
2020     ATRACE_CALL();
2021     uint32_t transactionFlags = peekTransactionFlags();
2022 
2023     bool flushedATransaction = flushTransactionQueues();
2024 
2025     bool runHandleTransaction =
2026             (transactionFlags && (transactionFlags != eTransactionFlushNeeded)) ||
2027             flushedATransaction ||
2028             mForceTraversal;
2029 
2030     if (runHandleTransaction) {
2031         handleTransaction(eTransactionMask);
2032     } else {
2033         getTransactionFlags(eTransactionFlushNeeded);
2034     }
2035 
2036     if (transactionFlushNeeded()) {
2037         setTransactionFlags(eTransactionFlushNeeded);
2038     }
2039 
2040     return runHandleTransaction;
2041 }
2042 
onMessageRefresh()2043 void SurfaceFlinger::onMessageRefresh() {
2044     ATRACE_CALL();
2045 
2046     mRefreshPending = false;
2047 
2048     compositionengine::CompositionRefreshArgs refreshArgs;
2049     const auto& displays = ON_MAIN_THREAD(mDisplays);
2050     refreshArgs.outputs.reserve(displays.size());
2051     for (const auto& [_, display] : displays) {
2052         refreshArgs.outputs.push_back(display->getCompositionDisplay());
2053     }
2054     mDrawingState.traverseInZOrder([&refreshArgs](Layer* layer) {
2055         if (auto layerFE = layer->getCompositionEngineLayerFE())
2056             refreshArgs.layers.push_back(layerFE);
2057     });
2058     refreshArgs.layersWithQueuedFrames.reserve(mLayersWithQueuedFrames.size());
2059     for (sp<Layer> layer : mLayersWithQueuedFrames) {
2060         if (auto layerFE = layer->getCompositionEngineLayerFE())
2061             refreshArgs.layersWithQueuedFrames.push_back(layerFE);
2062     }
2063 
2064     refreshArgs.repaintEverything = mRepaintEverything.exchange(false);
2065     refreshArgs.outputColorSetting = useColorManagement
2066             ? mDisplayColorSetting
2067             : compositionengine::OutputColorSetting::kUnmanaged;
2068     refreshArgs.colorSpaceAgnosticDataspace = mColorSpaceAgnosticDataspace;
2069     refreshArgs.forceOutputColorMode = mForceColorMode;
2070 
2071     refreshArgs.updatingOutputGeometryThisFrame = mVisibleRegionsDirty;
2072     refreshArgs.updatingGeometryThisFrame = mGeometryInvalid || mVisibleRegionsDirty;
2073     refreshArgs.blursAreExpensive = mBlursAreExpensive;
2074     refreshArgs.internalDisplayRotationFlags = DisplayDevice::getPrimaryDisplayRotationFlags();
2075 
2076     if (CC_UNLIKELY(mDrawingState.colorMatrixChanged)) {
2077         refreshArgs.colorTransformMatrix = mDrawingState.colorMatrix;
2078         mDrawingState.colorMatrixChanged = false;
2079     }
2080 
2081     refreshArgs.devOptForceClientComposition = mDebugDisableHWC || mDebugRegion;
2082 
2083     if (mDebugRegion != 0) {
2084         refreshArgs.devOptFlashDirtyRegionsDelay =
2085                 std::chrono::milliseconds(mDebugRegion > 1 ? mDebugRegion : 0);
2086     }
2087 
2088     mGeometryInvalid = false;
2089 
2090     // Store the present time just before calling to the composition engine so we could notify
2091     // the scheduler.
2092     const auto presentTime = systemTime();
2093 
2094     mCompositionEngine->present(refreshArgs);
2095     mTimeStats->recordFrameDuration(mFrameStartTime, systemTime());
2096     // Reset the frame start time now that we've recorded this frame.
2097     mFrameStartTime = 0;
2098 
2099     mScheduler->onDisplayRefreshed(presentTime);
2100 
2101     postFrame();
2102     postComposition();
2103 
2104     const bool prevFrameHadDeviceComposition = mHadDeviceComposition;
2105 
2106     mHadClientComposition = std::any_of(displays.cbegin(), displays.cend(), [](const auto& pair) {
2107         const auto& state = pair.second->getCompositionDisplay()->getState();
2108         return state.usesClientComposition && !state.reusedClientComposition;
2109     });
2110     mHadDeviceComposition = std::any_of(displays.cbegin(), displays.cend(), [](const auto& pair) {
2111         const auto& state = pair.second->getCompositionDisplay()->getState();
2112         return state.usesDeviceComposition;
2113     });
2114     mReusedClientComposition =
2115             std::any_of(displays.cbegin(), displays.cend(), [](const auto& pair) {
2116                 const auto& state = pair.second->getCompositionDisplay()->getState();
2117                 return state.reusedClientComposition;
2118             });
2119 
2120     // Only report a strategy change if we move in and out of composition with hw overlays
2121     if (prevFrameHadDeviceComposition != mHadDeviceComposition) {
2122         mTimeStats->incrementCompositionStrategyChanges();
2123     }
2124 
2125     // TODO: b/160583065 Enable skip validation when SF caches all client composition layers
2126     mVSyncModulator->onRefreshed(mHadClientComposition || mReusedClientComposition);
2127 
2128     mLayersWithQueuedFrames.clear();
2129     if (mVisibleRegionsDirty) {
2130         mVisibleRegionsDirty = false;
2131         if (mTracingEnabled && mAddCompositionStateToTrace) {
2132             mTracing.notify("visibleRegionsDirty");
2133         }
2134     }
2135 
2136     if (mCompositionEngine->needsAnotherUpdate()) {
2137         signalLayerUpdate();
2138     }
2139 }
2140 
handleMessageInvalidate()2141 bool SurfaceFlinger::handleMessageInvalidate() {
2142     ATRACE_CALL();
2143     bool refreshNeeded = handlePageFlip();
2144 
2145     if (mVisibleRegionsDirty) {
2146         computeLayerBounds();
2147     }
2148 
2149     for (auto& layer : mLayersPendingRefresh) {
2150         Region visibleReg;
2151         visibleReg.set(layer->getScreenBounds());
2152         invalidateLayerStack(layer, visibleReg);
2153     }
2154     mLayersPendingRefresh.clear();
2155     return refreshNeeded;
2156 }
2157 
updateCompositorTiming(const DisplayStatInfo & stats,nsecs_t compositeTime,std::shared_ptr<FenceTime> & presentFenceTime)2158 void SurfaceFlinger::updateCompositorTiming(const DisplayStatInfo& stats, nsecs_t compositeTime,
2159                                             std::shared_ptr<FenceTime>& presentFenceTime) {
2160     // Update queue of past composite+present times and determine the
2161     // most recently known composite to present latency.
2162     getBE().mCompositePresentTimes.push({compositeTime, presentFenceTime});
2163     nsecs_t compositeToPresentLatency = -1;
2164     while (!getBE().mCompositePresentTimes.empty()) {
2165         SurfaceFlingerBE::CompositePresentTime& cpt = getBE().mCompositePresentTimes.front();
2166         // Cached values should have been updated before calling this method,
2167         // which helps avoid duplicate syscalls.
2168         nsecs_t displayTime = cpt.display->getCachedSignalTime();
2169         if (displayTime == Fence::SIGNAL_TIME_PENDING) {
2170             break;
2171         }
2172         compositeToPresentLatency = displayTime - cpt.composite;
2173         getBE().mCompositePresentTimes.pop();
2174     }
2175 
2176     // Don't let mCompositePresentTimes grow unbounded, just in case.
2177     while (getBE().mCompositePresentTimes.size() > 16) {
2178         getBE().mCompositePresentTimes.pop();
2179     }
2180 
2181     setCompositorTimingSnapped(stats, compositeToPresentLatency);
2182 }
2183 
setCompositorTimingSnapped(const DisplayStatInfo & stats,nsecs_t compositeToPresentLatency)2184 void SurfaceFlinger::setCompositorTimingSnapped(const DisplayStatInfo& stats,
2185                                                 nsecs_t compositeToPresentLatency) {
2186     // Integer division and modulo round toward 0 not -inf, so we need to
2187     // treat negative and positive offsets differently.
2188     nsecs_t idealLatency = (mPhaseConfiguration->getCurrentOffsets().late.sf > 0)
2189             ? (stats.vsyncPeriod -
2190                (mPhaseConfiguration->getCurrentOffsets().late.sf % stats.vsyncPeriod))
2191             : ((-mPhaseConfiguration->getCurrentOffsets().late.sf) % stats.vsyncPeriod);
2192 
2193     // Just in case mPhaseConfiguration->getCurrentOffsets().late.sf == -vsyncInterval.
2194     if (idealLatency <= 0) {
2195         idealLatency = stats.vsyncPeriod;
2196     }
2197 
2198     // Snap the latency to a value that removes scheduling jitter from the
2199     // composition and present times, which often have >1ms of jitter.
2200     // Reducing jitter is important if an app attempts to extrapolate
2201     // something (such as user input) to an accurate diasplay time.
2202     // Snapping also allows an app to precisely calculate
2203     // mPhaseConfiguration->getCurrentOffsets().late.sf with (presentLatency % interval).
2204     nsecs_t bias = stats.vsyncPeriod / 2;
2205     int64_t extraVsyncs = (compositeToPresentLatency - idealLatency + bias) / stats.vsyncPeriod;
2206     nsecs_t snappedCompositeToPresentLatency =
2207             (extraVsyncs > 0) ? idealLatency + (extraVsyncs * stats.vsyncPeriod) : idealLatency;
2208 
2209     std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock);
2210     getBE().mCompositorTiming.deadline = stats.vsyncTime - idealLatency;
2211     getBE().mCompositorTiming.interval = stats.vsyncPeriod;
2212     getBE().mCompositorTiming.presentLatency = snappedCompositeToPresentLatency;
2213 }
2214 
postComposition()2215 void SurfaceFlinger::postComposition()
2216 {
2217     ATRACE_CALL();
2218     ALOGV("postComposition");
2219 
2220     nsecs_t dequeueReadyTime = systemTime();
2221     for (auto& layer : mLayersWithQueuedFrames) {
2222         layer->releasePendingBuffer(dequeueReadyTime);
2223     }
2224 
2225     const auto* display = ON_MAIN_THREAD(getDefaultDisplayDeviceLocked()).get();
2226 
2227     getBE().mGlCompositionDoneTimeline.updateSignalTimes();
2228     std::shared_ptr<FenceTime> glCompositionDoneFenceTime;
2229     if (display && display->getCompositionDisplay()->getState().usesClientComposition) {
2230         glCompositionDoneFenceTime =
2231                 std::make_shared<FenceTime>(display->getCompositionDisplay()
2232                                                     ->getRenderSurface()
2233                                                     ->getClientTargetAcquireFence());
2234         getBE().mGlCompositionDoneTimeline.push(glCompositionDoneFenceTime);
2235     } else {
2236         glCompositionDoneFenceTime = FenceTime::NO_FENCE;
2237     }
2238 
2239     getBE().mDisplayTimeline.updateSignalTimes();
2240     mPreviousPresentFences[1] = mPreviousPresentFences[0];
2241     mPreviousPresentFences[0] =
2242             display ? getHwComposer().getPresentFence(*display->getId()) : Fence::NO_FENCE;
2243     auto presentFenceTime = std::make_shared<FenceTime>(mPreviousPresentFences[0]);
2244     getBE().mDisplayTimeline.push(presentFenceTime);
2245 
2246     DisplayStatInfo stats;
2247     mScheduler->getDisplayStatInfo(&stats);
2248 
2249     // We use the CompositionEngine::getLastFrameRefreshTimestamp() which might
2250     // be sampled a little later than when we started doing work for this frame,
2251     // but that should be okay since updateCompositorTiming has snapping logic.
2252     updateCompositorTiming(stats, mCompositionEngine->getLastFrameRefreshTimestamp(),
2253                            presentFenceTime);
2254     CompositorTiming compositorTiming;
2255     {
2256         std::lock_guard<std::mutex> lock(getBE().mCompositorTimingLock);
2257         compositorTiming = getBE().mCompositorTiming;
2258     }
2259 
2260     mDrawingState.traverse([&](Layer* layer) {
2261         const bool frameLatched = layer->onPostComposition(display, glCompositionDoneFenceTime,
2262                                                            presentFenceTime, compositorTiming);
2263         if (frameLatched) {
2264             recordBufferingStats(layer->getName(), layer->getOccupancyHistory(false));
2265         }
2266     });
2267 
2268     mTransactionCompletedThread.addPresentFence(mPreviousPresentFences[0]);
2269     mTransactionCompletedThread.sendCallbacks();
2270 
2271     if (display && display->isPrimary() && display->getPowerMode() == hal::PowerMode::ON &&
2272         presentFenceTime->isValid()) {
2273         mScheduler->addPresentFence(presentFenceTime);
2274     }
2275 
2276     const bool isDisplayConnected = display && getHwComposer().isConnected(*display->getId());
2277 
2278     if (!hasSyncFramework) {
2279         if (isDisplayConnected && display->isPoweredOn()) {
2280             mScheduler->enableHardwareVsync();
2281         }
2282     }
2283 
2284     if (mAnimCompositionPending) {
2285         mAnimCompositionPending = false;
2286 
2287         if (presentFenceTime->isValid()) {
2288             mAnimFrameTracker.setActualPresentFence(
2289                     std::move(presentFenceTime));
2290         } else if (isDisplayConnected) {
2291             // The HWC doesn't support present fences, so use the refresh
2292             // timestamp instead.
2293             const nsecs_t presentTime = getHwComposer().getRefreshTimestamp(*display->getId());
2294             mAnimFrameTracker.setActualPresentTime(presentTime);
2295         }
2296         mAnimFrameTracker.advanceFrame();
2297     }
2298 
2299     mTimeStats->incrementTotalFrames();
2300     if (mHadClientComposition) {
2301         mTimeStats->incrementClientCompositionFrames();
2302     }
2303 
2304     if (mReusedClientComposition) {
2305         mTimeStats->incrementClientCompositionReusedFrames();
2306     }
2307 
2308     mTimeStats->setPresentFenceGlobal(presentFenceTime);
2309 
2310     const size_t sfConnections = mScheduler->getEventThreadConnectionCount(mSfConnectionHandle);
2311     const size_t appConnections = mScheduler->getEventThreadConnectionCount(mAppConnectionHandle);
2312     mTimeStats->recordDisplayEventConnectionCount(sfConnections + appConnections);
2313 
2314     if (mLastJankDuration > 0) {
2315         ATRACE_NAME("Jank detected");
2316         const int32_t jankyDurationMillis = mLastJankDuration / (1000 * 1000);
2317         android::util::stats_write(android::util::DISPLAY_JANK_REPORTED, jankyDurationMillis,
2318                                    mMissedFrameJankCount);
2319         mLastJankDuration = -1;
2320     }
2321 
2322     if (isDisplayConnected && !display->isPoweredOn()) {
2323         return;
2324     }
2325 
2326     nsecs_t currentTime = systemTime();
2327     if (mHasPoweredOff) {
2328         mHasPoweredOff = false;
2329     } else {
2330         nsecs_t elapsedTime = currentTime - getBE().mLastSwapTime;
2331         size_t numPeriods = static_cast<size_t>(elapsedTime / stats.vsyncPeriod);
2332         if (numPeriods < SurfaceFlingerBE::NUM_BUCKETS - 1) {
2333             getBE().mFrameBuckets[numPeriods] += elapsedTime;
2334         } else {
2335             getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1] += elapsedTime;
2336         }
2337         getBE().mTotalTime += elapsedTime;
2338     }
2339     getBE().mLastSwapTime = currentTime;
2340 
2341     // Cleanup any outstanding resources due to rendering a prior frame.
2342     getRenderEngine().cleanupPostRender();
2343 
2344     {
2345         std::lock_guard lock(mTexturePoolMutex);
2346         if (mTexturePool.size() < mTexturePoolSize) {
2347             const size_t refillCount = mTexturePoolSize - mTexturePool.size();
2348             const size_t offset = mTexturePool.size();
2349             mTexturePool.resize(mTexturePoolSize);
2350             getRenderEngine().genTextures(refillCount, mTexturePool.data() + offset);
2351             ATRACE_INT("TexturePoolSize", mTexturePool.size());
2352         } else if (mTexturePool.size() > mTexturePoolSize) {
2353             const size_t deleteCount = mTexturePool.size() - mTexturePoolSize;
2354             const size_t offset = mTexturePoolSize;
2355             getRenderEngine().deleteTextures(deleteCount, mTexturePool.data() + offset);
2356             mTexturePool.resize(mTexturePoolSize);
2357             ATRACE_INT("TexturePoolSize", mTexturePool.size());
2358         }
2359     }
2360 
2361     if (mLumaSampling && mRegionSamplingThread) {
2362         mRegionSamplingThread->notifyNewContent();
2363     }
2364 
2365     // Even though ATRACE_INT64 already checks if tracing is enabled, it doesn't prevent the
2366     // side-effect of getTotalSize(), so we check that again here
2367     if (ATRACE_ENABLED()) {
2368         // getTotalSize returns the total number of buffers that were allocated by SurfaceFlinger
2369         ATRACE_INT64("Total Buffer Size", GraphicBufferAllocator::get().getTotalSize());
2370     }
2371 }
2372 
getLayerClipBoundsForDisplay(const DisplayDevice & displayDevice) const2373 FloatRect SurfaceFlinger::getLayerClipBoundsForDisplay(const DisplayDevice& displayDevice) const {
2374     return displayDevice.getViewport().toFloatRect();
2375 }
2376 
computeLayerBounds()2377 void SurfaceFlinger::computeLayerBounds() {
2378     for (const auto& pair : ON_MAIN_THREAD(mDisplays)) {
2379         const auto& displayDevice = pair.second;
2380         const auto display = displayDevice->getCompositionDisplay();
2381         for (const auto& layer : mDrawingState.layersSortedByZ) {
2382             // only consider the layers on the given layer stack
2383             if (!display->belongsInOutput(layer->getLayerStack(), layer->getPrimaryDisplayOnly())) {
2384                 continue;
2385             }
2386 
2387             layer->computeBounds(getLayerClipBoundsForDisplay(*displayDevice), ui::Transform(),
2388                                  0.f /* shadowRadius */);
2389         }
2390     }
2391 }
2392 
postFrame()2393 void SurfaceFlinger::postFrame() {
2394     const auto display = ON_MAIN_THREAD(getDefaultDisplayDeviceLocked());
2395     if (display && getHwComposer().isConnected(*display->getId())) {
2396         uint32_t flipCount = display->getPageFlipCount();
2397         if (flipCount % LOG_FRAME_STATS_PERIOD == 0) {
2398             logFrameStats();
2399         }
2400     }
2401 }
2402 
handleTransaction(uint32_t transactionFlags)2403 void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
2404 {
2405     ATRACE_CALL();
2406 
2407     // here we keep a copy of the drawing state (that is the state that's
2408     // going to be overwritten by handleTransactionLocked()) outside of
2409     // mStateLock so that the side-effects of the State assignment
2410     // don't happen with mStateLock held (which can cause deadlocks).
2411     State drawingState(mDrawingState);
2412 
2413     Mutex::Autolock _l(mStateLock);
2414     mDebugInTransaction = systemTime();
2415 
2416     // Here we're guaranteed that some transaction flags are set
2417     // so we can call handleTransactionLocked() unconditionally.
2418     // We call getTransactionFlags(), which will also clear the flags,
2419     // with mStateLock held to guarantee that mCurrentState won't change
2420     // until the transaction is committed.
2421 
2422     mVSyncModulator->onTransactionHandled();
2423     transactionFlags = getTransactionFlags(eTransactionMask);
2424     handleTransactionLocked(transactionFlags);
2425 
2426     mDebugInTransaction = 0;
2427     invalidateHwcGeometry();
2428     // here the transaction has been committed
2429 }
2430 
processDisplayHotplugEventsLocked()2431 void SurfaceFlinger::processDisplayHotplugEventsLocked() {
2432     for (const auto& event : mPendingHotplugEvents) {
2433         const std::optional<DisplayIdentificationInfo> info =
2434                 getHwComposer().onHotplug(event.hwcDisplayId, event.connection);
2435 
2436         if (!info) {
2437             continue;
2438         }
2439 
2440         const DisplayId displayId = info->id;
2441         const auto it = mPhysicalDisplayTokens.find(displayId);
2442 
2443         if (event.connection == hal::Connection::CONNECTED) {
2444             if (it == mPhysicalDisplayTokens.end()) {
2445                 ALOGV("Creating display %s", to_string(displayId).c_str());
2446 
2447                 if (event.hwcDisplayId == getHwComposer().getInternalHwcDisplayId()) {
2448                     initScheduler(displayId);
2449                 }
2450 
2451                 DisplayDeviceState state;
2452                 state.physical = {displayId, getHwComposer().getDisplayConnectionType(displayId),
2453                                   event.hwcDisplayId};
2454                 state.isSecure = true; // All physical displays are currently considered secure.
2455                 state.displayName = info->name;
2456 
2457                 sp<IBinder> token = new BBinder();
2458                 mCurrentState.displays.add(token, state);
2459                 mPhysicalDisplayTokens.emplace(displayId, std::move(token));
2460 
2461                 mInterceptor->saveDisplayCreation(state);
2462             } else {
2463                 ALOGV("Recreating display %s", to_string(displayId).c_str());
2464 
2465                 const auto token = it->second;
2466                 auto& state = mCurrentState.displays.editValueFor(token);
2467                 state.sequenceId = DisplayDeviceState{}.sequenceId;
2468             }
2469         } else {
2470             ALOGV("Removing display %s", to_string(displayId).c_str());
2471 
2472             const ssize_t index = mCurrentState.displays.indexOfKey(it->second);
2473             if (index >= 0) {
2474                 const DisplayDeviceState& state = mCurrentState.displays.valueAt(index);
2475                 mInterceptor->saveDisplayDeletion(state.sequenceId);
2476                 mCurrentState.displays.removeItemsAt(index);
2477             }
2478             mPhysicalDisplayTokens.erase(it);
2479         }
2480 
2481         processDisplayChangesLocked();
2482     }
2483 
2484     mPendingHotplugEvents.clear();
2485 }
2486 
dispatchDisplayHotplugEvent(PhysicalDisplayId displayId,bool connected)2487 void SurfaceFlinger::dispatchDisplayHotplugEvent(PhysicalDisplayId displayId, bool connected) {
2488     mScheduler->onHotplugReceived(mAppConnectionHandle, displayId, connected);
2489     mScheduler->onHotplugReceived(mSfConnectionHandle, displayId, connected);
2490 }
2491 
setupNewDisplayDeviceInternal(const wp<IBinder> & displayToken,std::shared_ptr<compositionengine::Display> compositionDisplay,const DisplayDeviceState & state,const sp<compositionengine::DisplaySurface> & displaySurface,const sp<IGraphicBufferProducer> & producer)2492 sp<DisplayDevice> SurfaceFlinger::setupNewDisplayDeviceInternal(
2493         const wp<IBinder>& displayToken,
2494         std::shared_ptr<compositionengine::Display> compositionDisplay,
2495         const DisplayDeviceState& state,
2496         const sp<compositionengine::DisplaySurface>& displaySurface,
2497         const sp<IGraphicBufferProducer>& producer) {
2498     auto displayId = compositionDisplay->getDisplayId();
2499     DisplayDeviceCreationArgs creationArgs(this, displayToken, compositionDisplay);
2500     creationArgs.sequenceId = state.sequenceId;
2501     creationArgs.isSecure = state.isSecure;
2502     creationArgs.displaySurface = displaySurface;
2503     creationArgs.hasWideColorGamut = false;
2504     creationArgs.supportedPerFrameMetadata = 0;
2505 
2506     if (const auto& physical = state.physical) {
2507         creationArgs.connectionType = physical->type;
2508     }
2509 
2510     const bool isInternalDisplay = displayId && displayId == getInternalDisplayIdLocked();
2511     creationArgs.isPrimary = isInternalDisplay;
2512 
2513     if (useColorManagement && displayId) {
2514         std::vector<ColorMode> modes = getHwComposer().getColorModes(*displayId);
2515         for (ColorMode colorMode : modes) {
2516             if (isWideColorMode(colorMode)) {
2517                 creationArgs.hasWideColorGamut = true;
2518             }
2519 
2520             std::vector<RenderIntent> renderIntents =
2521                     getHwComposer().getRenderIntents(*displayId, colorMode);
2522             creationArgs.hwcColorModes.emplace(colorMode, renderIntents);
2523         }
2524     }
2525 
2526     if (displayId) {
2527         getHwComposer().getHdrCapabilities(*displayId, &creationArgs.hdrCapabilities);
2528         creationArgs.supportedPerFrameMetadata =
2529                 getHwComposer().getSupportedPerFrameMetadata(*displayId);
2530     }
2531 
2532     auto nativeWindowSurface = getFactory().createNativeWindowSurface(producer);
2533     auto nativeWindow = nativeWindowSurface->getNativeWindow();
2534     creationArgs.nativeWindow = nativeWindow;
2535 
2536     // Make sure that composition can never be stalled by a virtual display
2537     // consumer that isn't processing buffers fast enough. We have to do this
2538     // here, in case the display is composed entirely by HWC.
