1 /* 2 * Wrapper functions for crypto libraries 3 * Copyright (c) 2004-2017, Jouni Malinen <j@w1.fi> 4 * 5 * This software may be distributed under the terms of the BSD license. 6 * See README for more details. 7 * 8 * This file defines the cryptographic functions that need to be implemented 9 * for wpa_supplicant and hostapd. When TLS is not used, internal 10 * implementation of MD5, SHA1, and AES is used and no external libraries are 11 * required. When TLS is enabled (e.g., by enabling EAP-TLS or EAP-PEAP), the 12 * crypto library used by the TLS implementation is expected to be used for 13 * non-TLS needs, too, in order to save space by not implementing these 14 * functions twice. 15 * 16 * Wrapper code for using each crypto library is in its own file (crypto*.c) 17 * and one of these files is build and linked in to provide the functions 18 * defined here. 19 */ 20 21 #ifndef CRYPTO_H 22 #define CRYPTO_H 23 24 /** 25 * md4_vector - MD4 hash for data vector 26 * @num_elem: Number of elements in the data vector 27 * @addr: Pointers to the data areas 28 * @len: Lengths of the data blocks 29 * @mac: Buffer for the hash 30 * Returns: 0 on success, -1 on failure 31 */ 32 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac); 33 34 /** 35 * md5_vector - MD5 hash for data vector 36 * @num_elem: Number of elements in the data vector 37 * @addr: Pointers to the data areas 38 * @len: Lengths of the data blocks 39 * @mac: Buffer for the hash 40 * Returns: 0 on success, -1 on failure 41 */ 42 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac); 43 44 45 /** 46 * sha1_vector - SHA-1 hash for data vector 47 * @num_elem: Number of elements in the data vector 48 * @addr: Pointers to the data areas 49 * @len: Lengths of the data blocks 50 * @mac: Buffer for the hash 51 * Returns: 0 on success, -1 on failure 52 */ 53 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, 54 u8 *mac); 55 56 /** 57 * fips186_2-prf - NIST FIPS Publication 186-2 change notice 1 PRF 58 * @seed: Seed/key for the PRF 59 * @seed_len: Seed length in bytes 60 * @x: Buffer for PRF output 61 * @xlen: Output length in bytes 62 * Returns: 0 on success, -1 on failure 63 * 64 * This function implements random number generation specified in NIST FIPS 65 * Publication 186-2 for EAP-SIM. This PRF uses a function that is similar to 66 * SHA-1, but has different message padding. 67 */ 68 int __must_check fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x, 69 size_t xlen); 70 71 /** 72 * sha256_vector - SHA256 hash for data vector 73 * @num_elem: Number of elements in the data vector 74 * @addr: Pointers to the data areas 75 * @len: Lengths of the data blocks 76 * @mac: Buffer for the hash 77 * Returns: 0 on success, -1 on failure 78 */ 79 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len, 80 u8 *mac); 81 82 /** 83 * sha384_vector - SHA384 hash for data vector 84 * @num_elem: Number of elements in the data vector 85 * @addr: Pointers to the data areas 86 * @len: Lengths of the data blocks 87 * @mac: Buffer for the hash 88 * Returns: 0 on success, -1 on failure 89 */ 90 int sha384_vector(size_t num_elem, const u8 *addr[], const size_t *len, 91 u8 *mac); 92 93 /** 94 * sha512_vector - SHA512 hash for data vector 95 * @num_elem: Number of elements in the data vector 96 * @addr: Pointers to the data areas 97 * @len: Lengths of the data blocks 98 * @mac: Buffer for the hash 99 * Returns: 0 on success, -1 on failure 100 */ 101 int sha512_vector(size_t num_elem, const u8 *addr[], const size_t *len, 102 u8 *mac); 103 104 /** 105 * des_encrypt - Encrypt one block with DES 106 * @clear: 8 octets (in) 107 * @key: 7 octets (in) (no parity bits included) 108 * @cypher: 8 octets (out) 109 * Returns: 0 on success, -1 on failure 110 */ 111 int des_encrypt(const u8 *clear, const u8 *key, u8 *cypher); 112 113 /** 114 * aes_encrypt_init - Initialize AES for encryption 115 * @key: Encryption key 116 * @len: Key length in bytes (usually 16, i.e., 128 bits) 117 * Returns: Pointer to context data or %NULL on failure 118 */ 119 void * aes_encrypt_init(const u8 *key, size_t len); 120 121 /** 122 * aes_encrypt - Encrypt one AES block 123 * @ctx: Context pointer from aes_encrypt_init() 124 * @plain: Plaintext data to be encrypted (16 bytes) 125 * @crypt: Buffer for the encrypted data (16 bytes) 126 * Returns: 0 on success, -1 on failure 127 */ 128 int aes_encrypt(void *ctx, const u8 *plain, u8 *crypt); 129 130 /** 131 * aes_encrypt_deinit - Deinitialize AES encryption 132 * @ctx: Context pointer from aes_encrypt_init() 133 */ 134 void aes_encrypt_deinit(void *ctx); 135 136 /** 137 * aes_decrypt_init - Initialize AES for decryption 138 * @key: Decryption key 139 * @len: Key length in bytes (usually 16, i.e., 128 bits) 140 * Returns: Pointer to context data or %NULL on failure 141 */ 142 void * aes_decrypt_init(const u8 *key, size_t len); 143 144 /** 145 * aes_decrypt - Decrypt one AES block 146 * @ctx: Context pointer from aes_encrypt_init() 147 * @crypt: Encrypted data (16 bytes) 148 * @plain: Buffer for the decrypted data (16 bytes) 149 * Returns: 0 on success, -1 on failure 150 */ 151 int aes_decrypt(void *ctx, const u8 *crypt, u8 *plain); 152 153 /** 154 * aes_decrypt_deinit - Deinitialize AES decryption 155 * @ctx: Context pointer from aes_encrypt_init() 156 */ 157 void aes_decrypt_deinit(void *ctx); 158 159 160 enum crypto_hash_alg { 161 CRYPTO_HASH_ALG_MD5, CRYPTO_HASH_ALG_SHA1, 162 CRYPTO_HASH_ALG_HMAC_MD5, CRYPTO_HASH_ALG_HMAC_SHA1, 163 CRYPTO_HASH_ALG_SHA256, CRYPTO_HASH_ALG_HMAC_SHA256, 164 CRYPTO_HASH_ALG_SHA384, CRYPTO_HASH_ALG_SHA512 165 }; 166 167 struct crypto_hash; 168 169 /** 170 * crypto_hash_init - Initialize hash/HMAC function 171 * @alg: Hash algorithm 172 * @key: Key for keyed hash (e.g., HMAC) or %NULL if not needed 173 * @key_len: Length of the key in bytes 174 * Returns: Pointer to hash context to use with other hash functions or %NULL 175 * on failure 176 * 177 * This function is only used with internal TLSv1 implementation 178 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 179 * to implement this. 180 */ 181 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key, 182 size_t key_len); 183 184 /** 185 * crypto_hash_update - Add data to hash calculation 186 * @ctx: Context pointer from crypto_hash_init() 187 * @data: Data buffer to add 188 * @len: Length of the buffer 189 * 190 * This function is only used with internal TLSv1 implementation 191 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 192 * to implement this. 193 */ 194 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len); 195 196 /** 197 * crypto_hash_finish - Complete hash calculation 198 * @ctx: Context pointer from crypto_hash_init() 199 * @hash: Buffer for hash value or %NULL if caller is just freeing the hash 200 * context 201 * @len: Pointer to length of the buffer or %NULL if caller is just freeing the 202 * hash context; on return, this is set to the actual length of the hash value 203 * Returns: 0 on success, -1 if buffer is too small (len set to needed length), 204 * or -2 on other failures (including failed crypto_hash_update() operations) 205 * 206 * This function calculates the hash value and frees the context buffer that 207 * was used for hash calculation. 208 * 209 * This function is only used with internal TLSv1 implementation 210 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 211 * to implement this. 212 */ 213 int crypto_hash_finish(struct crypto_hash *ctx, u8 *hash, size_t *len); 214 215 216 enum crypto_cipher_alg { 217 CRYPTO_CIPHER_NULL = 0, CRYPTO_CIPHER_ALG_AES, CRYPTO_CIPHER_ALG_3DES, 218 CRYPTO_CIPHER_ALG_DES, CRYPTO_CIPHER_ALG_RC2, CRYPTO_CIPHER_ALG_RC4 219 }; 220 221 struct crypto_cipher; 222 223 /** 224 * crypto_cipher_init - Initialize block/stream cipher function 225 * @alg: Cipher algorithm 226 * @iv: Initialization vector for block ciphers or %NULL for stream ciphers 227 * @key: Cipher key 228 * @key_len: Length of key in bytes 229 * Returns: Pointer to cipher context to use with other cipher functions