• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**************************************************************************
2  *
3  * Copyright � 2007 Red Hat Inc.
4  * Copyright � 2007-2012 Intel Corporation
5  * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
20  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22  * USE OR OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * The above copyright notice and this permission notice (including the
25  * next paragraph) shall be included in all copies or substantial portions
26  * of the Software.
27  *
28  *
29  **************************************************************************/
30 /*
31  * Authors: Thomas Hellstr�m <thomas-at-tungstengraphics-dot-com>
32  *          Keith Whitwell <keithw-at-tungstengraphics-dot-com>
33  *	    Eric Anholt <eric@anholt.net>
34  *	    Dave Airlie <airlied@linux.ie>
35  */
36 
37 #include <xf86drm.h>
38 #include <xf86atomic.h>
39 #include <fcntl.h>
40 #include <stdio.h>
41 #include <stdlib.h>
42 #include <string.h>
43 #include <unistd.h>
44 #include <assert.h>
45 #include <pthread.h>
46 #include <sys/ioctl.h>
47 #include <sys/stat.h>
48 #include <sys/types.h>
49 #include <stdbool.h>
50 
51 #include "errno.h"
52 #ifndef ETIME
53 #define ETIME ETIMEDOUT
54 #endif
55 #include "libdrm_macros.h"
56 #include "libdrm_lists.h"
57 #include "intel_bufmgr.h"
58 #include "intel_bufmgr_priv.h"
59 #include "intel_chipset.h"
60 #include "string.h"
61 
62 #include "i915_drm.h"
63 #include "uthash.h"
64 
65 #if HAVE_VALGRIND
66 #include <valgrind.h>
67 #include <memcheck.h>
68 #define VG(x) x
69 #else
70 #define VG(x)
71 #endif
72 
73 #define memclear(s) memset(&s, 0, sizeof(s))
74 
75 #define DBG(...) do {					\
76 	if (bufmgr_gem->bufmgr.debug)			\
77 		fprintf(stderr, __VA_ARGS__);		\
78 } while (0)
79 
80 #define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
81 #define MAX2(A, B) ((A) > (B) ? (A) : (B))
82 
83 /**
84  * upper_32_bits - return bits 32-63 of a number
85  * @n: the number we're accessing
86  *
87  * A basic shift-right of a 64- or 32-bit quantity.  Use this to suppress
88  * the "right shift count >= width of type" warning when that quantity is
89  * 32-bits.
90  */
91 #define upper_32_bits(n) ((__u32)(((n) >> 16) >> 16))
92 
93 /**
94  * lower_32_bits - return bits 0-31 of a number
95  * @n: the number we're accessing
96  */
97 #define lower_32_bits(n) ((__u32)(n))
98 
99 typedef struct _drm_intel_bo_gem drm_intel_bo_gem;
100 
101 struct drm_intel_gem_bo_bucket {
102 	drmMMListHead head;
103 	unsigned long size;
104 };
105 
106 typedef struct _drm_intel_bufmgr_gem {
107 	drm_intel_bufmgr bufmgr;
108 
109 	atomic_t refcount;
110 
111 	int fd;
112 
113 	int max_relocs;
114 
115 	pthread_mutex_t lock;
116 
117 	struct drm_i915_gem_exec_object *exec_objects;
118 	struct drm_i915_gem_exec_object2 *exec2_objects;
119 	drm_intel_bo **exec_bos;
120 	int exec_size;
121 	int exec_count;
122 
123 	/** Array of lists of cached gem objects of power-of-two sizes */
124 	struct drm_intel_gem_bo_bucket cache_bucket[14 * 4];
125 	int num_buckets;
126 	time_t time;
127 
128 	drmMMListHead managers;
129 
130 	drm_intel_bo_gem *name_table;
131 	drm_intel_bo_gem *handle_table;
132 
133 	drmMMListHead vma_cache;
134 	int vma_count, vma_open, vma_max;
135 
136 	uint64_t gtt_size;
137 	int available_fences;
138 	int pci_device;
139 	int gen;
140 	unsigned int has_bsd : 1;
141 	unsigned int has_blt : 1;
142 	unsigned int has_relaxed_fencing : 1;
143 	unsigned int has_llc : 1;
144 	unsigned int has_wait_timeout : 1;
145 	unsigned int bo_reuse : 1;
146 	unsigned int no_exec : 1;
147 	unsigned int has_vebox : 1;
148 	unsigned int has_exec_async : 1;
149 	bool fenced_relocs;
150 
151 	struct {
152 		void *ptr;
153 		uint32_t handle;
154 	} userptr_active;
155 
156 } drm_intel_bufmgr_gem;
157 
158 #define DRM_INTEL_RELOC_FENCE (1<<0)
159 
160 typedef struct _drm_intel_reloc_target_info {
161 	drm_intel_bo *bo;
162 	int flags;
163 } drm_intel_reloc_target;
164 
165 struct _drm_intel_bo_gem {
166 	drm_intel_bo bo;
167 
168 	atomic_t refcount;
169 	uint32_t gem_handle;
170 	const char *name;
171 
172 	/**
173 	 * Kenel-assigned global name for this object
174          *
175          * List contains both flink named and prime fd'd objects
176 	 */
177 	unsigned int global_name;
178 
179 	UT_hash_handle handle_hh;
180 	UT_hash_handle name_hh;
181 
182 	/**
183 	 * Index of the buffer within the validation list while preparing a
184 	 * batchbuffer execution.
185 	 */
186 	int validate_index;
187 
188 	/**
189 	 * Current tiling mode
190 	 */
191 	uint32_t tiling_mode;
192 	uint32_t swizzle_mode;
193 	unsigned long stride;
194 
195 	unsigned long kflags;
196 
197 	time_t free_time;
198 
199 	/** Array passed to the DRM containing relocation information. */
200 	struct drm_i915_gem_relocation_entry *relocs;
201 	/**
202 	 * Array of info structs corresponding to relocs[i].target_handle etc
203 	 */
204 	drm_intel_reloc_target *reloc_target_info;
205 	/** Number of entries in relocs */
206 	int reloc_count;
207 	/** Array of BOs that are referenced by this buffer and will be softpinned */
208 	drm_intel_bo **softpin_target;
209 	/** Number softpinned BOs that are referenced by this buffer */
210 	int softpin_target_count;
211 	/** Maximum amount of softpinned BOs that are referenced by this buffer */
212 	int softpin_target_size;
213 
214 	/** Mapped address for the buffer, saved across map/unmap cycles */
215 	void *mem_virtual;
216 	/** GTT virtual address for the buffer, saved across map/unmap cycles */
217 	void *gtt_virtual;
218 	/** WC CPU address for the buffer, saved across map/unmap cycles */
219 	void *wc_virtual;
220 	/**
221 	 * Virtual address of the buffer allocated by user, used for userptr
222 	 * objects only.
223 	 */
224 	void *user_virtual;
225 	int map_count;
226 	drmMMListHead vma_list;
227 
228 	/** BO cache list */
229 	drmMMListHead head;
230 
231 	/**
232 	 * Boolean of whether this BO and its children have been included in
233 	 * the current drm_intel_bufmgr_check_aperture_space() total.