2539     if (state.isVirtual()) {
2540         nativeWindow->setSwapInterval(nativeWindow.get(), 0);
2541     }
2542 
2543     creationArgs.physicalOrientation =
2544             isInternalDisplay ? internalDisplayOrientation : ui::ROTATION_0;
2545 
2546     // virtual displays are always considered enabled
2547     creationArgs.initialPowerMode = state.isVirtual() ? hal::PowerMode::ON : hal::PowerMode::OFF;
2548 
2549     sp<DisplayDevice> display = getFactory().createDisplayDevice(creationArgs);
2550 
2551     if (maxFrameBufferAcquiredBuffers >= 3) {
2552         nativeWindowSurface->preallocateBuffers();
2553     }
2554 
2555     ColorMode defaultColorMode = ColorMode::NATIVE;
2556     Dataspace defaultDataSpace = Dataspace::UNKNOWN;
2557     if (display->hasWideColorGamut()) {
2558         defaultColorMode = ColorMode::SRGB;
2559         defaultDataSpace = Dataspace::V0_SRGB;
2560     }
2561     display->getCompositionDisplay()->setColorProfile(
2562             compositionengine::Output::ColorProfile{defaultColorMode, defaultDataSpace,
2563                                                     RenderIntent::COLORIMETRIC,
2564                                                     Dataspace::UNKNOWN});
2565     if (!state.isVirtual()) {
2566         LOG_ALWAYS_FATAL_IF(!displayId);
2567         auto activeConfigId = HwcConfigIndexType(getHwComposer().getActiveConfigIndex(*displayId));
2568         display->setActiveConfig(activeConfigId);
2569     }
2570 
2571     display->setLayerStack(state.layerStack);
2572     display->setProjection(state.orientation, state.viewport, state.frame);
2573     display->setDisplayName(state.displayName);
2574 
2575     return display;
2576 }
2577 
processDisplayAdded(const wp<IBinder> & displayToken,const DisplayDeviceState & state)2578 void SurfaceFlinger::processDisplayAdded(const wp<IBinder>& displayToken,
2579                                          const DisplayDeviceState& state) {
2580     int width = 0;
2581     int height = 0;
2582     ui::PixelFormat pixelFormat = static_cast<ui::PixelFormat>(PIXEL_FORMAT_UNKNOWN);
2583     if (state.physical) {
2584         const auto& activeConfig =
2585                 getCompositionEngine().getHwComposer().getActiveConfig(state.physical->id);
2586         width = activeConfig->getWidth();
2587         height = activeConfig->getHeight();
2588         pixelFormat = static_cast<ui::PixelFormat>(PIXEL_FORMAT_RGBA_8888);
2589     } else if (state.surface != nullptr) {
2590         int status = state.surface->query(NATIVE_WINDOW_WIDTH, &width);
2591         ALOGE_IF(status != NO_ERROR, "Unable to query width (%d)", status);
2592         status = state.surface->query(NATIVE_WINDOW_HEIGHT, &height);
2593         ALOGE_IF(status != NO_ERROR, "Unable to query height (%d)", status);
2594         int intPixelFormat;
2595         status = state.surface->query(NATIVE_WINDOW_FORMAT, &intPixelFormat);
2596         ALOGE_IF(status != NO_ERROR, "Unable to query format (%d)", status);
2597         pixelFormat = static_cast<ui::PixelFormat>(intPixelFormat);
2598     } else {
2599         // Virtual displays without a surface are dormant:
2600         // they have external state (layer stack, projection,
2601         // etc.) but no internal state (i.e. a DisplayDevice).
2602         return;
2603     }
2604 
2605     compositionengine::DisplayCreationArgsBuilder builder;
2606     if (const auto& physical = state.physical) {
2607         builder.setPhysical({physical->id, physical->type});
2608     }
2609     builder.setPixels(ui::Size(width, height));
2610     builder.setPixelFormat(pixelFormat);
2611     builder.setIsSecure(state.isSecure);
2612     builder.setLayerStackId(state.layerStack);
2613     builder.setPowerAdvisor(&mPowerAdvisor);
2614     builder.setUseHwcVirtualDisplays(mUseHwcVirtualDisplays || getHwComposer().isUsingVrComposer());
2615     builder.setName(state.displayName);
2616     const auto compositionDisplay = getCompositionEngine().createDisplay(builder.build());
2617 
2618     sp<compositionengine::DisplaySurface> displaySurface;
2619     sp<IGraphicBufferProducer> producer;
2620     sp<IGraphicBufferProducer> bqProducer;
2621     sp<IGraphicBufferConsumer> bqConsumer;
2622     getFactory().createBufferQueue(&bqProducer, &bqConsumer, /*consumerIsSurfaceFlinger =*/false);
2623 
2624     std::optional<DisplayId> displayId = compositionDisplay->getId();
2625 
2626     if (state.isVirtual()) {
2627         sp<VirtualDisplaySurface> vds =
2628                 new VirtualDisplaySurface(getHwComposer(), displayId, state.surface, bqProducer,
2629                                           bqConsumer, state.displayName);
2630 
2631         displaySurface = vds;
2632         producer = vds;
2633     } else {
2634         ALOGE_IF(state.surface != nullptr,
2635                  "adding a supported display, but rendering "
2636                  "surface is provided (%p), ignoring it",
2637                  state.surface.get());
2638 
2639         LOG_ALWAYS_FATAL_IF(!displayId);
2640         displaySurface = new FramebufferSurface(getHwComposer(), *displayId, bqConsumer,
2641                                                 maxGraphicsWidth, maxGraphicsHeight);
2642         producer = bqProducer;
2643     }
2644 
2645     LOG_FATAL_IF(!displaySurface);
2646     const auto display = setupNewDisplayDeviceInternal(displayToken, compositionDisplay, state,
2647                                                        displaySurface, producer);
2648     mDisplays.emplace(displayToken, display);
2649     if (!state.isVirtual()) {
2650         LOG_FATAL_IF(!displayId);
2651         dispatchDisplayHotplugEvent(displayId->value, true);
2652     }
2653 
2654     if (display->isPrimary()) {
2655         mScheduler->onPrimaryDisplayAreaChanged(display->getWidth() * display->getHeight());
2656     }
2657 }
2658 
processDisplayRemoved(const wp<IBinder> & displayToken)2659 void SurfaceFlinger::processDisplayRemoved(const wp<IBinder>& displayToken) {
2660     if (const auto display = getDisplayDeviceLocked(displayToken)) {
2661         // Save display ID before disconnecting.
2662         const auto displayId = display->getId();
2663         display->disconnect();
2664 
2665         if (!display->isVirtual()) {
2666             LOG_FATAL_IF(!displayId);
2667             dispatchDisplayHotplugEvent(displayId->value, false);
2668         }
2669     }
2670 
2671     mDisplays.erase(displayToken);
2672 }
2673 
processDisplayChanged(const wp<IBinder> & displayToken,const DisplayDeviceState & currentState,const DisplayDeviceState & drawingState)2674 void SurfaceFlinger::processDisplayChanged(const wp<IBinder>& displayToken,
2675                                            const DisplayDeviceState& currentState,
2676                                            const DisplayDeviceState& drawingState) {
2677     const sp<IBinder> currentBinder = IInterface::asBinder(currentState.surface);
2678     const sp<IBinder> drawingBinder = IInterface::asBinder(drawingState.surface);
2679     if (currentBinder != drawingBinder || currentState.sequenceId != drawingState.sequenceId) {
2680         // changing the surface is like destroying and recreating the DisplayDevice
2681         if (const auto display = getDisplayDeviceLocked(displayToken)) {
2682             display->disconnect();
2683         }
2684         mDisplays.erase(displayToken);
2685         if (const auto& physical = currentState.physical) {
2686             getHwComposer().allocatePhysicalDisplay(physical->hwcDisplayId, physical->id);
2687         }
2688         processDisplayAdded(displayToken, currentState);
2689         if (currentState.physical) {
2690             const auto display = getDisplayDeviceLocked(displayToken);
2691             setPowerModeInternal(display, hal::PowerMode::ON);
2692         }
2693         return;
2694     }
2695 
2696     if (const auto display = getDisplayDeviceLocked(displayToken)) {
2697         if (currentState.layerStack != drawingState.layerStack) {
2698             display->setLayerStack(currentState.layerStack);
2699         }
2700         if ((currentState.orientation != drawingState.orientation) ||
2701             (currentState.viewport != drawingState.viewport) ||
2702             (currentState.frame != drawingState.frame)) {
2703             display->setProjection(currentState.orientation, currentState.viewport,
2704                                    currentState.frame);
2705         }
2706         if (currentState.width != drawingState.width ||
2707             currentState.height != drawingState.height) {
2708             display->setDisplaySize(currentState.width, currentState.height);
2709 
2710             if (display->isPrimary()) {
2711                 mScheduler->onPrimaryDisplayAreaChanged(currentState.width * currentState.height);
2712             }
2713 
2714             if (mRefreshRateOverlay) {
2715                 mRefreshRateOverlay->setViewport(display->getSize());
2716             }
2717         }
2718     }
2719 }
2720 
processDisplayChangesLocked()2721 void SurfaceFlinger::processDisplayChangesLocked() {
2722     // here we take advantage of Vector's copy-on-write semantics to
2723     // improve performance by skipping the transaction entirely when
2724     // know that the lists are identical
2725     const KeyedVector<wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
2726     const KeyedVector<wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
2727     if (!curr.isIdenticalTo(draw)) {
2728         mVisibleRegionsDirty = true;
2729 
2730         // find the displays that were removed
2731         // (ie: in drawing state but not in current state)
2732         // also handle displays that changed
2733         // (ie: displays that are in both lists)
2734         for (size_t i = 0; i < draw.size(); i++) {
2735             const wp<IBinder>& displayToken = draw.keyAt(i);
2736             const ssize_t j = curr.indexOfKey(displayToken);
2737             if (j < 0) {
2738                 // in drawing state but not in current state
2739                 processDisplayRemoved(displayToken);
2740             } else {
2741                 // this display is in both lists. see if something changed.
2742                 const DisplayDeviceState& currentState = curr[j];
2743                 const DisplayDeviceState& drawingState = draw[i];
2744                 processDisplayChanged(displayToken, currentState, drawingState);
2745             }
2746         }
2747 
2748         // find displays that were added
2749         // (ie: in current state but not in drawing state)
2750         for (size_t i = 0; i < curr.size(); i++) {
2751             const wp<IBinder>& displayToken = curr.keyAt(i);
2752             if (draw.indexOfKey(displayToken) < 0) {
2753                 processDisplayAdded(displayToken, curr[i]);
2754             }
2755         }
2756     }
2757 
2758     mDrawingState.displays = mCurrentState.displays;
2759 }
2760 
handleTransactionLocked(uint32_t transactionFlags)2761 void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
2762 {
2763     const nsecs_t expectedPresentTime = mExpectedPresentTime.load();
2764 
2765     // Notify all layers of available frames
2766     mCurrentState.traverse([expectedPresentTime](Layer* layer) {
2767         layer->notifyAvailableFrames(expectedPresentTime);
2768     });
2769 
2770     /*
2771      * Traversal of the children
2772      * (perform the transaction for each of them if needed)
2773      */
2774 
2775     if ((transactionFlags & eTraversalNeeded) || mForceTraversal) {
2776         mForceTraversal = false;
2777         mCurrentState.traverse([&](Layer* layer) {
2778             uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
2779             if (!trFlags) return;
2780 
2781             const uint32_t flags = layer->doTransaction(0);
2782             if (flags & Layer::eVisibleRegion)
2783                 mVisibleRegionsDirty = true;
2784 
2785             if (flags & Layer::eInputInfoChanged) {
2786                 mInputInfoChanged = true;
2787             }
2788         });
2789     }
2790 
2791     /*
2792      * Perform display own transactions if needed
2793      */
2794 
2795     if (transactionFlags & eDisplayTransactionNeeded) {
2796         processDisplayChangesLocked();
2797         processDisplayHotplugEventsLocked();
2798     }
2799 
2800     if (transactionFlags & (eTransformHintUpdateNeeded | eDisplayTransactionNeeded)) {
2801         // The transform hint might have changed for some layers
2802         // (either because a display has changed, or because a layer
2803         // as changed).
2804         //
2805         // Walk through all the layers in currentLayers,
2806         // and update their transform hint.
2807         //
2808         // If a layer is visible only on a single display, then that
2809         // display is used to calculate the hint, otherwise we use the
2810         // default display.
2811         //
2812         // NOTE: we do this here, rather than when presenting the display so that
2813         // the hint is set before we acquire a buffer from the surface texture.
2814         //
2815         // NOTE: layer transactions have taken place already, so we use their
2816         // drawing state. However, SurfaceFlinger's own transaction has not
2817         // happened yet, so we must use the current state layer list
2818         // (soon to become the drawing state list).
2819         //
2820         sp<const DisplayDevice> hintDisplay;
2821         uint32_t currentlayerStack = 0;
2822         bool first = true;
2823         mCurrentState.traverse([&](Layer* layer) REQUIRES(mStateLock) {
2824             // NOTE: we rely on the fact that layers are sorted by
2825             // layerStack first (so we don't have to traverse the list
2826             // of displays for every layer).
2827             uint32_t layerStack = layer->getLayerStack();
2828             if (first || currentlayerStack != layerStack) {
2829                 currentlayerStack = layerStack;
2830                 // figure out if this layerstack is mirrored
2831                 // (more than one display) if so, pick the default display,
2832                 // if not, pick the only display it's on.
2833                 hintDisplay = nullptr;
2834                 for (const auto& [token, display] : mDisplays) {
2835                     if (display->getCompositionDisplay()
2836                                 ->belongsInOutput(layer->getLayerStack(),
2837                                                   layer->getPrimaryDisplayOnly())) {
2838                         if (hintDisplay) {
2839                             hintDisplay = nullptr;
2840                             break;
2841                         } else {
2842                             hintDisplay = display;
2843                         }
2844                     }
2845                 }
2846             }
2847 
2848             if (!hintDisplay) {
2849                 // NOTE: TEMPORARY FIX ONLY. Real fix should cause layers to
2850                 // redraw after transform hint changes. See bug 8508397.
2851 
2852                 // could be null when this layer is using a layerStack
2853                 // that is not visible on any display. Also can occur at
2854                 // screen off/on times.
2855                 hintDisplay = getDefaultDisplayDeviceLocked();
2856             }
2857 
2858             // could be null if there is no display available at all to get
2859             // the transform hint from.
2860             if (hintDisplay) {
2861                 layer->updateTransformHint(hintDisplay->getTransformHint());
2862             }
2863 
2864             first = false;
2865         });
2866     }
2867 
2868     /*
2869      * Perform our own transaction if needed
2870      */
2871 
2872     if (mLayersAdded) {
2873         mLayersAdded = false;
2874         // Layers have been added.
2875         mVisibleRegionsDirty = true;
2876     }
2877 
2878     // some layers might have been removed, so
2879     // we need to update the regions they're exposing.
2880     if (mLayersRemoved) {
2881         mLayersRemoved = false;
2882         mVisibleRegionsDirty = true;
2883         mDrawingState.traverseInZOrder([&](Layer* layer) {
2884             if (mLayersPendingRemoval.indexOf(layer) >= 0) {
2885                 // this layer is not visible anymore
2886                 Region visibleReg;
2887                 visibleReg.set(layer->getScreenBounds());
2888                 invalidateLayerStack(layer, visibleReg);
2889             }
2890         });
2891     }
2892 
2893     commitInputWindowCommands();
2894     commitTransaction();
2895 }
2896 
updateInputFlinger()2897 void SurfaceFlinger::updateInputFlinger() {
2898     ATRACE_CALL();
2899     if (!mInputFlinger) {
2900         return;
2901     }
2902 
2903     if (mVisibleRegionsDirty || mInputInfoChanged) {
2904         mInputInfoChanged = false;
2905         updateInputWindowInfo();
2906     } else if (mInputWindowCommands.syncInputWindows) {
2907         // If the caller requested to sync input windows, but there are no
2908         // changes to input windows, notify immediately.
2909         setInputWindowsFinished();
2910     }
2911 
2912     mInputWindowCommands.clear();
2913 }
2914 
updateInputWindowInfo()2915 void SurfaceFlinger::updateInputWindowInfo() {
2916     std::vector<InputWindowInfo> inputHandles;
2917 
2918     mDrawingState.traverseInReverseZOrder([&](Layer* layer) {
2919         if (layer->needsInputInfo()) {
2920             // When calculating the screen bounds we ignore the transparent region since it may
2921             // result in an unwanted offset.
2922             inputHandles.push_back(layer->fillInputInfo());
2923         }
2924     });
2925 
2926     mInputFlinger->setInputWindows(inputHandles,
2927                                    mInputWindowCommands.syncInputWindows ? mSetInputWindowsListener
2928                                                                          : nullptr);
2929 }
2930 
commitInputWindowCommands()2931 void SurfaceFlinger::commitInputWindowCommands() {
2932     mInputWindowCommands.merge(mPendingInputWindowCommands);
2933     mPendingInputWindowCommands.clear();
2934 }
2935 
updateCursorAsync()2936 void SurfaceFlinger::updateCursorAsync() {
2937     compositionengine::CompositionRefreshArgs refreshArgs;
2938     for (const auto& [_, display] : ON_MAIN_THREAD(mDisplays)) {
2939         if (display->getId()) {
2940             refreshArgs.outputs.push_back(display->getCompositionDisplay());
2941         }
2942     }
2943 
2944     mCompositionEngine->updateCursorAsync(refreshArgs);
2945 }
2946 
changeRefreshRate(const RefreshRate & refreshRate,Scheduler::ConfigEvent event)2947 void SurfaceFlinger::changeRefreshRate(const RefreshRate& refreshRate,
2948                                        Scheduler::ConfigEvent event) {
2949     // If this is called from the main thread mStateLock must be locked before
2950     // Currently the only way to call this function from the main thread is from
2951     // Sheduler::chooseRefreshRateForContent
2952 
2953     ConditionalLock lock(mStateLock, std::this_thread::get_id() != mMainThreadId);
2954     changeRefreshRateLocked(refreshRate, event);
2955 }
2956 
initScheduler(DisplayId primaryDisplayId)2957 void SurfaceFlinger::initScheduler(DisplayId primaryDisplayId) {
2958     if (mScheduler) {
2959         // In practice it's not allowed to hotplug in/out the primary display once it's been
2960         // connected during startup, but some tests do it, so just warn and return.
2961         ALOGW("Can't re-init scheduler");
2962         return;
2963     }
2964 
2965     auto currentConfig = HwcConfigIndexType(getHwComposer().getActiveConfigIndex(primaryDisplayId));
2966     mRefreshRateConfigs =
2967             std::make_unique<scheduler::RefreshRateConfigs>(getHwComposer().getConfigs(
2968                                                                     primaryDisplayId),
2969                                                             currentConfig);
2970     mRefreshRateStats =
2971             std::make_unique<scheduler::RefreshRateStats>(*mRefreshRateConfigs, *mTimeStats,
2972                                                           currentConfig, hal::PowerMode::OFF);
2973     mRefreshRateStats->setConfigMode(currentConfig);
2974 
2975     mPhaseConfiguration = getFactory().createPhaseConfiguration(*mRefreshRateConfigs);
2976 
2977     // start the EventThread
2978     mScheduler =
2979             getFactory().createScheduler([this](bool enabled) { setPrimaryVsyncEnabled(enabled); },
2980                                          *mRefreshRateConfigs, *this);
2981     mAppConnectionHandle =
2982             mScheduler->createConnection("app", mPhaseConfiguration->getCurrentOffsets().late.app,
2983                                          impl::EventThread::InterceptVSyncsCallback());
2984     mSfConnectionHandle =
2985             mScheduler->createConnection("sf", mPhaseConfiguration->getCurrentOffsets().late.sf,
2986                                          [this](nsecs_t timestamp) {
2987                                              mInterceptor->saveVSyncEvent(timestamp);
2988                                          });
2989 
2990     mEventQueue->setEventConnection(mScheduler->getEventConnection(mSfConnectionHandle));
2991     mVSyncModulator.emplace(*mScheduler, mAppConnectionHandle, mSfConnectionHandle,
2992                             mPhaseConfiguration->getCurrentOffsets());
2993 
2994     mRegionSamplingThread =
2995             new RegionSamplingThread(*this, *mScheduler,
2996                                      RegionSamplingThread::EnvironmentTimingTunables());
2997     // Dispatch a config change request for the primary display on scheduler
2998     // initialization, so that the EventThreads always contain a reference to a
2999     // prior configuration.
3000     //
3001     // This is a bit hacky, but this avoids a back-pointer into the main SF
3002     // classes from EventThread, and there should be no run-time binder cost
3003     // anyway since there are no connected apps at this point.
3004     const nsecs_t vsyncPeriod =
3005             mRefreshRateConfigs->getRefreshRateFromConfigId(currentConfig).getVsyncPeriod();
3006     mScheduler->onPrimaryDisplayConfigChanged(mAppConnectionHandle, primaryDisplayId.value,
3007                                               currentConfig, vsyncPeriod);
3008 }
3009 
commitTransaction()3010 void SurfaceFlinger::commitTransaction()
3011 {
3012     commitTransactionLocked();
3013     mTransactionPending = false;
3014     mAnimTransactionPending = false;
3015     mTransactionCV.broadcast();
3016 }
3017 
commitTransactionLocked()3018 void SurfaceFlinger::commitTransactionLocked() {
3019     if (!mLayersPendingRemoval.isEmpty()) {
3020         // Notify removed layers now that they can't be drawn from
3021         for (const auto& l : mLayersPendingRemoval) {
3022             recordBufferingStats(l->getName(), l->getOccupancyHistory(true));
3023 
3024             // Ensure any buffers set to display on any children are released.
3025             if (l->isRemovedFromCurrentState()) {
3026                 l->latchAndReleaseBuffer();
3027             }
3028 
3029             // If the layer has been removed and has no parent, then it will not be reachable
3030             // when traversing layers on screen. Add the layer to the offscreenLayers set to
3031             // ensure we can copy its current to drawing state.
3032             if (!l->getParent()) {
3033                 mOffscreenLayers.emplace(l.get());
3034             }
3035         }
3036         mLayersPendingRemoval.clear();
3037     }
3038 
3039     // If this transaction is part of a window animation then the next frame
3040     // we composite should be considered an animation as well.
3041     mAnimCompositionPending = mAnimTransactionPending;
3042 
3043     mDrawingState = mCurrentState;
3044     // clear the "changed" flags in current state
3045     mCurrentState.colorMatrixChanged = false;
3046 
3047     mDrawingState.traverse([&](Layer* layer) {
3048         layer->commitChildList();
3049 
3050         // If the layer can be reached when traversing mDrawingState, then the layer is no
3051         // longer offscreen. Remove the layer from the offscreenLayer set.
3052         if (mOffscreenLayers.count(layer)) {
3053             mOffscreenLayers.erase(layer);
3054         }
3055     });
3056 
3057     commitOffscreenLayers();
3058     mDrawingState.traverse([&](Layer* layer) { layer->updateMirrorInfo(); });
3059 }
3060 
commitOffscreenLayers()3061 void SurfaceFlinger::commitOffscreenLayers() {
3062     for (Layer* offscreenLayer : mOffscreenLayers) {
3063         offscreenLayer->traverse(LayerVector::StateSet::Drawing, [](Layer* layer) {
3064             uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
3065             if (!trFlags) return;
3066 
3067             layer->doTransaction(0);
3068             layer->commitChildList();
3069         });
3070     }
3071 }
3072 
invalidateLayerStack(const sp<const Layer> & layer,const Region & dirty)3073 void SurfaceFlinger::invalidateLayerStack(const sp<const Layer>& layer, const Region& dirty) {
3074     for (const auto& [token, displayDevice] : ON_MAIN_THREAD(mDisplays)) {
3075         auto display = displayDevice->getCompositionDisplay();
3076         if (display->belongsInOutput(layer->getLayerStack(), layer->getPrimaryDisplayOnly())) {
3077             display->editState().dirtyRegion.orSelf(dirty);
3078         }
3079     }
3080 }
3081 
handlePageFlip()3082 bool SurfaceFlinger::handlePageFlip()
3083 {
3084     ATRACE_CALL();
3085     ALOGV("handlePageFlip");
3086 
3087     nsecs_t latchTime = systemTime();
3088 
3089     bool visibleRegions = false;
3090     bool frameQueued = false;
3091     bool newDataLatched = false;
3092 
3093     const nsecs_t expectedPresentTime = mExpectedPresentTime.load();
3094 
3095     // Store the set of layers that need updates. This set must not change as
3096     // buffers are being latched, as this could result in a deadlock.
3097     // Example: Two producers share the same command stream and:
3098     // 1.) Layer 0 is latched
3099     // 2.) Layer 0 gets a new frame
3100     // 2.) Layer 1 gets a new frame
3101     // 3.) Layer 1 is latched.
3102     // Display is now waiting on Layer 1's frame, which is behind layer 0's
3103     // second frame. But layer 0's second frame could be waiting on display.
3104     mDrawingState.traverse([&](Layer* layer) {
3105         if (layer->hasReadyFrame()) {
3106             frameQueued = true;
3107             if (layer->shouldPresentNow(expectedPresentTime)) {
3108                 mLayersWithQueuedFrames.push_back(layer);
3109             } else {
3110                 ATRACE_NAME("!layer->shouldPresentNow()");
3111                 layer->useEmptyDamage();
3112             }
3113         } else {
3114             layer->useEmptyDamage();
3115         }
3116     });
3117 
3118     // The client can continue submitting buffers for offscreen layers, but they will not
3119     // be shown on screen. Therefore, we need to latch and release buffers of offscreen
3120     // layers to ensure dequeueBuffer doesn't block indefinitely.