or 230 * %NULL on failure 231 * 232 * This function is only used with internal TLSv1 implementation 233 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 234 * to implement this. 235 */ 236 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg, 237 const u8 *iv, const u8 *key, 238 size_t key_len); 239 240 /** 241 * crypto_cipher_encrypt - Cipher encrypt 242 * @ctx: Context pointer from crypto_cipher_init() 243 * @plain: Plaintext to cipher 244 * @crypt: Resulting ciphertext 245 * @len: Length of the plaintext 246 * Returns: 0 on success, -1 on failure 247 * 248 * This function is only used with internal TLSv1 implementation 249 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 250 * to implement this. 251 */ 252 int __must_check crypto_cipher_encrypt(struct crypto_cipher *ctx, 253 const u8 *plain, u8 *crypt, size_t len); 254 255 /** 256 * crypto_cipher_decrypt - Cipher decrypt 257 * @ctx: Context pointer from crypto_cipher_init() 258 * @crypt: Ciphertext to decrypt 259 * @plain: Resulting plaintext 260 * @len: Length of the cipher text 261 * Returns: 0 on success, -1 on failure 262 * 263 * This function is only used with internal TLSv1 implementation 264 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 265 * to implement this. 266 */ 267 int __must_check crypto_cipher_decrypt(struct crypto_cipher *ctx, 268 const u8 *crypt, u8 *plain, size_t len); 269 270 /** 271 * crypto_cipher_decrypt - Free cipher context 272 * @ctx: Context pointer from crypto_cipher_init() 273 * 274 * This function is only used with internal TLSv1 implementation 275 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 276 * to implement this. 277 */ 278 void crypto_cipher_deinit(struct crypto_cipher *ctx); 279 280 281 struct crypto_public_key; 282 struct crypto_private_key; 283 284 /** 285 * crypto_public_key_import - Import an RSA public key 286 * @key: Key buffer (DER encoded RSA public key) 287 * @len: Key buffer length in bytes 288 * Returns: Pointer to the public key or %NULL on failure 289 * 290 * This function can just return %NULL if the crypto library supports X.509 291 * parsing. In that case, crypto_public_key_from_cert() is used to import the 292 * public key from a certificate. 293 * 294 * This function is only used with internal TLSv1 implementation 295 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 296 * to implement this. 297 */ 298 struct crypto_public_key * crypto_public_key_import(const u8 *key, size_t len); 299 300 struct crypto_public_key * 301 crypto_public_key_import_parts(const u8 *n, size_t n_len, 302 const u8 *e, size_t e_len); 303 304 /** 305 * crypto_private_key_import - Import an RSA private key 306 * @key: Key buffer (DER encoded RSA private key) 307 * @len: Key buffer length in bytes 308 * @passwd: Key encryption password or %NULL if key is not encrypted 309 * Returns: Pointer to the private key or %NULL on failure 310 * 311 * This function is only used with internal TLSv1 implementation 312 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 313 * to implement this. 314 */ 315 struct crypto_private_key * crypto_private_key_import(const u8 *key, 316 size_t len, 317 const char *passwd); 318 319 /** 320 * crypto_public_key_from_cert - Import an RSA public key from a certificate 321 * @buf: DER encoded X.509 certificate 322 * @len: Certificate buffer length in bytes 323 * Returns: Pointer to public key or %NULL on failure 324 * 325 * This function can just return %NULL if the crypto library does not support 326 * X.509 parsing. In that case, internal code will be used to parse the 327 * certificate and public key is imported using crypto_public_key_import(). 