1 /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2 #ifndef _BTRFS_CTREE_H_
3 #define _BTRFS_CTREE_H_
4
5 #include <linux/btrfs.h>
6 #include <linux/types.h>
7
8 /*
9 * This header contains the structure definitions and constants used
10 * by file system objects that can be retrieved using
11 * the BTRFS_IOC_SEARCH_TREE ioctl. That means basically anything that
12 * is needed to describe a leaf node's key or item contents.
13 */
14
15 /* holds pointers to all of the tree roots */
16 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
17
18 /* stores information about which extents are in use, and reference counts */
19 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
20
21 /*
22 * chunk tree stores translations from logical -> physical block numbering
23 * the super block points to the chunk tree
24 */
25 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
26
27 /*
28 * stores information about which areas of a given device are in use.
29 * one per device. The tree of tree roots points to the device tree
30 */
31 #define BTRFS_DEV_TREE_OBJECTID 4ULL
32
33 /* one per subvolume, storing files and directories */
34 #define BTRFS_FS_TREE_OBJECTID 5ULL
35
36 /* directory objectid inside the root tree */
37 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
38
39 /* holds checksums of all the data extents */
40 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
41
42 /* holds quota configuration and tracking */
43 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
44
45 /* for storing items that use the BTRFS_UUID_KEY* types */
46 #define BTRFS_UUID_TREE_OBJECTID 9ULL
47
48 /* tracks free space in block groups. */
49 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
50
51 /* device stats in the device tree */
52 #define BTRFS_DEV_STATS_OBJECTID 0ULL
53
54 /* for storing balance parameters in the root tree */
55 #define BTRFS_BALANCE_OBJECTID -4ULL
56
57 /* orhpan objectid for tracking unlinked/truncated files */
58 #define BTRFS_ORPHAN_OBJECTID -5ULL
59
60 /* does write ahead logging to speed up fsyncs */
61 #define BTRFS_TREE_LOG_OBJECTID -6ULL
62 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
63
64 /* for space balancing */
65 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
66 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
67
68 /*
69 * extent checksums all have this objectid
70 * this allows them to share the logging tree
71 * for fsyncs
72 */
73 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
74
75 /* For storing free space cache */
76 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
77
78 /*
79 * The inode number assigned to the special inode for storing
80 * free ino cache
81 */
82 #define BTRFS_FREE_INO_OBJECTID -12ULL
83
84 /* dummy objectid represents multiple objectids */
85 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
86
87 /*
88 * All files have objectids in this range.
89 */
90 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
91 #define BTRFS_LAST_FREE_OBJECTID -256ULL
92 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
93
94
95 /*
96 * the device items go into the chunk tree. The key is in the form
97 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
98 */
99 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
100
101 #define BTRFS_BTREE_INODE_OBJECTID 1
102
103 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
104
105 #define BTRFS_DEV_REPLACE_DEVID 0ULL
106
107 /*
108 * inode items have the data typically returned from stat and store other
109 * info about object characteristics. There is one for every file and dir in
110 * the FS
111 */
112 #define BTRFS_INODE_ITEM_KEY 1
113 #define BTRFS_INODE_REF_KEY 12
114 #define BTRFS_INODE_EXTREF_KEY 13
115 #define BTRFS_XATTR_ITEM_KEY 24
116 #define BTRFS_ORPHAN_ITEM_KEY 48
117 /* reserve 2-15 close to the inode for later flexibility */
118
119 /*
120 * dir items are the name -> inode pointers in a directory. There is one
121 * for every name in a directory.
122 */
123 #define BTRFS_DIR_LOG_ITEM_KEY 60
124 #define BTRFS_DIR_LOG_INDEX_KEY 72
125 #define BTRFS_DIR_ITEM_KEY 84
126 #define BTRFS_DIR_INDEX_KEY 96
127 /*
128 * extent data is for file data
129 */
130 #define BTRFS_EXTENT_DATA_KEY 108
131
132 /*
133 * extent csums are stored in a separate tree and hold csums for
134 * an entire extent on disk.