3121     for (Layer* offscreenLayer : mOffscreenLayers) {
3122         offscreenLayer->traverse(LayerVector::StateSet::Drawing,
3123                                          [&](Layer* l) { l->latchAndReleaseBuffer(); });
3124     }
3125 
3126     if (!mLayersWithQueuedFrames.empty()) {
3127         // mStateLock is needed for latchBuffer as LayerRejecter::reject()
3128         // writes to Layer current state. See also b/119481871
3129         Mutex::Autolock lock(mStateLock);
3130 
3131         for (auto& layer : mLayersWithQueuedFrames) {
3132             if (layer->latchBuffer(visibleRegions, latchTime, expectedPresentTime)) {
3133                 mLayersPendingRefresh.push_back(layer);
3134             }
3135             layer->useSurfaceDamage();
3136             if (layer->isBufferLatched()) {
3137                 newDataLatched = true;
3138             }
3139         }
3140     }
3141 
3142     mVisibleRegionsDirty |= visibleRegions;
3143 
3144     // If we will need to wake up at some time in the future to deal with a
3145     // queued frame that shouldn't be displayed during this vsync period, wake
3146     // up during the next vsync period to check again.
3147     if (frameQueued && (mLayersWithQueuedFrames.empty() || !newDataLatched)) {
3148         signalLayerUpdate();
3149     }
3150 
3151     // enter boot animation on first buffer latch
3152     if (CC_UNLIKELY(mBootStage == BootStage::BOOTLOADER && newDataLatched)) {
3153         ALOGI("Enter boot animation");
3154         mBootStage = BootStage::BOOTANIMATION;
3155     }
3156 
3157     mDrawingState.traverse([&](Layer* layer) { layer->updateCloneBufferInfo(); });
3158 
3159     // Only continue with the refresh if there is actually new work to do
3160     return !mLayersWithQueuedFrames.empty() && newDataLatched;
3161 }
3162 
invalidateHwcGeometry()3163 void SurfaceFlinger::invalidateHwcGeometry()
3164 {
3165     mGeometryInvalid = true;
3166 }
3167 
addClientLayer(const sp<Client> & client,const sp<IBinder> & handle,const sp<IGraphicBufferProducer> & gbc,const sp<Layer> & lbc,const sp<IBinder> & parentHandle,const sp<Layer> & parentLayer,bool addToCurrentState,uint32_t * outTransformHint)3168 status_t SurfaceFlinger::addClientLayer(const sp<Client>& client, const sp<IBinder>& handle,
3169                                         const sp<IGraphicBufferProducer>& gbc, const sp<Layer>& lbc,
3170                                         const sp<IBinder>& parentHandle,
3171                                         const sp<Layer>& parentLayer, bool addToCurrentState,
3172                                         uint32_t* outTransformHint) {
3173     // add this layer to the current state list
3174     {
3175         Mutex::Autolock _l(mStateLock);
3176         sp<Layer> parent;
3177         if (parentHandle != nullptr) {
3178             parent = fromHandleLocked(parentHandle).promote();
3179             if (parent == nullptr) {
3180                 return NAME_NOT_FOUND;
3181             }
3182         } else {
3183             parent = parentLayer;
3184         }
3185 
3186         if (mNumLayers >= ISurfaceComposer::MAX_LAYERS) {
3187             ALOGE("AddClientLayer failed, mNumLayers (%zu) >= MAX_LAYERS (%zu)", mNumLayers.load(),
3188                   ISurfaceComposer::MAX_LAYERS);
3189             return NO_MEMORY;
3190         }
3191 
3192         mLayersByLocalBinderToken.emplace(handle->localBinder(), lbc);
3193 
3194         if (parent == nullptr && addToCurrentState) {
3195             mCurrentState.layersSortedByZ.add(lbc);
3196         } else if (parent == nullptr) {
3197             lbc->onRemovedFromCurrentState();
3198         } else if (parent->isRemovedFromCurrentState()) {
3199             parent->addChild(lbc);
3200             lbc->onRemovedFromCurrentState();
3201         } else {
3202             parent->addChild(lbc);
3203         }
3204 
3205         if (gbc != nullptr) {
3206             mGraphicBufferProducerList.insert(IInterface::asBinder(gbc).get());
3207             LOG_ALWAYS_FATAL_IF(mGraphicBufferProducerList.size() >
3208                                         mMaxGraphicBufferProducerListSize,
3209                                 "Suspected IGBP leak: %zu IGBPs (%zu max), %zu Layers",
3210                                 mGraphicBufferProducerList.size(),
3211                                 mMaxGraphicBufferProducerListSize, mNumLayers.load());
3212         }
3213 
3214         if (const auto display = getDefaultDisplayDeviceLocked()) {
3215             lbc->updateTransformHint(display->getTransformHint());
3216         }
3217         if (outTransformHint) {
3218             *outTransformHint = lbc->getTransformHint();
3219         }
3220 
3221         mLayersAdded = true;
3222     }
3223 
3224     // attach this layer to the client
3225     client->attachLayer(handle, lbc);
3226 
3227     return NO_ERROR;
3228 }
3229 
removeGraphicBufferProducerAsync(const wp<IBinder> & binder)3230 void SurfaceFlinger::removeGraphicBufferProducerAsync(const wp<IBinder>& binder) {
3231     static_cast<void>(schedule([=] {
3232         Mutex::Autolock lock(mStateLock);
3233         mGraphicBufferProducerList.erase(binder);
3234     }));
3235 }
3236 
peekTransactionFlags()3237 uint32_t SurfaceFlinger::peekTransactionFlags() {
3238     return mTransactionFlags;
3239 }
3240 
getTransactionFlags(uint32_t flags)3241 uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags) {
3242     return mTransactionFlags.fetch_and(~flags) & flags;
3243 }
3244 
setTransactionFlags(uint32_t flags)3245 uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags) {
3246     return setTransactionFlags(flags, Scheduler::TransactionStart::Normal);
3247 }
3248 
setTransactionFlags(uint32_t flags,Scheduler::TransactionStart transactionStart)3249 uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags,
3250                                              Scheduler::TransactionStart transactionStart) {
3251     uint32_t old = mTransactionFlags.fetch_or(flags);
3252     mVSyncModulator->setTransactionStart(transactionStart);
3253     if ((old & flags)==0) { // wake the server up
3254         signalTransaction();
3255     }
3256     return old;
3257 }
3258 
setTraversalNeeded()3259 void SurfaceFlinger::setTraversalNeeded() {
3260     mForceTraversal = true;
3261 }
3262 
flushTransactionQueues()3263 bool SurfaceFlinger::flushTransactionQueues() {
3264     // to prevent onHandleDestroyed from being called while the lock is held,
3265     // we must keep a copy of the transactions (specifically the composer
3266     // states) around outside the scope of the lock
3267     std::vector<const TransactionState> transactions;
3268     bool flushedATransaction = false;
3269     {
3270         Mutex::Autolock _l(mStateLock);
3271 
3272         auto it = mTransactionQueues.begin();
3273         while (it != mTransactionQueues.end()) {
3274             auto& [applyToken, transactionQueue] = *it;
3275 
3276             while (!transactionQueue.empty()) {
3277                 const auto& transaction = transactionQueue.front();
3278                 if (!transactionIsReadyToBeApplied(transaction.desiredPresentTime,
3279                                                    transaction.states)) {
3280                     setTransactionFlags(eTransactionFlushNeeded);
3281                     break;
3282                 }
3283                 transactions.push_back(transaction);
3284                 applyTransactionState(transaction.states, transaction.displays, transaction.flags,
3285                                       mPendingInputWindowCommands, transaction.desiredPresentTime,
3286                                       transaction.buffer, transaction.postTime,
3287                                       transaction.privileged, transaction.hasListenerCallbacks,
3288                                       transaction.listenerCallbacks, /*isMainThread*/ true);
3289                 transactionQueue.pop();
3290                 flushedATransaction = true;
3291             }
3292 
3293             if (transactionQueue.empty()) {
3294                 it = mTransactionQueues.erase(it);
3295                 mTransactionCV.broadcast();
3296             } else {
3297                 it = std::next(it, 1);
3298             }
3299         }
3300     }
3301     return flushedATransaction;
3302 }
3303 
transactionFlushNeeded()3304 bool SurfaceFlinger::transactionFlushNeeded() {
3305     return !mTransactionQueues.empty();
3306 }
3307 
3308 
transactionIsReadyToBeApplied(int64_t desiredPresentTime,const Vector<ComposerState> & states)3309 bool SurfaceFlinger::transactionIsReadyToBeApplied(int64_t desiredPresentTime,
3310                                                    const Vector<ComposerState>& states) {
3311 
3312     const nsecs_t expectedPresentTime = mExpectedPresentTime.load();
3313     // Do not present if the desiredPresentTime has not passed unless it is more than one second
3314     // in the future. We ignore timestamps more than 1 second in the future for stability reasons.
3315     if (desiredPresentTime >= 0 && desiredPresentTime >= expectedPresentTime &&
3316         desiredPresentTime < expectedPresentTime + s2ns(1)) {
3317         return false;
3318     }
3319 
3320     for (const ComposerState& state : states) {
3321         const layer_state_t& s = state.state;
3322         if (!(s.what & layer_state_t::eAcquireFenceChanged)) {
3323             continue;
3324         }
3325         if (s.acquireFence && s.acquireFence->getStatus() == Fence::Status::Unsignaled) {
3326             return false;
3327         }
3328     }
3329     return true;
3330 }
3331 
setTransactionState(const Vector<ComposerState> & states,const Vector<DisplayState> & displays,uint32_t flags,const sp<IBinder> & applyToken,const InputWindowCommands & inputWindowCommands,int64_t desiredPresentTime,const client_cache_t & uncacheBuffer,bool hasListenerCallbacks,const std::vector<ListenerCallbacks> & listenerCallbacks)3332 void SurfaceFlinger::setTransactionState(
3333         const Vector<ComposerState>& states, const Vector<DisplayState>& displays, uint32_t flags,
3334         const sp<IBinder>& applyToken, const InputWindowCommands& inputWindowCommands,
3335         int64_t desiredPresentTime, const client_cache_t& uncacheBuffer, bool hasListenerCallbacks,
3336         const std::vector<ListenerCallbacks>& listenerCallbacks) {
3337     ATRACE_CALL();
3338 
3339     const int64_t postTime = systemTime();
3340 
3341     bool privileged = callingThreadHasUnscopedSurfaceFlingerAccess();
3342 
3343     Mutex::Autolock _l(mStateLock);
3344 
3345     // If its TransactionQueue already has a pending TransactionState or if it is pending
3346     auto itr = mTransactionQueues.find(applyToken);
3347     // if this is an animation frame, wait until prior animation frame has
3348     // been applied by SF
3349     if (flags & eAnimation) {
3350         while (itr != mTransactionQueues.end()) {
3351             status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
3352             if (CC_UNLIKELY(err != NO_ERROR)) {
3353                 ALOGW_IF(err == TIMED_OUT,
3354                          "setTransactionState timed out "
3355                          "waiting for animation frame to apply");
3356                 break;
3357             }
3358             itr = mTransactionQueues.find(applyToken);
3359         }
3360     }
3361 
3362     const bool pendingTransactions = itr != mTransactionQueues.end();
3363     // Expected present time is computed and cached on invalidate, so it may be stale.
3364     if (!pendingTransactions) {
3365         mExpectedPresentTime = calculateExpectedPresentTime(systemTime());
3366     }
3367 
3368     if (pendingTransactions || !transactionIsReadyToBeApplied(desiredPresentTime, states)) {
3369         mTransactionQueues[applyToken].emplace(states, displays, flags, desiredPresentTime,
3370                                                uncacheBuffer, postTime, privileged,
3371                                                hasListenerCallbacks, listenerCallbacks);
3372         setTransactionFlags(eTransactionFlushNeeded);
3373         return;
3374     }
3375 
3376     applyTransactionState(states, displays, flags, inputWindowCommands, desiredPresentTime,
3377                           uncacheBuffer, postTime, privileged, hasListenerCallbacks,
3378                           listenerCallbacks);
3379 }
3380 
applyTransactionState(const Vector<ComposerState> & states,const Vector<DisplayState> & displays,uint32_t flags,const InputWindowCommands & inputWindowCommands,const int64_t desiredPresentTime,const client_cache_t & uncacheBuffer,const int64_t postTime,bool privileged,bool hasListenerCallbacks,const std::vector<ListenerCallbacks> & listenerCallbacks,bool isMainThread)3381 void SurfaceFlinger::applyTransactionState(
3382         const Vector<ComposerState>& states, const Vector<DisplayState>& displays, uint32_t flags,
3383         const InputWindowCommands& inputWindowCommands, const int64_t desiredPresentTime,
3384         const client_cache_t& uncacheBuffer, const int64_t postTime, bool privileged,
3385         bool hasListenerCallbacks, const std::vector<ListenerCallbacks>& listenerCallbacks,
3386         bool isMainThread) {
3387     uint32_t transactionFlags = 0;
3388 
3389     if (flags & eAnimation) {
3390         // For window updates that are part of an animation we must wait for
3391         // previous animation "frames" to be handled.
3392         while (!isMainThread && mAnimTransactionPending) {
3393             status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
3394             if (CC_UNLIKELY(err != NO_ERROR)) {
3395                 // just in case something goes wrong in SF, return to the
3396                 // caller after a few seconds.
3397                 ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out "
3398                         "waiting for previous animation frame");
3399                 mAnimTransactionPending = false;
3400                 break;
3401             }
3402         }
3403     }
3404 
3405     for (const DisplayState& display : displays) {
3406         transactionFlags |= setDisplayStateLocked(display);
3407     }
3408 
3409     // start and end registration for listeners w/ no surface so they can get their callback.  Note
3410     // that listeners with SurfaceControls will start registration during setClientStateLocked
3411     // below.
3412     for (const auto& listener : listenerCallbacks) {
3413         mTransactionCompletedThread.startRegistration(listener);
3414         mTransactionCompletedThread.endRegistration(listener);
3415     }
3416 
3417     std::unordered_set<ListenerCallbacks, ListenerCallbacksHash> listenerCallbacksWithSurfaces;
3418     uint32_t clientStateFlags = 0;
3419     for (const ComposerState& state : states) {
3420         clientStateFlags |= setClientStateLocked(state, desiredPresentTime, postTime, privileged,
3421                                                  listenerCallbacksWithSurfaces);
3422         if ((flags & eAnimation) && state.state.surface) {
3423             if (const auto layer = fromHandleLocked(state.state.surface).promote(); layer) {
3424                 mScheduler->recordLayerHistory(layer.get(), desiredPresentTime,
3425                                                LayerHistory::LayerUpdateType::AnimationTX);
3426             }
3427         }
3428     }
3429 
3430     for (const auto& listenerCallback : listenerCallbacksWithSurfaces) {
3431         mTransactionCompletedThread.endRegistration(listenerCallback);
3432     }
3433 
3434     // If the state doesn't require a traversal and there are callbacks, send them now
3435     if (!(clientStateFlags & eTraversalNeeded) && hasListenerCallbacks) {
3436         mTransactionCompletedThread.sendCallbacks();
3437     }
3438     transactionFlags |= clientStateFlags;
3439 
3440     transactionFlags |= addInputWindowCommands(inputWindowCommands);
3441 
3442     if (uncacheBuffer.isValid()) {
3443         ClientCache::getInstance().erase(uncacheBuffer);
3444         getRenderEngine().unbindExternalTextureBuffer(uncacheBuffer.id);
3445     }
3446 
3447     // If a synchronous transaction is explicitly requested without any changes, force a transaction
3448     // anyway. This can be used as a flush mechanism for previous async transactions.
3449     // Empty animation transaction can be used to simulate back-pressure, so also force a
3450     // transaction for empty animation transactions.
3451     if (transactionFlags == 0 &&
3452             ((flags & eSynchronous) || (flags & eAnimation))) {
3453         transactionFlags = eTransactionNeeded;
3454     }
3455 
3456     // If we are on the main thread, we are about to preform a traversal. Clear the traversal bit
3457     // so we don't have to wake up again next frame to preform an uneeded traversal.
3458     if (isMainThread && (transactionFlags & eTraversalNeeded)) {
3459         transactionFlags = transactionFlags & (~eTraversalNeeded);
3460         mForceTraversal = true;
3461     }
3462 
3463     const auto transactionStart = [](uint32_t flags) {
3464         if (flags & eEarlyWakeup) {
3465             return Scheduler::TransactionStart::Early;
3466         }
3467         if (flags & eExplicitEarlyWakeupEnd) {
3468             return Scheduler::TransactionStart::EarlyEnd;
3469         }
3470         if (flags & eExplicitEarlyWakeupStart) {
3471             return Scheduler::TransactionStart::EarlyStart;
3472         }
3473         return Scheduler::TransactionStart::Normal;
3474     }(flags);
3475 
3476     if (transactionFlags) {
3477         if (mInterceptor->isEnabled()) {
3478             mInterceptor->saveTransaction(states, mCurrentState.displays, displays, flags);
3479         }
3480 
3481         // TODO(b/159125966): Remove eEarlyWakeup completly as no client should use this flag
3482         if (flags & eEarlyWakeup) {
3483             ALOGW("eEarlyWakeup is deprecated. Use eExplicitEarlyWakeup[Start|End]");
3484         }
3485 
3486         if (!privileged && (flags & (eExplicitEarlyWakeupStart | eExplicitEarlyWakeupEnd))) {
3487             ALOGE("Only WindowManager is allowed to use eExplicitEarlyWakeup[Start|End] flags");
3488             flags &= ~(eExplicitEarlyWakeupStart | eExplicitEarlyWakeupEnd);
3489         }
3490 
3491         // this triggers the transaction
3492         setTransactionFlags(transactionFlags, transactionStart);
3493 
3494         if (flags & eAnimation) {
3495             mAnimTransactionPending = true;
3496         }
3497 
3498         // if this is a synchronous transaction, wait for it to take effect
3499         // before returning.
3500         const bool synchronous = flags & eSynchronous;
3501         const bool syncInput = inputWindowCommands.syncInputWindows;
3502         if (!synchronous && !syncInput) {
3503             return;
3504         }
3505 
3506         if (synchronous) {
3507             mTransactionPending = true;
3508         }
3509         if (syncInput) {
3510             mPendingSyncInputWindows = true;
3511         }
3512 
3513 
3514         // applyTransactionState can be called by either the main SF thread or by
3515         // another process through setTransactionState.  While a given process may wish
3516         // to wait on synchronous transactions, the main SF thread should never
3517         // be blocked.  Therefore, we only wait if isMainThread is false.
3518         while (!isMainThread && (mTransactionPending || mPendingSyncInputWindows)) {
3519             status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
3520             if (CC_UNLIKELY(err != NO_ERROR)) {
3521                 // just in case something goes wrong in SF, return to the
3522                 // called after a few seconds.
3523                 ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out!");
3524                 mTransactionPending = false;
3525                 mPendingSyncInputWindows = false;
3526                 break;
3527             }
3528         }
3529     } else {
3530         // even if a transaction is not needed, we need to update VsyncModulator
3531         // about explicit early indications
3532         if (transactionStart == Scheduler::TransactionStart::EarlyStart ||
3533             transactionStart == Scheduler::TransactionStart::EarlyEnd) {
3534             mVSyncModulator->setTransactionStart(transactionStart);
3535         }
3536     }
3537 }
3538 
setDisplayStateLocked(const DisplayState & s)3539 uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s) {
3540     const ssize_t index = mCurrentState.displays.indexOfKey(s.token);
3541     if (index < 0) return 0;
3542 
3543     uint32_t flags = 0;
3544     DisplayDeviceState& state = mCurrentState.displays.editValueAt(index);
3545 
3546     const uint32_t what = s.what;
3547     if (what & DisplayState::eSurfaceChanged) {
3548         if (IInterface::asBinder(state.surface) != IInterface::asBinder(s.surface)) {
3549             state.surface = s.surface;
3550             flags |= eDisplayTransactionNeeded;
3551         }
3552     }
3553     if (what & DisplayState::eLayerStackChanged) {
3554         if (state.layerStack != s.layerStack) {
3555             state.layerStack = s.layerStack;
3556             flags |= eDisplayTransactionNeeded;
3557         }
3558     }
3559     if (what & DisplayState::eDisplayProjectionChanged) {
3560         if (state.orientation != s.orientation) {
3561             state.orientation = s.orientation;
3562             flags |= eDisplayTransactionNeeded;
3563         }
3564         if (state.frame != s.frame) {
3565             state.frame = s.frame;
3566             flags |= eDisplayTransactionNeeded;
3567         }
3568         if (state.viewport != s.viewport) {
3569             state.viewport = s.viewport;
3570             flags |= eDisplayTransactionNeeded;
3571         }
3572     }
3573     if (what & DisplayState::eDisplaySizeChanged) {
3574         if (state.width != s.width) {
3575             state.width = s.width;
3576             flags |= eDisplayTransactionNeeded;
3577         }
3578         if (state.height != s.height) {
3579             state.height = s.height;
3580             flags |= eDisplayTransactionNeeded;
3581         }
3582     }
3583 
3584     return flags;
3585 }
3586 
callingThreadHasUnscopedSurfaceFlingerAccess(bool usePermissionCache)3587 bool SurfaceFlinger::callingThreadHasUnscopedSurfaceFlingerAccess(bool usePermissionCache) {
3588     IPCThreadState* ipc = IPCThreadState::self();
3589     const int pid = ipc->getCallingPid();
3590     const int uid = ipc->getCallingUid();
3591     if ((uid != AID_GRAPHICS && uid != AID_SYSTEM) &&
3592         (usePermissionCache ? !PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)
3593                             : !checkPermission(sAccessSurfaceFlinger, pid, uid))) {
3594         return false;
3595     }
3596     return true;
3597 }
3598 
setClientStateLocked(const ComposerState & composerState,int64_t desiredPresentTime,int64_t postTime,bool privileged,std::unordered_set<ListenerCallbacks,ListenerCallbacksHash> & listenerCallbacks)3599 uint32_t SurfaceFlinger::setClientStateLocked(
3600         const ComposerState& composerState, int64_t desiredPresentTime, int64_t postTime,
3601         bool privileged,
3602         std::unordered_set<ListenerCallbacks, ListenerCallbacksHash>& listenerCallbacks) {
3603     const layer_state_t& s = composerState.state;
3604 
3605     for (auto& listener : s.listeners) {
3606         // note that startRegistration will not re-register if the listener has
3607         // already be registered for a prior surface control
3608         mTransactionCompletedThread.startRegistration(listener);
3609         listenerCallbacks.insert(listener);
3610     }
3611 
3612     sp<Layer> layer = nullptr;
3613     if (s.surface) {
3614         layer = fromHandleLocked(s.surface).promote();
3615     } else {
3616         // The client may provide us a null handle. Treat it as if the layer was removed.
3617         ALOGW("Attempt to set client state with a null layer handle");
3618     }
3619     if (layer == nullptr) {
3620         for (auto& [listener, callbackIds] : s.listeners) {
3621             mTransactionCompletedThread.registerUnpresentedCallbackHandle(
3622                     new CallbackHandle(listener, callbackIds, s.surface));
3623         }
3624         return 0;
3625     }
3626 
3627     uint32_t flags = 0;
3628 
3629     const uint64_t what = s.what;
3630 
3631     // If we are deferring transaction, make sure to push the pending state, as otherwise the
3632     // pending state will also be deferred.
3633     if (what & layer_state_t::eDeferTransaction_legacy) {
3634         layer->pushPendingState();
3635     }
3636 
3637     // Only set by BLAST adapter layers
3638     if (what & layer_state_t::eProducerDisconnect) {
3639         layer->onDisconnect();
3640     }
3641 
3642     if (what & layer_state_t::ePositionChanged) {
3643         if (layer->setPosition(s.x, s.y)) {
3644             flags |= eTraversalNeeded;
3645         }
3646     }
3647     if (what & layer_state_t::eLayerChanged) {
3648         // NOTE: index needs to be calculated before we update the state
3649         const auto& p = layer->getParent();
3650         if (p == nullptr) {
3651             ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
3652             if (layer->setLayer(s.z) && idx >= 0) {
3653                 mCurrentState.layersSortedByZ.removeAt(idx);
3654                 mCurrentState.layersSortedByZ.add(layer);
3655                 // we need traversal (state changed)
3656                 // AND transaction (list changed)
3657                 flags |= eTransactionNeeded|eTraversalNeeded;
3658             }
3659         } else {
3660             if (p->setChildLayer(layer, s.z)) {
3661                 flags |= eTransactionNeeded|eTraversalNeeded;
3662             }
3663         }
3664     }
3665     if (what & layer_state_t::eRelativeLayerChanged) {
3666         // NOTE: index needs to be calculated before we update the state
3667         const auto& p = layer->getParent();
3668         if (p == nullptr) {
3669             ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
3670             if (layer->setRelativeLayer(s.relativeLayerHandle, s.z) && idx >= 0) {
3671                 mCurrentState.layersSortedByZ.removeAt(idx);
3672                 mCurrentState.layersSortedByZ.add(layer);
3673                 // we need traversal (state changed)
3674                 // AND transaction (list changed)
3675                 flags |= eTransactionNeeded|eTraversalNeeded;
3676             }
3677         } else {
3678             if (p->setChildRelativeLayer(layer, s.relativeLayerHandle, s.z)) {
3679                 flags |= eTransactionNeeded|eTraversalNeeded;
3680             }
3681         }
3682     }
3683     if (what & layer_state_t::eSizeChanged) {
3684         if (layer->setSize(s.w, s.h)) {
3685             flags |= eTraversalNeeded;
3686         }
3687     }
3688     if (what & layer_state_t::eAlphaChanged) {
3689         if (layer->setAlpha(s.alpha))
3690             flags |= eTraversalNeeded;
3691     }
3692     if (what & layer_state_t::eColorChanged) {
3693         if (layer->setColor(s.color))
3694             flags |= eTraversalNeeded;
3695     }
3696     if (what & layer_state_t::eColorTransformChanged) {
3697         if (layer->setColorTransform(s.colorTransform)) {
3698             flags |= eTraversalNeeded;
3699         }
3700     }
3701     if (what & layer_state_t::eBackgroundColorChanged) {
3702         if (layer->setBackgroundColor(s.color, s.bgColorAlpha, s.bgColorDataspace)) {
3703             flags |= eTraversalNeeded;
3704         }
3705     }
3706     if (what & layer_state_t::eMatrixChanged) {
3707         // TODO: b/109894387
3708         //
3709         // SurfaceFlinger's renderer is not prepared to handle cropping in the face of arbitrary
3710         // rotation. To see the problem observe that if we have a square parent, and a child
3711         // of the same size, then we rotate the child 45 degrees around it's center, the child
3712         // must now be cropped to a non rectangular 8 sided region.