328 * 329 * This function is only used with internal TLSv1 implementation 330 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 331 * to implement this. 332 */ 333 struct crypto_public_key * crypto_public_key_from_cert(const u8 *buf, 334 size_t len); 335 336 /** 337 * crypto_public_key_encrypt_pkcs1_v15 - Public key encryption (PKCS #1 v1.5) 338 * @key: Public key 339 * @in: Plaintext buffer 340 * @inlen: Length of plaintext buffer in bytes 341 * @out: Output buffer for encrypted data 342 * @outlen: Length of output buffer in bytes; set to used length on success 343 * Returns: 0 on success, -1 on failure 344 * 345 * This function is only used with internal TLSv1 implementation 346 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 347 * to implement this. 348 */ 349 int __must_check crypto_public_key_encrypt_pkcs1_v15( 350 struct crypto_public_key *key, const u8 *in, size_t inlen, 351 u8 *out, size_t *outlen); 352 353 /** 354 * crypto_private_key_decrypt_pkcs1_v15 - Private key decryption (PKCS #1 v1.5) 355 * @key: Private key 356 * @in: Encrypted buffer 357 * @inlen: Length of encrypted buffer in bytes 358 * @out: Output buffer for encrypted data 359 * @outlen: Length of output buffer in bytes; set to used length on success 360 * Returns: 0 on success, -1 on failure 361 * 362 * This function is only used with internal TLSv1 implementation 363 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 364 * to implement this. 365 */ 366 int __must_check crypto_private_key_decrypt_pkcs1_v15( 367 struct crypto_private_key *key, const u8 *in, size_t inlen, 368 u8 *out, size_t *outlen); 369 370 /** 371 * crypto_private_key_sign_pkcs1 - Sign with private key (PKCS #1) 372 * @key: Private key from crypto_private_key_import() 373 * @in: Plaintext buffer 374 * @inlen: Length of plaintext buffer in bytes 375 * @out: Output buffer for encrypted (signed) data 376 * @outlen: Length of output buffer in bytes; set to used length on success 377 * Returns: 0 on success, -1 on failure 378 * 379 * This function is only used with internal TLSv1 implementation 380 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 381 * to implement this. 382 */ 383 int __must_check crypto_private_key_sign_pkcs1(struct crypto_private_key *key, 384 const u8 *in, size_t inlen, 385 u8 *out, size_t *outlen); 386 387 /** 388 * crypto_public_key_free - Free public key 389 * @key: Public key 390 * 391 * This function is only used with internal TLSv1 implementation 392 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 393 * to implement this. 394 */ 395 void crypto_public_key_free(struct crypto_public_key *key); 396 397 /** 398 * crypto_private_key_free - Free private key 399 * @key: Private key from crypto_private_key_import() 400 * 401 * This function is only used with internal TLSv1 implementation 402 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 403 * to implement this. 404 */ 405 void crypto_private_key_free(struct crypto_private_key *key); 406 407 /** 408 * crypto_public_key_decrypt_pkcs1 - Decrypt PKCS #1 signature 409 * @key: Public key 410 * @crypt: Encrypted signature data (using the private key) 411 * @crypt_len: Encrypted signature data length 412 * @plain: Buffer for plaintext (at least crypt_len bytes) 413 * @plain_len: Plaintext length (max buffer size on input, real len on output); 414 * Returns: 0 on success, -1 on failure 415 */ 416 int __must_check crypto_public_key_decrypt_pkcs1( 417 struct crypto_public_key *key, const u8 *crypt, size_t crypt_len, 418 u8 *plain, size_t *plain_len); 419 420 int crypto_dh_init(u8 generator, const u8 *prime, size_t prime_len, u8 *privkey, 421 u8 *pubkey); 422 int crypto_dh_derive_secret(u8 generator, const u8 *prime, size_t prime_len, 423 const u8 *order, size_t order_len, 424 const u8 *privkey, size_t privkey_len, 425 const u8 *pubkey, size_t pubkey_len, 426 u8 *secret, size_t *len); 427 428 /** 429 * crypto_global_init - Initialize crypto wrapper 430 * 431 * This function is only used with internal TLSv1 implementation 432 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 433 * to implement this. 434 */ 435 int __must_check crypto_global_init(void); 436 437 /** 438 * crypto_global_deinit - Deinitialize crypto wrapper 439 * 440 * This function is only used with internal TLSv1 implementation 441 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 442 * to implement this. 443 */ 