135 */
136 #define BTRFS_EXTENT_CSUM_KEY 128
137
138 /*
139 * root items point to tree roots. They are typically in the root
140 * tree used by the super block to find all the other trees
141 */
142 #define BTRFS_ROOT_ITEM_KEY 132
143
144 /*
145 * root backrefs tie subvols and snapshots to the directory entries that
146 * reference them
147 */
148 #define BTRFS_ROOT_BACKREF_KEY 144
149
150 /*
151 * root refs make a fast index for listing all of the snapshots and
152 * subvolumes referenced by a given root. They point directly to the
153 * directory item in the root that references the subvol
154 */
155 #define BTRFS_ROOT_REF_KEY 156
156
157 /*
158 * extent items are in the extent map tree. These record which blocks
159 * are used, and how many references there are to each block
160 */
161 #define BTRFS_EXTENT_ITEM_KEY 168
162
163 /*
164 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
165 * the length, so we save the level in key->offset instead of the length.
166 */
167 #define BTRFS_METADATA_ITEM_KEY 169
168
169 #define BTRFS_TREE_BLOCK_REF_KEY 176
170
171 #define BTRFS_EXTENT_DATA_REF_KEY 178
172
173 #define BTRFS_EXTENT_REF_V0_KEY 180
174
175 #define BTRFS_SHARED_BLOCK_REF_KEY 182
176
177 #define BTRFS_SHARED_DATA_REF_KEY 184
178
179 /*
180 * block groups give us hints into the extent allocation trees. Which
181 * blocks are free etc etc
182 */
183 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
184
185 /*
186 * Every block group is represented in the free space tree by a free space info
187 * item, which stores some accounting information. It is keyed on
188 * (block_group_start, FREE_SPACE_INFO, block_group_length).
189 */
190 #define BTRFS_FREE_SPACE_INFO_KEY 198
191
192 /*
193 * A free space extent tracks an extent of space that is free in a block group.
194 * It is keyed on (start, FREE_SPACE_EXTENT, length).
195 */
196 #define BTRFS_FREE_SPACE_EXTENT_KEY 199
197
198 /*
199 * When a block group becomes very fragmented, we convert it to use bitmaps
200 * instead of extents. A free space bitmap is keyed on
201 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
202 * (length / sectorsize) bits.
203 */
204 #define BTRFS_FREE_SPACE_BITMAP_KEY 200
205
206 #define BTRFS_DEV_EXTENT_KEY 204
207 #define BTRFS_DEV_ITEM_KEY 216
208 #define BTRFS_CHUNK_ITEM_KEY 228
209
210 /*
211 * Records the overall state of the qgroups.
212 * There's only one instance of this key present,
213 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
214 */
215 #define BTRFS_QGROUP_STATUS_KEY 240
216 /*
217 * Records the currently used space of the qgroup.
218 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
219 */
220 #define BTRFS_QGROUP_INFO_KEY 242
221 /*
222 * Contains the user configured limits for the qgroup.
223 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
224 */
225 #define BTRFS_QGROUP_LIMIT_KEY 244
226 /*
227 * Records the child-parent relationship of qgroups. For
228 * each relation, 2 keys are present:
229 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
230 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
231 */
232 #define BTRFS_QGROUP_RELATION_KEY 246
233
234 /*
235 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
236 */
237 #define BTRFS_BALANCE_ITEM_KEY 248
238
239 /*
240 * The key type for tree items that are stored persistently, but do not need to
241 * exist for extended period of time. The items can exist in any tree.
242 *
243 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
244 *
245 * Existing items:
246 *
247 * - balance status item
248 * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
249 */
250 #define BTRFS_TEMPORARY_ITEM_KEY 248
251
252 /*
253 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
254 */
255 #define BTRFS_DEV_STATS_KEY 249
256
257 /*
258 * The key type for tree items that are stored persistently and usually exist
259 * for a long period, eg. filesystem lifetime. The item kinds can be status
260 * information, stats or preference values. The item can exist in any tree.
261 *
262 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
263 *
264 * Existing items:
265 *
266 * - device statistics, store IO stats in the device tree, one key for all
267 * stats
268 * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
269 */
270 #define BTRFS_PERSISTENT_ITEM_KEY 249
271
272 /*
273 * Persistantly stores the device replace state in the device tree.
274 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
275 */
276 #define BTRFS_DEV_REPLACE_KEY 250
277
278 /*
279 * Stores items that allow to quickly map UUIDs to something else.
280 * These items are part of the filesystem UUID tree.