3713         //
3714         // Of course we can fix this in the future. For now, we are lucky, SurfaceControl is
3715         // private API, and the WindowManager only uses rotation in one case, which is on a top
3716         // level layer in which cropping is not an issue.
3717         //
3718         // However given that abuse of rotation matrices could lead to surfaces extending outside
3719         // of cropped areas, we need to prevent non-root clients without permission ACCESS_SURFACE_FLINGER
3720         // (a.k.a. everyone except WindowManager and tests) from setting non rectangle preserving
3721         // transformations.
3722         if (layer->setMatrix(s.matrix, privileged))
3723             flags |= eTraversalNeeded;
3724     }
3725     if (what & layer_state_t::eTransparentRegionChanged) {
3726         if (layer->setTransparentRegionHint(s.transparentRegion))
3727             flags |= eTraversalNeeded;
3728     }
3729     if (what & layer_state_t::eFlagsChanged) {
3730         if (layer->setFlags(s.flags, s.mask))
3731             flags |= eTraversalNeeded;
3732     }
3733     if (what & layer_state_t::eCropChanged_legacy) {
3734         if (layer->setCrop_legacy(s.crop_legacy)) flags |= eTraversalNeeded;
3735     }
3736     if (what & layer_state_t::eCornerRadiusChanged) {
3737         if (layer->setCornerRadius(s.cornerRadius))
3738             flags |= eTraversalNeeded;
3739     }
3740     if (what & layer_state_t::eBackgroundBlurRadiusChanged && !mDisableBlurs && mSupportsBlur) {
3741         if (layer->setBackgroundBlurRadius(s.backgroundBlurRadius)) flags |= eTraversalNeeded;
3742     }
3743     if (what & layer_state_t::eLayerStackChanged) {
3744         ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
3745         // We only allow setting layer stacks for top level layers,
3746         // everything else inherits layer stack from its parent.
3747         if (layer->hasParent()) {
3748             ALOGE("Attempt to set layer stack on layer with parent (%s) is invalid",
3749                   layer->getDebugName());
3750         } else if (idx < 0) {
3751             ALOGE("Attempt to set layer stack on layer without parent (%s) that "
3752                   "that also does not appear in the top level layer list. Something"
3753                   " has gone wrong.",
3754                   layer->getDebugName());
3755         } else if (layer->setLayerStack(s.layerStack)) {
3756             mCurrentState.layersSortedByZ.removeAt(idx);
3757             mCurrentState.layersSortedByZ.add(layer);
3758             // we need traversal (state changed)
3759             // AND transaction (list changed)
3760             flags |= eTransactionNeeded | eTraversalNeeded | eTransformHintUpdateNeeded;
3761         }
3762     }
3763     if (what & layer_state_t::eDeferTransaction_legacy) {
3764         if (s.barrierHandle_legacy != nullptr) {
3765             layer->deferTransactionUntil_legacy(s.barrierHandle_legacy, s.frameNumber_legacy);
3766         } else if (s.barrierGbp_legacy != nullptr) {
3767             const sp<IGraphicBufferProducer>& gbp = s.barrierGbp_legacy;
3768             if (authenticateSurfaceTextureLocked(gbp)) {
3769                 const auto& otherLayer =
3770                     (static_cast<MonitoredProducer*>(gbp.get()))->getLayer();
3771                 layer->deferTransactionUntil_legacy(otherLayer, s.frameNumber_legacy);
3772             } else {
3773                 ALOGE("Attempt to defer transaction to to an"
3774                         " unrecognized GraphicBufferProducer");
3775             }
3776         }
3777         // We don't trigger a traversal here because if no other state is
3778         // changed, we don't want this to cause any more work
3779     }
3780     if (what & layer_state_t::eReparentChildren) {
3781         if (layer->reparentChildren(s.reparentHandle)) {
3782             flags |= eTransactionNeeded|eTraversalNeeded;
3783         }
3784     }
3785     if (what & layer_state_t::eDetachChildren) {
3786         layer->detachChildren();
3787     }
3788     if (what & layer_state_t::eOverrideScalingModeChanged) {
3789         layer->setOverrideScalingMode(s.overrideScalingMode);
3790         // We don't trigger a traversal here because if no other state is
3791         // changed, we don't want this to cause any more work
3792     }
3793     if (what & layer_state_t::eTransformChanged) {
3794         if (layer->setTransform(s.transform)) flags |= eTraversalNeeded;
3795     }
3796     if (what & layer_state_t::eTransformToDisplayInverseChanged) {
3797         if (layer->setTransformToDisplayInverse(s.transformToDisplayInverse))
3798             flags |= eTraversalNeeded;
3799     }
3800     if (what & layer_state_t::eCropChanged) {
3801         if (layer->setCrop(s.crop)) flags |= eTraversalNeeded;
3802     }
3803     if (what & layer_state_t::eFrameChanged) {
3804         if (layer->setFrame(s.frame)) flags |= eTraversalNeeded;
3805     }
3806     if (what & layer_state_t::eAcquireFenceChanged) {
3807         if (layer->setAcquireFence(s.acquireFence)) flags |= eTraversalNeeded;
3808     }
3809     if (what & layer_state_t::eDataspaceChanged) {
3810         if (layer->setDataspace(s.dataspace)) flags |= eTraversalNeeded;
3811     }
3812     if (what & layer_state_t::eHdrMetadataChanged) {
3813         if (layer->setHdrMetadata(s.hdrMetadata)) flags |= eTraversalNeeded;
3814     }
3815     if (what & layer_state_t::eSurfaceDamageRegionChanged) {
3816         if (layer->setSurfaceDamageRegion(s.surfaceDamageRegion)) flags |= eTraversalNeeded;
3817     }
3818     if (what & layer_state_t::eApiChanged) {
3819         if (layer->setApi(s.api)) flags |= eTraversalNeeded;
3820     }
3821     if (what & layer_state_t::eSidebandStreamChanged) {
3822         if (layer->setSidebandStream(s.sidebandStream)) flags |= eTraversalNeeded;
3823     }
3824     if (what & layer_state_t::eInputInfoChanged) {
3825         if (privileged) {
3826             layer->setInputInfo(s.inputInfo);
3827             flags |= eTraversalNeeded;
3828         } else {
3829             ALOGE("Attempt to update InputWindowInfo without permission ACCESS_SURFACE_FLINGER");
3830         }
3831     }
3832     if (what & layer_state_t::eMetadataChanged) {
3833         if (layer->setMetadata(s.metadata)) flags |= eTraversalNeeded;
3834     }
3835     if (what & layer_state_t::eColorSpaceAgnosticChanged) {
3836         if (layer->setColorSpaceAgnostic(s.colorSpaceAgnostic)) {
3837             flags |= eTraversalNeeded;
3838         }
3839     }
3840     if (what & layer_state_t::eShadowRadiusChanged) {
3841         if (layer->setShadowRadius(s.shadowRadius)) flags |= eTraversalNeeded;
3842     }
3843     if (what & layer_state_t::eFrameRateSelectionPriority) {
3844         if (privileged && layer->setFrameRateSelectionPriority(s.frameRateSelectionPriority)) {
3845             flags |= eTraversalNeeded;
3846         }
3847     }
3848     if (what & layer_state_t::eFrameRateChanged) {
3849         if (ValidateFrameRate(s.frameRate, s.frameRateCompatibility,
3850                               "SurfaceFlinger::setClientStateLocked") &&
3851             layer->setFrameRate(Layer::FrameRate(s.frameRate,
3852                                                  Layer::FrameRate::convertCompatibility(
3853                                                          s.frameRateCompatibility)))) {
3854             flags |= eTraversalNeeded;
3855         }
3856     }
3857     if (what & layer_state_t::eFixedTransformHintChanged) {
3858         if (layer->setFixedTransformHint(s.fixedTransformHint)) {
3859             flags |= eTraversalNeeded | eTransformHintUpdateNeeded;
3860         }
3861     }
3862     // This has to happen after we reparent children because when we reparent to null we remove
3863     // child layers from current state and remove its relative z. If the children are reparented in
3864     // the same transaction, then we have to make sure we reparent the children first so we do not
3865     // lose its relative z order.
3866     if (what & layer_state_t::eReparent) {
3867         bool hadParent = layer->hasParent();
3868         if (layer->reparent(s.parentHandleForChild)) {
3869             if (!hadParent) {
3870                 mCurrentState.layersSortedByZ.remove(layer);
3871             }
3872             flags |= eTransactionNeeded | eTraversalNeeded;
3873         }
3874     }
3875     std::vector<sp<CallbackHandle>> callbackHandles;
3876     if ((what & layer_state_t::eHasListenerCallbacksChanged) && (!s.listeners.empty())) {
3877         for (auto& [listener, callbackIds] : s.listeners) {
3878             callbackHandles.emplace_back(new CallbackHandle(listener, callbackIds, s.surface));
3879         }
3880     }
3881     bool bufferChanged = what & layer_state_t::eBufferChanged;
3882     bool cacheIdChanged = what & layer_state_t::eCachedBufferChanged;
3883     sp<GraphicBuffer> buffer;
3884     if (bufferChanged && cacheIdChanged && s.buffer != nullptr) {
3885         buffer = s.buffer;
3886         bool success = ClientCache::getInstance().add(s.cachedBuffer, s.buffer);
3887         if (success) {
3888             getRenderEngine().cacheExternalTextureBuffer(s.buffer);
3889             success = ClientCache::getInstance()
3890                               .registerErasedRecipient(s.cachedBuffer,
3891                                                        wp<ClientCache::ErasedRecipient>(this));
3892             if (!success) {
3893                 getRenderEngine().unbindExternalTextureBuffer(s.buffer->getId());
3894             }
3895         }
3896     } else if (cacheIdChanged) {
3897         buffer = ClientCache::getInstance().get(s.cachedBuffer);
3898     } else if (bufferChanged) {
3899         buffer = s.buffer;
3900     }
3901     if (buffer) {
3902         if (layer->setBuffer(buffer, s.acquireFence, postTime, desiredPresentTime,
3903                              s.cachedBuffer)) {
3904             flags |= eTraversalNeeded;
3905         }
3906     }
3907     if (layer->setTransactionCompletedListeners(callbackHandles)) flags |= eTraversalNeeded;
3908     // Do not put anything that updates layer state or modifies flags after
3909     // setTransactionCompletedListener
3910     return flags;
3911 }
3912 
addInputWindowCommands(const InputWindowCommands & inputWindowCommands)3913 uint32_t SurfaceFlinger::addInputWindowCommands(const InputWindowCommands& inputWindowCommands) {
3914     uint32_t flags = 0;
3915     if (inputWindowCommands.syncInputWindows) {
3916         flags |= eTraversalNeeded;
3917     }
3918 
3919     mPendingInputWindowCommands.merge(inputWindowCommands);
3920     return flags;
3921 }
3922 
mirrorLayer(const sp<Client> & client,const sp<IBinder> & mirrorFromHandle,sp<IBinder> * outHandle)3923 status_t SurfaceFlinger::mirrorLayer(const sp<Client>& client, const sp<IBinder>& mirrorFromHandle,
3924                                      sp<IBinder>* outHandle) {
3925     if (!mirrorFromHandle) {
3926         return NAME_NOT_FOUND;
3927     }
3928 
3929     sp<Layer> mirrorLayer;
3930     sp<Layer> mirrorFrom;
3931     std::string uniqueName = getUniqueLayerName("MirrorRoot");
3932 
3933     {
3934         Mutex::Autolock _l(mStateLock);
3935         mirrorFrom = fromHandleLocked(mirrorFromHandle).promote();
3936         if (!mirrorFrom) {
3937             return NAME_NOT_FOUND;
3938         }
3939 
3940         status_t result = createContainerLayer(client, std::move(uniqueName), -1, -1, 0,
3941                                                LayerMetadata(), outHandle, &mirrorLayer);
3942         if (result != NO_ERROR) {
3943             return result;
3944         }
3945 
3946         mirrorLayer->mClonedChild = mirrorFrom->createClone();
3947     }
3948 
3949     return addClientLayer(client, *outHandle, nullptr, mirrorLayer, nullptr, nullptr, false,
3950                           nullptr /* outTransformHint */);
3951 }
3952 
createLayer(const String8 & name,const sp<Client> & client,uint32_t w,uint32_t h,PixelFormat format,uint32_t flags,LayerMetadata metadata,sp<IBinder> * handle,sp<IGraphicBufferProducer> * gbp,const sp<IBinder> & parentHandle,const sp<Layer> & parentLayer,uint32_t * outTransformHint)3953 status_t SurfaceFlinger::createLayer(const String8& name, const sp<Client>& client, uint32_t w,
3954                                      uint32_t h, PixelFormat format, uint32_t flags,
3955                                      LayerMetadata metadata, sp<IBinder>* handle,
3956                                      sp<IGraphicBufferProducer>* gbp,
3957                                      const sp<IBinder>& parentHandle, const sp<Layer>& parentLayer,
3958                                      uint32_t* outTransformHint) {
3959     if (int32_t(w|h) < 0) {
3960         ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
3961                 int(w), int(h));
3962         return BAD_VALUE;
3963     }
3964 
3965     ALOG_ASSERT(parentLayer == nullptr || parentHandle == nullptr,
3966             "Expected only one of parentLayer or parentHandle to be non-null. "
3967             "Programmer error?");
3968 
3969     status_t result = NO_ERROR;
3970 
3971     sp<Layer> layer;
3972 
3973     std::string uniqueName = getUniqueLayerName(name.string());
3974 
3975     bool primaryDisplayOnly = false;
3976 
3977     // window type is WINDOW_TYPE_DONT_SCREENSHOT from SurfaceControl.java
3978     // TODO b/64227542
3979     if (metadata.has(METADATA_WINDOW_TYPE)) {
3980         int32_t windowType = metadata.getInt32(METADATA_WINDOW_TYPE, 0);
3981         if (windowType == 441731) {
3982             metadata.setInt32(METADATA_WINDOW_TYPE, InputWindowInfo::TYPE_NAVIGATION_BAR_PANEL);
3983             primaryDisplayOnly = true;
3984         }
3985     }
3986 
3987     switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
3988         case ISurfaceComposerClient::eFXSurfaceBufferQueue:
3989             result = createBufferQueueLayer(client, std::move(uniqueName), w, h, flags,
3990                                             std::move(metadata), format, handle, gbp, &layer);
3991 
3992             break;
3993         case ISurfaceComposerClient::eFXSurfaceBufferState:
3994             result = createBufferStateLayer(client, std::move(uniqueName), w, h, flags,
3995                                             std::move(metadata), handle, &layer);
3996             break;
3997         case ISurfaceComposerClient::eFXSurfaceEffect:
3998             // check if buffer size is set for color layer.
3999             if (w > 0 || h > 0) {
4000                 ALOGE("createLayer() failed, w or h cannot be set for color layer (w=%d, h=%d)",
4001                       int(w), int(h));
4002                 return BAD_VALUE;
4003             }
4004 
4005             result = createEffectLayer(client, std::move(uniqueName), w, h, flags,
4006                                        std::move(metadata), handle, &layer);
4007             break;
4008         case ISurfaceComposerClient::eFXSurfaceContainer:
4009             // check if buffer size is set for container layer.
4010             if (w > 0 || h > 0) {
4011                 ALOGE("createLayer() failed, w or h cannot be set for container layer (w=%d, h=%d)",
4012                       int(w), int(h));
4013                 return BAD_VALUE;
4014             }
4015             result = createContainerLayer(client, std::move(uniqueName), w, h, flags,
4016                                           std::move(metadata), handle, &layer);
4017             break;
4018         default:
4019             result = BAD_VALUE;
4020             break;
4021     }
4022 
4023     if (result != NO_ERROR) {
4024         return result;
4025     }
4026 
4027     if (primaryDisplayOnly) {
4028         layer->setPrimaryDisplayOnly();
4029     }
4030 
4031     bool addToCurrentState = callingThreadHasUnscopedSurfaceFlingerAccess();
4032     result = addClientLayer(client, *handle, *gbp, layer, parentHandle, parentLayer,
4033                             addToCurrentState, outTransformHint);
4034     if (result != NO_ERROR) {
4035         return result;
4036     }
4037     mInterceptor->saveSurfaceCreation(layer);
4038 
4039     setTransactionFlags(eTransactionNeeded);
4040     return result;
4041 }
4042 
getUniqueLayerName(const char * name)4043 std::string SurfaceFlinger::getUniqueLayerName(const char* name) {
4044     unsigned dupeCounter = 0;
4045 
4046     // Tack on our counter whether there is a hit or not, so everyone gets a tag
4047     std::string uniqueName = base::StringPrintf("%s#%u", name, dupeCounter);
4048 
4049     // Grab the state lock since we're accessing mCurrentState
4050     Mutex::Autolock lock(mStateLock);
4051 
4052     // Loop over layers until we're sure there is no matching name
4053     bool matchFound = true;
4054     while (matchFound) {
4055         matchFound = false;
4056         mCurrentState.traverse([&](Layer* layer) {
4057             if (layer->getName() == uniqueName) {
4058                 matchFound = true;
4059                 uniqueName = base::StringPrintf("%s#%u", name, ++dupeCounter);
4060             }
4061         });
4062     }
4063 
4064     ALOGV_IF(dupeCounter > 0, "duplicate layer name: changing %s to %s", name, uniqueName.c_str());
4065     return uniqueName;
4066 }
4067 
createBufferQueueLayer(const sp<Client> & client,std::string name,uint32_t w,uint32_t h,uint32_t flags,LayerMetadata metadata,PixelFormat & format,sp<IBinder> * handle,sp<IGraphicBufferProducer> * gbp,sp<Layer> * outLayer)4068 status_t SurfaceFlinger::createBufferQueueLayer(const sp<Client>& client, std::string name,
4069                                                 uint32_t w, uint32_t h, uint32_t flags,
4070                                                 LayerMetadata metadata, PixelFormat& format,
4071                                                 sp<IBinder>* handle,
4072                                                 sp<IGraphicBufferProducer>* gbp,
4073                                                 sp<Layer>* outLayer) {
4074     // initialize the surfaces
4075     switch (format) {
4076     case PIXEL_FORMAT_TRANSPARENT:
4077     case PIXEL_FORMAT_TRANSLUCENT:
4078         format = PIXEL_FORMAT_RGBA_8888;
4079         break;
4080     case PIXEL_FORMAT_OPAQUE:
4081         format = PIXEL_FORMAT_RGBX_8888;
4082         break;
4083     }
4084 
4085     sp<BufferQueueLayer> layer;
4086     LayerCreationArgs args(this, client, std::move(name), w, h, flags, std::move(metadata));
4087     args.textureName = getNewTexture();
4088     {
4089         // Grab the SF state lock during this since it's the only safe way to access
4090         // RenderEngine when creating a BufferLayerConsumer
4091         // TODO: Check if this lock is still needed here
4092         Mutex::Autolock lock(mStateLock);
4093         layer = getFactory().createBufferQueueLayer(args);
4094     }
4095 
4096     status_t err = layer->setDefaultBufferProperties(w, h, format);
4097     if (err == NO_ERROR) {
4098         *handle = layer->getHandle();
4099         *gbp = layer->getProducer();
4100         *outLayer = layer;
4101     }
4102 
4103     ALOGE_IF(err, "createBufferQueueLayer() failed (%s)", strerror(-err));
4104     return err;
4105 }
4106 
createBufferStateLayer(const sp<Client> & client,std::string name,uint32_t w,uint32_t h,uint32_t flags,LayerMetadata metadata,sp<IBinder> * handle,sp<Layer> * outLayer)4107 status_t SurfaceFlinger::createBufferStateLayer(const sp<Client>& client, std::string name,
4108                                                 uint32_t w, uint32_t h, uint32_t flags,
4109                                                 LayerMetadata metadata, sp<IBinder>* handle,
4110                                                 sp<Layer>* outLayer) {
4111     LayerCreationArgs args(this, client, std::move(name), w, h, flags, std::move(metadata));
4112     args.textureName = getNewTexture();
4113     sp<BufferStateLayer> layer = getFactory().createBufferStateLayer(args);
4114     *handle = layer->getHandle();
4115     *outLayer = layer;
4116 
4117     return NO_ERROR;
4118 }
4119 
createEffectLayer(const sp<Client> & client,std::string name,uint32_t w,uint32_t h,uint32_t flags,LayerMetadata metadata,sp<IBinder> * handle,sp<Layer> * outLayer)4120 status_t SurfaceFlinger::createEffectLayer(const sp<Client>& client, std::string name, uint32_t w,
4121                                            uint32_t h, uint32_t flags, LayerMetadata metadata,
4122                                            sp<IBinder>* handle, sp<Layer>* outLayer) {
4123     *outLayer = getFactory().createEffectLayer(
4124             {this, client, std::move(name), w, h, flags, std::move(metadata)});
4125     *handle = (*outLayer)->getHandle();
4126     return NO_ERROR;
4127 }
4128 
createContainerLayer(const sp<Client> & client,std::string name,uint32_t w,uint32_t h,uint32_t flags,LayerMetadata metadata,sp<IBinder> * handle,sp<Layer> * outLayer)4129 status_t SurfaceFlinger::createContainerLayer(const sp<Client>& client, std::string name,
4130                                               uint32_t w, uint32_t h, uint32_t flags,
4131                                               LayerMetadata metadata, sp<IBinder>* handle,
4132                                               sp<Layer>* outLayer) {
4133     *outLayer = getFactory().createContainerLayer(
4134             {this, client, std::move(name), w, h, flags, std::move(metadata)});
4135     *handle = (*outLayer)->getHandle();
4136     return NO_ERROR;
4137 }
4138 
markLayerPendingRemovalLocked(const sp<Layer> & layer)4139 void SurfaceFlinger::markLayerPendingRemovalLocked(const sp<Layer>& layer) {
4140     mLayersPendingRemoval.add(layer);
4141     mLayersRemoved = true;
4142     setTransactionFlags(eTransactionNeeded);
4143 }
4144 
onHandleDestroyed(sp<Layer> & layer)4145 void SurfaceFlinger::onHandleDestroyed(sp<Layer>& layer)
4146 {
4147     Mutex::Autolock lock(mStateLock);
4148     // If a layer has a parent, we allow it to out-live it's handle
4149     // with the idea that the parent holds a reference and will eventually
4150     // be cleaned up. However no one cleans up the top-level so we do so
4151     // here.
4152     if (layer->getParent() == nullptr) {
4153         mCurrentState.layersSortedByZ.remove(layer);
4154     }
4155     markLayerPendingRemovalLocked(layer);
4156 
4157     auto it = mLayersByLocalBinderToken.begin();
4158     while (it != mLayersByLocalBinderToken.end()) {
4159         if (it->second == layer) {
4160             it = mLayersByLocalBinderToken.erase(it);
4161         } else {
4162             it++;
4163         }
4164     }
4165 
4166     layer.clear();
4167 }
4168 
4169 // ---------------------------------------------------------------------------
4170 
onInitializeDisplays()4171 void SurfaceFlinger::onInitializeDisplays() {
4172     const auto display = getDefaultDisplayDeviceLocked();
4173     if (!display) return;
4174 
4175     const sp<IBinder> token = display->getDisplayToken().promote();
4176     LOG_ALWAYS_FATAL_IF(token == nullptr);
4177 
4178     // reset screen orientation and use primary layer stack
4179     Vector<ComposerState> state;
4180     Vector<DisplayState> displays;
4181     DisplayState d;
4182     d.what = DisplayState::eDisplayProjectionChanged |
4183              DisplayState::eLayerStackChanged;
4184     d.token = token;
4185     d.layerStack = 0;
4186     d.orientation = ui::ROTATION_0;
4187     d.frame.makeInvalid();
4188     d.viewport.makeInvalid();
4189     d.width = 0;
4190     d.height = 0;
4191     displays.add(d);
4192     setTransactionState(state, displays, 0, nullptr, mPendingInputWindowCommands, -1, {}, false,
4193                         {});
4194 
4195     setPowerModeInternal(display, hal::PowerMode::ON);
4196     const nsecs_t vsyncPeriod = mRefreshRateConfigs->getCurrentRefreshRate().getVsyncPeriod();
4197     mAnimFrameTracker.setDisplayRefreshPeriod(vsyncPeriod);
4198 
4199     // Use phase of 0 since phase is not known.
4200     // Use latency of 0, which will snap to the ideal latency.
4201     DisplayStatInfo stats{0 /* vsyncTime */, vsyncPeriod};
4202     setCompositorTimingSnapped(stats, 0);
4203 }
4204 
initializeDisplays()4205 void SurfaceFlinger::initializeDisplays() {
4206     // Async since we may be called from the main thread.
