1 //===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// Armv6 introduced instructions to perform 32-bit SIMD operations. The
12 /// purpose of this pass is do some IR pattern matching to create ACLE
13 /// DSP intrinsics, which map on these 32-bit SIMD operations.
14 /// This pass runs only when unaligned accesses is supported/enabled.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/LoopAccessAnalysis.h"
22 #include "llvm/Analysis/LoopPass.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/NoFolder.h"
26 #include "llvm/Transforms/Scalar.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include "llvm/Transforms/Utils/LoopUtils.h"
29 #include "llvm/Pass.h"
30 #include "llvm/PassRegistry.h"
31 #include "llvm/PassSupport.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/CodeGen/TargetPassConfig.h"
35 #include "ARM.h"
36 #include "ARMSubtarget.h"
37
38 using namespace llvm;
39 using namespace PatternMatch;
40
41 #define DEBUG_TYPE "arm-parallel-dsp"
42
43 STATISTIC(NumSMLAD , "Number of smlad instructions generated");
44
45 namespace {
46 struct OpChain;
47 struct BinOpChain;
48 struct Reduction;
49
50 using OpChainList = SmallVector<std::unique_ptr<OpChain>, 8>;
51 using ReductionList = SmallVector<Reduction, 8>;
52 using ValueList = SmallVector<Value*, 8>;
53 using MemInstList = SmallVector<Instruction*, 8>;
54 using PMACPair = std::pair<BinOpChain*,BinOpChain*>;
55 using PMACPairList = SmallVector<PMACPair, 8>;
56 using Instructions = SmallVector<Instruction*,16>;
57 using MemLocList = SmallVector<MemoryLocation, 4>;
58
59 struct OpChain {
60 Instruction *Root;
61 ValueList AllValues;
62 MemInstList VecLd; // List of all load instructions.
63 MemLocList MemLocs; // All memory locations read by this tree.
64 bool ReadOnly = true;
65
OpChain__anonf7ae656e0111::OpChain66 OpChain(Instruction *I, ValueList &vl) : Root(I), AllValues(vl) { }
67 virtual ~OpChain() = default;
68
SetMemoryLocations__anonf7ae656e0111::OpChain69 void SetMemoryLocations() {
70 const auto Size = MemoryLocation::UnknownSize;
71 for (auto *V : AllValues) {
72 if (auto *I = dyn_cast<Instruction>(V)) {
73 if (I->mayWriteToMemory())
74 ReadOnly = false;
75 if (auto *Ld = dyn_cast<LoadInst>(V))
76 MemLocs.push_back(MemoryLocation(Ld->getPointerOperand(), Size));
77 }
78 }
79 }
80
size__anonf7ae656e0111::OpChain81 unsigned size() const { return AllValues.size(); }
82 };
83
84 // 'BinOpChain' and 'Reduction' are just some bookkeeping data structures.
85 // 'Reduction' contains the phi-node and accumulator statement from where we
86 // start pattern matching, and 'BinOpChain' the multiplication
87 // instructions that are candidates for parallel execution.
88 struct BinOpChain : public OpChain {
89 ValueList LHS; // List of all (narrow) left hand operands.
90 ValueList RHS; // List of all (narrow) right hand operands.
91
BinOpChain__anonf7ae656e0111::BinOpChain92 BinOpChain(Instruction *I, ValueList &lhs, ValueList &rhs) :
93 OpChain(I, lhs), LHS(lhs), RHS(rhs) {
94 for (auto *V : RHS)
95 AllValues.push_back(V);
96 }
97 };
98
99 struct Reduction {
100 PHINode *Phi; // The Phi-node from where we start
101 // pattern matching.
102 Instruction *AccIntAdd; // The accumulating integer add statement,
103 // i.e, the reduction statement.
104
105 OpChainList MACCandidates; // The MAC candidates associated with
106 // this reduction statement.