281 * The key is built like this:
282 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
283 */
284 #if BTRFS_UUID_SIZE != 16
285 #error "UUID items require BTRFS_UUID_SIZE == 16!"
286 #endif
287 #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */
288 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to
289 * received subvols */
290
291 /*
292 * string items are for debugging. They just store a short string of
293 * data in the FS
294 */
295 #define BTRFS_STRING_ITEM_KEY 253
296
297
298
299 /* 32 bytes in various csum fields */
300 #define BTRFS_CSUM_SIZE 32
301
302 /* csum types */
303 enum btrfs_csum_type {
304 BTRFS_CSUM_TYPE_CRC32 = 0,
305 BTRFS_CSUM_TYPE_XXHASH = 1,
306 BTRFS_CSUM_TYPE_SHA256 = 2,
307 BTRFS_CSUM_TYPE_BLAKE2 = 3,
308 };
309
310 /*
311 * flags definitions for directory entry item type
312 *
313 * Used by:
314 * struct btrfs_dir_item.type
315 *
316 * Values 0..7 must match common file type values in fs_types.h.
317 */
318 #define BTRFS_FT_UNKNOWN 0
319 #define BTRFS_FT_REG_FILE 1
320 #define BTRFS_FT_DIR 2
321 #define BTRFS_FT_CHRDEV 3
322 #define BTRFS_FT_BLKDEV 4
323 #define BTRFS_FT_FIFO 5
324 #define BTRFS_FT_SOCK 6
325 #define BTRFS_FT_SYMLINK 7
326 #define BTRFS_FT_XATTR 8
327 #define BTRFS_FT_MAX 9
328
329 /*
330 * The key defines the order in the tree, and so it also defines (optimal)
331 * block layout.
332 *
333 * objectid corresponds to the inode number.
334 *
335 * type tells us things about the object, and is a kind of stream selector.
336 * so for a given inode, keys with type of 1 might refer to the inode data,
337 * type of 2 may point to file data in the btree and type == 3 may point to
338 * extents.
339 *
340 * offset is the starting byte offset for this key in the stream.
341 *
342 * btrfs_disk_key is in disk byte order. struct btrfs_key is always
343 * in cpu native order. Otherwise they are identical and their sizes
344 * should be the same (ie both packed)
345 */
346 struct btrfs_disk_key {
347 __le64 objectid;
348 __u8 type;
349 __le64 offset;
350 } __attribute__ ((__packed__));
351
352 struct btrfs_key {
353 __u64 objectid;
354 __u8 type;
355 __u64 offset;
356 } __attribute__ ((__packed__));
357
358 struct btrfs_dev_item {
359 /* the internal btrfs device id */
360 __le64 devid;
361
362 /* size of the device */
363 __le64 total_bytes;
364
365 /* bytes used */
366 __le64 bytes_used;
367
368 /* optimal io alignment for this device */
369 __le32 io_align;
370
371 /* optimal io width for this device */
372 __le32 io_width;
373
374 /* minimal io size for this device */
375 __le32 sector_size;
376
377 /* type and info about this device */
378 __le64 type;
379
380 /* expected generation for this device */
381 __le64 generation;
382
383 /*
384 * starting byte of this partition on the device,
385 * to allow for stripe alignment in the future
386 */
387 __le64 start_offset;
388
389 /* grouping information for allocation decisions */
390 __le32 dev_group;
391
392 /* seek speed 0-100 where 100 is fastest */
393 __u8 seek_speed;
394
395 /* bandwidth 0-100 where 100 is fastest */
396 __u8 bandwidth;
397
398 /* btrfs generated uuid for this device */
399 __u8 uuid[BTRFS_UUID_SIZE];
400
401 /* uuid of FS who owns this device */
402 __u8 fsid[BTRFS_UUID_SIZE];
403 } __attribute__ ((__packed__));
404
405 struct btrfs_stripe {
406 __le64 devid;
407 __le64 offset;
408 __u8 dev_uuid[BTRFS_UUID_SIZE];
409 } __attribute__ ((__packed__));
410
411 struct btrfs_chunk {
412 /* size of this chunk in bytes */
413 __le64 length;
414
415 /* objectid of the root referencing this chunk */
416 __le64 owner;
417
418 __le64 stripe_len;
419 __le64 type;
420
421 /* optimal io alignment for this chunk */
422 __le32 io_align;
423
424 /* optimal io width for this chunk */
425 __le32 io_width;
426
427 /* minimal io size for this chunk */
428 __le32 sector_size;
429
430 /* 2^16 stripes is quite a lot, a second limit is the size of a single
431 * item in the btree
432 */
433 __le16 num_stripes;
434
435 /* sub stripes only matter for raid10 */
436 __le16 sub_stripes;
437 struct btrfs_stripe stripe;
438 /* additional stripes go here */
439 } __attribute__ ((__packed__));
440
441 #define BTRFS_FREE_SPACE_EXTENT 1
442 #define BTRFS_FREE_SPACE_BITMAP 2
443
444 struct btrfs_free_space_entry {
445 __le64 offset;