4207     static_cast<void>(schedule([this]() MAIN_THREAD { onInitializeDisplays(); }));
4208 }
4209 
setPowerModeInternal(const sp<DisplayDevice> & display,hal::PowerMode mode)4210 void SurfaceFlinger::setPowerModeInternal(const sp<DisplayDevice>& display, hal::PowerMode mode) {
4211     if (display->isVirtual()) {
4212         ALOGE("%s: Invalid operation on virtual display", __FUNCTION__);
4213         return;
4214     }
4215 
4216     const auto displayId = display->getId();
4217     LOG_ALWAYS_FATAL_IF(!displayId);
4218 
4219     ALOGD("Setting power mode %d on display %s", mode, to_string(*displayId).c_str());
4220 
4221     const hal::PowerMode currentMode = display->getPowerMode();
4222     if (mode == currentMode) {
4223         return;
4224     }
4225 
4226     display->setPowerMode(mode);
4227 
4228     if (mInterceptor->isEnabled()) {
4229         mInterceptor->savePowerModeUpdate(display->getSequenceId(), static_cast<int32_t>(mode));
4230     }
4231     const auto vsyncPeriod = mRefreshRateConfigs->getCurrentRefreshRate().getVsyncPeriod();
4232     if (currentMode == hal::PowerMode::OFF) {
4233         if (SurfaceFlinger::setSchedFifo(true) != NO_ERROR) {
4234             ALOGW("Couldn't set SCHED_FIFO on display on: %s\n", strerror(errno));
4235         }
4236         getHwComposer().setPowerMode(*displayId, mode);
4237         if (display->isPrimary() && mode != hal::PowerMode::DOZE_SUSPEND) {
4238             getHwComposer().setVsyncEnabled(*displayId, mHWCVsyncPendingState);
4239             mScheduler->onScreenAcquired(mAppConnectionHandle);
4240             mScheduler->resyncToHardwareVsync(true, vsyncPeriod);
4241         }
4242 
4243         mVisibleRegionsDirty = true;
4244         mHasPoweredOff = true;
4245         repaintEverything();
4246     } else if (mode == hal::PowerMode::OFF) {
4247         // Turn off the display
4248         if (SurfaceFlinger::setSchedFifo(false) != NO_ERROR) {
4249             ALOGW("Couldn't set SCHED_OTHER on display off: %s\n", strerror(errno));
4250         }
4251         if (display->isPrimary() && currentMode != hal::PowerMode::DOZE_SUSPEND) {
4252             mScheduler->disableHardwareVsync(true);
4253             mScheduler->onScreenReleased(mAppConnectionHandle);
4254         }
4255 
4256         // Make sure HWVsync is disabled before turning off the display
4257         getHwComposer().setVsyncEnabled(*displayId, hal::Vsync::DISABLE);
4258 
4259         getHwComposer().setPowerMode(*displayId, mode);
4260         mVisibleRegionsDirty = true;
4261         // from this point on, SF will stop drawing on this display
4262     } else if (mode == hal::PowerMode::DOZE || mode == hal::PowerMode::ON) {
4263         // Update display while dozing
4264         getHwComposer().setPowerMode(*displayId, mode);
4265         if (display->isPrimary() && currentMode == hal::PowerMode::DOZE_SUSPEND) {
4266             mScheduler->onScreenAcquired(mAppConnectionHandle);
4267             mScheduler->resyncToHardwareVsync(true, vsyncPeriod);
4268         }
4269     } else if (mode == hal::PowerMode::DOZE_SUSPEND) {
4270         // Leave display going to doze
4271         if (display->isPrimary()) {
4272             mScheduler->disableHardwareVsync(true);
4273             mScheduler->onScreenReleased(mAppConnectionHandle);
4274         }
4275         getHwComposer().setPowerMode(*displayId, mode);
4276     } else {
4277         ALOGE("Attempting to set unknown power mode: %d\n", mode);
4278         getHwComposer().setPowerMode(*displayId, mode);
4279     }
4280 
4281     if (display->isPrimary()) {
4282         mTimeStats->setPowerMode(mode);
4283         mRefreshRateStats->setPowerMode(mode);
4284         mScheduler->setDisplayPowerState(mode == hal::PowerMode::ON);
4285     }
4286 
4287     ALOGD("Finished setting power mode %d on display %s", mode, to_string(*displayId).c_str());
4288 }
4289 
setPowerMode(const sp<IBinder> & displayToken,int mode)4290 void SurfaceFlinger::setPowerMode(const sp<IBinder>& displayToken, int mode) {
4291     schedule([=]() MAIN_THREAD {
4292         const auto display = getDisplayDeviceLocked(displayToken);
4293         if (!display) {
4294             ALOGE("Attempt to set power mode %d for invalid display token %p", mode,
4295                   displayToken.get());
4296         } else if (display->isVirtual()) {
4297             ALOGW("Attempt to set power mode %d for virtual display", mode);
4298         } else {
4299             setPowerModeInternal(display, static_cast<hal::PowerMode>(mode));
4300         }
4301     }).wait();
4302 }
4303 
doDump(int fd,const DumpArgs & args,bool asProto)4304 status_t SurfaceFlinger::doDump(int fd, const DumpArgs& args, bool asProto) {
4305     std::string result;
4306 
4307     IPCThreadState* ipc = IPCThreadState::self();
4308     const int pid = ipc->getCallingPid();
4309     const int uid = ipc->getCallingUid();
4310 
4311     if ((uid != AID_SHELL) &&
4312             !PermissionCache::checkPermission(sDump, pid, uid)) {
4313         StringAppendF(&result, "Permission Denial: can't dump SurfaceFlinger from pid=%d, uid=%d\n",
4314                       pid, uid);
4315     } else {
4316         static const std::unordered_map<std::string, Dumper> dumpers = {
4317                 {"--display-id"s, dumper(&SurfaceFlinger::dumpDisplayIdentificationData)},
4318                 {"--dispsync"s,
4319                  dumper([this](std::string& s) { mScheduler->getPrimaryDispSync().dump(s); })},
4320                 {"--edid"s, argsDumper(&SurfaceFlinger::dumpRawDisplayIdentificationData)},
4321                 {"--frame-events"s, dumper(&SurfaceFlinger::dumpFrameEventsLocked)},
4322                 {"--latency"s, argsDumper(&SurfaceFlinger::dumpStatsLocked)},
4323                 {"--latency-clear"s, argsDumper(&SurfaceFlinger::clearStatsLocked)},
4324                 {"--list"s, dumper(&SurfaceFlinger::listLayersLocked)},
4325                 {"--static-screen"s, dumper(&SurfaceFlinger::dumpStaticScreenStats)},
4326                 {"--timestats"s, protoDumper(&SurfaceFlinger::dumpTimeStats)},
4327                 {"--vsync"s, dumper(&SurfaceFlinger::dumpVSync)},
4328                 {"--wide-color"s, dumper(&SurfaceFlinger::dumpWideColorInfo)},
4329         };
4330 
4331         const auto flag = args.empty() ? ""s : std::string(String8(args[0]));
4332 
4333         bool dumpLayers = true;
4334         {
4335             TimedLock lock(mStateLock, s2ns(1), __FUNCTION__);
4336             if (!lock.locked()) {
4337                 StringAppendF(&result, "Dumping without lock after timeout: %s (%d)\n",
4338                               strerror(-lock.status), lock.status);
4339             }
4340 
4341             if (const auto it = dumpers.find(flag); it != dumpers.end()) {
4342                 (it->second)(args, asProto, result);
4343                 dumpLayers = false;
4344             } else if (!asProto) {
4345                 dumpAllLocked(args, result);
4346             }
4347         }
4348 
4349         if (dumpLayers) {
4350             const LayersProto layersProto = dumpProtoFromMainThread();
4351             if (asProto) {
4352                 result.append(layersProto.SerializeAsString());
4353             } else {
4354                 // Dump info that we need to access from the main thread
4355                 const auto layerTree = LayerProtoParser::generateLayerTree(layersProto);
4356                 result.append(LayerProtoParser::layerTreeToString(layerTree));
4357                 result.append("\n");
4358                 dumpOffscreenLayers(result);
4359             }
4360         }
4361     }
4362     write(fd, result.c_str(), result.size());
4363     return NO_ERROR;
4364 }
4365 
dumpCritical(int fd,const DumpArgs &,bool asProto)4366 status_t SurfaceFlinger::dumpCritical(int fd, const DumpArgs&, bool asProto) {
4367     if (asProto && mTracing.isEnabled()) {
4368         mTracing.writeToFileAsync();
4369     }
4370 
4371     return doDump(fd, DumpArgs(), asProto);
4372 }
4373 
listLayersLocked(std::string & result) const4374 void SurfaceFlinger::listLayersLocked(std::string& result) const {
4375     mCurrentState.traverseInZOrder(
4376             [&](Layer* layer) { StringAppendF(&result, "%s\n", layer->getDebugName()); });
4377 }
4378 
dumpStatsLocked(const DumpArgs & args,std::string & result) const4379 void SurfaceFlinger::dumpStatsLocked(const DumpArgs& args, std::string& result) const {
4380     StringAppendF(&result, "%" PRId64 "\n", getVsyncPeriodFromHWC());
4381 
4382     if (args.size() > 1) {
4383         const auto name = String8(args[1]);
4384         mCurrentState.traverseInZOrder([&](Layer* layer) {
4385             if (layer->getName() == name.string()) {
4386                 layer->dumpFrameStats(result);
4387             }
4388         });
4389     } else {
4390         mAnimFrameTracker.dumpStats(result);
4391     }
4392 }
4393 
clearStatsLocked(const DumpArgs & args,std::string &)4394 void SurfaceFlinger::clearStatsLocked(const DumpArgs& args, std::string&) {
4395     const bool clearAll = args.size() < 2;
4396     const auto name = clearAll ? String8() : String8(args[1]);
4397 
4398     mCurrentState.traverse([&](Layer* layer) {
4399         if (clearAll || layer->getName() == name.string()) {
4400             layer->clearFrameStats();
4401         }
4402     });
4403 
4404     mAnimFrameTracker.clearStats();
4405 }
4406 
dumpTimeStats(const DumpArgs & args,bool asProto,std::string & result) const4407 void SurfaceFlinger::dumpTimeStats(const DumpArgs& args, bool asProto, std::string& result) const {
4408     mTimeStats->parseArgs(asProto, args, result);
4409 }
4410 
4411 // This should only be called from the main thread.  Otherwise it would need
4412 // the lock and should use mCurrentState rather than mDrawingState.
logFrameStats()4413 void SurfaceFlinger::logFrameStats() {
4414     mDrawingState.traverse([&](Layer* layer) {
4415         layer->logFrameStats();
4416     });
4417 
4418     mAnimFrameTracker.logAndResetStats("<win-anim>");
4419 }
4420 
appendSfConfigString(std::string & result) const4421 void SurfaceFlinger::appendSfConfigString(std::string& result) const {
4422     result.append(" [sf");
4423 
4424     if (isLayerTripleBufferingDisabled())
4425         result.append(" DISABLE_TRIPLE_BUFFERING");
4426 
4427     StringAppendF(&result, " PRESENT_TIME_OFFSET=%" PRId64, dispSyncPresentTimeOffset);
4428     StringAppendF(&result, " FORCE_HWC_FOR_RBG_TO_YUV=%d", useHwcForRgbToYuv);
4429     StringAppendF(&result, " MAX_VIRT_DISPLAY_DIM=%" PRIu64, maxVirtualDisplaySize);
4430     StringAppendF(&result, " RUNNING_WITHOUT_SYNC_FRAMEWORK=%d", !hasSyncFramework);
4431     StringAppendF(&result, " NUM_FRAMEBUFFER_SURFACE_BUFFERS=%" PRId64,
4432                   maxFrameBufferAcquiredBuffers);
4433     result.append("]");
4434 }
4435 
dumpVSync(std::string & result) const4436 void SurfaceFlinger::dumpVSync(std::string& result) const {
4437     mScheduler->dump(result);
4438 
4439     mRefreshRateStats->dump(result);
4440     result.append("\n");
4441 
4442     mPhaseConfiguration->dump(result);
4443     StringAppendF(&result,
4444                   "      present offset: %9" PRId64 " ns\t     VSYNC period: %9" PRId64 " ns\n\n",
4445                   dispSyncPresentTimeOffset, getVsyncPeriodFromHWC());
4446 
4447     scheduler::RefreshRateConfigs::Policy policy = mRefreshRateConfigs->getDisplayManagerPolicy();
4448     StringAppendF(&result,
4449                   "DesiredDisplayConfigSpecs (DisplayManager): default config ID: %d"
4450                   ", primary range: [%.2f %.2f], app request range: [%.2f %.2f]\n\n",
4451                   policy.defaultConfig.value(), policy.primaryRange.min, policy.primaryRange.max,
4452                   policy.appRequestRange.min, policy.appRequestRange.max);
4453     StringAppendF(&result, "(config override by backdoor: %s)\n\n",
4454                   mDebugDisplayConfigSetByBackdoor ? "yes" : "no");
4455     scheduler::RefreshRateConfigs::Policy currentPolicy = mRefreshRateConfigs->getCurrentPolicy();
4456     if (currentPolicy != policy) {
4457         StringAppendF(&result,
4458                       "DesiredDisplayConfigSpecs (Override): default config ID: %d"
4459                       ", primary range: [%.2f %.2f], app request range: [%.2f %.2f]\n\n",
4460                       currentPolicy.defaultConfig.value(), currentPolicy.primaryRange.min,
4461                       currentPolicy.primaryRange.max, currentPolicy.appRequestRange.min,
4462                       currentPolicy.appRequestRange.max);
4463     }
4464 
4465     mScheduler->dump(mAppConnectionHandle, result);
4466     mScheduler->getPrimaryDispSync().dump(result);
4467 }
4468 
dumpStaticScreenStats(std::string & result) const4469 void SurfaceFlinger::dumpStaticScreenStats(std::string& result) const {
4470     result.append("Static screen stats:\n");
4471     for (size_t b = 0; b < SurfaceFlingerBE::NUM_BUCKETS - 1; ++b) {
4472         float bucketTimeSec = getBE().mFrameBuckets[b] / 1e9;
4473         float percent = 100.0f *
4474                 static_cast<float>(getBE().mFrameBuckets[b]) / getBE().mTotalTime;
4475         StringAppendF(&result, "  < %zd frames: %.3f s (%.1f%%)\n", b + 1, bucketTimeSec, percent);
4476     }
4477     float bucketTimeSec = getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1] / 1e9;
4478     float percent = 100.0f *
4479             static_cast<float>(getBE().mFrameBuckets[SurfaceFlingerBE::NUM_BUCKETS - 1]) / getBE().mTotalTime;
4480     StringAppendF(&result, "  %zd+ frames: %.3f s (%.1f%%)\n", SurfaceFlingerBE::NUM_BUCKETS - 1,
4481                   bucketTimeSec, percent);
4482 }
4483 
recordBufferingStats(const std::string & layerName,std::vector<OccupancyTracker::Segment> && history)4484 void SurfaceFlinger::recordBufferingStats(const std::string& layerName,
4485                                           std::vector<OccupancyTracker::Segment>&& history) {
4486     Mutex::Autolock lock(getBE().mBufferingStatsMutex);
4487     auto& stats = getBE().mBufferingStats[layerName];
4488     for (const auto& segment : history) {
4489         if (!segment.usedThirdBuffer) {
4490             stats.twoBufferTime += segment.totalTime;
4491         }
4492         if (segment.occupancyAverage < 1.0f) {
4493             stats.doubleBufferedTime += segment.totalTime;
4494         } else if (segment.occupancyAverage < 2.0f) {
4495             stats.tripleBufferedTime += segment.totalTime;
4496         }
4497         ++stats.numSegments;
4498         stats.totalTime += segment.totalTime;
4499     }
4500 }
4501 
dumpFrameEventsLocked(std::string & result)4502 void SurfaceFlinger::dumpFrameEventsLocked(std::string& result) {
4503     result.append("Layer frame timestamps:\n");
4504 
4505     const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
4506     const size_t count = currentLayers.size();
4507     for (size_t i=0 ; i<count ; i++) {
4508         currentLayers[i]->dumpFrameEvents(result);
4509     }
4510 }
4511 
dumpBufferingStats(std::string & result) const4512 void SurfaceFlinger::dumpBufferingStats(std::string& result) const {
4513     result.append("Buffering stats:\n");
4514     result.append("  [Layer name] <Active time> <Two buffer> "
4515             "<Double buffered> <Triple buffered>\n");
4516     Mutex::Autolock lock(getBE().mBufferingStatsMutex);
4517     typedef std::tuple<std::string, float, float, float> BufferTuple;
4518     std::map<float, BufferTuple, std::greater<float>> sorted;
4519     for (const auto& statsPair : getBE().mBufferingStats) {
4520         const char* name = statsPair.first.c_str();
4521         const SurfaceFlingerBE::BufferingStats& stats = statsPair.second;
4522         if (stats.numSegments == 0) {
4523             continue;
4524         }
4525         float activeTime = ns2ms(stats.totalTime) / 1000.0f;
4526         float twoBufferRatio = static_cast<float>(stats.twoBufferTime) /
4527                 stats.totalTime;
4528         float doubleBufferRatio = static_cast<float>(
4529                 stats.doubleBufferedTime) / stats.totalTime;
4530         float tripleBufferRatio = static_cast<float>(
4531                 stats.tripleBufferedTime) / stats.totalTime;
4532         sorted.insert({activeTime, {name, twoBufferRatio,
4533                 doubleBufferRatio, tripleBufferRatio}});
4534     }
4535     for (const auto& sortedPair : sorted) {
4536         float activeTime = sortedPair.first;
4537         const BufferTuple& values = sortedPair.second;
4538         StringAppendF(&result, "  [%s] %.2f %.3f %.3f %.3f\n", std::get<0>(values).c_str(),
4539                       activeTime, std::get<1>(values), std::get<2>(values), std::get<3>(values));
4540     }
4541     result.append("\n");
4542 }
4543 
dumpDisplayIdentificationData(std::string & result) const4544 void SurfaceFlinger::dumpDisplayIdentificationData(std::string& result) const {
4545     for (const auto& [token, display] : mDisplays) {
4546         const auto displayId = display->getId();
4547         if (!displayId) {
4548             continue;
4549         }
4550         const auto hwcDisplayId = getHwComposer().fromPhysicalDisplayId(*displayId);
4551         if (!hwcDisplayId) {
4552             continue;
4553         }
4554 
4555         StringAppendF(&result,
4556                       "Display %s (HWC display %" PRIu64 "): ", to_string(*displayId).c_str(),
4557                       *hwcDisplayId);
4558         uint8_t port;
4559         DisplayIdentificationData data;
4560         if (!getHwComposer().getDisplayIdentificationData(*hwcDisplayId, &port, &data)) {
4561             result.append("no identification data\n");
4562             continue;
4563         }
4564 
4565         if (!isEdid(data)) {
4566             result.append("unknown identification data\n");
4567             continue;
4568         }
4569 
4570         const auto edid = parseEdid(data);
4571         if (!edid) {
4572             result.append("invalid EDID\n");
4573             continue;
4574         }
4575 
4576         StringAppendF(&result, "port=%u pnpId=%s displayName=\"", port, edid->pnpId.data());
4577         result.append(edid->displayName.data(), edid->displayName.length());
4578         result.append("\"\n");
4579     }
4580 }
4581 
dumpRawDisplayIdentificationData(const DumpArgs & args,std::string & result) const4582 void SurfaceFlinger::dumpRawDisplayIdentificationData(const DumpArgs& args,
4583                                                       std::string& result) const {
4584     hal::HWDisplayId hwcDisplayId;
4585     uint8_t port;
4586     DisplayIdentificationData data;
4587 
4588     if (args.size() > 1 && base::ParseUint(String8(args[1]), &hwcDisplayId) &&
4589         getHwComposer().getDisplayIdentificationData(hwcDisplayId, &port, &data)) {
4590         result.append(reinterpret_cast<const char*>(data.data()), data.size());
4591     }
4592 }
4593 
dumpWideColorInfo(std::string & result) const4594 void SurfaceFlinger::dumpWideColorInfo(std::string& result) const {
4595     StringAppendF(&result, "Device has wide color built-in display: %d\n", hasWideColorDisplay);
4596     StringAppendF(&result, "Device uses color management: %d\n", useColorManagement);
4597     StringAppendF(&result, "DisplayColorSetting: %s\n",
4598                   decodeDisplayColorSetting(mDisplayColorSetting).c_str());
4599 
4600     // TODO: print out if wide-color mode is active or not
4601 
4602     for (const auto& [token, display] : mDisplays) {
4603         const auto displayId = display->getId();
4604         if (!displayId) {
4605             continue;
4606         }
4607 
4608         StringAppendF(&result, "Display %s color modes:\n", to_string(*displayId).c_str());
4609         std::vector<ColorMode> modes = getHwComposer().getColorModes(*displayId);
4610         for (auto&& mode : modes) {
4611             StringAppendF(&result, "    %s (%d)\n", decodeColorMode(mode).c_str(), mode);
4612         }
4613 
4614         ColorMode currentMode = display->getCompositionDisplay()->getState().colorMode;
4615         StringAppendF(&result, "    Current color mode: %s (%d)\n",
4616                       decodeColorMode(currentMode).c_str(), currentMode);
4617     }
4618     result.append("\n");
4619 }
4620 
dumpDrawingStateProto(uint32_t traceFlags) const4621 LayersProto SurfaceFlinger::dumpDrawingStateProto(uint32_t traceFlags) const {
4622     // If context is SurfaceTracing thread, mTracingLock blocks display transactions on main thread.
4623     const auto display = ON_MAIN_THREAD(getDefaultDisplayDeviceLocked());
4624 
4625     LayersProto layersProto;
4626     for (const sp<Layer>& layer : mDrawingState.layersSortedByZ) {
4627         layer->writeToProto(layersProto, traceFlags, display.get());
4628     }
4629 
4630     return layersProto;
4631 }
4632 
dumpHwc(std::string & result) const4633 void SurfaceFlinger::dumpHwc(std::string& result) const {
4634     getHwComposer().dump(result);
4635 }
4636 
dumpOffscreenLayersProto(LayersProto & layersProto,uint32_t traceFlags) const4637 void SurfaceFlinger::dumpOffscreenLayersProto(LayersProto& layersProto, uint32_t traceFlags) const {
4638     // Add a fake invisible root layer to the proto output and parent all the offscreen layers to
4639     // it.
4640     LayerProto* rootProto = layersProto.add_layers();
4641     const int32_t offscreenRootLayerId = INT32_MAX - 2;
4642     rootProto->set_id(offscreenRootLayerId);
4643     rootProto->set_name("Offscreen Root");
4644     rootProto->set_parent(-1);
4645 
4646     for (Layer* offscreenLayer : mOffscreenLayers) {
4647         // Add layer as child of the fake root
4648         rootProto->add_children(offscreenLayer->sequence);
4649 
4650         // Add layer
4651         LayerProto* layerProto =
4652                 offscreenLayer->writeToProto(layersProto, traceFlags, nullptr /*device*/);
4653         layerProto->set_parent(offscreenRootLayerId);
4654     }
4655 }
4656 
dumpProtoFromMainThread(uint32_t traceFlags)4657 LayersProto SurfaceFlinger::dumpProtoFromMainThread(uint32_t traceFlags) {
4658     return schedule([=] { return dumpDrawingStateProto(traceFlags); }).get();
4659 }
4660 
dumpOffscreenLayers(std::string & result)4661 void SurfaceFlinger::dumpOffscreenLayers(std::string& result) {
4662     result.append("Offscreen Layers:\n");
4663     result.append(schedule([this] {
4664                       std::string result;
4665                       for (Layer* offscreenLayer : mOffscreenLayers) {
4666                           offscreenLayer->traverse(LayerVector::StateSet::Drawing,
4667                                                    [&](Layer* layer) {
4668                                                        layer->dumpCallingUidPid(result);
4669                                                    });
4670                       }
4671                       return result;
4672                   }).get());
4673 }
4674 
dumpAllLocked(const DumpArgs & args,std::string & result) const4675 void SurfaceFlinger::dumpAllLocked(const DumpArgs& args, std::string& result) const {
4676     const bool colorize = !args.empty() && args[0] == String16("--color");
4677     Colorizer colorizer(colorize);
4678 
4679     // figure out if we're stuck somewhere
4680     const nsecs_t now = systemTime();
4681     const nsecs_t inTransaction(mDebugInTransaction);
4682     nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
4683 
4684     /*
4685      * Dump library configuration.