444 void crypto_global_deinit(void); 445 446 /** 447 * crypto_mod_exp - Modular exponentiation of large integers 448 * @base: Base integer (big endian byte array) 449 * @base_len: Length of base integer in bytes 450 * @power: Power integer (big endian byte array) 451 * @power_len: Length of power integer in bytes 452 * @modulus: Modulus integer (big endian byte array) 453 * @modulus_len: Length of modulus integer in bytes 454 * @result: Buffer for the result 455 * @result_len: Result length (max buffer size on input, real len on output) 456 * Returns: 0 on success, -1 on failure 457 * 458 * This function calculates result = base ^ power mod modulus. modules_len is 459 * used as the maximum size of modulus buffer. It is set to the used size on 460 * success. 461 * 462 * This function is only used with internal TLSv1 implementation 463 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 464 * to implement this. 465 */ 466 int __must_check crypto_mod_exp(const u8 *base, size_t base_len, 467 const u8 *power, size_t power_len, 468 const u8 *modulus, size_t modulus_len, 469 u8 *result, size_t *result_len); 470 471 /** 472 * rc4_skip - XOR RC4 stream to given data with skip-stream-start 473 * @key: RC4 key 474 * @keylen: RC4 key length 475 * @skip: number of bytes to skip from the beginning of the RC4 stream 476 * @data: data to be XOR'ed with RC4 stream 477 * @data_len: buf length 478 * Returns: 0 on success, -1 on failure 479 * 480 * Generate RC4 pseudo random stream for the given key, skip beginning of the 481 * stream, and XOR the end result with the data buffer to perform RC4 482 * encryption/decryption. 483 */ 484 int rc4_skip(const u8 *key, size_t keylen, size_t skip, 485 u8 *data, size_t data_len); 486 487 /** 488 * crypto_get_random - Generate cryptographically strong pseudo-random bytes 489 * @buf: Buffer for data 490 * @len: Number of bytes to generate 491 * Returns: 0 on success, -1 on failure 492 * 493 * If the PRNG does not have enough entropy to ensure unpredictable byte 494 * sequence, this functions must return -1. 495 */ 496 int crypto_get_random(void *buf, size_t len); 497 498 499 /** 500 * struct crypto_bignum - bignum 501 * 502 * Internal data structure for bignum implementation. The contents is specific 503 * to the used crypto library. 504 */ 505 struct crypto_bignum; 506 507 /** 508 * crypto_bignum_init - Allocate memory for bignum 509 * Returns: Pointer to allocated bignum or %NULL on failure 510 */ 511 struct crypto_bignum * crypto_bignum_init(void); 512 513 /** 514 * crypto_bignum_init_set - Allocate memory for bignum and set the value 515 * @buf: Buffer with unsigned binary value 516 * @len: Length of buf in octets 517 * Returns: Pointer to allocated bignum or %NULL on failure 518 */ 519 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len); 520 521 /** 522 * crypto_bignum_init_set - Allocate memory for bignum and set the value (uint) 523 * @val: Value to set 524 * Returns: Pointer to allocated bignum or %NULL on failure 525 */ 526 struct crypto_bignum * crypto_bignum_init_uint(unsigned int val); 527 528 /** 529 * crypto_bignum_deinit - Free bignum 530 * @n: Bignum from crypto_bignum_init() or crypto_bignum_init_set() 531 * @clear: Whether to clear the value from memory 532 */ 533 void crypto_bignum_deinit(struct crypto_bignum *n, int clear); 534 535 /** 536 * crypto_bignum_to_bin - Set binary buffer to unsigned bignum 537 * @a: Bignum 538 * @buf: Buffer for the binary number 539 * @len: Length of @buf in octets 540 * @padlen: Length in octets to pad the result to or 0 to indicate no padding 541 * Returns: Number of octets written on success, -1 on failure 542 */ 543 int crypto_bignum_to_bin(const struct crypto_bignum *a, 544 u8 *buf, size_t buflen, size_t padlen); 545 546 /** 547 * crypto_bignum_rand - Create a random number in range of modulus 548 * @r: Bignum; set to a random value 549 * @m: Bignum; modulus 550 * Returns: 0 on success, -1 on failure 551 */ 552 int crypto_bignum_rand(struct crypto_bignum *r, const