Reduction__anonf7ae656e0111::Reduction107 Reduction (PHINode *P, Instruction *Acc) : Phi(P), AccIntAdd(Acc) { };
108 };
109
110 class ARMParallelDSP : public LoopPass {
111 ScalarEvolution *SE;
112 AliasAnalysis *AA;
113 TargetLibraryInfo *TLI;
114 DominatorTree *DT;
115 LoopInfo *LI;
116 Loop *L;
117 const DataLayout *DL;
118 Module *M;
119
120 bool InsertParallelMACs(Reduction &Reduction, PMACPairList &PMACPairs);
121 bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem);
122 PMACPairList CreateParallelMACPairs(OpChainList &Candidates);
123 Instruction *CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1,
124 Instruction *Acc, Instruction *InsertAfter);
125
126 /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate
127 /// Dual performs two signed 16x16-bit multiplications. It adds the
128 /// products to a 32-bit accumulate operand. Optionally, the instruction can
129 /// exchange the halfwords of the second operand before performing the
130 /// arithmetic.
131 bool MatchSMLAD(Function &F);
132
133 public:
134 static char ID;
135
ARMParallelDSP()136 ARMParallelDSP() : LoopPass(ID) { }
137
getAnalysisUsage(AnalysisUsage & AU) const138 void getAnalysisUsage(AnalysisUsage &AU) const override {
139 LoopPass::getAnalysisUsage(AU);
140 AU.addRequired<AssumptionCacheTracker>();
141 AU.addRequired<ScalarEvolutionWrapperPass>();
142 AU.addRequired<AAResultsWrapperPass>();
143 AU.addRequired<TargetLibraryInfoWrapperPass>();
144 AU.addRequired<LoopInfoWrapperPass>();
145 AU.addRequired<DominatorTreeWrapperPass>();
146 AU.addRequired<TargetPassConfig>();
147 AU.addPreserved<LoopInfoWrapperPass>();
148 AU.setPreservesCFG();
149 }
150
runOnLoop(Loop * TheLoop,LPPassManager &)151 bool runOnLoop(Loop *TheLoop, LPPassManager &) override {
152 L = TheLoop;
153 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
154 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
155 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
156 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
157 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
158 auto &TPC = getAnalysis<TargetPassConfig>();
159
160 BasicBlock *Header = TheLoop->getHeader();
161 if (!Header)
162 return false;
163
164 // TODO: We assume the loop header and latch to be the same block.
165 // This is not a fundamental restriction, but lifting this would just
166 // require more work to do the transformation and then patch up the CFG.
167 if (Header != TheLoop->getLoopLatch()) {
168 LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not "
169 "running pass ARMParallelDSP\n");
170 return false;
171 }
172
173 Function &F = *Header->getParent();
174 M = F.getParent();
175 DL = &M->getDataLayout();
176
177 auto &TM = TPC.getTM<TargetMachine>();
178 auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
179
180 if (!ST->allowsUnalignedMem()) {
181 LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not "
182 "running pass ARMParallelDSP\n");
183 return false;
184 }
185
186 if (!ST->hasDSP()) {
187 LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass "
188 "ARMParallelDSP\n");
189 return false;
190 }
191
192 LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI);
193 bool Changes = false;
194
195 LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n\n");
196 Changes = MatchSMLAD(F);
197 return Changes;
198 }
199 };
200 }
201
202 // MaxBitwidth: the maximum supported bitwidth of the elements in the DSP
203 // instructions, which is set to 16. So here we should collect all i8 and i16
204 // narrow operations.
205 // TODO: we currently only collect i16, and will support i8 later, so that's
206 // why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth.
207 template<unsigned MaxBitWidth>
IsNarrowSequence(Value * V,ValueList & VL)208 static bool IsNarrowSequence(Value *V, ValueList &VL) {
209 LLVM_DEBUG(dbgs() << "Is narrow sequence? "; V->dump());
210 ConstantInt *CInt;
211
212 if (match(V, m_ConstantInt(CInt))) {
213 // TODO: if a constant is used, it needs to fit within the bit width.
214 return false;
215 }
216
217 auto *I = dyn_cast<Instruction>(V);
218 if (!I)
219 return false;
220
221 Value *Val, *LHS, *RHS;
222 if (match(V, m_Trunc(m_Value(Val)))) {
223 if (cast<TruncInst>(I)->getDestTy()->getIntegerBitWidth() == MaxBitWidth)
224 return IsNarrowSequence<MaxBitWidth>(Val, VL);
225 } else if (match(V, m_Add(m_Value(LHS), m_Value(RHS)))) {
226 // TODO: we need to implement sadd16/sadd8 for this, which enables to
227 // also do the rewrite for smlad8.ll, but it is unsupported for now.