4686      */
4687 
4688     colorizer.bold(result);
4689     result.append("Build configuration:");
4690     colorizer.reset(result);
4691     appendSfConfigString(result);
4692     appendUiConfigString(result);
4693     appendGuiConfigString(result);
4694     result.append("\n");
4695 
4696     result.append("\nDisplay identification data:\n");
4697     dumpDisplayIdentificationData(result);
4698 
4699     result.append("\nWide-Color information:\n");
4700     dumpWideColorInfo(result);
4701 
4702     colorizer.bold(result);
4703     result.append("Sync configuration: ");
4704     colorizer.reset(result);
4705     result.append(SyncFeatures::getInstance().toString());
4706     result.append("\n\n");
4707 
4708     colorizer.bold(result);
4709     result.append("Scheduler:\n");
4710     colorizer.reset(result);
4711     dumpVSync(result);
4712     result.append("\n");
4713 
4714     dumpStaticScreenStats(result);
4715     result.append("\n");
4716 
4717     StringAppendF(&result, "Total missed frame count: %u\n", mFrameMissedCount.load());
4718     StringAppendF(&result, "HWC missed frame count: %u\n", mHwcFrameMissedCount.load());
4719     StringAppendF(&result, "GPU missed frame count: %u\n\n", mGpuFrameMissedCount.load());
4720 
4721     dumpBufferingStats(result);
4722 
4723     /*
4724      * Dump the visible layer list
4725      */
4726     colorizer.bold(result);
4727     StringAppendF(&result, "Visible layers (count = %zu)\n", mNumLayers.load());
4728     StringAppendF(&result, "GraphicBufferProducers: %zu, max %zu\n",
4729                   mGraphicBufferProducerList.size(), mMaxGraphicBufferProducerListSize);
4730     colorizer.reset(result);
4731 
4732     {
4733         StringAppendF(&result, "Composition layers\n");
4734         mDrawingState.traverseInZOrder([&](Layer* layer) {
4735             auto* compositionState = layer->getCompositionState();
4736             if (!compositionState) return;
4737 
4738             android::base::StringAppendF(&result, "* Layer %p (%s)\n", layer,
4739                                          layer->getDebugName() ? layer->getDebugName()
4740                                                                : "<unknown>");
4741             compositionState->dump(result);
4742         });
4743     }
4744 
4745     /*
4746      * Dump Display state
4747      */
4748 
4749     colorizer.bold(result);
4750     StringAppendF(&result, "Displays (%zu entries)\n", mDisplays.size());
4751     colorizer.reset(result);
4752     for (const auto& [token, display] : mDisplays) {
4753         display->dump(result);
4754     }
4755     result.append("\n");
4756 
4757     /*
4758      * Dump CompositionEngine state
4759      */
4760 
4761     mCompositionEngine->dump(result);
4762 
4763     /*
4764      * Dump SurfaceFlinger global state
4765      */
4766 
4767     colorizer.bold(result);
4768     result.append("SurfaceFlinger global state:\n");
4769     colorizer.reset(result);
4770 
4771     getRenderEngine().dump(result);
4772 
4773     DebugEGLImageTracker::getInstance()->dump(result);
4774 
4775     if (const auto display = getDefaultDisplayDeviceLocked()) {
4776         display->getCompositionDisplay()->getState().undefinedRegion.dump(result,
4777                                                                           "undefinedRegion");
4778         StringAppendF(&result, "  orientation=%s, isPoweredOn=%d\n",
4779                       toCString(display->getOrientation()), display->isPoweredOn());
4780     }
4781     StringAppendF(&result,
4782                   "  transaction-flags         : %08x\n"
4783                   "  gpu_to_cpu_unsupported    : %d\n",
4784                   mTransactionFlags.load(), !mGpuToCpuSupported);
4785 
4786     if (const auto displayId = getInternalDisplayIdLocked();
4787         displayId && getHwComposer().isConnected(*displayId)) {
4788         const auto activeConfig = getHwComposer().getActiveConfig(*displayId);
4789         StringAppendF(&result,
4790                       "  refresh-rate              : %f fps\n"
4791                       "  x-dpi                     : %f\n"
4792                       "  y-dpi                     : %f\n",
4793                       1e9 / getHwComposer().getDisplayVsyncPeriod(*displayId),
4794                       activeConfig->getDpiX(), activeConfig->getDpiY());
4795     }
4796 
4797     StringAppendF(&result, "  transaction time: %f us\n", inTransactionDuration / 1000.0);
4798 
4799     /*
4800      * Tracing state
4801      */
4802     mTracing.dump(result);
4803     result.append("\n");
4804 
4805     /*
4806      * HWC layer minidump
4807      */
4808     for (const auto& [token, display] : mDisplays) {
4809         const auto displayId = display->getId();
4810         if (!displayId) {
4811             continue;
4812         }
4813 
4814         StringAppendF(&result, "Display %s HWC layers:\n", to_string(*displayId).c_str());
4815         Layer::miniDumpHeader(result);
4816 
4817         const DisplayDevice& ref = *display;
4818         mCurrentState.traverseInZOrder([&](Layer* layer) { layer->miniDump(result, ref); });
4819         result.append("\n");
4820     }
4821 
4822     /*
4823      * Dump HWComposer state
4824      */
4825     colorizer.bold(result);
4826     result.append("h/w composer state:\n");
4827     colorizer.reset(result);
4828     bool hwcDisabled = mDebugDisableHWC || mDebugRegion;
4829     StringAppendF(&result, "  h/w composer %s\n", hwcDisabled ? "disabled" : "enabled");
4830     getHwComposer().dump(result);
4831 
4832     /*
4833      * Dump gralloc state
4834      */
4835     const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
4836     alloc.dump(result);
4837 
4838     /*
4839      * Dump VrFlinger state if in use.
4840      */
4841     if (mVrFlingerRequestsDisplay && mVrFlinger) {
4842         result.append("VrFlinger state:\n");
4843         result.append(mVrFlinger->Dump());
4844         result.append("\n");
4845     }
4846 
4847     result.append(mTimeStats->miniDump());
4848     result.append("\n");
4849 }
4850 
updateColorMatrixLocked()4851 void SurfaceFlinger::updateColorMatrixLocked() {
4852     mat4 colorMatrix;
4853     if (mGlobalSaturationFactor != 1.0f) {
4854         // Rec.709 luma coefficients
4855         float3 luminance{0.213f, 0.715f, 0.072f};
4856         luminance *= 1.0f - mGlobalSaturationFactor;
4857         mat4 saturationMatrix = mat4(
4858             vec4{luminance.r + mGlobalSaturationFactor, luminance.r, luminance.r, 0.0f},
4859             vec4{luminance.g, luminance.g + mGlobalSaturationFactor, luminance.g, 0.0f},
4860             vec4{luminance.b, luminance.b, luminance.b + mGlobalSaturationFactor, 0.0f},
4861             vec4{0.0f, 0.0f, 0.0f, 1.0f}
4862         );
4863         colorMatrix = mClientColorMatrix * saturationMatrix * mDaltonizer();
4864     } else {
4865         colorMatrix = mClientColorMatrix * mDaltonizer();
4866     }
4867 
4868     if (mCurrentState.colorMatrix != colorMatrix) {
4869         mCurrentState.colorMatrix = colorMatrix;
4870         mCurrentState.colorMatrixChanged = true;
4871         setTransactionFlags(eTransactionNeeded);
4872     }
4873 }
4874 
CheckTransactCodeCredentials(uint32_t code)4875 status_t SurfaceFlinger::CheckTransactCodeCredentials(uint32_t code) {
4876 #pragma clang diagnostic push
4877 #pragma clang diagnostic error "-Wswitch-enum"
4878     switch (static_cast<ISurfaceComposerTag>(code)) {
4879         // These methods should at minimum make sure that the client requested
4880         // access to SF.
4881         case BOOT_FINISHED:
4882         case CLEAR_ANIMATION_FRAME_STATS:
4883         case CREATE_DISPLAY:
4884         case DESTROY_DISPLAY:
4885         case ENABLE_VSYNC_INJECTIONS:
4886         case GET_ANIMATION_FRAME_STATS:
4887         case GET_HDR_CAPABILITIES:
4888         case SET_DESIRED_DISPLAY_CONFIG_SPECS:
4889         case GET_DESIRED_DISPLAY_CONFIG_SPECS:
4890         case SET_ACTIVE_COLOR_MODE:
4891         case GET_AUTO_LOW_LATENCY_MODE_SUPPORT:
4892         case SET_AUTO_LOW_LATENCY_MODE:
4893         case GET_GAME_CONTENT_TYPE_SUPPORT:
4894         case SET_GAME_CONTENT_TYPE:
4895         case INJECT_VSYNC:
4896         case SET_POWER_MODE:
4897         case GET_DISPLAYED_CONTENT_SAMPLING_ATTRIBUTES:
4898         case SET_DISPLAY_CONTENT_SAMPLING_ENABLED:
4899         case GET_DISPLAYED_CONTENT_SAMPLE:
4900         case NOTIFY_POWER_HINT:
4901         case SET_GLOBAL_SHADOW_SETTINGS:
4902         case ACQUIRE_FRAME_RATE_FLEXIBILITY_TOKEN: {
4903             // ACQUIRE_FRAME_RATE_FLEXIBILITY_TOKEN is used by CTS tests, which acquire the
4904             // necessary permission dynamically. Don't use the permission cache for this check.
4905             bool usePermissionCache = code != ACQUIRE_FRAME_RATE_FLEXIBILITY_TOKEN;
4906             if (!callingThreadHasUnscopedSurfaceFlingerAccess(usePermissionCache)) {
4907                 IPCThreadState* ipc = IPCThreadState::self();
4908                 ALOGE("Permission Denial: can't access SurfaceFlinger pid=%d, uid=%d",
4909                         ipc->getCallingPid(), ipc->getCallingUid());
4910                 return PERMISSION_DENIED;
4911             }
4912             return OK;
4913         }
4914         case GET_LAYER_DEBUG_INFO: {
4915             IPCThreadState* ipc = IPCThreadState::self();
4916             const int pid = ipc->getCallingPid();
4917             const int uid = ipc->getCallingUid();
4918             if ((uid != AID_SHELL) && !PermissionCache::checkPermission(sDump, pid, uid)) {
4919                 ALOGE("Layer debug info permission denied for pid=%d, uid=%d", pid, uid);
4920                 return PERMISSION_DENIED;
4921             }
4922             return OK;
4923         }
4924         // Used by apps to hook Choreographer to SurfaceFlinger.
4925         case CREATE_DISPLAY_EVENT_CONNECTION:
4926         // The following calls are currently used by clients that do not
4927         // request necessary permissions. However, they do not expose any secret
4928         // information, so it is OK to pass them.
4929         case AUTHENTICATE_SURFACE:
4930         case GET_ACTIVE_COLOR_MODE:
4931         case GET_ACTIVE_CONFIG:
4932         case GET_PHYSICAL_DISPLAY_IDS:
4933         case GET_PHYSICAL_DISPLAY_TOKEN:
4934         case GET_DISPLAY_COLOR_MODES:
4935         case GET_DISPLAY_NATIVE_PRIMARIES:
4936         case GET_DISPLAY_INFO:
4937         case GET_DISPLAY_CONFIGS:
4938         case GET_DISPLAY_STATE:
4939         case GET_DISPLAY_STATS:
4940         case GET_SUPPORTED_FRAME_TIMESTAMPS:
4941         // Calling setTransactionState is safe, because you need to have been
4942         // granted a reference to Client* and Handle* to do anything with it.
4943         case SET_TRANSACTION_STATE:
4944         case CREATE_CONNECTION:
4945         case GET_COLOR_MANAGEMENT:
4946         case GET_COMPOSITION_PREFERENCE:
4947         case GET_PROTECTED_CONTENT_SUPPORT:
4948         case IS_WIDE_COLOR_DISPLAY:
4949         // setFrameRate() is deliberately available for apps to call without any
4950         // special permissions.
4951         case SET_FRAME_RATE:
4952         case GET_DISPLAY_BRIGHTNESS_SUPPORT:
4953         case SET_DISPLAY_BRIGHTNESS: {
4954             return OK;
4955         }
4956         case CAPTURE_LAYERS:
4957         case CAPTURE_SCREEN:
4958         case ADD_REGION_SAMPLING_LISTENER:
4959         case REMOVE_REGION_SAMPLING_LISTENER: {
4960             // codes that require permission check
4961             IPCThreadState* ipc = IPCThreadState::self();
4962             const int pid = ipc->getCallingPid();
4963             const int uid = ipc->getCallingUid();
4964             if ((uid != AID_GRAPHICS) &&
4965                 !PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
4966                 ALOGE("Permission Denial: can't read framebuffer pid=%d, uid=%d", pid, uid);
4967                 return PERMISSION_DENIED;
4968             }
4969             return OK;
4970         }
4971         case CAPTURE_SCREEN_BY_ID: {
4972             IPCThreadState* ipc = IPCThreadState::self();
4973             const int uid = ipc->getCallingUid();
4974             if (uid == AID_ROOT || uid == AID_GRAPHICS || uid == AID_SYSTEM || uid == AID_SHELL) {
4975                 return OK;
4976             }
4977             return PERMISSION_DENIED;
4978         }
4979     }
4980 
4981     // These codes are used for the IBinder protocol to either interrogate the recipient
4982     // side of the transaction for its canonical interface descriptor or to dump its state.
4983     // We let them pass by default.
4984     if (code == IBinder::INTERFACE_TRANSACTION || code == IBinder::DUMP_TRANSACTION ||
4985         code == IBinder::PING_TRANSACTION || code == IBinder::SHELL_COMMAND_TRANSACTION ||
4986         code == IBinder::SYSPROPS_TRANSACTION) {
4987         return OK;
4988     }
4989     // Numbers from 1000 to 1036 are currently used for backdoors. The code
4990     // in onTransact verifies that the user is root, and has access to use SF.
4991     if (code >= 1000 && code <= 1036) {
4992         ALOGV("Accessing SurfaceFlinger through backdoor code: %u", code);
4993         return OK;
4994     }
4995     ALOGE("Permission Denial: SurfaceFlinger did not recognize request code: %u", code);
4996     return PERMISSION_DENIED;
4997 #pragma clang diagnostic pop
4998 }
4999 
onTransact(uint32_t code,const Parcel & data,Parcel * reply,uint32_t flags)5000 status_t SurfaceFlinger::onTransact(uint32_t code, const Parcel& data, Parcel* reply,
5001                                     uint32_t flags) {
5002     status_t credentialCheck = CheckTransactCodeCredentials(code);
5003     if (credentialCheck != OK) {
5004         return credentialCheck;
5005     }
5006 
5007     status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
5008     if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
5009         CHECK_INTERFACE(ISurfaceComposer, data, reply);
5010         IPCThreadState* ipc = IPCThreadState::self();
5011         const int uid = ipc->getCallingUid();
5012         if (CC_UNLIKELY(uid != AID_SYSTEM
5013                 && !PermissionCache::checkCallingPermission(sHardwareTest))) {
5014             const int pid = ipc->getCallingPid();
5015             ALOGE("Permission Denial: "
5016                     "can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
5017             return PERMISSION_DENIED;
5018         }
5019         int n;
5020         switch (code) {
5021             case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
5022             case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
5023                 return NO_ERROR;
5024             case 1002:  // SHOW_UPDATES
5025                 n = data.readInt32();
5026                 mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
5027                 invalidateHwcGeometry();
5028                 repaintEverything();
5029                 return NO_ERROR;
5030             case 1004:{ // repaint everything
5031                 repaintEverything();
5032                 return NO_ERROR;
5033             }
5034             case 1005:{ // force transaction
5035                 Mutex::Autolock _l(mStateLock);
5036                 setTransactionFlags(
5037                         eTransactionNeeded|
5038                         eDisplayTransactionNeeded|
5039                         eTraversalNeeded);
5040                 return NO_ERROR;
5041             }
5042             case 1006:{ // send empty update
5043                 signalRefresh();
5044                 return NO_ERROR;
5045             }
5046             case 1008:  // toggle use of hw composer
5047                 n = data.readInt32();
5048                 mDebugDisableHWC = n != 0;
5049                 invalidateHwcGeometry();
5050                 repaintEverything();
5051                 return NO_ERROR;
5052             case 1009:  // toggle use of transform hint
5053                 n = data.readInt32();
5054                 mDebugDisableTransformHint = n != 0;
5055                 invalidateHwcGeometry();
5056                 repaintEverything();
5057                 return NO_ERROR;
5058             case 1010:  // interrogate.
5059                 reply->writeInt32(0);
5060                 reply->writeInt32(0);
5061                 reply->writeInt32(mDebugRegion);
5062                 reply->writeInt32(0);
5063                 reply->writeInt32(mDebugDisableHWC);
5064                 return NO_ERROR;
5065             case 1013: {
5066                 const auto display = getDefaultDisplayDevice();
5067                 if (!display) {
5068                     return NAME_NOT_FOUND;
5069                 }
5070 
5071                 reply->writeInt32(display->getPageFlipCount());
5072                 return NO_ERROR;
5073             }
5074             case 1014: {
5075                 Mutex::Autolock _l(mStateLock);
5076                 // daltonize
5077                 n = data.readInt32();
5078                 switch (n % 10) {
5079                     case 1:
5080                         mDaltonizer.setType(ColorBlindnessType::Protanomaly);
5081                         break;
5082                     case 2:
5083                         mDaltonizer.setType(ColorBlindnessType::Deuteranomaly);
5084                         break;
5085                     case 3:
5086                         mDaltonizer.setType(ColorBlindnessType::Tritanomaly);
5087                         break;
5088                     default:
5089                         mDaltonizer.setType(ColorBlindnessType::None);
5090                         break;
5091                 }
5092                 if (n >= 10) {
5093                     mDaltonizer.setMode(ColorBlindnessMode::Correction);
5094                 } else {
5095                     mDaltonizer.setMode(ColorBlindnessMode::Simulation);
5096                 }
5097 
5098                 updateColorMatrixLocked();
5099                 return NO_ERROR;
5100             }
5101             case 1015: {
5102                 Mutex::Autolock _l(mStateLock);
5103                 // apply a color matrix
5104                 n = data.readInt32();
5105                 if (n) {
5106                     // color matrix is sent as a column-major mat4 matrix
5107                     for (size_t i = 0 ; i < 4; i++) {
5108                         for (size_t j = 0; j < 4; j++) {
5109                             mClientColorMatrix[i][j] = data.readFloat();
5110                         }
5111                     }
5112                 } else {
5113                     mClientColorMatrix = mat4();
5114                 }
5115 
5116                 // Check that supplied matrix's last row is {0,0,0,1} so we can avoid
5117                 // the division by w in the fragment shader
5118                 float4 lastRow(transpose(mClientColorMatrix)[3]);
5119                 if (any(greaterThan(abs(lastRow - float4{0, 0, 0, 1}), float4{1e-4f}))) {
5120                     ALOGE("The color transform's last row must be (0, 0, 0, 1)");
5121                 }
5122 
5123                 updateColorMatrixLocked();
5124                 return NO_ERROR;
5125             }
5126             case 1016: { // Unused.
5127                 return NAME_NOT_FOUND;
5128             }
5129             case 1017: {
5130                 n = data.readInt32();
5131                 mForceFullDamage = n != 0;
5132                 return NO_ERROR;
5133             }
5134             case 1018: { // Modify Choreographer's phase offset
5135                 n = data.readInt32();
5136                 mScheduler->setPhaseOffset(mAppConnectionHandle, static_cast<nsecs_t>(n));
5137                 return NO_ERROR;
5138             }
5139             case 1019: { // Modify SurfaceFlinger's phase offset
5140                 n = data.readInt32();
5141                 mScheduler->setPhaseOffset(mSfConnectionHandle, static_cast<nsecs_t>(n));
5142                 return NO_ERROR;
5143             }
5144             case 1020: { // Layer updates interceptor
5145                 n = data.readInt32();
5146                 if (n) {
5147                     ALOGV("Interceptor enabled");
5148                     mInterceptor->enable(mDrawingState.layersSortedByZ, mDrawingState.displays);
5149                 }
5150                 else{
5151                     ALOGV("Interceptor disabled");
5152                     mInterceptor->disable();
5153                 }
5154                 return NO_ERROR;
5155             }
5156             case 1021: { // Disable HWC virtual displays
5157                 n = data.readInt32();
5158                 mUseHwcVirtualDisplays = !n;
5159                 return NO_ERROR;
5160             }
5161             case 1022: { // Set saturation boost
5162                 Mutex::Autolock _l(mStateLock);
5163                 mGlobalSaturationFactor = std::max(0.0f, std::min(data.readFloat(), 2.0f));
5164 
5165                 updateColorMatrixLocked();
5166                 return NO_ERROR;
5167             }
5168             case 1023: { // Set native mode
5169                 int32_t colorMode;
5170 
5171                 mDisplayColorSetting = static_cast<DisplayColorSetting>(data.readInt32());
5172                 if (data.readInt32(&colorMode) == NO_ERROR) {
5173                     mForceColorMode = static_cast<ColorMode>(colorMode);
5174                 }
5175                 invalidateHwcGeometry();
5176                 repaintEverything();
5177                 return NO_ERROR;
5178             }
5179             // Deprecate, use 1030 to check whether the device is color managed.
5180             case 1024: {
5181                 return NAME_NOT_FOUND;
5182             }
5183             case 1025: { // Set layer tracing
5184                 n = data.readInt32();
5185                 if (n) {
5186                     ALOGD("LayerTracing enabled");
5187                     mTracingEnabledChanged = mTracing.enable();
5188                     reply->writeInt32(NO_ERROR);
5189                 } else {
5190                     ALOGD("LayerTracing disabled");
5191                     mTracingEnabledChanged = mTracing.disable();
5192                     if (mTracingEnabledChanged) {
5193                         reply->writeInt32(mTracing.writeToFile());
5194                     } else {
5195                         reply->writeInt32(NO_ERROR);
5196                     }
5197                 }
5198                 return NO_ERROR;
5199             }
5200             case 1026: { // Get layer tracing status
5201                 reply->writeBool(mTracing.isEnabled());
5202                 return NO_ERROR;
5203             }
5204             // Is a DisplayColorSetting supported?
5205             case 1027: {
5206                 const auto display = getDefaultDisplayDevice();
5207                 if (!display) {
5208                     return NAME_NOT_FOUND;
5209                 }
5210 
5211                 DisplayColorSetting setting = static_cast<DisplayColorSetting>(data.readInt32());
5212                 switch (setting) {
5213                     case DisplayColorSetting::kManaged:
5214                         reply->writeBool(useColorManagement);
5215                         break;
5216                     case DisplayColorSetting::kUnmanaged:
5217                         reply->writeBool(true);
5218                         break;
5219                     case DisplayColorSetting::kEnhanced:
5220                         reply->writeBool(display->hasRenderIntent(RenderIntent::ENHANCE));
5221                         break;
5222                     default: // vendor display color setting
5223                         reply->writeBool(
5224                                 display->hasRenderIntent(static_cast<RenderIntent>(setting)));
5225                         break;
5226                 }
5227                 return NO_ERROR;
5228             }
5229             // Is VrFlinger active?
5230             case 1028: {
5231                 Mutex::Autolock _l(mStateLock);
5232                 reply->writeBool(getHwComposer().isUsingVrComposer());
5233                 return NO_ERROR;
5234             }
5235             // Set buffer size for SF tracing (value in KB)
5236             case 1029: {
5237                 n = data.readInt32();
5238                 if (n <= 0 || n > MAX_TRACING_MEMORY) {
5239                     ALOGW("Invalid buffer size: %d KB", n);
5240                     reply->writeInt32(BAD_VALUE);
5241                     return BAD_VALUE;
5242                 }
5243 
5244                 ALOGD("Updating trace buffer to %d KB", n);
5245                 mTracing.setBufferSize(n * 1024);
5246                 reply->writeInt32(NO_ERROR);
5247                 return NO_ERROR;
5248             }
5249             // Is device color managed?
5250             case 1030: {
5251                 reply->writeBool(useColorManagement);
5252                 return NO_ERROR;
5253             }
5254             // Override default composition data space
5255             // adb shell service call SurfaceFlinger 1031 i32 1 DATASPACE_NUMBER DATASPACE_NUMBER \
5256             // && adb shell stop zygote && adb shell start zygote
5257             // to restore: adb shell service call SurfaceFlinger 1031 i32 0 && \
5258             // adb shell stop zygote && adb shell start zygote
5259             case 1031: {
5260                 Mutex::Autolock _l(mStateLock);
5261                 n = data.readInt32();
5262                 if (n) {
5263                     n = data.readInt32();
5264                     if (n) {
5265                         Dataspace dataspace = static_cast<Dataspace>(n);
5266                         if (!validateCompositionDataspace(dataspace)) {
5267                             return BAD_VALUE;
5268                         }
5269                         mDefaultCompositionDataspace = dataspace;
5270                     }
5271                     n = data.readInt32();
5272                     if (n) {
5273                         Dataspace dataspace = static_cast<Dataspace>(n);
5274                         if (!validateCompositionDataspace(dataspace)) {
5275                             return BAD_VALUE;
5276                         }
5277                         mWideColorGamutCompositionDataspace = dataspace;
5278                     }
5279                 } else {
5280                     // restore composition data space.