struct crypto_bignum *m); 553 554 /** 555 * crypto_bignum_add - c = a + b 556 * @a: Bignum 557 * @b: Bignum 558 * @c: Bignum; used to store the result of a + b 559 * Returns: 0 on success, -1 on failure 560 */ 561 int crypto_bignum_add(const struct crypto_bignum *a, 562 const struct crypto_bignum *b, 563 struct crypto_bignum *c); 564 565 /** 566 * crypto_bignum_mod - c = a % b 567 * @a: Bignum 568 * @b: Bignum 569 * @c: Bignum; used to store the result of a % b 570 * Returns: 0 on success, -1 on failure 571 */ 572 int crypto_bignum_mod(const struct crypto_bignum *a, 573 const struct crypto_bignum *b, 574 struct crypto_bignum *c); 575 576 /** 577 * crypto_bignum_exptmod - Modular exponentiation: d = a^b (mod c) 578 * @a: Bignum; base 579 * @b: Bignum; exponent 580 * @c: Bignum; modulus 581 * @d: Bignum; used to store the result of a^b (mod c) 582 * Returns: 0 on success, -1 on failure 583 */ 584 int crypto_bignum_exptmod(const struct crypto_bignum *a, 585 const struct crypto_bignum *b, 586 const struct crypto_bignum *c, 587 struct crypto_bignum *d); 588 589 /** 590 * crypto_bignum_inverse - Inverse a bignum so that a * c = 1 (mod b) 591 * @a: Bignum 592 * @b: Bignum 593 * @c: Bignum; used to store the result 594 * Returns: 0 on success, -1 on failure 595 */ 596 int crypto_bignum_inverse(const struct crypto_bignum *a, 597 const struct crypto_bignum *b, 598 struct crypto_bignum *c); 599 600 /** 601 * crypto_bignum_sub - c = a - b 602 * @a: Bignum 603 * @b: Bignum 604 * @c: Bignum; used to store the result of a - b 605 * Returns: 0 on success, -1 on failure 606 */ 607 int crypto_bignum_sub(const struct crypto_bignum *a, 608 const struct crypto_bignum *b, 609 struct crypto_bignum *c); 610 611 /** 612 * crypto_bignum_div - c = a / b 613 * @a: Bignum 614 * @b: Bignum 615 * @c: Bignum; used to store the result of a / b 616 * Returns: 0 on success, -1 on failure 617 */ 618 int crypto_bignum_div(const struct crypto_bignum *a, 619 const struct crypto_bignum *b, 620 struct crypto_bignum *c); 621 622 /** 623 * crypto_bignum_addmod - d = a + b (mod c) 624 * @a: Bignum 625 * @b: Bignum 626 * @c: Bignum 627 * @d: Bignum; used to store the result of (a + b) % c 628 * Returns: 0 on success, -1 on failure 629 */ 630 int crypto_bignum_addmod(const struct crypto_bignum *a, 631 const struct crypto_bignum *b, 632 const struct crypto_bignum *c, 633 struct crypto_bignum *d); 634 635 /** 636 * crypto_bignum_mulmod - d = a * b (mod c) 637 * @a: Bignum 638 * @b: Bignum 639 * @c: Bignum 640 * @d: Bignum; used to store the result of (a * b) % c 641 * Returns: 0 on success, -1 on failure 642 */ 643 int crypto_bignum_mulmod(const struct crypto_bignum *a, 644 const struct crypto_bignum *b, 645 const struct crypto_bignum *c, 646 struct crypto_bignum *d); 647 648 /** 649 * crypto_bignum_sqrmod - c = a^2 (mod b) 650 * @a: Bignum 651 * @b: Bignum 652 * @c: Bignum; used to store the result of a^2 % b 653 * Returns: 0 on success, -1 on failure 654 */ 655 int crypto_bignum_sqrmod(const struct crypto_bignum *a, 656 const struct crypto_bignum *b, 657 struct crypto_bignum *c); 658 659 /** 660 * crypto_bignum_rshift - r = a >> n 661 * @a: Bignum 662 * @n: Number of bits 663 * @r: Bignum; used to store the result of a >> n 664 * Returns: 0 on success, -1 on failure 665 */ 666 int crypto_bignum_rshift(const struct crypto_bignum *a, int n, 667 struct crypto_bignum *r); 668 669 /** 670 * crypto_bignum_cmp - Compare two bignums 671 * @a: Bignum 672 * @b: Bignum 673 * Returns: -1 if a < b, 0 if a == b, or 1 if a > b 674 */ 675 int crypto_bignum_cmp(const struct crypto_bignum *a, 676 const struct crypto_bignum *b); 677 678 /** 679 * crypto_bignum_is_zero - Is the given bignum zero 680 * @a: Bignum 681 * Returns: 1 if @a is zero or 0 if not 682 */ 683 int crypto_bignum_is_zero(const struct crypto_bignum *a); 684 685 /** 686 * crypto_bignum_is_one - Is the given bignum one 687 * @a: Bignum 688 * Returns: 1 if @a is one or 0 if not 689 */ 690 int crypto_bignum_is_one(const struct crypto_bignum *a); 691 692 /** 693 * crypto_bignum_is_odd - Is the given bignum odd 694 * @a: Bignum 695 * Returns: 1 if @a is odd or 0 if not 696 */ 697 int crypto_bignum_is_odd(const struct crypto_bignum *a); 698 699 /** 700 * crypto_bignum_legendre - Compute the Legendre symbol (a/p) 701 * @a: Bignum 702 * @p: Bignum 703 * Returns: Legendre symbol -1,0,1 on success; -2 on calculation failure 704 */ 705 int crypto_bignum_legendre(const struct crypto_bignum *a, 706 const struct crypto_bignum *p); 707 708 /** 709 * struct crypto_ec - Elliptic curve context 710 * 711 * Internal data structure for EC implementation. The contents is specific 712 * to the used crypto library. 713 */ 714 struct crypto_ec; 715 716 /** 717 * crypto_ec_init - Initialize elliptic curve context 718 * @group: Identifying number for the ECC group (IANA "Group Description" 719 * attribute registrty for RFC 2409) 720 * Returns: Pointer to EC context or %NULL on failure 721 */ 722 struct crypto_ec * crypto_ec_init(int group); 723 724 /** 725 * crypto_ec_deinit - Deinitialize elliptic curve context 726 * @e: EC context from crypto_ec_init() 727 */ 728 void crypto_ec_deinit(struct crypto_ec *e); 729 730 /** 731 * crypto_ec_prime_len - Get length of the prime in octets 732 * @e: EC context from crypto_ec_init() 733 * Returns: Length of the prime defining the group 734 */ 735 size_t crypto_ec_prime_len(struct crypto_ec *e); 736 737 /** 738 * crypto_ec_prime_len_bits - Get length of the prime in bits 739 * @e: EC context from crypto_ec_init() 740 * Returns: Length of the prime defining the group in bits 741 */ 742 size_t crypto_ec_prime_len_bits(struct crypto_ec *e); 743 744 /** 745 * crypto_ec_order_len - Get length of the order in octets 746 * @e: EC context from crypto_ec_init() 747 * Returns: Length of the order defining the group 748 */ 749 size_t crypto_ec_order_len(struct crypto_ec *e); 750 751 /** 752 * crypto_ec_get_prime - Get prime defining an EC group 753 * @e: EC context from crypto_ec_init() 754 * Returns: Prime (bignum) defining the group 755 */ 756 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e); 757 758 /** 759 * crypto_ec_get_order - Get order of an EC group 760 * @e: EC context from crypto_ec_init() 761 * Returns: Order (bignum) of the group 762 */ 763 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e); 764 765 const struct crypto_bignum * crypto_ec_get_a(struct crypto_ec *e); 766 const struct crypto_bignum * crypto_ec_get_b(struct crypto_ec *e); 767 768 /** 769 * struct crypto_ec_point - Elliptic curve point 770 * 771 * Internal data structure for EC implementation to represent a point. The 772 * contents is specific to the used crypto library. 773 */ 774 struct crypto_ec_point; 775 776 /** 777 * crypto_ec_point_init - Initialize data for an EC point 778 * @e: EC context from crypto_ec_init() 779 * Returns: Pointer to EC point data or %NULL on failure 780 */ 781 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e); 782 783 /** 784 * crypto_ec_point_deinit - Deinitialize EC point data 785 * @p: EC point data from crypto_ec_point_init() 786 * @clear: Whether to clear the EC point value from memory 787 */ 788 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear); 789 790 /** 791 * crypto_ec_point_x - Copies the x-ordinate point into big number 792 * @e: EC context from crypto_ec_init() 793 * @p: EC point data 794 * @x: Big number to set to the copy of x-ordinate 795 * Returns: 0 on success, -1 on failure 796 */ 797 int crypto_ec_point_x(struct crypto_ec *e, const struct crypto_ec_point *p, 798 struct crypto_bignum *x); 799 800 /** 801 * crypto_ec_point_to_bin - Write EC point value as binary data 802 * @e: EC context from crypto_ec_init() 803 * @p: EC point data from crypto_ec_point_init() 804 * @x: Buffer for writing the binary data for x coordinate or %NULL if not used 805 * @y: Buffer for writing the binary data for y coordinate or %NULL if not used 806 * Returns: 0 on success, -1 on failure 807 * 808 * This function can be used to write an EC point as binary data in a format 809 * that has the x and y coordinates in big endian byte order fields padded to 810 * the length of the prime defining the group. 