228 LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump());
229 return false;
230 } else if (match(V, m_ZExtOrSExt(m_Value(Val)))) {
231 if (cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) {
232 LLVM_DEBUG(dbgs() << "No, wrong SrcTy size: " <<
233 cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() << "\n");
234 return false;
235 }
236
237 if (match(Val, m_Load(m_Value()))) {
238 LLVM_DEBUG(dbgs() << "Yes, found narrow Load:\t"; Val->dump());
239 VL.push_back(Val);
240 VL.push_back(I);
241 return true;
242 }
243 }
244 LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump());
245 return false;
246 }
247
248 // Element-by-element comparison of Value lists returning true if they are
249 // instructions with the same opcode or constants with the same value.
AreSymmetrical(const ValueList & VL0,const ValueList & VL1)250 static bool AreSymmetrical(const ValueList &VL0,
251 const ValueList &VL1) {
252 if (VL0.size() != VL1.size()) {
253 LLVM_DEBUG(dbgs() << "Muls are mismatching operand list lengths: "
254 << VL0.size() << " != " << VL1.size() << "\n");
255 return false;
256 }
257
258 const unsigned Pairs = VL0.size();
259 LLVM_DEBUG(dbgs() << "Number of operand pairs: " << Pairs << "\n");
260
261 for (unsigned i = 0; i < Pairs; ++i) {
262 const Value *V0 = VL0[i];
263 const Value *V1 = VL1[i];
264 const auto *Inst0 = dyn_cast<Instruction>(V0);
265 const auto *Inst1 = dyn_cast<Instruction>(V1);
266
267 LLVM_DEBUG(dbgs() << "Pair " << i << ":\n";
268 dbgs() << "mul1: "; V0->dump();
269 dbgs() << "mul2: "; V1->dump());
270
271 if (!Inst0 || !Inst1)
272 return false;
273
274 if (Inst0->isSameOperationAs(Inst1)) {
275 LLVM_DEBUG(dbgs() << "OK: same operation found!\n");
276 continue;
277 }
278
279 const APInt *C0, *C1;
280 if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1))
281 return false;
282 }
283
284 LLVM_DEBUG(dbgs() << "OK: found symmetrical operand lists.\n");
285 return true;
286 }
287
288 template<typename MemInst>
AreSequentialAccesses(MemInst * MemOp0,MemInst * MemOp1,MemInstList & VecMem,const DataLayout & DL,ScalarEvolution & SE)289 static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1,
290 MemInstList &VecMem, const DataLayout &DL,
291 ScalarEvolution &SE) {
292 if (!MemOp0->isSimple() || !MemOp1->isSimple()) {
293 LLVM_DEBUG(dbgs() << "No, not touching volatile access\n");
294 return false;
295 }
296 if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) {
297 VecMem.push_back(MemOp0);
298 VecMem.push_back(MemOp1);
299 LLVM_DEBUG(dbgs() << "OK: accesses are consecutive.\n");
300 return true;
301 }
302 LLVM_DEBUG(dbgs() << "No, accesses aren't consecutive.\n");
303 return false;
304 }
305
AreSequentialLoads(LoadInst * Ld0,LoadInst * Ld1,MemInstList & VecMem)306 bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1,
307 MemInstList &VecMem) {
308 if (!Ld0 || !Ld1)
309 return false;
310
311 LLVM_DEBUG(dbgs() << "Are consecutive loads:\n";
312 dbgs() << "Ld0:"; Ld0->dump();
313 dbgs() << "Ld1:"; Ld1->dump();
314 );
315
316 if (!Ld0->hasOneUse() || !Ld1->hasOneUse()) {
317 LLVM_DEBUG(dbgs() << "No, load has more than one use.\n");
318 return false;
319 }
320
321 return AreSequentialAccesses<LoadInst>(Ld0, Ld1, VecMem, *DL, *SE);
322 }
323
324 PMACPairList
CreateParallelMACPairs(OpChainList & Candidates)325 ARMParallelDSP::CreateParallelMACPairs(OpChainList &Candidates) {
326 const unsigned Elems = Candidates.size();
327 PMACPairList PMACPairs;
328
329 if (Elems < 2)
330 return PMACPairs;
331
332 // TODO: for now we simply try to match consecutive pairs i and i+1.