234 	 */
235 	bool included_in_check_aperture;
236 
237 	/**
238 	 * Boolean of whether this buffer has been used as a relocation
239 	 * target and had its size accounted for, and thus can't have any
240 	 * further relocations added to it.
241 	 */
242 	bool used_as_reloc_target;
243 
244 	/**
245 	 * Boolean of whether we have encountered an error whilst building the relocation tree.
246 	 */
247 	bool has_error;
248 
249 	/**
250 	 * Boolean of whether this buffer can be re-used
251 	 */
252 	bool reusable;
253 
254 	/**
255 	 * Boolean of whether the GPU is definitely not accessing the buffer.
256 	 *
257 	 * This is only valid when reusable, since non-reusable
258 	 * buffers are those that have been shared with other
259 	 * processes, so we don't know their state.
260 	 */
261 	bool idle;
262 
263 	/**
264 	 * Boolean of whether this buffer was allocated with userptr
265 	 */
266 	bool is_userptr;
267 
268 	/**
269 	 * Size in bytes of this buffer and its relocation descendents.
270 	 *
271 	 * Used to avoid costly tree walking in
272 	 * drm_intel_bufmgr_check_aperture in the common case.
273 	 */
274 	int reloc_tree_size;
275 
276 	/**
277 	 * Number of potential fence registers required by this buffer and its
278 	 * relocations.
279 	 */
280 	int reloc_tree_fences;
281 
282 	/** Flags that we may need to do the SW_FINISH ioctl on unmap. */
283 	bool mapped_cpu_write;
284 };
285 
286 static unsigned int
287 drm_intel_gem_estimate_batch_space(drm_intel_bo ** bo_array, int count);
288 
289 static unsigned int
290 drm_intel_gem_compute_batch_space(drm_intel_bo ** bo_array, int count);
291 
292 static int
293 drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
294 			    uint32_t * swizzle_mode);
295 
296 static int
297 drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
298 				     uint32_t tiling_mode,
299 				     uint32_t stride);
300 
301 static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
302 						      time_t time);
303 
304 static void drm_intel_gem_bo_unreference(drm_intel_bo *bo);
305 
306 static void drm_intel_gem_bo_free(drm_intel_bo *bo);
307 
to_bo_gem(drm_intel_bo * bo)308 static inline drm_intel_bo_gem *to_bo_gem(drm_intel_bo *bo)
309 {
310         return (drm_intel_bo_gem *)bo;
311 }
312 
313 static unsigned long
drm_intel_gem_bo_tile_size(drm_intel_bufmgr_gem * bufmgr_gem,unsigned long size,uint32_t * tiling_mode)314 drm_intel_gem_bo_tile_size(drm_intel_bufmgr_gem *bufmgr_gem, unsigned long size,
315 			   uint32_t *tiling_mode)
316 {
317 	unsigned long min_size, max_size;
318 	unsigned long i;
319 
320 	if (*tiling_mode == I915_TILING_NONE)
321 		return size;
322 
323 	/* 965+ just need multiples of page size for tiling */
324 	if (bufmgr_gem->gen >= 4)
325 		return ROUND_UP_TO(size, 4096);
326 
327 	/* Older chips need powers of two, of at least 512k or 1M */
328 	if (bufmgr_gem->gen == 3) {
329 		min_size = 1024*1024;
330 		max_size = 128*1024*1024;
331 	} else {
332 		min_size = 512*1024;
333 		max_size = 64*1024*1024;
334 	}
335 
336 	if (size > max_size) {
337 		*tiling_mode = I915_TILING_NONE;
338 		return size;
339 	}
340 
341 	/* Do we need to allocate every page for the fence? */
342 	if (bufmgr_gem->has_relaxed_fencing)
343 		return ROUND_UP_TO(size, 4096);
344 
345 	for (i = min_size; i < size; i <<= 1)
346 		;
347 
348 	return i;
349 }
350 
351 /*
352  * Round a given pitch up to the minimum required for X tiling on a
353  * given chip.  We use 512 as the minimum to allow for a later tiling
354  * change.
355  */
356 static unsigned long
drm_intel_gem_bo_tile_pitch(drm_intel_bufmgr_gem * bufmgr_gem,unsigned long pitch,uint32_t * tiling_mode)357 drm_intel_gem_bo_tile_pitch(drm_intel_bufmgr_gem *bufmgr_gem,
358 			    unsigned long pitch, uint32_t *tiling_mode)
359 {
360 	unsigned long tile_width;
361 	unsigned long i;
362 
363 	/* If untiled, then just align it so that we can do rendering
364 	 * to it with the 3D engine.
365 	 */
366 	if (*tiling_mode == I915_TILING_NONE)
367 		return ALIGN(pitch, 64);
368 
369 	if (*tiling_mode == I915_TILING_X
370 			|| (IS_915(bufmgr_gem->pci_device)
371 			    && *tiling_mode == I915_TILING_Y))
372 		tile_width = 512;
373 	else
374 		tile_width = 128;
375 
376 	/* 965 is flexible */
377 	if (bufmgr_gem->gen >= 4)
378 		return ROUND_UP_TO(pitch, tile_width);
379 
380 	/* The older hardware has a maximum pitch of 8192 with tiled
381 	 * surfaces, so fallback to untiled if it's too large.