811 */ 812 int crypto_ec_point_to_bin(struct crypto_ec *e, 813 const struct crypto_ec_point *point, u8 *x, u8 *y); 814 815 /** 816 * crypto_ec_point_from_bin - Create EC point from binary data 817 * @e: EC context from crypto_ec_init() 818 * @val: Binary data to read the EC point from 819 * Returns: Pointer to EC point data or %NULL on failure 820 * 821 * This function readers x and y coordinates of the EC point from the provided 822 * buffer assuming the values are in big endian byte order with fields padded to 823 * the length of the prime defining the group. 824 */ 825 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e, 826 const u8 *val); 827 828 /** 829 * crypto_ec_point_add - c = a + b 830 * @e: EC context from crypto_ec_init() 831 * @a: Bignum 832 * @b: Bignum 833 * @c: Bignum; used to store the result of a + b 834 * Returns: 0 on success, -1 on failure 835 */ 836 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a, 837 const struct crypto_ec_point *b, 838 struct crypto_ec_point *c); 839 840 /** 841 * crypto_ec_point_mul - res = b * p 842 * @e: EC context from crypto_ec_init() 843 * @p: EC point 844 * @b: Bignum 845 * @res: EC point; used to store the result of b * p 846 * Returns: 0 on success, -1 on failure 847 */ 848 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p, 849 const struct crypto_bignum *b, 850 struct crypto_ec_point *res); 851 852 /** 853 * crypto_ec_point_invert - Compute inverse of an EC point 854 * @e: EC context from crypto_ec_init() 855 * @p: EC point to invert (and result of the operation) 856 * Returns: 0 on success, -1 on failure 857 */ 858 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p); 859 860 /** 861 * crypto_ec_point_solve_y_coord - Solve y coordinate for an x coordinate 862 * @e: EC context from crypto_ec_init() 863 * @p: EC point to use for the returning the result 864 * @x: x coordinate 865 * @y_bit: y-bit (0 or 1) for selecting the y value to use 866 * Returns: 0 on success, -1 on failure 867 */ 868 int crypto_ec_point_solve_y_coord(struct crypto_ec *e, 869 struct crypto_ec_point *p, 870 const struct crypto_bignum *x, int y_bit); 871 872 /** 873 * crypto_ec_point_compute_y_sqr - Compute y^2 = x^3 + ax + b 874 * @e: EC context from crypto_ec_init() 875 * @x: x coordinate 876 * Returns: y^2 on success, %NULL failure 877 */ 878 struct crypto_bignum * 879 crypto_ec_point_compute_y_sqr(struct crypto_ec *e, 880 const struct crypto_bignum *x); 881 882 /** 883 * crypto_ec_point_is_at_infinity - Check whether EC point is neutral element 884 * @e: EC context from crypto_ec_init() 885 * @p: EC point 886 * Returns: 1 if the specified EC point is the neutral element of the group or 887 * 0 if not 888 */ 889 int crypto_ec_point_is_at_infinity(struct crypto_ec *e, 890 const struct crypto_ec_point *p); 891 892 /** 893 * crypto_ec_point_is_on_curve - Check whether EC point is on curve 894 * @e: EC context from crypto_ec_init() 895 * @p: EC point 896 * Returns: 1 if the specified EC point is on the curve or 0 if not 897 */ 898 int crypto_ec_point_is_on_curve(struct crypto_ec *e, 899 const struct crypto_ec_point *p); 900 901 /** 902 * crypto_ec_point_cmp - Compare two EC points 903 * @e: EC context from crypto_ec_init() 904 * @a: EC point 905 * @b: EC point 906 * Returns: 0 on equal, non-zero otherwise 907 */ 908 int crypto_ec_point_cmp(const struct crypto_ec *e, 909 const struct crypto_ec_point *a, 910 const struct crypto_ec_point *b); 911 912 struct crypto_ecdh; 913 914 struct crypto_ecdh * crypto_ecdh_init(int group); 915 struct wpabuf * crypto_ecdh_get_pubkey(struct crypto_ecdh *ecdh, int inc_y); 916 struct wpabuf * crypto_ecdh_set_peerkey(struct crypto_ecdh *ecdh, int inc_y, 917 const u8 *key, size_t len); 918 void crypto_ecdh_deinit(struct crypto_ecdh *ecdh); 919 size_t crypto_ecdh_prime_len(struct crypto_ecdh *ecdh); 920 921 #endif /* CRYPTO_H */ 922