333 // We can compare all elements, but then we need to compare and evaluate
334 // different solutions.
335 for(unsigned i=0; i<Elems-1; i+=2) {
336 BinOpChain *PMul0 = static_cast<BinOpChain*>(Candidates[i].get());
337 BinOpChain *PMul1 = static_cast<BinOpChain*>(Candidates[i+1].get());
338 const Instruction *Mul0 = PMul0->Root;
339 const Instruction *Mul1 = PMul1->Root;
340
341 if (Mul0 == Mul1)
342 continue;
343
344 LLVM_DEBUG(dbgs() << "\nCheck parallel muls:\n";
345 dbgs() << "- "; Mul0->dump();
346 dbgs() << "- "; Mul1->dump());
347
348 const ValueList &Mul0_LHS = PMul0->LHS;
349 const ValueList &Mul0_RHS = PMul0->RHS;
350 const ValueList &Mul1_LHS = PMul1->LHS;
351 const ValueList &Mul1_RHS = PMul1->RHS;
352
353 if (!AreSymmetrical(Mul0_LHS, Mul1_LHS) ||
354 !AreSymmetrical(Mul0_RHS, Mul1_RHS))
355 continue;
356
357 LLVM_DEBUG(dbgs() << "OK: mul operands list match:\n");
358 // The first elements of each vector should be loads with sexts. If we find
359 // that its two pairs of consecutive loads, then these can be transformed
360 // into two wider loads and the users can be replaced with DSP
361 // intrinsics.
362 for (unsigned x = 0; x < Mul0_LHS.size(); x += 2) {
363 auto *Ld0 = dyn_cast<LoadInst>(Mul0_LHS[x]);
364 auto *Ld1 = dyn_cast<LoadInst>(Mul1_LHS[x]);
365 auto *Ld2 = dyn_cast<LoadInst>(Mul0_RHS[x]);
366 auto *Ld3 = dyn_cast<LoadInst>(Mul1_RHS[x]);
367
368 LLVM_DEBUG(dbgs() << "Looking at operands " << x << ":\n";
369 dbgs() << "\t mul1: "; Mul0_LHS[x]->dump();
370 dbgs() << "\t mul2: "; Mul1_LHS[x]->dump();
371 dbgs() << "and operands " << x + 2 << ":\n";
372 dbgs() << "\t mul1: "; Mul0_RHS[x]->dump();
373 dbgs() << "\t mul2: "; Mul1_RHS[x]->dump());
374
375 if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd) &&
376 AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
377 LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
378 PMACPairs.push_back(std::make_pair(PMul0, PMul1));
379 }
380 }
381 }
382 return PMACPairs;
383 }
384
InsertParallelMACs(Reduction & Reduction,PMACPairList & PMACPairs)385 bool ARMParallelDSP::InsertParallelMACs(Reduction &Reduction,
386 PMACPairList &PMACPairs) {
387 Instruction *Acc = Reduction.Phi;
388 Instruction *InsertAfter = Reduction.AccIntAdd;
389
390 for (auto &Pair : PMACPairs) {
391 LLVM_DEBUG(dbgs() << "Found parallel MACs!!\n";
392 dbgs() << "- "; Pair.first->Root->dump();
393 dbgs() << "- "; Pair.second->Root->dump());
394 auto *VecLd0 = cast<LoadInst>(Pair.first->VecLd[0]);
395 auto *VecLd1 = cast<LoadInst>(Pair.second->VecLd[0]);
396 Acc = CreateSMLADCall(VecLd0, VecLd1, Acc, InsertAfter);
397 InsertAfter = Acc;
398 }
399
400 if (Acc != Reduction.Phi) {
401 LLVM_DEBUG(dbgs() << "Replace Accumulate: "; Acc->dump());
402 Reduction.AccIntAdd->replaceAllUsesWith(Acc);
403 return true;
404 }
405 return false;
406 }
407
MatchReductions(Function & F,Loop * TheLoop,BasicBlock * Header,ReductionList & Reductions)408 static void MatchReductions(Function &F, Loop *TheLoop, BasicBlock *Header,
409 ReductionList &Reductions) {
410 RecurrenceDescriptor RecDesc;
411 const bool HasFnNoNaNAttr =
412 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
413 const BasicBlock *Latch = TheLoop->getLoopLatch();
414
415 // We need a preheader as getIncomingValueForBlock assumes there is one.