5281                     mDefaultCompositionDataspace = defaultCompositionDataspace;
5282                     mWideColorGamutCompositionDataspace = wideColorGamutCompositionDataspace;
5283                 }
5284                 return NO_ERROR;
5285             }
5286             // Set trace flags
5287             case 1033: {
5288                 n = data.readUint32();
5289                 ALOGD("Updating trace flags to 0x%x", n);
5290                 mTracing.setTraceFlags(n);
5291                 reply->writeInt32(NO_ERROR);
5292                 return NO_ERROR;
5293             }
5294             case 1034: {
5295                 switch (n = data.readInt32()) {
5296                     case 0:
5297                     case 1:
5298                         enableRefreshRateOverlay(static_cast<bool>(n));
5299                         break;
5300                     default: {
5301                         Mutex::Autolock lock(mStateLock);
5302                         reply->writeBool(mRefreshRateOverlay != nullptr);
5303                     }
5304                 }
5305                 return NO_ERROR;
5306             }
5307             case 1035: {
5308                 n = data.readInt32();
5309                 mDebugDisplayConfigSetByBackdoor = false;
5310                 if (n >= 0) {
5311                     const auto displayToken = getInternalDisplayToken();
5312                     status_t result = setActiveConfig(displayToken, n);
5313                     if (result != NO_ERROR) {
5314                         return result;
5315                     }
5316                     mDebugDisplayConfigSetByBackdoor = true;
5317                 }
5318                 return NO_ERROR;
5319             }
5320             case 1036: {
5321                 if (data.readInt32() > 0) {
5322                     status_t result =
5323                             acquireFrameRateFlexibilityToken(&mDebugFrameRateFlexibilityToken);
5324                     if (result != NO_ERROR) {
5325                         return result;
5326                     }
5327                 } else {
5328                     mDebugFrameRateFlexibilityToken = nullptr;
5329                 }
5330                 return NO_ERROR;
5331             }
5332         }
5333     }
5334     return err;
5335 }
5336 
repaintEverything()5337 void SurfaceFlinger::repaintEverything() {
5338     mRepaintEverything = true;
5339     signalTransaction();
5340 }
5341 
repaintEverythingForHWC()5342 void SurfaceFlinger::repaintEverythingForHWC() {
5343     mRepaintEverything = true;
5344     mPowerAdvisor.notifyDisplayUpdateImminent();
5345     mEventQueue->invalidate();
5346 }
5347 
kernelTimerChanged(bool expired)5348 void SurfaceFlinger::kernelTimerChanged(bool expired) {
5349     static bool updateOverlay =
5350             property_get_bool("debug.sf.kernel_idle_timer_update_overlay", true);
5351     if (!updateOverlay) return;
5352     if (Mutex::Autolock lock(mStateLock); !mRefreshRateOverlay) return;
5353 
5354     // Update the overlay on the main thread to avoid race conditions with
5355     // mRefreshRateConfigs->getCurrentRefreshRate()
5356     static_cast<void>(schedule([=] {
5357         const auto desiredActiveConfig = getDesiredActiveConfig();
5358         const auto& current = desiredActiveConfig
5359                 ? mRefreshRateConfigs->getRefreshRateFromConfigId(desiredActiveConfig->configId)
5360                 : mRefreshRateConfigs->getCurrentRefreshRate();
5361         const auto& min = mRefreshRateConfigs->getMinRefreshRate();
5362 
5363         if (current != min) {
5364             const bool timerExpired = mKernelIdleTimerEnabled && expired;
5365 
5366             if (Mutex::Autolock lock(mStateLock); mRefreshRateOverlay) {
5367                 mRefreshRateOverlay->changeRefreshRate(timerExpired ? min : current);
5368             }
5369             mEventQueue->invalidate();
5370         }
5371     }));
5372 }
5373 
toggleKernelIdleTimer()5374 void SurfaceFlinger::toggleKernelIdleTimer() {
5375     using KernelIdleTimerAction = scheduler::RefreshRateConfigs::KernelIdleTimerAction;
5376 
5377     // If the support for kernel idle timer is disabled in SF code, don't do anything.
5378     if (!mSupportKernelIdleTimer) {
5379         return;
5380     }
5381     const KernelIdleTimerAction action = mRefreshRateConfigs->getIdleTimerAction();
5382 
5383     switch (action) {
5384         case KernelIdleTimerAction::TurnOff:
5385             if (mKernelIdleTimerEnabled) {
5386                 ATRACE_INT("KernelIdleTimer", 0);
5387                 base::SetProperty(KERNEL_IDLE_TIMER_PROP, "false");
5388                 mKernelIdleTimerEnabled = false;
5389             }
5390             break;
5391         case KernelIdleTimerAction::TurnOn:
5392             if (!mKernelIdleTimerEnabled) {
5393                 ATRACE_INT("KernelIdleTimer", 1);
5394                 base::SetProperty(KERNEL_IDLE_TIMER_PROP, "true");
5395                 mKernelIdleTimerEnabled = true;
5396             }
5397             break;
5398         case KernelIdleTimerAction::NoChange:
5399             break;
5400     }
5401 }
5402 
5403 // A simple RAII class to disconnect from an ANativeWindow* when it goes out of scope
5404 class WindowDisconnector {
5405 public:
WindowDisconnector(ANativeWindow * window,int api)5406     WindowDisconnector(ANativeWindow* window, int api) : mWindow(window), mApi(api) {}
~WindowDisconnector()5407     ~WindowDisconnector() {
5408         native_window_api_disconnect(mWindow, mApi);
5409     }
5410 
5411 private:
5412     ANativeWindow* mWindow;
5413     const int mApi;
5414 };
5415 
captureScreen(const sp<IBinder> & displayToken,sp<GraphicBuffer> * outBuffer,bool & outCapturedSecureLayers,Dataspace reqDataspace,ui::PixelFormat reqPixelFormat,const Rect & sourceCrop,uint32_t reqWidth,uint32_t reqHeight,bool useIdentityTransform,ui::Rotation rotation,bool captureSecureLayers)5416 status_t SurfaceFlinger::captureScreen(const sp<IBinder>& displayToken,
5417                                        sp<GraphicBuffer>* outBuffer, bool& outCapturedSecureLayers,
5418                                        Dataspace reqDataspace, ui::PixelFormat reqPixelFormat,
5419                                        const Rect& sourceCrop, uint32_t reqWidth,
5420                                        uint32_t reqHeight, bool useIdentityTransform,
5421                                        ui::Rotation rotation, bool captureSecureLayers) {
5422     ATRACE_CALL();
5423 
5424     if (!displayToken) return BAD_VALUE;
5425 
5426     auto renderAreaRotation = ui::Transform::toRotationFlags(rotation);
5427     if (renderAreaRotation == ui::Transform::ROT_INVALID) {
5428         ALOGE("%s: Invalid rotation: %s", __FUNCTION__, toCString(rotation));
5429         renderAreaRotation = ui::Transform::ROT_0;
5430     }
5431 
5432     sp<DisplayDevice> display;
5433     {
5434         Mutex::Autolock lock(mStateLock);
5435 
5436         display = getDisplayDeviceLocked(displayToken);
5437         if (!display) return NAME_NOT_FOUND;
5438 
5439         // set the requested width/height to the logical display viewport size
5440         // by default
5441         if (reqWidth == 0 || reqHeight == 0) {
5442             reqWidth = uint32_t(display->getViewport().width());
5443             reqHeight = uint32_t(display->getViewport().height());
5444         }
5445     }
5446 
5447     DisplayRenderArea renderArea(display, sourceCrop, reqWidth, reqHeight, reqDataspace,
5448                                  renderAreaRotation, captureSecureLayers);
5449     auto traverseLayers = std::bind(&SurfaceFlinger::traverseLayersInDisplay, this, display,
5450                                     std::placeholders::_1);
5451     return captureScreenCommon(renderArea, traverseLayers, outBuffer, reqPixelFormat,
5452                                useIdentityTransform, outCapturedSecureLayers);
5453 }
5454 
pickDataspaceFromColorMode(const ColorMode colorMode)5455 static Dataspace pickDataspaceFromColorMode(const ColorMode colorMode) {
5456     switch (colorMode) {
5457         case ColorMode::DISPLAY_P3:
5458         case ColorMode::BT2100_PQ:
5459         case ColorMode::BT2100_HLG:
5460         case ColorMode::DISPLAY_BT2020:
5461             return Dataspace::DISPLAY_P3;
5462         default:
5463             return Dataspace::V0_SRGB;
5464     }
5465 }
5466 
setSchedFifo(bool enabled)5467 status_t SurfaceFlinger::setSchedFifo(bool enabled) {
5468     static constexpr int kFifoPriority = 2;
5469     static constexpr int kOtherPriority = 0;
5470 
5471     struct sched_param param = {0};
5472     int sched_policy;
5473     if (enabled) {
5474         sched_policy = SCHED_FIFO;
5475         param.sched_priority = kFifoPriority;
5476     } else {
5477         sched_policy = SCHED_OTHER;
5478         param.sched_priority = kOtherPriority;
5479     }
5480 
5481     if (sched_setscheduler(0, sched_policy, &param) != 0) {
5482         return -errno;
5483     }
5484     return NO_ERROR;
5485 }
5486 
getDisplayByIdOrLayerStack(uint64_t displayOrLayerStack)5487 sp<DisplayDevice> SurfaceFlinger::getDisplayByIdOrLayerStack(uint64_t displayOrLayerStack) {
5488     const sp<IBinder> displayToken = getPhysicalDisplayTokenLocked(DisplayId{displayOrLayerStack});
5489     if (displayToken) {
5490         return getDisplayDeviceLocked(displayToken);
5491     }
5492     // Couldn't find display by displayId. Try to get display by layerStack since virtual displays
5493     // may not have a displayId.
5494     return getDisplayByLayerStack(displayOrLayerStack);
5495 }
5496 
getDisplayByLayerStack(uint64_t layerStack)5497 sp<DisplayDevice> SurfaceFlinger::getDisplayByLayerStack(uint64_t layerStack) {
5498     for (const auto& [token, display] : mDisplays) {
5499         if (display->getLayerStack() == layerStack) {
5500             return display;
5501         }
5502     }
5503     return nullptr;
5504 }
5505 
captureScreen(uint64_t displayOrLayerStack,Dataspace * outDataspace,sp<GraphicBuffer> * outBuffer)5506 status_t SurfaceFlinger::captureScreen(uint64_t displayOrLayerStack, Dataspace* outDataspace,
5507                                        sp<GraphicBuffer>* outBuffer) {
5508     sp<DisplayDevice> display;
5509     uint32_t width;
5510     uint32_t height;
5511     ui::Transform::RotationFlags captureOrientation;
5512     {
5513         Mutex::Autolock lock(mStateLock);
5514         display = getDisplayByIdOrLayerStack(displayOrLayerStack);
5515         if (!display) {
5516             return NAME_NOT_FOUND;
5517         }
5518 
5519         width = uint32_t(display->getViewport().width());
5520         height = uint32_t(display->getViewport().height());
5521 
5522         const auto orientation = display->getOrientation();
5523         captureOrientation = ui::Transform::toRotationFlags(orientation);
5524 
5525         switch (captureOrientation) {
5526             case ui::Transform::ROT_90:
5527                 captureOrientation = ui::Transform::ROT_270;
5528                 break;
5529 
5530             case ui::Transform::ROT_270:
5531                 captureOrientation = ui::Transform::ROT_90;
5532                 break;
5533 
5534             case ui::Transform::ROT_INVALID:
5535                 ALOGE("%s: Invalid orientation: %s", __FUNCTION__, toCString(orientation));
5536                 captureOrientation = ui::Transform::ROT_0;
5537                 break;
5538 
5539             default:
5540                 break;
5541         }
5542         *outDataspace =
5543                 pickDataspaceFromColorMode(display->getCompositionDisplay()->getState().colorMode);
5544     }
5545 
5546     DisplayRenderArea renderArea(display, Rect(), width, height, *outDataspace, captureOrientation,
5547                                  false /* captureSecureLayers */);
5548 
5549     auto traverseLayers = std::bind(&SurfaceFlinger::traverseLayersInDisplay, this, display,
5550                                     std::placeholders::_1);
5551     bool ignored = false;
5552     return captureScreenCommon(renderArea, traverseLayers, outBuffer, ui::PixelFormat::RGBA_8888,
5553                                false /* useIdentityTransform */,
5554                                ignored /* outCapturedSecureLayers */);
5555 }
5556 
captureLayers(const sp<IBinder> & layerHandleBinder,sp<GraphicBuffer> * outBuffer,const Dataspace reqDataspace,const ui::PixelFormat reqPixelFormat,const Rect & sourceCrop,const std::unordered_set<sp<IBinder>,ISurfaceComposer::SpHash<IBinder>> & excludeHandles,float frameScale,bool childrenOnly)5557 status_t SurfaceFlinger::captureLayers(
5558         const sp<IBinder>& layerHandleBinder, sp<GraphicBuffer>* outBuffer,
5559         const Dataspace reqDataspace, const ui::PixelFormat reqPixelFormat, const Rect& sourceCrop,
5560         const std::unordered_set<sp<IBinder>, ISurfaceComposer::SpHash<IBinder>>& excludeHandles,
5561         float frameScale, bool childrenOnly) {
5562     ATRACE_CALL();
5563 
5564     class LayerRenderArea : public RenderArea {
5565     public:
5566         LayerRenderArea(SurfaceFlinger* flinger, const sp<Layer>& layer, const Rect crop,
5567                         int32_t reqWidth, int32_t reqHeight, Dataspace reqDataSpace,
5568                         bool childrenOnly, const Rect& displayViewport)
5569               : RenderArea(reqWidth, reqHeight, CaptureFill::CLEAR, reqDataSpace, displayViewport),
5570                 mLayer(layer),
5571                 mCrop(crop),
5572                 mNeedsFiltering(false),
5573                 mFlinger(flinger),
5574                 mChildrenOnly(childrenOnly) {}
5575         const ui::Transform& getTransform() const override { return mTransform; }
5576         Rect getBounds() const override { return mLayer->getBufferSize(mLayer->getDrawingState()); }
5577         int getHeight() const override {
5578             return mLayer->getBufferSize(mLayer->getDrawingState()).getHeight();
5579         }
5580         int getWidth() const override {
5581             return mLayer->getBufferSize(mLayer->getDrawingState()).getWidth();
5582         }
5583         bool isSecure() const override { return false; }
5584         bool needsFiltering() const override { return mNeedsFiltering; }
5585         sp<const DisplayDevice> getDisplayDevice() const override { return nullptr; }
5586         Rect getSourceCrop() const override {
5587             if (mCrop.isEmpty()) {
5588                 return getBounds();
5589             } else {
5590                 return mCrop;
5591             }
5592         }
5593         class ReparentForDrawing {
5594         public:
5595             const sp<Layer>& oldParent;
5596             const sp<Layer>& newParent;
5597 
5598             ReparentForDrawing(const sp<Layer>& oldParent, const sp<Layer>& newParent,
5599                                const Rect& drawingBounds)
5600                   : oldParent(oldParent), newParent(newParent) {
5601                 // Compute and cache the bounds for the new parent layer.
5602                 newParent->computeBounds(drawingBounds.toFloatRect(), ui::Transform(),
5603                                          0.f /* shadowRadius */);
5604                 oldParent->setChildrenDrawingParent(newParent);
5605             }
5606             ~ReparentForDrawing() { oldParent->setChildrenDrawingParent(oldParent); }
5607         };
5608 
5609         void render(std::function<void()> drawLayers) override {
5610             const Rect sourceCrop = getSourceCrop();
5611             // no need to check rotation because there is none
5612             mNeedsFiltering = sourceCrop.width() != getReqWidth() ||
5613                 sourceCrop.height() != getReqHeight();
5614 
5615             if (!mChildrenOnly) {
5616                 mTransform = mLayer->getTransform().inverse();
5617                 drawLayers();
5618             } else {
5619                 uint32_t w = static_cast<uint32_t>(getWidth());
5620                 uint32_t h = static_cast<uint32_t>(getHeight());
5621                 // In the "childrenOnly" case we reparent the children to a screenshot
5622                 // layer which has no properties set and which does not draw.
5623                 sp<ContainerLayer> screenshotParentLayer =
5624                         mFlinger->getFactory().createContainerLayer({mFlinger, nullptr,
5625                                                                      "Screenshot Parent"s, w, h, 0,
5626                                                                      LayerMetadata()});
5627 
5628                 ReparentForDrawing reparent(mLayer, screenshotParentLayer, sourceCrop);
5629                 drawLayers();
5630             }
5631         }
5632 
5633     private:
5634         const sp<Layer> mLayer;
5635         const Rect mCrop;
5636 
5637         ui::Transform mTransform;
5638         bool mNeedsFiltering;
5639 
5640         SurfaceFlinger* mFlinger;
5641         const bool mChildrenOnly;
5642     };
5643 
5644     int reqWidth = 0;
5645     int reqHeight = 0;
5646     sp<Layer> parent;
5647     Rect crop(sourceCrop);
5648     std::unordered_set<sp<Layer>, ISurfaceComposer::SpHash<Layer>> excludeLayers;
5649     Rect displayViewport;
5650     {
5651         Mutex::Autolock lock(mStateLock);
5652 
5653         parent = fromHandleLocked(layerHandleBinder).promote();
5654         if (parent == nullptr || parent->isRemovedFromCurrentState()) {
5655             ALOGE("captureLayers called with an invalid or removed parent");
5656             return NAME_NOT_FOUND;
5657         }
5658 
5659         const int uid = IPCThreadState::self()->getCallingUid();
5660         const bool forSystem = uid == AID_GRAPHICS || uid == AID_SYSTEM;
5661         if (!forSystem && parent->getCurrentState().flags & layer_state_t::eLayerSecure) {
5662             ALOGW("Attempting to capture secure layer: PERMISSION_DENIED");
5663             return PERMISSION_DENIED;
5664         }
5665 
5666         Rect parentSourceBounds = parent->getCroppedBufferSize(parent->getCurrentState());
5667         if (sourceCrop.width() <= 0) {
5668             crop.left = 0;
5669             crop.right = parentSourceBounds.getWidth();
5670         }
5671 
5672         if (sourceCrop.height() <= 0) {
5673             crop.top = 0;
5674             crop.bottom = parentSourceBounds.getHeight();
5675         }
5676 
5677         if (crop.isEmpty() || frameScale <= 0.0f) {
5678             // Error out if the layer has no source bounds (i.e. they are boundless) and a source
5679             // crop was not specified, or an invalid frame scale was provided.
5680             return BAD_VALUE;
5681         }
5682         reqWidth = crop.width() * frameScale;
5683         reqHeight = crop.height() * frameScale;
5684 
5685         for (const auto& handle : excludeHandles) {
5686             sp<Layer> excludeLayer = fromHandleLocked(handle).promote();
5687             if (excludeLayer != nullptr) {
5688                 excludeLayers.emplace(excludeLayer);
5689             } else {
5690                 ALOGW("Invalid layer handle passed as excludeLayer to captureLayers");
5691                 return NAME_NOT_FOUND;
5692             }
5693         }
5694 
5695         const auto display = getDisplayByLayerStack(parent->getLayerStack());
5696         if (!display) {
5697             return NAME_NOT_FOUND;
5698         }
5699 
5700         displayViewport = display->getViewport();
5701     } // mStateLock
5702 
5703     // really small crop or frameScale
5704     if (reqWidth <= 0) {
5705         reqWidth = 1;
5706     }
5707     if (reqHeight <= 0) {
5708         reqHeight = 1;
5709     }
5710 
5711     LayerRenderArea renderArea(this, parent, crop, reqWidth, reqHeight, reqDataspace, childrenOnly,
5712                                displayViewport);
5713     auto traverseLayers = [parent, childrenOnly,
5714                            &excludeLayers](const LayerVector::Visitor& visitor) {
5715         parent->traverseChildrenInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) {
5716             if (!layer->isVisible()) {
5717                 return;
5718             } else if (childrenOnly && layer == parent.get()) {
5719                 return;
5720             }
5721 
5722             sp<Layer> p = layer;
5723             while (p != nullptr) {
5724                 if (excludeLayers.count(p) != 0) {
5725                     return;
5726                 }
5727                 p = p->getParent();
5728             }
5729 
5730             visitor(layer);
5731         });
5732     };
5733 
5734     bool outCapturedSecureLayers = false;
5735     return captureScreenCommon(renderArea, traverseLayers, outBuffer, reqPixelFormat, false,
5736                                outCapturedSecureLayers);
5737 }
5738 
captureScreenCommon(RenderArea & renderArea,TraverseLayersFunction traverseLayers,sp<GraphicBuffer> * outBuffer,const ui::PixelFormat reqPixelFormat,bool useIdentityTransform,bool & outCapturedSecureLayers)5739 status_t SurfaceFlinger::captureScreenCommon(RenderArea& renderArea,
5740                                              TraverseLayersFunction traverseLayers,
5741                                              sp<GraphicBuffer>* outBuffer,
5742                                              const ui::PixelFormat reqPixelFormat,
5743                                              bool useIdentityTransform,
5744                                              bool& outCapturedSecureLayers) {
5745     ATRACE_CALL();
5746 
5747     // TODO(b/116112787) Make buffer usage a parameter.
5748     const uint32_t usage = GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN |
5749             GRALLOC_USAGE_HW_RENDER | GRALLOC_USAGE_HW_TEXTURE;
5750     *outBuffer =
5751             getFactory().createGraphicBuffer(renderArea.getReqWidth(), renderArea.getReqHeight(),
5752                                              static_cast<android_pixel_format>(reqPixelFormat), 1,
5753                                              usage, "screenshot");
5754 
5755     return captureScreenCommon(renderArea, traverseLayers, *outBuffer, useIdentityTransform,
5756                                false /* regionSampling */, outCapturedSecureLayers);
5757 }
5758 
captureScreenCommon(RenderArea & renderArea,TraverseLayersFunction traverseLayers,const sp<GraphicBuffer> & buffer,bool useIdentityTransform,bool regionSampling,bool & outCapturedSecureLayers)5759 status_t SurfaceFlinger::captureScreenCommon(RenderArea& renderArea,
5760                                              TraverseLayersFunction traverseLayers,
5761                                              const sp<GraphicBuffer>& buffer,
5762                                              bool useIdentityTransform, bool regionSampling,
5763                                              bool& outCapturedSecureLayers) {
5764     const int uid = IPCThreadState::self()->getCallingUid();
5765     const bool forSystem = uid == AID_GRAPHICS || uid == AID_SYSTEM;
5766 
5767     status_t result;
5768     int syncFd;
5769 
5770     do {
5771         std::tie(result, syncFd) =
5772                 schedule([&] {
5773                     if (mRefreshPending) {
5774                         ATRACE_NAME("Skipping screenshot for now");
5775                         return std::make_pair(EAGAIN, -1);
5776                     }
5777 
5778                     status_t result = NO_ERROR;
5779                     int fd = -1;
5780 
5781                     Mutex::Autolock lock(mStateLock);
5782                     renderArea.render([&] {
5783                         result = captureScreenImplLocked(renderArea, traverseLayers, buffer.get(),
5784                                                          useIdentityTransform, forSystem, &fd,
5785                                                          regionSampling, outCapturedSecureLayers);
5786                     });
5787 
5788                     return std::make_pair(result, fd);
5789                 }).get();
5790     } while (result == EAGAIN);
5791 
5792     if (result == NO_ERROR) {
5793         sync_wait(syncFd, -1);
5794         close(syncFd);
5795     }
5796 
5797     return result;
5798 }
5799 
renderScreenImplLocked(const RenderArea & renderArea,TraverseLayersFunction traverseLayers,ANativeWindowBuffer * buffer,bool useIdentityTransform,bool regionSampling,int * outSyncFd)5800 void SurfaceFlinger::renderScreenImplLocked(const RenderArea& renderArea,
5801                                             TraverseLayersFunction traverseLayers,
5802                                             ANativeWindowBuffer* buffer, bool useIdentityTransform,
5803                                             bool regionSampling, int* outSyncFd) {
5804     ATRACE_CALL();
5805 
5806     const auto reqWidth = renderArea.getReqWidth();
5807     const auto reqHeight = renderArea.getReqHeight();
5808     const auto sourceCrop = renderArea.getSourceCrop();
5809     const auto transform = renderArea.getTransform();
5810     const auto rotation = renderArea.getRotationFlags();
5811     const auto& displayViewport = renderArea.getDisplayViewport();
5812 
5813     renderengine::DisplaySettings clientCompositionDisplay;
5814     std::vector<compositionengine::LayerFE::LayerSettings> clientCompositionLayers;
5815 
5816     // assume that bounds are never offset, and that they are the same as the
5817     // buffer bounds.
5818     clientCompositionDisplay.physicalDisplay = Rect(reqWidth, reqHeight);
5819     clientCompositionDisplay.clip = sourceCrop;
5820     clientCompositionDisplay.orientation = rotation;
5821 
5822     clientCompositionDisplay.outputDataspace = renderArea.getReqDataSpace();
5823     clientCompositionDisplay.maxLuminance = DisplayDevice::sDefaultMaxLumiance;
5824 
5825     const float alpha = RenderArea::getCaptureFillValue(renderArea.getCaptureFill());
5826 
5827     compositionengine::LayerFE::LayerSettings fillLayer;
5828     fillLayer.source.buffer.buffer = nullptr;
5829     fillLayer.source.solidColor = half3(0.0, 0.0, 0.0);
5830     fillLayer.geometry.boundaries =
5831             FloatRect(sourceCrop.left, sourceCrop.top, sourceCrop.right, sourceCrop.bottom);
5832     fillLayer.alpha = half(alpha);
5833     clientCompositionLayers.push_back(fillLayer);
5834 
5835     const auto display = renderArea.getDisplayDevice();
5836     std::vector<Layer*> renderedLayers;
5837     Region clearRegion = Region::INVALID_REGION;
5838     traverseLayers([&](Layer* layer) {
5839         const bool supportProtectedContent = false;
5840         Region clip(renderArea.getBounds());
5841         compositionengine::LayerFE::ClientCompositionTargetSettings targetSettings{
5842                 clip,
5843                 useIdentityTransform,
5844                 layer->needsFilteringForScreenshots(display.get(), transform) ||
5845                         renderArea.needsFiltering(),
5846                 renderArea.isSecure(),
5847                 supportProtectedContent,
5848                 clearRegion,
5849                 displayViewport,
5850                 clientCompositionDisplay.outputDataspace,
5851                 true,  /* realContentIsVisible */
5852                 false, /* clearContent */
5853         };
5854         std::vector<compositionengine::LayerFE::LayerSettings> results =
5855                 layer->prepareClientCompositionList(targetSettings);
5856         if (results.size() > 0) {
5857             for (auto& settings : results) {
5858                 settings.geometry.positionTransform =
5859                         transform.asMatrix4() * settings.geometry.positionTransform;
5860                 // There's no need to process blurs when we're executing region sampling,
5861                 // we're just trying to understand what we're drawing, and doing so without
5862                 // blurs is already a pretty good approximation.