446 __le64 bytes;
447 __u8 type;
448 } __attribute__ ((__packed__));
449
450 struct btrfs_free_space_header {
451 struct btrfs_disk_key location;
452 __le64 generation;
453 __le64 num_entries;
454 __le64 num_bitmaps;
455 } __attribute__ ((__packed__));
456
457 #define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0)
458 #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1)
459
460 /* Super block flags */
461 /* Errors detected */
462 #define BTRFS_SUPER_FLAG_ERROR (1ULL << 2)
463
464 #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32)
465 #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33)
466 #define BTRFS_SUPER_FLAG_METADUMP_V2 (1ULL << 34)
467 #define BTRFS_SUPER_FLAG_CHANGING_FSID (1ULL << 35)
468 #define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
469
470
471 /*
472 * items in the extent btree are used to record the objectid of the
473 * owner of the block and the number of references
474 */
475
476 struct btrfs_extent_item {
477 __le64 refs;
478 __le64 generation;
479 __le64 flags;
480 } __attribute__ ((__packed__));
481
482 struct btrfs_extent_item_v0 {
483 __le32 refs;
484 } __attribute__ ((__packed__));
485
486
487 #define BTRFS_EXTENT_FLAG_DATA (1ULL << 0)
488 #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1)
489
490 /* following flags only apply to tree blocks */
491
492 /* use full backrefs for extent pointers in the block */
493 #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8)
494
495 /*
496 * this flag is only used internally by scrub and may be changed at any time
497 * it is only declared here to avoid collisions
498 */
499 #define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48)
500
501 struct btrfs_tree_block_info {
502 struct btrfs_disk_key key;
503 __u8 level;
504 } __attribute__ ((__packed__));
505
506 struct btrfs_extent_data_ref {
507 __le64 root;
508 __le64 objectid;
509 __le64 offset;
510 __le32 count;
511 } __attribute__ ((__packed__));
512
513 struct btrfs_shared_data_ref {
514 __le32 count;
515 } __attribute__ ((__packed__));
516
517 struct btrfs_extent_inline_ref {
518 __u8 type;
519 __le64 offset;
520 } __attribute__ ((__packed__));
521
522 /* old style backrefs item */
523 struct btrfs_extent_ref_v0 {
524 __le64 root;
525 __le64 generation;
526 __le64 objectid;
527 __le32 count;
528 } __attribute__ ((__packed__));
529
530
531 /* dev extents record free space on individual devices. The owner
532 * field points back to the chunk allocation mapping tree that allocated
533 * the extent. The chunk tree uuid field is a way to double check the owner
534 */
535 struct btrfs_dev_extent {
536 __le64 chunk_tree;
537 __le64 chunk_objectid;
538 __le64 chunk_offset;
539 __le64 length;
540 __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
541 } __attribute__ ((__packed__));
542
543 struct btrfs_inode_ref {
544 __le64 index;
545 __le16 name_len;
546 /* name goes here */
547 } __attribute__ ((__packed__));
548
549 struct btrfs_inode_extref {
550 __le64 parent_objectid;
551 __le64 index;
552 __le16 name_len;
553 __u8 name[0];
554 /* name goes here */
555 } __attribute__ ((__packed__));
556
557 struct btrfs_timespec {
558 __le64 sec;
559 __le32 nsec;
560 } __attribute__ ((__packed__));
561
562 struct btrfs_inode_item {
563 /* nfs style generation number */
564 __le64 generation;
565 /* transid that last touched this inode */
566 __le64 transid;
567 __le64 size;
568 __le64 nbytes;
569 __le64 block_group;
570 __le32 nlink;
571 __le32 uid;
572 __le32 gid;
573 __le32 mode;
574 __le64 rdev;
575 __le64 flags;
576
577 /* modification sequence number for NFS */
578 __le64 sequence;
579
580 /*
581 * a little future expansion, for more than this we can
582 * just grow the inode item and version it
583 */
584 __le64 reserved[4];
585 struct btrfs_timespec atime;
586 struct btrfs_timespec ctime;
587 struct btrfs_timespec mtime;
588 struct btrfs_timespec otime;
589 } __attribute__ ((__packed__));
590
591 struct btrfs_dir_log_item {
592 __le64 end;
593 } __attribute__ ((__packed__));
594
595 struct btrfs_dir_item {
596 struct btrfs_disk_key location;
597 __le64 transid;
598 __le16 data_len;
599 __le16 name_len;
600 __u8 type;
601 } __attribute__ ((__packed__));
602
603 #define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0)
604
605 /*