416 if (!TheLoop->getLoopPreheader()) {
417 LLVM_DEBUG(dbgs() << "No preheader found, bailing out\n");
418 return;
419 }
420
421 for (PHINode &Phi : Header->phis()) {
422 const auto *Ty = Phi.getType();
423 if (!Ty->isIntegerTy(32))
424 continue;
425
426 const bool IsReduction =
427 RecurrenceDescriptor::AddReductionVar(&Phi,
428 RecurrenceDescriptor::RK_IntegerAdd,
429 TheLoop, HasFnNoNaNAttr, RecDesc);
430 if (!IsReduction)
431 continue;
432
433 Instruction *Acc = dyn_cast<Instruction>(Phi.getIncomingValueForBlock(Latch));
434 if (!Acc)
435 continue;
436
437 Reductions.push_back(Reduction(&Phi, Acc));
438 }
439
440 LLVM_DEBUG(
441 dbgs() << "\nAccumulating integer additions (reductions) found:\n";
442 for (auto &R : Reductions) {
443 dbgs() << "- "; R.Phi->dump();
444 dbgs() << "-> "; R.AccIntAdd->dump();
445 }
446 );
447 }
448
AddMACCandidate(OpChainList & Candidates,const Instruction * Acc,Value * MulOp0,Value * MulOp1,int MulOpNum)449 static void AddMACCandidate(OpChainList &Candidates,
450 const Instruction *Acc,
451 Value *MulOp0, Value *MulOp1, int MulOpNum) {
452 Instruction *Mul = dyn_cast<Instruction>(Acc->getOperand(MulOpNum));
453 LLVM_DEBUG(dbgs() << "OK, found acc mul:\t"; Mul->dump());
454 ValueList LHS;
455 ValueList RHS;
456 if (IsNarrowSequence<16>(MulOp0, LHS) &&
457 IsNarrowSequence<16>(MulOp1, RHS)) {
458 LLVM_DEBUG(dbgs() << "OK, found narrow mul: "; Mul->dump());
459 Candidates.push_back(make_unique<BinOpChain>(Mul, LHS, RHS));
460 }
461 }
462
MatchParallelMACSequences(Reduction & R,OpChainList & Candidates)463 static void MatchParallelMACSequences(Reduction &R,
464 OpChainList &Candidates) {
465 const Instruction *Acc = R.AccIntAdd;
466 Value *A, *MulOp0, *MulOp1;
467 LLVM_DEBUG(dbgs() << "\n- Analysing:\t"; Acc->dump());
468
469 // Pattern 1: the accumulator is the RHS of the mul.
470 while(match(Acc, m_Add(m_Mul(m_Value(MulOp0), m_Value(MulOp1)),
471 m_Value(A)))){
472 AddMACCandidate(Candidates, Acc, MulOp0, MulOp1, 0);
473 Acc = dyn_cast<Instruction>(A);
474 }
475 // Pattern 2: the accumulator is the LHS of the mul.
476 while(match(Acc, m_Add(m_Value(A),
477 m_Mul(m_Value(MulOp0), m_Value(MulOp1))))) {
478 AddMACCandidate(Candidates, Acc, MulOp0, MulOp1, 1);
479 Acc = dyn_cast<Instruction>(A);
480 }
481
482 // The last mul in the chain has a slightly different pattern:
483 // the mul is the first operand
484 if (match(Acc, m_Add(m_Mul(m_Value(MulOp0), m_Value(MulOp1)), m_Value(A))))
485 AddMACCandidate(Candidates, Acc, MulOp0, MulOp1, 0);
486
487 // Because we start at the bottom of the chain, and we work our way up,
488 // the muls are added in reverse program order to the list.