5863                 if (regionSampling) {
5864                     settings.backgroundBlurRadius = 0;
5865                 }
5866             }
5867             clientCompositionLayers.insert(clientCompositionLayers.end(),
5868                                            std::make_move_iterator(results.begin()),
5869                                            std::make_move_iterator(results.end()));
5870             renderedLayers.push_back(layer);
5871         }
5872     });
5873 
5874     std::vector<const renderengine::LayerSettings*> clientCompositionLayerPointers(
5875             clientCompositionLayers.size());
5876     std::transform(clientCompositionLayers.begin(), clientCompositionLayers.end(),
5877                    clientCompositionLayerPointers.begin(),
5878                    std::pointer_traits<renderengine::LayerSettings*>::pointer_to);
5879 
5880     clientCompositionDisplay.clearRegion = clearRegion;
5881     // Use an empty fence for the buffer fence, since we just created the buffer so
5882     // there is no need for synchronization with the GPU.
5883     base::unique_fd bufferFence;
5884     base::unique_fd drawFence;
5885     getRenderEngine().useProtectedContext(false);
5886     getRenderEngine().drawLayers(clientCompositionDisplay, clientCompositionLayerPointers, buffer,
5887                                  /*useFramebufferCache=*/false, std::move(bufferFence), &drawFence);
5888 
5889     *outSyncFd = drawFence.release();
5890 
5891     if (*outSyncFd >= 0) {
5892         sp<Fence> releaseFence = new Fence(dup(*outSyncFd));
5893         for (auto* layer : renderedLayers) {
5894             layer->onLayerDisplayed(releaseFence);
5895         }
5896     }
5897 }
5898 
captureScreenImplLocked(const RenderArea & renderArea,TraverseLayersFunction traverseLayers,ANativeWindowBuffer * buffer,bool useIdentityTransform,bool forSystem,int * outSyncFd,bool regionSampling,bool & outCapturedSecureLayers)5899 status_t SurfaceFlinger::captureScreenImplLocked(const RenderArea& renderArea,
5900                                                  TraverseLayersFunction traverseLayers,
5901                                                  ANativeWindowBuffer* buffer,
5902                                                  bool useIdentityTransform, bool forSystem,
5903                                                  int* outSyncFd, bool regionSampling,
5904                                                  bool& outCapturedSecureLayers) {
5905     ATRACE_CALL();
5906 
5907     traverseLayers([&](Layer* layer) {
5908         outCapturedSecureLayers =
5909                 outCapturedSecureLayers || (layer->isVisible() && layer->isSecure());
5910     });
5911 
5912     // We allow the system server to take screenshots of secure layers for
5913     // use in situations like the Screen-rotation animation and place
5914     // the impetus on WindowManager to not persist them.
5915     if (outCapturedSecureLayers && !forSystem) {
5916         ALOGW("FB is protected: PERMISSION_DENIED");
5917         return PERMISSION_DENIED;
5918     }
5919     renderScreenImplLocked(renderArea, traverseLayers, buffer, useIdentityTransform, regionSampling,
5920                            outSyncFd);
5921     return NO_ERROR;
5922 }
5923 
setInputWindowsFinished()5924 void SurfaceFlinger::setInputWindowsFinished() {
5925     Mutex::Autolock _l(mStateLock);
5926 
5927     mPendingSyncInputWindows = false;
5928 
5929     mTransactionCV.broadcast();
5930 }
5931 
5932 // ---------------------------------------------------------------------------
5933 
traverse(const LayerVector::Visitor & visitor) const5934 void SurfaceFlinger::State::traverse(const LayerVector::Visitor& visitor) const {
5935     layersSortedByZ.traverse(visitor);
5936 }
5937 
traverseInZOrder(const LayerVector::Visitor & visitor) const5938 void SurfaceFlinger::State::traverseInZOrder(const LayerVector::Visitor& visitor) const {
5939     layersSortedByZ.traverseInZOrder(stateSet, visitor);
5940 }
5941 
traverseInReverseZOrder(const LayerVector::Visitor & visitor) const5942 void SurfaceFlinger::State::traverseInReverseZOrder(const LayerVector::Visitor& visitor) const {
5943     layersSortedByZ.traverseInReverseZOrder(stateSet, visitor);
5944 }
5945 
traverseLayersInDisplay(const sp<const DisplayDevice> & display,const LayerVector::Visitor & visitor)5946 void SurfaceFlinger::traverseLayersInDisplay(const sp<const DisplayDevice>& display,
5947                                              const LayerVector::Visitor& visitor) {
5948     // We loop through the first level of layers without traversing,
5949     // as we need to determine which layers belong to the requested display.
5950     for (const auto& layer : mDrawingState.layersSortedByZ) {
5951         if (!layer->belongsToDisplay(display->getLayerStack(), false)) {
5952             continue;
5953         }
5954         // relative layers are traversed in Layer::traverseInZOrder
5955         layer->traverseInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) {
5956             if (!layer->belongsToDisplay(display->getLayerStack(), false)) {
5957                 return;
5958             }
5959             if (!layer->isVisible()) {
5960                 return;
5961             }
5962             visitor(layer);
5963         });
5964     }
5965 }
5966 
setDesiredDisplayConfigSpecsInternal(const sp<DisplayDevice> & display,const std::optional<scheduler::RefreshRateConfigs::Policy> & policy,bool overridePolicy)5967 status_t SurfaceFlinger::setDesiredDisplayConfigSpecsInternal(
5968         const sp<DisplayDevice>& display,
5969         const std::optional<scheduler::RefreshRateConfigs::Policy>& policy, bool overridePolicy) {
5970     Mutex::Autolock lock(mStateLock);
5971 
5972     LOG_ALWAYS_FATAL_IF(!display->isPrimary() && overridePolicy,
5973                         "Can only set override policy on the primary display");
5974     LOG_ALWAYS_FATAL_IF(!policy && !overridePolicy, "Can only clear the override policy");
5975 
5976     if (!display->isPrimary()) {
5977         // TODO(b/144711714): For non-primary displays we should be able to set an active config
5978         // as well. For now, just call directly to setActiveConfigWithConstraints but ideally
5979         // it should go thru setDesiredActiveConfig, similar to primary display.
5980         ALOGV("setAllowedDisplayConfigsInternal for non-primary display");
5981         const auto displayId = display->getId();
5982         LOG_ALWAYS_FATAL_IF(!displayId);
5983 
5984         hal::VsyncPeriodChangeConstraints constraints;
5985         constraints.desiredTimeNanos = systemTime();
5986         constraints.seamlessRequired = false;
5987 
5988         hal::VsyncPeriodChangeTimeline timeline = {0, 0, 0};
5989         if (getHwComposer().setActiveConfigWithConstraints(*displayId,
5990                                                            policy->defaultConfig.value(),
5991                                                            constraints, &timeline) < 0) {
5992             return BAD_VALUE;
5993         }
5994         if (timeline.refreshRequired) {
5995             repaintEverythingForHWC();
5996         }
5997 
5998         display->setActiveConfig(policy->defaultConfig);
5999         const nsecs_t vsyncPeriod = getHwComposer()
6000                                             .getConfigs(*displayId)[policy->defaultConfig.value()]
6001                                             ->getVsyncPeriod();
6002         mScheduler->onNonPrimaryDisplayConfigChanged(mAppConnectionHandle, display->getId()->value,
6003                                                      policy->defaultConfig, vsyncPeriod);
6004         return NO_ERROR;
6005     }
6006 
6007     if (mDebugDisplayConfigSetByBackdoor) {
6008         // ignore this request as config is overridden by backdoor
6009         return NO_ERROR;
6010     }
6011 
6012     status_t setPolicyResult = overridePolicy
6013             ? mRefreshRateConfigs->setOverridePolicy(policy)
6014             : mRefreshRateConfigs->setDisplayManagerPolicy(*policy);
6015     if (setPolicyResult < 0) {
6016         return BAD_VALUE;
6017     }
6018     if (setPolicyResult == scheduler::RefreshRateConfigs::CURRENT_POLICY_UNCHANGED) {
6019         return NO_ERROR;
6020     }
6021     scheduler::RefreshRateConfigs::Policy currentPolicy = mRefreshRateConfigs->getCurrentPolicy();
6022 
6023     ALOGV("Setting desired display config specs: defaultConfig: %d primaryRange: [%.0f %.0f]"
6024           " expandedRange: [%.0f %.0f]",
6025           currentPolicy.defaultConfig.value(), currentPolicy.primaryRange.min,
6026           currentPolicy.primaryRange.max, currentPolicy.appRequestRange.min,
6027           currentPolicy.appRequestRange.max);
6028 
6029     // TODO(b/140204874): Leave the event in until we do proper testing with all apps that might
6030     // be depending in this callback.
6031     const nsecs_t vsyncPeriod =
6032             mRefreshRateConfigs->getRefreshRateFromConfigId(display->getActiveConfig())
6033                     .getVsyncPeriod();
6034     mScheduler->onPrimaryDisplayConfigChanged(mAppConnectionHandle, display->getId()->value,
6035                                               display->getActiveConfig(), vsyncPeriod);
6036     toggleKernelIdleTimer();
6037 
6038     auto configId = mScheduler->getPreferredConfigId();
6039     auto& preferredRefreshRate = configId
6040             ? mRefreshRateConfigs->getRefreshRateFromConfigId(*configId)
6041             // NOTE: Choose the default config ID, if Scheduler doesn't have one in mind.
6042             : mRefreshRateConfigs->getRefreshRateFromConfigId(currentPolicy.defaultConfig);
6043     ALOGV("trying to switch to Scheduler preferred config %d (%s)",
6044           preferredRefreshRate.getConfigId().value(), preferredRefreshRate.getName().c_str());
6045 
6046     if (isDisplayConfigAllowed(preferredRefreshRate.getConfigId())) {
6047         ALOGV("switching to Scheduler preferred config %d",
6048               preferredRefreshRate.getConfigId().value());
6049         setDesiredActiveConfig(
6050                 {preferredRefreshRate.getConfigId(), Scheduler::ConfigEvent::Changed});
6051     } else {
6052         LOG_ALWAYS_FATAL("Desired config not allowed: %d",
6053                          preferredRefreshRate.getConfigId().value());
6054     }
6055 
6056     return NO_ERROR;
6057 }
6058 
setDesiredDisplayConfigSpecs(const sp<IBinder> & displayToken,int32_t defaultConfig,float primaryRefreshRateMin,float primaryRefreshRateMax,float appRequestRefreshRateMin,float appRequestRefreshRateMax)6059 status_t SurfaceFlinger::setDesiredDisplayConfigSpecs(const sp<IBinder>& displayToken,
6060                                                       int32_t defaultConfig,
6061                                                       float primaryRefreshRateMin,
6062                                                       float primaryRefreshRateMax,
6063                                                       float appRequestRefreshRateMin,
6064                                                       float appRequestRefreshRateMax) {
6065     ATRACE_CALL();
6066 
6067     if (!displayToken) {
6068         return BAD_VALUE;
6069     }
6070 
6071     auto future = schedule([=]() -> status_t {
6072         const auto display = ON_MAIN_THREAD(getDisplayDeviceLocked(displayToken));
6073         if (!display) {
6074             ALOGE("Attempt to set desired display configs for invalid display token %p",
6075                   displayToken.get());
6076             return NAME_NOT_FOUND;
6077         } else if (display->isVirtual()) {
6078             ALOGW("Attempt to set desired display configs for virtual display");
6079             return INVALID_OPERATION;
6080         } else {
6081             using Policy = scheduler::RefreshRateConfigs::Policy;
6082             const Policy policy{HwcConfigIndexType(defaultConfig),
6083                                 {primaryRefreshRateMin, primaryRefreshRateMax},
6084                                 {appRequestRefreshRateMin, appRequestRefreshRateMax}};
6085             constexpr bool kOverridePolicy = false;
6086 
6087             return setDesiredDisplayConfigSpecsInternal(display, policy, kOverridePolicy);
6088         }
6089     });
6090 
6091     return future.get();
6092 }
6093 
getDesiredDisplayConfigSpecs(const sp<IBinder> & displayToken,int32_t * outDefaultConfig,float * outPrimaryRefreshRateMin,float * outPrimaryRefreshRateMax,float * outAppRequestRefreshRateMin,float * outAppRequestRefreshRateMax)6094 status_t SurfaceFlinger::getDesiredDisplayConfigSpecs(const sp<IBinder>& displayToken,
6095                                                       int32_t* outDefaultConfig,
6096                                                       float* outPrimaryRefreshRateMin,
6097                                                       float* outPrimaryRefreshRateMax,
6098                                                       float* outAppRequestRefreshRateMin,
6099                                                       float* outAppRequestRefreshRateMax) {
6100     ATRACE_CALL();
6101 
6102     if (!displayToken || !outDefaultConfig || !outPrimaryRefreshRateMin ||
6103         !outPrimaryRefreshRateMax || !outAppRequestRefreshRateMin || !outAppRequestRefreshRateMax) {
6104         return BAD_VALUE;
6105     }
6106 
6107     Mutex::Autolock lock(mStateLock);
6108     const auto display = getDisplayDeviceLocked(displayToken);
6109     if (!display) {
6110         return NAME_NOT_FOUND;
6111     }
6112 
6113     if (display->isPrimary()) {
6114         scheduler::RefreshRateConfigs::Policy policy =
6115                 mRefreshRateConfigs->getDisplayManagerPolicy();
6116         *outDefaultConfig = policy.defaultConfig.value();
6117         *outPrimaryRefreshRateMin = policy.primaryRange.min;
6118         *outPrimaryRefreshRateMax = policy.primaryRange.max;
6119         *outAppRequestRefreshRateMin = policy.appRequestRange.min;
6120         *outAppRequestRefreshRateMax = policy.appRequestRange.max;
6121         return NO_ERROR;
6122     } else if (display->isVirtual()) {
6123         return INVALID_OPERATION;
6124     } else {
6125         const auto displayId = display->getId();
6126         LOG_FATAL_IF(!displayId);
6127 
6128         *outDefaultConfig = getHwComposer().getActiveConfigIndex(*displayId);
6129         auto vsyncPeriod = getHwComposer().getActiveConfig(*displayId)->getVsyncPeriod();
6130         *outPrimaryRefreshRateMin = 1e9f / vsyncPeriod;
6131         *outPrimaryRefreshRateMax = 1e9f / vsyncPeriod;
6132         *outAppRequestRefreshRateMin = 1e9f / vsyncPeriod;
6133         *outAppRequestRefreshRateMax = 1e9f / vsyncPeriod;
6134         return NO_ERROR;
6135     }
6136 }
6137 
onSetInputWindowsFinished()6138 void SurfaceFlinger::SetInputWindowsListener::onSetInputWindowsFinished() {
6139     mFlinger->setInputWindowsFinished();
6140 }
6141 
fromHandle(const sp<IBinder> & handle)6142 wp<Layer> SurfaceFlinger::fromHandle(const sp<IBinder>& handle) {
6143     Mutex::Autolock _l(mStateLock);
6144     return fromHandleLocked(handle);
6145 }
6146 
fromHandleLocked(const sp<IBinder> & handle)6147 wp<Layer> SurfaceFlinger::fromHandleLocked(const sp<IBinder>& handle) {
6148     BBinder* b = nullptr;
6149     if (handle) {
6150         b = handle->localBinder();
6151     }
6152     if (b == nullptr) {
6153         return nullptr;
6154     }
6155     auto it = mLayersByLocalBinderToken.find(b);
6156     if (it != mLayersByLocalBinderToken.end()) {
6157         return it->second;
6158     }
6159     return nullptr;
6160 }
6161 
onLayerFirstRef(Layer * layer)6162 void SurfaceFlinger::onLayerFirstRef(Layer* layer) {
6163     mNumLayers++;
6164     mScheduler->registerLayer(layer);
6165 }
6166 
onLayerDestroyed(Layer * layer)6167 void SurfaceFlinger::onLayerDestroyed(Layer* layer) {
6168     mNumLayers--;
6169     removeFromOffscreenLayers(layer);
6170 }
6171 
6172 // WARNING: ONLY CALL THIS FROM LAYER DTOR
6173 // Here we add children in the current state to offscreen layers and remove the
6174 // layer itself from the offscreen layer list.  Since
6175 // this is the dtor, it is safe to access the current state.  This keeps us
6176 // from dangling children layers such that they are not reachable from the
6177 // Drawing state nor the offscreen layer list
6178 // See b/141111965
removeFromOffscreenLayers(Layer * layer)6179 void SurfaceFlinger::removeFromOffscreenLayers(Layer* layer) {
6180     for (auto& child : layer->getCurrentChildren()) {
6181         mOffscreenLayers.emplace(child.get());
6182     }
6183     mOffscreenLayers.erase(layer);
6184 }
6185 
bufferErased(const client_cache_t & clientCacheId)6186 void SurfaceFlinger::bufferErased(const client_cache_t& clientCacheId) {
6187     getRenderEngine().unbindExternalTextureBuffer(clientCacheId.id);
6188 }
6189 
setGlobalShadowSettings(const half4 & ambientColor,const half4 & spotColor,float lightPosY,float lightPosZ,float lightRadius)6190 status_t SurfaceFlinger::setGlobalShadowSettings(const half4& ambientColor, const half4& spotColor,
6191                                                  float lightPosY, float lightPosZ,
6192                                                  float lightRadius) {
6193     Mutex::Autolock _l(mStateLock);
6194     mCurrentState.globalShadowSettings.ambientColor = vec4(ambientColor);
6195     mCurrentState.globalShadowSettings.spotColor = vec4(spotColor);
6196     mCurrentState.globalShadowSettings.lightPos.y = lightPosY;
6197     mCurrentState.globalShadowSettings.lightPos.z = lightPosZ;
6198     mCurrentState.globalShadowSettings.lightRadius = lightRadius;
6199 
6200     // these values are overridden when calculating the shadow settings for a layer.
6201     mCurrentState.globalShadowSettings.lightPos.x = 0.f;
6202     mCurrentState.globalShadowSettings.length = 0.f;
6203     return NO_ERROR;
6204 }
6205 
getGenericLayerMetadataKeyMap() const6206 const std::unordered_map<std::string, uint32_t>& SurfaceFlinger::getGenericLayerMetadataKeyMap()
6207         const {
6208     // TODO(b/149500060): Remove this fixed/static mapping. Please prefer taking
6209     // on the work to remove the table in that bug rather than adding more to
6210     // it.
6211     static const std::unordered_map<std::string, uint32_t> genericLayerMetadataKeyMap{
6212             // Note: METADATA_OWNER_UID and METADATA_WINDOW_TYPE are officially
6213             // supported, and exposed via the
6214             // IVrComposerClient::VrCommand::SET_LAYER_INFO command.
6215             {"org.chromium.arc.V1_0.TaskId", METADATA_TASK_ID},
6216             {"org.chromium.arc.V1_0.CursorInfo", METADATA_MOUSE_CURSOR},
6217     };
6218     return genericLayerMetadataKeyMap;
6219 }
6220 
setFrameRate(const sp<IGraphicBufferProducer> & surface,float frameRate,int8_t compatibility)6221 status_t SurfaceFlinger::setFrameRate(const sp<IGraphicBufferProducer>& surface, float frameRate,
6222                                       int8_t compatibility) {
6223     if (!ValidateFrameRate(frameRate, compatibility, "SurfaceFlinger::setFrameRate")) {
6224         return BAD_VALUE;
6225     }
6226 
6227     static_cast<void>(schedule([=] {
6228         Mutex::Autolock lock(mStateLock);
6229         if (authenticateSurfaceTextureLocked(surface)) {
6230             sp<Layer> layer = (static_cast<MonitoredProducer*>(surface.get()))->getLayer();
6231             if (layer == nullptr) {
6232                 ALOGE("Attempt to set frame rate on a layer that no longer exists");
6233                 return BAD_VALUE;
6234             }
6235 
6236             if (layer->setFrameRate(
6237                         Layer::FrameRate(frameRate,
6238                                          Layer::FrameRate::convertCompatibility(compatibility)))) {
6239                 setTransactionFlags(eTraversalNeeded);
6240             }
6241         } else {
6242             ALOGE("Attempt to set frame rate on an unrecognized IGraphicBufferProducer");
6243             return BAD_VALUE;
6244         }
6245         return NO_ERROR;
6246     }));
6247 
6248     return NO_ERROR;
6249 }
6250 
acquireFrameRateFlexibilityToken(sp<IBinder> * outToken)6251 status_t SurfaceFlinger::acquireFrameRateFlexibilityToken(sp<IBinder>* outToken) {
6252     if (!outToken) {
6253         return BAD_VALUE;
6254     }
6255 
6256     auto future = schedule([this] {
6257         status_t result = NO_ERROR;
6258         sp<IBinder> token;
6259 
6260         if (mFrameRateFlexibilityTokenCount == 0) {
6261             const auto display = ON_MAIN_THREAD(getDefaultDisplayDeviceLocked());
6262 
6263             // This is a little racy, but not in a way that hurts anything. As we grab the
6264             // defaultConfig from the display manager policy, we could be setting a new display
6265             // manager policy, leaving us using a stale defaultConfig. The defaultConfig doesn't
6266             // matter for the override policy though, since we set allowGroupSwitching to true, so
6267             // it's not a problem.
6268             scheduler::RefreshRateConfigs::Policy overridePolicy;
6269             overridePolicy.defaultConfig =
6270                     mRefreshRateConfigs->getDisplayManagerPolicy().defaultConfig;
6271             overridePolicy.allowGroupSwitching = true;
6272             constexpr bool kOverridePolicy = true;
6273             result = setDesiredDisplayConfigSpecsInternal(display, overridePolicy, kOverridePolicy);
6274         }
6275 
6276         if (result == NO_ERROR) {
6277             mFrameRateFlexibilityTokenCount++;
6278             // Handing out a reference to the SurfaceFlinger object, as we're doing in the line
6279             // below, is something to consider carefully. The lifetime of the
6280             // FrameRateFlexibilityToken isn't tied to SurfaceFlinger object lifetime, so if this
6281             // SurfaceFlinger object were to be destroyed while the token still exists, the token
6282             // destructor would be accessing a stale SurfaceFlinger reference, and crash. This is ok
6283             // in this case, for two reasons:
6284             //   1. Once SurfaceFlinger::run() is called by main_surfaceflinger.cpp, the only way
6285             //   the program exits is via a crash. So we won't have a situation where the
6286             //   SurfaceFlinger object is dead but the process is still up.
6287             //   2. The frame rate flexibility token is acquired/released only by CTS tests, so even
6288             //   if condition 1 were changed, the problem would only show up when running CTS tests,
6289             //   not on end user devices, so we could spot it and fix it without serious impact.
6290             token = new FrameRateFlexibilityToken(
6291                     [this]() { onFrameRateFlexibilityTokenReleased(); });
6292             ALOGD("Frame rate flexibility token acquired. count=%d",
6293                   mFrameRateFlexibilityTokenCount);
6294         }
6295 
6296         return std::make_pair(result, token);
6297     });
6298 
6299     status_t result;
6300     std::tie(result, *outToken) = future.get();
6301     return result;
6302 }
6303 
onFrameRateFlexibilityTokenReleased()6304 void SurfaceFlinger::onFrameRateFlexibilityTokenReleased() {
6305     static_cast<void>(schedule([this] {
6306         LOG_ALWAYS_FATAL_IF(mFrameRateFlexibilityTokenCount == 0,
6307                             "Failed tracking frame rate flexibility tokens");
6308         mFrameRateFlexibilityTokenCount--;
6309         ALOGD("Frame rate flexibility token released. count=%d", mFrameRateFlexibilityTokenCount);
6310         if (mFrameRateFlexibilityTokenCount == 0) {
6311             const auto display = ON_MAIN_THREAD(getDefaultDisplayDeviceLocked());
6312             constexpr bool kOverridePolicy = true;
6313             status_t result = setDesiredDisplayConfigSpecsInternal(display, {}, kOverridePolicy);
6314             LOG_ALWAYS_FATAL_IF(result < 0, "Failed releasing frame rate flexibility token");
6315         }
6316     }));
6317 }
6318 
enableRefreshRateOverlay(bool enable)6319 void SurfaceFlinger::enableRefreshRateOverlay(bool enable) {
6320     static_cast<void>(schedule([=] {
6321         std::unique_ptr<RefreshRateOverlay> overlay;
6322         if (enable) {
6323             overlay = std::make_unique<RefreshRateOverlay>(*this);
6324         }
6325 
6326         {
6327             Mutex::Autolock lock(mStateLock);
6328 
6329             // Destroy the layer of the current overlay, if any, outside the lock.
6330             mRefreshRateOverlay.swap(overlay);
6331             if (!mRefreshRateOverlay) return;
6332 
6333             if (const auto display = getDefaultDisplayDeviceLocked()) {
6334                 mRefreshRateOverlay->setViewport(display->getSize());
6335             }
6336 
6337             mRefreshRateOverlay->changeRefreshRate(mRefreshRateConfigs->getCurrentRefreshRate());
6338         }
6339     }));
6340 }
6341 
6342 } // namespace android
6343 
6344 #if defined(__gl_h_)
6345 #error "don't include gl/gl.h in this file"
6346 #endif
6347 
6348 #if defined(__gl2_h_)
6349 #error "don't include gl2/gl2.h in this file"
6350 #endif
6351 
6352 // TODO(b/129481165): remove the #pragma below and fix conversion issues
6353 #pragma clang diagnostic pop // ignored "-Wconversion"
6354