606 * Internal in-memory flag that a subvolume has been marked for deletion but
607 * still visible as a directory
608 */
609 #define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48)
610
611 struct btrfs_root_item {
612 struct btrfs_inode_item inode;
613 __le64 generation;
614 __le64 root_dirid;
615 __le64 bytenr;
616 __le64 byte_limit;
617 __le64 bytes_used;
618 __le64 last_snapshot;
619 __le64 flags;
620 __le32 refs;
621 struct btrfs_disk_key drop_progress;
622 __u8 drop_level;
623 __u8 level;
624
625 /*
626 * The following fields appear after subvol_uuids+subvol_times
627 * were introduced.
628 */
629
630 /*
631 * This generation number is used to test if the new fields are valid
632 * and up to date while reading the root item. Every time the root item
633 * is written out, the "generation" field is copied into this field. If
634 * anyone ever mounted the fs with an older kernel, we will have
635 * mismatching generation values here and thus must invalidate the
636 * new fields. See btrfs_update_root and btrfs_find_last_root for
637 * details.
638 * the offset of generation_v2 is also used as the start for the memset
639 * when invalidating the fields.
640 */
641 __le64 generation_v2;
642 __u8 uuid[BTRFS_UUID_SIZE];
643 __u8 parent_uuid[BTRFS_UUID_SIZE];
644 __u8 received_uuid[BTRFS_UUID_SIZE];
645 __le64 ctransid; /* updated when an inode changes */
646 __le64 otransid; /* trans when created */
647 __le64 stransid; /* trans when sent. non-zero for received subvol */
648 __le64 rtransid; /* trans when received. non-zero for received subvol */
649 struct btrfs_timespec ctime;
650 struct btrfs_timespec otime;
651 struct btrfs_timespec stime;
652 struct btrfs_timespec rtime;
653 __le64 reserved[8]; /* for future */
654 } __attribute__ ((__packed__));
655
656 /*
657 * this is used for both forward and backward root refs
658 */
659 struct btrfs_root_ref {
660 __le64 dirid;
661 __le64 sequence;
662 __le16 name_len;
663 } __attribute__ ((__packed__));
664
665 struct btrfs_disk_balance_args {
666 /*
667 * profiles to operate on, single is denoted by
668 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
669 */
670 __le64 profiles;
671
672 /*
673 * usage filter
674 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
675 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
676 */
677 union {
678 __le64 usage;
679 struct {
680 __le32 usage_min;
681 __le32 usage_max;
682 };
683 };
684
685 /* devid filter */
686 __le64 devid;
687
688 /* devid subset filter [pstart..pend) */
689 __le64 pstart;
690 __le64 pend;
691
692 /* btrfs virtual address space subset filter [vstart..vend) */
693 __le64 vstart;
694 __le64 vend;
695
696 /*
697 * profile to convert to, single is denoted by
698 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
699 */
700 __le64 target;
701
702 /* BTRFS_BALANCE_ARGS_* */
703 __le64 flags;
704
705 /*
706 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
707 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
708 * and maximum
709 */
710 union {
711 __le64 limit;
712 struct {
713 __le32 limit_min;
714 __le32 limit_max;
715 };
716 };
717
718 /*
719 * Process chunks that cross stripes_min..stripes_max devices,
720 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
721 */
722 __le32 stripes_min;
723 __le32 stripes_max;
724
725 __le64 unused[6];
726 } __attribute__ ((__packed__));
727
728 /*
729 * store balance parameters to disk so that balance can be properly
730 * resumed after crash or unmount
731 */
732 struct btrfs_balance_item {
733 /* BTRFS_BALANCE_* */
734 __le64 flags;
735
736 struct btrfs_disk_balance_args data;
737 struct btrfs_disk_balance_args meta;
738 struct btrfs_disk_balance_args sys;
739
740 __le64 unused[4];
741 } __attribute__ ((__packed__));
742
743 enum {
744 BTRFS_FILE_EXTENT_INLINE = 0,
745 BTRFS_FILE_EXTENT_REG = 1,
746 BTRFS_FILE_EXTENT_PREALLOC = 2,
747 BTRFS_NR_FILE_EXTENT_TYPES = 3,
748 };
749
750 struct btrfs_file_extent_item {
751 /*
752 * transaction id that created this extent
753 */
754 __le64 generation;
755 /*
756 * max number of bytes to hold this extent in ram
757 * when we split a compressed extent we can't know how big
758 * each of the resulting pieces will be. So, this is
759 * an upper limit on the size of the extent in ram instead of
760 * an exact limit.