489 std::reverse(Candidates.begin(), Candidates.end());
490 }
491
492 // Collects all instructions that are not part of the MAC chains, which is the
493 // set of instructions that can potentially alias with the MAC operands.
AliasCandidates(BasicBlock * Header,Instructions & Reads,Instructions & Writes)494 static void AliasCandidates(BasicBlock *Header, Instructions &Reads,
495 Instructions &Writes) {
496 for (auto &I : *Header) {
497 if (I.mayReadFromMemory())
498 Reads.push_back(&I);
499 if (I.mayWriteToMemory())
500 Writes.push_back(&I);
501 }
502 }
503
504 // Check whether statements in the basic block that write to memory alias with
505 // the memory locations accessed by the MAC-chains.
506 // TODO: we need the read statements when we accept more complicated chains.
AreAliased(AliasAnalysis * AA,Instructions & Reads,Instructions & Writes,OpChainList & MACCandidates)507 static bool AreAliased(AliasAnalysis *AA, Instructions &Reads,
508 Instructions &Writes, OpChainList &MACCandidates) {
509 LLVM_DEBUG(dbgs() << "Alias checks:\n");
510 for (auto &MAC : MACCandidates) {
511 LLVM_DEBUG(dbgs() << "mul: "; MAC->Root->dump());
512
513 // At the moment, we allow only simple chains that only consist of reads,
514 // accumulate their result with an integer add, and thus that don't write
515 // memory, and simply bail if they do.
516 if (!MAC->ReadOnly)
517 return true;
518
519 // Now for all writes in the basic block, check that they don't alias with
520 // the memory locations accessed by our MAC-chain:
521 for (auto *I : Writes) {
522 LLVM_DEBUG(dbgs() << "- "; I->dump());
523 assert(MAC->MemLocs.size() >= 2 && "expecting at least 2 memlocs");
524 for (auto &MemLoc : MAC->MemLocs) {
525 if (isModOrRefSet(intersectModRef(AA->getModRefInfo(I, MemLoc),
526 ModRefInfo::ModRef))) {
527 LLVM_DEBUG(dbgs() << "Yes, aliases found\n");
528 return true;
529 }
530 }
531 }
532 }
533
534 LLVM_DEBUG(dbgs() << "OK: no aliases found!\n");
535 return false;
536 }
537
CheckMACMemory(OpChainList & Candidates)538 static bool CheckMACMemory(OpChainList &Candidates) {
539 for (auto &C : Candidates) {
540 // A mul has 2 operands, and a narrow op consist of sext and a load; thus
541 // we expect at least 4 items in this operand value list.
542 if (C->size() < 4) {
543 LLVM_DEBUG(dbgs() << "Operand list too short.\n");
544 return false;
545 }
546 C->SetMemoryLocations();
547 ValueList &LHS = static_cast<BinOpChain*>(C.get())->LHS;
548 ValueList &RHS = static_cast<BinOpChain*>(C.get())->RHS;
549
550 // Use +=2 to skip over the expected extend instructions.
551 for (unsigned i = 0, e = LHS.size(); i < e; i += 2) {
552 if (!isa<LoadInst>(LHS[i]) || !isa<LoadInst>(RHS[i]))
553 return false;
554 }
555 }
556 return true;
557 }
558
559 // Loop Pass that needs to identify integer add/sub reductions of 16-bit vector
560 // multiplications.
561 // To use SMLAD:
562 // 1) we first need to find integer add reduction PHIs,
563 // 2) then from the PHI, look for this pattern:
564 //
565 // acc0 = phi i32 [0, %entry], [%acc1, %loop.body]
566 // ld0 = load i16
567 // sext0 = sext i16 %ld0 to i32
568 // ld1 = load i16
569 // sext1 = sext i16 %ld1 to i32
570 // mul0 = mul %sext0, %sext1
571 // ld2 = load i16
572 // sext2 = sext i16 %ld2 to i32
573 // ld3 = load i16
574 // sext3 = sext i16 %ld3 to i32
575 // mul1 = mul i32 %sext2, %sext3
576 // add0 = add i32 %mul0, %acc0
577 // acc1 = add i32 %add0, %mul1
578 //
579 // Which can be selected to:
580 //
581 // ldr.h r0
582 // ldr.h r1
583 // smlad r2, r0, r1, r2
584 //
585 // If constants are used instead of loads, these will need to be hoisted
586 // out and into a register.