382 	 */
383 	if (pitch > 8192) {
384 		*tiling_mode = I915_TILING_NONE;
385 		return ALIGN(pitch, 64);
386 	}
387 
388 	/* Pre-965 needs power of two tile width */
389 	for (i = tile_width; i < pitch; i <<= 1)
390 		;
391 
392 	return i;
393 }
394 
395 static struct drm_intel_gem_bo_bucket *
drm_intel_gem_bo_bucket_for_size(drm_intel_bufmgr_gem * bufmgr_gem,unsigned long size)396 drm_intel_gem_bo_bucket_for_size(drm_intel_bufmgr_gem *bufmgr_gem,
397 				 unsigned long size)
398 {
399 	int i;
400 
401 	for (i = 0; i < bufmgr_gem->num_buckets; i++) {
402 		struct drm_intel_gem_bo_bucket *bucket =
403 		    &bufmgr_gem->cache_bucket[i];
404 		if (bucket->size >= size) {
405 			return bucket;
406 		}
407 	}
408 
409 	return NULL;
410 }
411 
412 static void
drm_intel_gem_dump_validation_list(drm_intel_bufmgr_gem * bufmgr_gem)413 drm_intel_gem_dump_validation_list(drm_intel_bufmgr_gem *bufmgr_gem)
414 {
415 	int i, j;
416 
417 	for (i = 0; i < bufmgr_gem->exec_count; i++) {
418 		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
419 		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
420 
421 		if (bo_gem->relocs == NULL && bo_gem->softpin_target == NULL) {
422 			DBG("%2d: %d %s(%s)\n", i, bo_gem->gem_handle,
423 			    bo_gem->kflags & EXEC_OBJECT_PINNED ? "*" : "",
424 			    bo_gem->name);
425 			continue;
426 		}
427 
428 		for (j = 0; j < bo_gem->reloc_count; j++) {
429 			drm_intel_bo *target_bo = bo_gem->reloc_target_info[j].bo;
430 			drm_intel_bo_gem *target_gem =
431 			    (drm_intel_bo_gem *) target_bo;
432 
433 			DBG("%2d: %d %s(%s)@0x%08x %08x -> "
434 			    "%d (%s)@0x%08x %08x + 0x%08x\n",
435 			    i,
436 			    bo_gem->gem_handle,
437 			    bo_gem->kflags & EXEC_OBJECT_PINNED ? "*" : "",
438 			    bo_gem->name,
439 			    upper_32_bits(bo_gem->relocs[j].offset),
440 			    lower_32_bits(bo_gem->relocs[j].offset),
441 			    target_gem->gem_handle,
442 			    target_gem->name,
443 			    upper_32_bits(target_bo->offset64),
444 			    lower_32_bits(target_bo->offset64),
445 			    bo_gem->relocs[j].delta);
446 		}
447 
448 		for (j = 0; j < bo_gem->softpin_target_count; j++) {
449 			drm_intel_bo *target_bo = bo_gem->softpin_target[j];
450 			drm_intel_bo_gem *target_gem =
451 			    (drm_intel_bo_gem *) target_bo;
452 			DBG("%2d: %d %s(%s) -> "
453 			    "%d *(%s)@0x%08x %08x\n",
454 			    i,
455 			    bo_gem->gem_handle,
456 			    bo_gem->kflags & EXEC_OBJECT_PINNED ? "*" : "",
457 			    bo_gem->name,
458 			    target_gem->gem_handle,
459 			    target_gem->name,
460 			    upper_32_bits(target_bo->offset64),
461 			    lower_32_bits(target_bo->offset64));
462 		}
463 	}
464 }
465 
466 static inline void
drm_intel_gem_bo_reference(drm_intel_bo * bo)467 drm_intel_gem_bo_reference(drm_intel_bo *bo)
468 {
469 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
470 
471 	atomic_inc(&bo_gem->refcount);
472 }
473 
474 /**
475  * Adds the given buffer to the list of buffers to be validated (moved into the
476  * appropriate memory type) with the next batch submission.
477  *
478  * If a buffer is validated multiple times in a batch submission, it ends up
479  * with the intersection of the memory type flags and the union of the
480  * access flags.
481  */
482 static void
drm_intel_add_validate_buffer(drm_intel_bo * bo)483 drm_intel_add_validate_buffer(drm_intel_bo *bo)
484 {
485 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
486 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
487 	int index;
488 
489 	if (bo_gem->validate_index != -1)
490 		return;
491 
492 	/* Extend the array of validation entries as necessary. */
493 	if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
494 		int new_size = bufmgr_gem->exec_size * 2;
495 
496 		if (new_size == 0)
497 			new_size = 5;
498 
499 		bufmgr_gem->exec_objects =
500 		    realloc(bufmgr_gem->exec_objects,
501 			    sizeof(*bufmgr_gem->exec_objects) * new_size);
502 		bufmgr_gem->exec_bos =
503 		    realloc(bufmgr_gem->exec_bos,
504 			    sizeof(*bufmgr_gem->exec_bos) * new_size);
505 		bufmgr_gem->exec_size = new_size;
506 	}
507 
508 	index = bufmgr_gem->exec_count;
509 	bo_gem->validate_index = index;
510 	/* Fill in array entry */
511 	bufmgr_gem->exec_objects[index].handle = bo_gem->gem_handle;
512 	bufmgr_gem->exec_objects[index].relocation_count = bo_gem->reloc_count;
513 	bufmgr_gem->exec_objects[index].relocs_ptr = (uintptr_t) bo_gem->relocs;
514 	bufmgr_gem->exec_objects[index].alignment = bo->align;
515 	bufmgr_gem->exec_objects[index].offset = 0;
516 	bufmgr_gem->exec_bos[index] = bo;
517 	bufmgr_gem->exec_count++;
518 }
519 
520 static void
drm_intel_add_validate_buffer2(drm_intel_bo * bo,int need_fence)521 drm_intel_add_validate_buffer2(drm_intel_bo *bo, int need_fence)
522 {
523 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
524 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
525 	int index;
526 	unsigned long flags;
527 
528 	flags = 0;
529 	if (need_fence)
530 		flags |= EXEC_OBJECT_NEEDS_FENCE;
531 
532 	if (bo_gem->validate_index != -1) {
533 		bufmgr_gem->exec2_objects[bo_gem->validate_index].flags |= flags;
534 		return;
535 	}
536 
537 	/* Extend the array of validation entries as necessary. */
538 	if (bufmgr_gem->exec_count == bufmgr_gem->exec_size) {
539 		int new_size = bufmgr_gem->exec_size * 2;
540 
541 		if (new_size == 0)
542 			new_size = 5;
543 
544 		bufmgr_gem->exec2_objects =
545 			realloc(bufmgr_gem->exec2_objects,
546 				sizeof(*bufmgr_gem->exec2_objects) * new_size);
547 		bufmgr_gem->exec_bos =
548 			realloc(bufmgr_gem->exec_bos,
549 				sizeof(*bufmgr_gem->exec_bos) * new_size);
550 		bufmgr_gem->exec_size = new_size;
551 	}
552 
553 	index = bufmgr_gem->exec_count;
554 	bo_gem->validate_index = index;
555 	/* Fill in array entry */
556 	bufmgr_gem->exec2_objects[index].handle = bo_gem->gem_handle;
557 	bufmgr_gem->exec2_objects[index].relocation_count = bo_gem->reloc_count;
558 	bufmgr_gem->exec2_objects[index].relocs_ptr = (uintptr_t)bo_gem->relocs;
559 	bufmgr_gem->exec2_objects[index].alignment = bo->align;
560 	bufmgr_gem->exec2_objects[index].offset = bo->offset64;
561 	bufmgr_gem->exec2_objects[index].flags = bo_gem->kflags | flags;
562 	bufmgr_gem->exec2_objects[index].rsvd1 = 0;
563 	bufmgr_gem->exec2_objects[index].rsvd2 = 0;
564 	bufmgr_gem->exec_bos[index] = bo;
565 	bufmgr_gem->exec_count++;
566 }
567 
568 #define RELOC_BUF_SIZE(x) ((I915_RELOC_HEADER + x * I915_RELOC0_STRIDE) * \
569 	sizeof(uint32_t))
570 
571 static void
drm_intel_bo_gem_set_in_aperture_size(drm_intel_bufmgr_gem * bufmgr_gem,drm_intel_bo_gem * bo_gem,unsigned int alignment)572 drm_intel_bo_gem_set_in_aperture_size(drm_intel_bufmgr_gem *bufmgr_gem,
573 				      drm_intel_bo_gem *bo_gem,
574 				      unsigned int alignment)
575 {
576 	unsigned int size;
577 
578 	assert(!bo_gem->used_as_reloc_target);
579 
580 	/* The older chipsets are far-less flexible in terms of tiling,
581 	 * and require tiled buffer to be size aligned in the aperture.