761 */
762 __le64 ram_bytes;
763
764 /*
765 * 32 bits for the various ways we might encode the data,
766 * including compression and encryption. If any of these
767 * are set to something a given disk format doesn't understand
768 * it is treated like an incompat flag for reading and writing,
769 * but not for stat.
770 */
771 __u8 compression;
772 __u8 encryption;
773 __le16 other_encoding; /* spare for later use */
774
775 /* are we inline data or a real extent? */
776 __u8 type;
777
778 /*
779 * disk space consumed by the extent, checksum blocks are included
780 * in these numbers
781 *
782 * At this offset in the structure, the inline extent data start.
783 */
784 __le64 disk_bytenr;
785 __le64 disk_num_bytes;
786 /*
787 * the logical offset in file blocks (no csums)
788 * this extent record is for. This allows a file extent to point
789 * into the middle of an existing extent on disk, sharing it
790 * between two snapshots (useful if some bytes in the middle of the
791 * extent have changed
792 */
793 __le64 offset;
794 /*
795 * the logical number of file blocks (no csums included). This
796 * always reflects the size uncompressed and without encoding.
797 */
798 __le64 num_bytes;
799
800 } __attribute__ ((__packed__));
801
802 struct btrfs_csum_item {
803 __u8 csum;
804 } __attribute__ ((__packed__));
805
806 struct btrfs_dev_stats_item {
807 /*
808 * grow this item struct at the end for future enhancements and keep
809 * the existing values unchanged
810 */
811 __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
812 } __attribute__ ((__packed__));
813
814 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0
815 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1
816
817 struct btrfs_dev_replace_item {
818 /*
819 * grow this item struct at the end for future enhancements and keep
820 * the existing values unchanged
821 */
822 __le64 src_devid;
823 __le64 cursor_left;
824 __le64 cursor_right;
825 __le64 cont_reading_from_srcdev_mode;
826
827 __le64 replace_state;
828 __le64 time_started;
829 __le64 time_stopped;
830 __le64 num_write_errors;
831 __le64 num_uncorrectable_read_errors;
832 } __attribute__ ((__packed__));
833
834 /* different types of block groups (and chunks) */
835 #define BTRFS_BLOCK_GROUP_DATA (1ULL << 0)
836 #define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1)
837 #define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2)
838 #define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3)
839 #define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4)
840 #define BTRFS_BLOCK_GROUP_DUP (1ULL << 5)
841 #define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6)
842 #define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7)
843 #define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8)
844 #define BTRFS_BLOCK_GROUP_RAID1C3 (1ULL << 9)
845 #define BTRFS_BLOCK_GROUP_RAID1C4 (1ULL << 10)
846 #define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
847 BTRFS_SPACE_INFO_GLOBAL_RSV)
848
849 enum btrfs_raid_types {
850 BTRFS_RAID_RAID10,
851 BTRFS_RAID_RAID1,
852 BTRFS_RAID_DUP,
853 BTRFS_RAID_RAID0,
854 BTRFS_RAID_SINGLE,
855 BTRFS_RAID_RAID5,
856 BTRFS_RAID_RAID6,
857 BTRFS_RAID_RAID1C3,
858 BTRFS_RAID_RAID1C4,
859 BTRFS_NR_RAID_TYPES
860 };
861
862 #define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \
863 BTRFS_BLOCK_GROUP_SYSTEM | \
864 BTRFS_BLOCK_GROUP_METADATA)
865
866 #define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \
867 BTRFS_BLOCK_GROUP_RAID1 | \
868 BTRFS_BLOCK_GROUP_RAID1C3 | \
869 BTRFS_BLOCK_GROUP_RAID1C4 | \
870 BTRFS_BLOCK_GROUP_RAID5 | \
871 BTRFS_BLOCK_GROUP_RAID6 | \