587 //
588 // If loop invariants are used instead of loads, these need to be packed
589 // before the loop begins.
590 //
MatchSMLAD(Function & F)591 bool ARMParallelDSP::MatchSMLAD(Function &F) {
592 BasicBlock *Header = L->getHeader();
593 LLVM_DEBUG(dbgs() << "= Matching SMLAD =\n";
594 dbgs() << "Header block:\n"; Header->dump();
595 dbgs() << "Loop info:\n\n"; L->dump());
596
597 bool Changed = false;
598 ReductionList Reductions;
599 MatchReductions(F, L, Header, Reductions);
600
601 for (auto &R : Reductions) {
602 OpChainList MACCandidates;
603 MatchParallelMACSequences(R, MACCandidates);
604 if (!CheckMACMemory(MACCandidates))
605 continue;
606
607 R.MACCandidates = std::move(MACCandidates);
608
609 LLVM_DEBUG(dbgs() << "MAC candidates:\n";
610 for (auto &M : R.MACCandidates)
611 M->Root->dump();
612 dbgs() << "\n";);
613 }
614
615 // Collect all instructions that may read or write memory. Our alias
616 // analysis checks bail out if any of these instructions aliases with an
617 // instruction from the MAC-chain.
618 Instructions Reads, Writes;
619 AliasCandidates(Header, Reads, Writes);
620
621 for (auto &R : Reductions) {
622 if (AreAliased(AA, Reads, Writes, R.MACCandidates))
623 return false;
624 PMACPairList PMACPairs = CreateParallelMACPairs(R.MACCandidates);
625 Changed |= InsertParallelMACs(R, PMACPairs);
626 }
627
628 LLVM_DEBUG(if (Changed) dbgs() << "Header block:\n"; Header->dump(););
629 return Changed;
630 }
631
CreateLoadIns(IRBuilder<NoFolder> & IRB,Instruction * Acc,LoadInst ** VecLd)632 static void CreateLoadIns(IRBuilder<NoFolder> &IRB, Instruction *Acc,
633 LoadInst **VecLd) {
634 const Type *AccTy = Acc->getType();
635 const unsigned AddrSpace = (*VecLd)->getPointerAddressSpace();
636
637 Value *VecPtr = IRB.CreateBitCast((*VecLd)->getPointerOperand(),
638 AccTy->getPointerTo(AddrSpace));
639 *VecLd = IRB.CreateAlignedLoad(VecPtr, (*VecLd)->getAlignment());
640 }
641
CreateSMLADCall(LoadInst * VecLd0,LoadInst * VecLd1,Instruction * Acc,Instruction * InsertAfter)642 Instruction *ARMParallelDSP::CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1,
643 Instruction *Acc,
644 Instruction *InsertAfter) {
645 LLVM_DEBUG(dbgs() << "Create SMLAD intrinsic using:\n";
646 dbgs() << "- "; VecLd0->dump();
647 dbgs() << "- "; VecLd1->dump();
648 dbgs() << "- "; Acc->dump());
649
650 IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
651 ++BasicBlock::iterator(InsertAfter));
652
653 // Replace the reduction chain with an intrinsic call
654 CreateLoadIns(Builder, Acc, &VecLd0);
655 CreateLoadIns(Builder, Acc, &VecLd1);
656 Value* Args[] = { VecLd0, VecLd1, Acc };
657 Function *SMLAD = Intrinsic::getDeclaration(M, Intrinsic::arm_smlad);
658 CallInst *Call = Builder.CreateCall(SMLAD, Args);
659 NumSMLAD++;
660 return Call;
661 }
662
createARMParallelDSPPass()663 Pass *llvm::createARMParallelDSPPass() {
664 return new ARMParallelDSP();
665 }
666
667 char ARMParallelDSP::ID = 0;
668
669 INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp",
670 "Transform loops to use DSP intrinsics", false, false)
671 INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp",
672 "Transform loops to use DSP intrinsics", false, false)
673