582 	 * This means that in the worst possible case we will need a hole
583 	 * twice as large as the object in order for it to fit into the
584 	 * aperture. Optimal packing is for wimps.
585 	 */
586 	size = bo_gem->bo.size;
587 	if (bufmgr_gem->gen < 4 && bo_gem->tiling_mode != I915_TILING_NONE) {
588 		unsigned int min_size;
589 
590 		if (bufmgr_gem->has_relaxed_fencing) {
591 			if (bufmgr_gem->gen == 3)
592 				min_size = 1024*1024;
593 			else
594 				min_size = 512*1024;
595 
596 			while (min_size < size)
597 				min_size *= 2;
598 		} else
599 			min_size = size;
600 
601 		/* Account for worst-case alignment. */
602 		alignment = MAX2(alignment, min_size);
603 	}
604 
605 	bo_gem->reloc_tree_size = size + alignment;
606 }
607 
608 static int
drm_intel_setup_reloc_list(drm_intel_bo * bo)609 drm_intel_setup_reloc_list(drm_intel_bo *bo)
610 {
611 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
612 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
613 	unsigned int max_relocs = bufmgr_gem->max_relocs;
614 
615 	if (bo->size / 4 < max_relocs)
616 		max_relocs = bo->size / 4;
617 
618 	bo_gem->relocs = malloc(max_relocs *
619 				sizeof(struct drm_i915_gem_relocation_entry));
620 	bo_gem->reloc_target_info = malloc(max_relocs *
621 					   sizeof(drm_intel_reloc_target));
622 	if (bo_gem->relocs == NULL || bo_gem->reloc_target_info == NULL) {
623 		bo_gem->has_error = true;
624 
625 		free (bo_gem->relocs);
626 		bo_gem->relocs = NULL;
627 
628 		free (bo_gem->reloc_target_info);
629 		bo_gem->reloc_target_info = NULL;
630 
631 		return 1;
632 	}
633 
634 	return 0;
635 }
636 
637 static int
drm_intel_gem_bo_busy(drm_intel_bo * bo)638 drm_intel_gem_bo_busy(drm_intel_bo *bo)
639 {
640 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
641 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
642 	struct drm_i915_gem_busy busy;
643 	int ret;
644 
645 	if (bo_gem->reusable && bo_gem->idle)
646 		return false;
647 
648 	memclear(busy);
649 	busy.handle = bo_gem->gem_handle;
650 
651 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_BUSY, &busy);
652 	if (ret == 0) {
653 		bo_gem->idle = !busy.busy;
654 		return busy.busy;
655 	} else {
656 		return false;
657 	}
658 }
659 
660 static int
drm_intel_gem_bo_madvise_internal(drm_intel_bufmgr_gem * bufmgr_gem,drm_intel_bo_gem * bo_gem,int state)661 drm_intel_gem_bo_madvise_internal(drm_intel_bufmgr_gem *bufmgr_gem,
662 				  drm_intel_bo_gem *bo_gem, int state)
663 {
664 	struct drm_i915_gem_madvise madv;
665 
666 	memclear(madv);
667 	madv.handle = bo_gem->gem_handle;
668 	madv.madv = state;
669 	madv.retained = 1;
670 	drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_MADVISE, &madv);
671 
672 	return madv.retained;
673 }
674 
675 static int
drm_intel_gem_bo_madvise(drm_intel_bo * bo,int madv)676 drm_intel_gem_bo_madvise(drm_intel_bo *bo, int madv)
677 {
678 	return drm_intel_gem_bo_madvise_internal
679 		((drm_intel_bufmgr_gem *) bo->bufmgr,
680 		 (drm_intel_bo_gem *) bo,
681 		 madv);
682 }
683 
684 /* drop the oldest entries that have been purged by the kernel */
685 static void
drm_intel_gem_bo_cache_purge_bucket(drm_intel_bufmgr_gem * bufmgr_gem,struct drm_intel_gem_bo_bucket * bucket)686 drm_intel_gem_bo_cache_purge_bucket(drm_intel_bufmgr_gem *bufmgr_gem,
687 				    struct drm_intel_gem_bo_bucket *bucket)
688 {
689 	while (!DRMLISTEMPTY(&bucket->head)) {
690 		drm_intel_bo_gem *bo_gem;
691 
692 		bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
693 				      bucket->head.next, head);
694 		if (drm_intel_gem_bo_madvise_internal
695 		    (bufmgr_gem, bo_gem, I915_MADV_DONTNEED))
696 			break;
697 
698 		DRMLISTDEL(&bo_gem->head);
699 		drm_intel_gem_bo_free(&bo_gem->bo);
700 	}
701 }
702 
703 static drm_intel_bo *
drm_intel_gem_bo_alloc_internal(drm_intel_bufmgr * bufmgr,const char * name,unsigned long size,unsigned long flags,uint32_t tiling_mode,unsigned long stride,unsigned int alignment)704 drm_intel_gem_bo_alloc_internal(drm_intel_bufmgr *bufmgr,
705 				const char *name,
706 				unsigned long size,
707 				unsigned long flags,
708 				uint32_t tiling_mode,
709 				unsigned long stride,
710 				unsigned int alignment)
711 {
712 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
713 	drm_intel_bo_gem *bo_gem;
714 	unsigned int page_size = getpagesize();
715 	int ret;
716 	struct drm_intel_gem_bo_bucket *bucket;
717 	bool alloc_from_cache;
718 	unsigned long bo_size;
719 	bool for_render = false;
720 
721 	if (flags & BO_ALLOC_FOR_RENDER)
722 		for_render = true;
723 
724 	/* Round the allocated size up to a power of two number of pages. */
725 	bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, size);
726 
727 	/* If we don't have caching at this size, don't actually round the
728 	 * allocation up.
729 	 */
730 	if (bucket == NULL) {
731 		bo_size = size;
732 		if (bo_size < page_size)
733 			bo_size = page_size;
734 	} else {
735 		bo_size = bucket->size;
736 	}
737 
738 	pthread_mutex_lock(&bufmgr_gem->lock);
739 	/* Get a buffer out of the cache if available */
740 retry:
741 	alloc_from_cache = false;
742 	if (bucket != NULL && !DRMLISTEMPTY(&bucket->head)) {
743 		if (for_render) {
744 			/* Allocate new render-target BOs from the tail (MRU)
745 			 * of the list, as it will likely be hot in the GPU
746 			 * cache and in the aperture for us.
747 			 */
748 			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
749 					      bucket->head.prev, head);
750 			DRMLISTDEL(&bo_gem->head);
751 			alloc_from_cache = true;
752 			bo_gem->bo.align = alignment;
753 		} else {
754 			assert(alignment == 0);
755 			/* For non-render-target BOs (where we're probably
756 			 * going to map it first thing in order to fill it
757 			 * with data), check if the last BO in the cache is
758 			 * unbusy, and only reuse in that case. Otherwise,
759 			 * allocating a new buffer is probably faster than
760 			 * waiting for the GPU to finish.