872 BTRFS_BLOCK_GROUP_DUP | \
873 BTRFS_BLOCK_GROUP_RAID10)
874 #define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \
875 BTRFS_BLOCK_GROUP_RAID6)
876
877 #define BTRFS_BLOCK_GROUP_RAID1_MASK (BTRFS_BLOCK_GROUP_RAID1 | \
878 BTRFS_BLOCK_GROUP_RAID1C3 | \
879 BTRFS_BLOCK_GROUP_RAID1C4)
880
881 /*
882 * We need a bit for restriper to be able to tell when chunks of type
883 * SINGLE are available. This "extended" profile format is used in
884 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
885 * (on-disk). The corresponding on-disk bit in chunk.type is reserved
886 * to avoid remappings between two formats in future.
887 */
888 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48)
889
890 /*
891 * A fake block group type that is used to communicate global block reserve
892 * size to userspace via the SPACE_INFO ioctl.
893 */
894 #define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49)
895
896 #define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
897 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
898
chunk_to_extended(__u64 flags)899 static inline __u64 chunk_to_extended(__u64 flags)
900 {
901 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
902 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
903
904 return flags;
905 }
extended_to_chunk(__u64 flags)906 static inline __u64 extended_to_chunk(__u64 flags)
907 {
908 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
909 }
910
911 struct btrfs_block_group_item {
912 __le64 used;
913 __le64 chunk_objectid;
914 __le64 flags;
915 } __attribute__ ((__packed__));
916
917 struct btrfs_free_space_info {
918 __le32 extent_count;
919 __le32 flags;
920 } __attribute__ ((__packed__));
921
922 #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
923
924 #define BTRFS_QGROUP_LEVEL_SHIFT 48
btrfs_qgroup_level(__u64 qgroupid)925 static inline __u64 btrfs_qgroup_level(__u64 qgroupid)
926 {
927 return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
928 }
929
930 /*
931 * is subvolume quota turned on?
932 */
933 #define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0)
934 /*
935 * RESCAN is set during the initialization phase
936 */
937 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1)
938 /*
939 * Some qgroup entries are known to be out of date,
940 * either because the configuration has changed in a way that
941 * makes a rescan necessary, or because the fs has been mounted
942 * with a non-qgroup-aware version.
943 * Turning qouta off and on again makes it inconsistent, too.
944 */
945 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2)
946
947 #define BTRFS_QGROUP_STATUS_VERSION 1
948
949 struct btrfs_qgroup_status_item {
950 __le64 version;
951 /*
952 * the generation is updated during every commit. As older
953 * versions of btrfs are not aware of qgroups, it will be
954 * possible to detect inconsistencies by checking the
955 * generation on mount time
956 */
957 __le64 generation;
958
959 /* flag definitions see above */
960 __le64 flags;
961
962 /*
963 * only used during scanning to record the progress
964 * of the scan. It contains a logical address
965 */
966 __le64 rescan;
967 } __attribute__ ((__packed__));
968
969 struct btrfs_qgroup_info_item {
970 __le64 generation;
971 __le64 rfer;
972 __le64 rfer_cmpr;
973 __le64 excl;
974 __le64 excl_cmpr;
975 } __attribute__ ((__packed__));
976
977 struct btrfs_qgroup_limit_item {
978 /*
979 * only updated when any of the other values change
980 */
981 __le64 flags;
982 __le64 max_rfer;
983 __le64 max_excl;
984 __le64 rsv_rfer;
985 __le64 rsv_excl;
986 } __attribute__ ((__packed__));
987
988 #endif /* _BTRFS_CTREE_H_ */
989