761 			 */
762 			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
763 					      bucket->head.next, head);
764 			if (!drm_intel_gem_bo_busy(&bo_gem->bo)) {
765 				alloc_from_cache = true;
766 				DRMLISTDEL(&bo_gem->head);
767 			}
768 		}
769 
770 		if (alloc_from_cache) {
771 			if (!drm_intel_gem_bo_madvise_internal
772 			    (bufmgr_gem, bo_gem, I915_MADV_WILLNEED)) {
773 				drm_intel_gem_bo_free(&bo_gem->bo);
774 				drm_intel_gem_bo_cache_purge_bucket(bufmgr_gem,
775 								    bucket);
776 				goto retry;
777 			}
778 
779 			if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
780 								 tiling_mode,
781 								 stride)) {
782 				drm_intel_gem_bo_free(&bo_gem->bo);
783 				goto retry;
784 			}
785 		}
786 	}
787 
788 	if (!alloc_from_cache) {
789 		struct drm_i915_gem_create create;
790 
791 		bo_gem = calloc(1, sizeof(*bo_gem));
792 		if (!bo_gem)
793 			goto err;
794 
795 		/* drm_intel_gem_bo_free calls DRMLISTDEL() for an uninitialized
796 		   list (vma_list), so better set the list head here */
797 		DRMINITLISTHEAD(&bo_gem->vma_list);
798 
799 		bo_gem->bo.size = bo_size;
800 
801 		memclear(create);
802 		create.size = bo_size;
803 
804 		ret = drmIoctl(bufmgr_gem->fd,
805 			       DRM_IOCTL_I915_GEM_CREATE,
806 			       &create);
807 		if (ret != 0) {
808 			free(bo_gem);
809 			goto err;
810 		}
811 
812 		bo_gem->gem_handle = create.handle;
813 		HASH_ADD(handle_hh, bufmgr_gem->handle_table,
814 			 gem_handle, sizeof(bo_gem->gem_handle),
815 			 bo_gem);
816 
817 		bo_gem->bo.handle = bo_gem->gem_handle;
818 		bo_gem->bo.bufmgr = bufmgr;
819 		bo_gem->bo.align = alignment;
820 
821 		bo_gem->tiling_mode = I915_TILING_NONE;
822 		bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
823 		bo_gem->stride = 0;
824 
825 		if (drm_intel_gem_bo_set_tiling_internal(&bo_gem->bo,
826 							 tiling_mode,
827 							 stride))
828 			goto err_free;
829 	}
830 
831 	bo_gem->name = name;
832 	atomic_set(&bo_gem->refcount, 1);
833 	bo_gem->validate_index = -1;
834 	bo_gem->reloc_tree_fences = 0;
835 	bo_gem->used_as_reloc_target = false;
836 	bo_gem->has_error = false;
837 	bo_gem->reusable = true;
838 
839 	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, alignment);
840 	pthread_mutex_unlock(&bufmgr_gem->lock);
841 
842 	DBG("bo_create: buf %d (%s) %ldb\n",
843 	    bo_gem->gem_handle, bo_gem->name, size);
844 
845 	return &bo_gem->bo;
846 
847 err_free:
848 	drm_intel_gem_bo_free(&bo_gem->bo);
849 err:
850 	pthread_mutex_unlock(&bufmgr_gem->lock);
851 	return NULL;
852 }
853 
854 static drm_intel_bo *
drm_intel_gem_bo_alloc_for_render(drm_intel_bufmgr * bufmgr,const char * name,unsigned long size,unsigned int alignment)855 drm_intel_gem_bo_alloc_for_render(drm_intel_bufmgr *bufmgr,
856 				  const char *name,
857 				  unsigned long size,
858 				  unsigned int alignment)
859 {
860 	return drm_intel_gem_bo_alloc_internal(bufmgr, name, size,
861 					       BO_ALLOC_FOR_RENDER,
862 					       I915_TILING_NONE, 0,
863 					       alignment);
864 }
865 
866 static drm_intel_bo *
drm_intel_gem_bo_alloc(drm_intel_bufmgr * bufmgr,const char * name,unsigned long size,unsigned int alignment)867 drm_intel_gem_bo_alloc(drm_intel_bufmgr *bufmgr,
868 		       const char *name,
869 		       unsigned long size,
870 		       unsigned int alignment)
871 {
872 	return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, 0,
873 					       I915_TILING_NONE, 0, 0);
874 }
875 
876 static drm_intel_bo *
drm_intel_gem_bo_alloc_tiled(drm_intel_bufmgr * bufmgr,const char * name,int x,int y,int cpp,uint32_t * tiling_mode,unsigned long * pitch,unsigned long flags)877 drm_intel_gem_bo_alloc_tiled(drm_intel_bufmgr *bufmgr, const char *name,
878 			     int x, int y, int cpp, uint32_t *tiling_mode,
879 			     unsigned long *pitch, unsigned long flags)
880 {
881 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
882 	unsigned long size, stride;
883 	uint32_t tiling;
884 
885 	do {
886 		unsigned long aligned_y, height_alignment;
887 
888 		tiling = *tiling_mode;
889 
890 		/* If we're tiled, our allocations are in 8 or 32-row blocks,
891 		 * so failure to align our height means that we won't allocate
892 		 * enough pages.
893 		 *
894 		 * If we're untiled, we still have to align to 2 rows high
895 		 * because the data port accesses 2x2 blocks even if the
896 		 * bottom row isn't to be rendered, so failure to align means
897 		 * we could walk off the end of the GTT and fault.  This is
898 		 * documented on 965, and may be the case on older chipsets
899 		 * too so we try to be careful.
900 		 */
901 		aligned_y = y;
902 		height_alignment = 2;
903 
904 		if ((bufmgr_gem->gen == 2) && tiling != I915_TILING_NONE)
905 			height_alignment = 16;
906 		else if (tiling == I915_TILING_X
907 			|| (IS_915(bufmgr_gem->pci_device)
908 			    && tiling == I915_TILING_Y))
909 			height_alignment = 8;
910 		else if (tiling == I915_TILING_Y)
911 			height_alignment = 32;
912 		aligned_y = ALIGN(y, height_alignment);
913 
914 		stride = x * cpp;
915 		stride = drm_intel_gem_bo_tile_pitch(bufmgr_gem, stride, tiling_mode);
916 		size = stride * aligned_y;
917 		size = drm_intel_gem_bo_tile_size(bufmgr_gem, size, tiling_mode);
918 	} while (*tiling_mode != tiling);
919 	*pitch = stride;
920 
921 	if (tiling == I915_TILING_NONE)
922 		stride = 0;
923 
924 	return drm_intel_gem_bo_alloc_internal(bufmgr, name, size, flags,
925 					       tiling, stride, 0);
926 }
927 
928 static drm_intel_bo *
drm_intel_gem_bo_alloc_userptr(drm_intel_bufmgr * bufmgr,const char * name,void * addr,uint32_t tiling_mode,uint32_t stride,unsigned long size,unsigned long flags)929 drm_intel_gem_bo_alloc_userptr(drm_intel_bufmgr *bufmgr,
930 				const char *name,
931 				void *addr,
932 				uint32_t tiling_mode,
933 				uint32_t stride,
934 				unsigned long size,
935 				unsigned long flags)
936 {
937 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
938 	drm_intel_bo_gem *bo_gem;
939 	int ret;
940 	struct drm_i915_gem_userptr userptr;
941 
942 	/* Tiling with userptr surfaces is not supported
943 	 * on all hardware so refuse it for time being.
944 	 */
945 	if (tiling_mode != I915_TILING_NONE)
946 		return NULL;
947 
948 	bo_gem = calloc(1, sizeof(*bo_gem));
949 	if (!bo_gem)
950 		return NULL;
951 
952 	atomic_set(&bo_gem->refcount, 1);
953 	DRMINITLISTHEAD(&bo_gem->vma_list);
954 
955 	bo_gem->bo.size = size;
956 
957 	memclear(userptr);
958 	userptr.user_ptr = (__u64)((unsigned long)addr);
959 	userptr.user_size = size;
960 	userptr.flags = flags;
961 
962 	ret = drmIoctl(bufmgr_gem->fd,
963 			DRM_IOCTL_I915_GEM_USERPTR,
964 			&userptr);
965 	if (ret != 0) {
966 		DBG("bo_create_userptr: "
967 		    "ioctl failed with user ptr %p size 0x%lx, "
968 		    "user flags 0x%lx\n", addr, size, flags);
969 		free(bo_gem);
970 		return NULL;
971 	}
972 
973 	pthread_mutex_lock(&bufmgr_gem->lock);
974 
975 	bo_gem->gem_handle = userptr.handle;
976 	bo_gem->bo.handle = bo_gem->gem_handle;
977 	bo_gem->bo.bufmgr    = bufmgr;
978 	bo_gem->is_userptr   = true;
979 	bo_gem->bo.virtual   = addr;
980 	/* Save the address provided by user */
981 	bo_gem->user_virtual = addr;
982 	bo_gem->tiling_mode  = I915_TILING_NONE;
983 	bo_gem->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
984 	bo_gem->stride       = 0;
985 
986 	HASH_ADD(handle_hh, bufmgr_gem->handle_table,
987 		 gem_handle, sizeof(bo_gem->gem_handle),
988 		 bo_gem);
989 
990 	bo_gem->name = name;
991 	bo_gem->validate_index = -1;
992 	bo_gem->reloc_tree_fences = 0;
993 	bo_gem->used_as_reloc_target = false;
994 	bo_gem->has_error = false;
995 	bo_gem->reusable = false;
996 
997 	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
998 	pthread_mutex_unlock(&bufmgr_gem->lock);
999 
1000 	DBG("bo_create_userptr: "
1001 	    "ptr %p buf %d (%s) size %ldb, stride 0x%x, tile mode %d\n",
1002 		addr, bo_gem->gem_handle, bo_gem->name,
1003 		size, stride, tiling_mode);
1004 
1005 	return &bo_gem->bo;
1006 }
1007 
1008 static bool
has_userptr(drm_intel_bufmgr_gem * bufmgr_gem)1009 has_userptr(drm_intel_bufmgr_gem *bufmgr_gem)
1010 {
1011 	int ret;
1012 	void *ptr;
1013 	long pgsz;
1014 	struct drm_i915_gem_userptr userptr;
1015 
1016 	pgsz = sysconf(_SC_PAGESIZE);
1017 	assert(pgsz > 0);
1018 
1019 	ret = posix_memalign(&ptr, pgsz, pgsz);
1020 	if (ret) {
1021 		DBG("Failed to get a page (%ld) for userptr detection!\n",
1022 			pgsz);
1023 		return false;
1024 	}
1025 
1026 	memclear(userptr);
1027 	userptr.user_ptr = (__u64)(unsigned long)ptr;
1028 	userptr.user_size = pgsz;
1029 
1030 retry:
1031 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_USERPTR, &userptr);
1032 	if (ret) {
1033 		if (errno == ENODEV && userptr.flags == 0) {
1034 			userptr.flags = I915_USERPTR_UNSYNCHRONIZED;
1035 			goto retry;
1036 		}
1037 		free(ptr);
1038 		return false;
1039 	}
1040 
1041 	/* We don't release the userptr bo here as we want to keep the
1042 	 * kernel mm tracking alive for our lifetime. The first time we
1043 	 * create a userptr object the kernel has to install a mmu_notifer
1044 	 * which is a heavyweight operation (e.g. it requires taking all
1045 	 * mm_locks and stop_machine()).
1046 	 */
1047 
1048 	bufmgr_gem->userptr_active.ptr = ptr;
1049 	bufmgr_gem->userptr_active.handle = userptr.handle;
1050 
1051 	return true;
1052 }
1053 
1054 static drm_intel_bo *
check_bo_alloc_userptr(drm_intel_bufmgr * bufmgr,const char * name,void * addr,uint32_t tiling_mode,uint32_t stride,unsigned long size,unsigned long flags)1055 check_bo_alloc_userptr(drm_intel_bufmgr *bufmgr,
1056 		       const char *name,
1057 		       void *addr,
1058 		       uint32_t tiling_mode,
1059 		       uint32_t stride,
1060 		       unsigned long size,
1061 		       unsigned long flags)
1062 {
1063 	if (has_userptr((drm_intel_bufmgr_gem *)bufmgr))
1064 		bufmgr->bo_alloc_userptr = drm_intel_gem_bo_alloc_userptr;
1065 	else
1066 		bufmgr->bo_alloc_userptr = NULL;
1067 
1068 	return drm_intel_bo_alloc_userptr(bufmgr, name, addr,
1069 					  tiling_mode, stride, size, flags);
1070 }
1071 
1072 /**
1073  * Returns a drm_intel_bo wrapping the given buffer object handle.
1074  *
1075  * This can be used when one application needs to pass a buffer object
1076  * to another.
1077  */
1078 drm_public drm_intel_bo *
drm_intel_bo_gem_create_from_name(drm_intel_bufmgr * bufmgr,const char * name,unsigned int handle)1079 drm_intel_bo_gem_create_from_name(drm_intel_bufmgr *bufmgr,
1080 				  const char *name,
1081 				  unsigned int handle)
1082 {
1083 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1084 	drm_intel_bo_gem *bo_gem;
1085 	int ret;
1086 	struct drm_gem_open open_arg;
1087 	struct drm_i915_gem_get_tiling get_tiling;
1088 
1089 	/* At the moment most applications only have a few named bo.
1090 	 * For instance, in a DRI client only the render buffers passed
1091 	 * between X and the client are named. And since X returns the
1092 	 * alternating names for the front/back buffer a linear search
1093 	 * provides a sufficiently fast match.
1094 	 */
1095 	pthread_mutex_lock(&bufmgr_gem->lock);
1096 	HASH_FIND(name_hh, bufmgr_gem->name_table,
1097 		  &handle, sizeof(handle), bo_gem);
1098 	if (bo_gem) {
1099 		drm_intel_gem_bo_reference(&bo_gem->bo);
1100 		goto out;
1101 	}
1102 
1103 	memclear(open_arg);
1104 	open_arg.name = handle;
1105 	ret = drmIoctl(bufmgr_gem->fd,
1106 		       DRM_IOCTL_GEM_OPEN,
1107 		       &open_arg);
1108 	if (ret != 0) {
1109 		DBG("Couldn't reference %s handle 0x%08x: %s\n",
1110 		    name, handle, strerror(errno));
1111 		bo_gem = NULL;
1112 		goto out;
1113 	}
1114         /* Now see if someone has used a prime handle to get this
1115          * object from the kernel before by looking through the list
1116          * again for a matching gem_handle
1117          */
1118 	HASH_FIND(handle_hh, bufmgr_gem->handle_table,
1119 		  &open_arg.handle, sizeof(open_arg.handle), bo_gem);
1120 	if (bo_gem) {
1121 		drm_intel_gem_bo_reference(&bo_gem->bo);
1122 		goto out;
1123 	}
1124 
1125 	bo_gem = calloc(1, sizeof(*bo_gem));
1126 	if (!bo_gem)
1127 		goto out;
1128 
1129 	atomic_set(&bo_gem->refcount, 1);
1130 	DRMINITLISTHEAD(&bo_gem->vma_list);
1131 
1132 	bo_gem->bo.size = open_arg.size;
1133 	bo_gem->bo.offset = 0;
1134 	bo_gem->bo.offset64 = 0;
1135 	bo_gem->bo.virtual = NULL;
1136 	bo_gem->bo.bufmgr = bufmgr;
1137 	bo_gem->name = name;
1138 	bo_gem->validate_index = -1;
1139 	bo_gem->gem_handle = open_arg.handle;
1140 	bo_gem->bo.handle = open_arg.handle;
1141 	bo_gem->global_name = handle;
1142 	bo_gem->reusable = false;
1143 
1144 	HASH_ADD(handle_hh, bufmgr_gem->handle_table,
1145 		 gem_handle, sizeof(bo_gem->gem_handle), bo_gem);
1146 	HASH_ADD(name_hh, bufmgr_gem->name_table,
1147 		 global_name, sizeof(bo_gem->global_name), bo_gem);
1148 
1149 	memclear(get_tiling);
1150 	get_tiling.handle = bo_gem->gem_handle;
1151 	ret = drmIoctl(bufmgr_gem->fd,
1152 		       DRM_IOCTL_I915_GEM_GET_TILING,
1153 		       &get_tiling);
1154 	if (ret != 0)
1155 		goto err_unref;
1156 
1157 	bo_gem->tiling_mode = get_tiling.tiling_mode;
1158 	bo_gem->swizzle_mode = get_tiling.swizzle_mode;
1159 	/* XXX stride is unknown */
1160 	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
1161 	DBG("bo_create_from_handle: %d (%s)\n", handle, bo_gem->name);
1162 
1163 out:
1164 	pthread_mutex_unlock(&bufmgr_gem->lock);
1165 	return &bo_gem->bo;
1166 
1167 err_unref:
1168 	drm_intel_gem_bo_free(&bo_gem->bo);
1169 	pthread_mutex_unlock(&bufmgr_gem->lock);
1170 	return NULL;
1171 }
1172 
1173 static void
drm_intel_gem_bo_free(drm_intel_bo * bo)1174 drm_intel_gem_bo_free(drm_intel_bo *bo)
1175 {
1176 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1177 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1178 	struct drm_gem_close close;
1179 	int ret;
1180 
1181 	DRMLISTDEL(&bo_gem->vma_list);
1182 	if (bo_gem->mem_virtual) {
1183 		VG(VALGRIND_FREELIKE_BLOCK(bo_gem->mem_virtual, 0));
1184 		drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size);
1185 		bufmgr_gem->vma_count--;
1186 	}
1187 	if (bo_gem->wc_virtual) {
1188 		VG(VALGRIND_FREELIKE_BLOCK(bo_gem->wc_virtual, 0));
1189 		drm_munmap(bo_gem->wc_virtual, bo_gem->bo.size);
1190 		bufmgr_gem->vma_count--;
1191 	}
1192 	if (bo_gem->gtt_virtual) {
1193 		drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
1194 		bufmgr_gem->vma_count--;
1195 	}
1196 
1197 	if (bo_gem->global_name)
1198 		HASH_DELETE(name_hh, bufmgr_gem->name_table, bo_gem);
1199 	HASH_DELETE(handle_hh, bufmgr_gem->handle_table, bo_gem);
1200 
1201 	/* Close this object */
1202 	memclear(close);
1203 	close.handle = bo_gem->gem_handle;
1204 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close);
1205 	if (ret != 0) {
1206 		DBG("DRM_IOCTL_GEM_CLOSE %d failed (%s): %s\n",
1207 		    bo_gem->gem_handle, bo_gem->name, strerror(errno));
1208 	}
1209 	free(bo);
1210 }
1211 
1212 static void
drm_intel_gem_bo_mark_mmaps_incoherent(drm_intel_bo * bo)1213 drm_intel_gem_bo_mark_mmaps_incoherent(drm_intel_bo *bo)
1214 {
1215 #if HAVE_VALGRIND
1216 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1217 
1218 	if (bo_gem->mem_virtual)
1219 		VALGRIND_MAKE_MEM_NOACCESS(bo_gem->mem_virtual, bo->size);
1220 
1221 	if (bo_gem->wc_virtual)
1222 		VALGRIND_MAKE_MEM_NOACCESS(bo_gem->wc_virtual, bo->size);
1223 
1224 	if (bo_gem->gtt_virtual)
1225 		VALGRIND_MAKE_MEM_NOACCESS(bo_gem->gtt_virtual, bo->size);
1226 #endif
1227 }
1228 
1229 /** Frees all cached buffers significantly older than @time. */
1230 static void
drm_intel_gem_cleanup_bo_cache(drm_intel_bufmgr_gem * bufmgr_gem,time_t time)1231 drm_intel_gem_cleanup_bo_cache(drm_intel_bufmgr_gem *bufmgr_gem, time_t time)
1232 {
1233 	int i;
1234 
1235 	if (bufmgr_gem->time == time)
1236 		return;
1237 
1238 	for (i = 0; i < bufmgr_gem->num_buckets; i++) {
1239 		struct drm_intel_gem_bo_bucket *bucket =
1240 		    &bufmgr_gem->cache_bucket[i];
1241 
1242 		while (!DRMLISTEMPTY(&bucket->head)) {
1243 			drm_intel_bo_gem *bo_gem;
1244 
1245 			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1246 					      bucket->head.next, head);
1247 			if (time - bo_gem->free_time <= 1)
1248 				break;
1249 
1250 			DRMLISTDEL(&bo_gem->head);
1251 
1252 			drm_intel_gem_bo_free(&bo_gem->bo);
1253 		}
1254 	}
1255 
1256 	bufmgr_gem->time = time;
1257 }
1258 
drm_intel_gem_bo_purge_vma_cache(drm_intel_bufmgr_gem * bufmgr_gem)1259 static void drm_intel_gem_bo_purge_vma_cache(drm_intel_bufmgr_gem *bufmgr_gem)
1260 {
1261 	int limit;
1262 
1263 	DBG("%s: cached=%d, open=%d, limit=%d\n", __FUNCTION__,
1264 	    bufmgr_gem->vma_count, bufmgr_gem->vma_open, bufmgr_gem->vma_max);
1265 
1266 	if (bufmgr_gem->vma_max < 0)
1267 		return;
1268 
1269 	/* We may need to evict a few entries in order to create new mmaps */
1270 	limit = bufmgr_gem->vma_max - 2*bufmgr_gem->vma_open;
1271 	if (limit < 0)
1272 		limit = 0;
1273 
1274 	while (bufmgr_gem->vma_count > limit) {
1275 		drm_intel_bo_gem *bo_gem;
1276 
1277 		bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1278 				      bufmgr_gem->vma_cache.next,
1279 				      vma_list);
1280 		assert(bo_gem->map_count == 0);
1281 		DRMLISTDELINIT(&bo_gem->vma_list);
1282 
1283 		if (bo_gem->mem_virtual) {
1284 			drm_munmap(bo_gem->mem_virtual, bo_gem->bo.size);
1285 			bo_gem->mem_virtual = NULL;
1286 			bufmgr_gem->vma_count--;
1287 		}
1288 		if (bo_gem->wc_virtual) {
1289 			drm_munmap(bo_gem->wc_virtual, bo_gem->bo.size);
1290 			bo_gem->wc_virtual = NULL;
1291 			bufmgr_gem->vma_count--;
1292 		}
1293 		if (bo_gem->gtt_virtual) {
1294 			drm_munmap(bo_gem->gtt_virtual, bo_gem->bo.size);
1295 			bo_gem->gtt_virtual = NULL;
1296 			bufmgr_gem->vma_count--;
1297 		}
1298 	}
1299 }
1300 
drm_intel_gem_bo_close_vma(drm_intel_bufmgr_gem * bufmgr_gem,drm_intel_bo_gem * bo_gem)1301 static void drm_intel_gem_bo_close_vma(drm_intel_bufmgr_gem *bufmgr_gem,
1302 				       drm_intel_bo_gem *bo_gem)
1303 {
1304 	bufmgr_gem->vma_open--;
1305 	DRMLISTADDTAIL(&bo_gem->vma_list, &bufmgr_gem->vma_cache);
1306 	if (bo_gem->mem_virtual)
1307 		bufmgr_gem->vma_count++;
1308 	if (bo_gem->wc_virtual)
1309 		bufmgr_gem->vma_count++;
1310 	if (bo_gem->gtt_virtual)
1311 		bufmgr_gem->vma_count++;
1312 	drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
1313 }
1314 
drm_intel_gem_bo_open_vma(drm_intel_bufmgr_gem * bufmgr_gem,drm_intel_bo_gem * bo_gem)1315 static void drm_intel_gem_bo_open_vma(drm_intel_bufmgr_gem *bufmgr_gem,
1316 				      drm_intel_bo_gem *bo_gem)
1317 {
1318 	bufmgr_gem->vma_open++;
1319 	DRMLISTDEL(&bo_gem->vma_list);
1320 	if (bo_gem->mem_virtual)
1321 		bufmgr_gem->vma_count--;
1322 	if (bo_gem->wc_virtual)
1323 		bufmgr_gem->vma_count--;
1324 	if (bo_gem->gtt_virtual)
1325 		bufmgr_gem->vma_count--;
1326 	drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
1327 }
1328 
1329 static void
drm_intel_gem_bo_unreference_final(drm_intel_bo * bo,time_t time)1330 drm_intel_gem_bo_unreference_final(drm_intel_bo *bo, time_t time)
1331 {
1332 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1333 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1334 	struct drm_intel_gem_bo_bucket *bucket;
1335 	int i;
1336 
1337 	/* Unreference all the target buffers */
1338 	for (i = 0; i < bo_gem->reloc_count; i++) {
1339 		if (bo_gem->reloc_target_info[i].bo != bo) {
1340 			drm_intel_gem_bo_unreference_locked_timed(bo_gem->
1341 								  reloc_target_info[i].bo,
1342 								  time);
1343 		}
1344 	}
1345 	for (i = 0; i < bo_gem->softpin_target_count; i++)
1346 		drm_intel_gem_bo_unreference_locked_timed(bo_gem->softpin_target[i],
1347 								  time);
1348 	bo_gem->kflags = 0;
1349 	bo_gem->reloc_count = 0;
1350 	bo_gem->used_as_reloc_target = false;
1351 	bo_gem->softpin_target_count = 0;
1352 
1353 	DBG("bo_unreference final: %d (%s)\n",
1354 	    bo_gem->gem_handle, bo_gem->name);
1355 
1356 	/* release memory associated with this object */
1357 	if (bo_gem->reloc_target_info) {
1358 		free(bo_gem->reloc_target_info);
1359 		bo_gem->reloc_target_info = NULL;
1360 	}
1361 	if (bo_gem->relocs) {
1362 		free(bo_gem->relocs);
1363 		bo_gem->relocs = NULL;
1364 	}
1365 	if (bo_gem->softpin_target) {
1366 		free(bo_gem->softpin_target);
1367 		bo_gem->softpin_target = NULL;
1368 		bo_gem->softpin_target_size = 0;
1369 	}
1370 
1371 	/* Clear any left-over mappings */
1372 	if (bo_gem->map_count) {
1373 		DBG("bo freed with non-zero map-count %d\n", bo_gem->map_count);
1374 		bo_gem->map_count = 0;
1375 		drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1376 		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1377 	}
1378 
1379 	bucket = drm_intel_gem_bo_bucket_for_size(bufmgr_gem, bo->size);
1380 	/* Put the buffer into our internal cache for reuse if we can. */
1381 	if (bufmgr_gem->bo_reuse && bo_gem->reusable && bucket != NULL &&
1382 	    drm_intel_gem_bo_madvise_internal(bufmgr_gem, bo_gem,
1383 					      I915_MADV_DONTNEED)) {
1384 		bo_gem->free_time = time;
1385 
1386 		bo_gem->name = NULL;
1387 		bo_gem->validate_index = -1;
1388 
1389 		DRMLISTADDTAIL(&bo_gem->head, &bucket->head);
1390 	} else {
1391 		drm_intel_gem_bo_free(bo);
1392 	}
1393 }
1394 
drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo * bo,time_t time)1395 static void drm_intel_gem_bo_unreference_locked_timed(drm_intel_bo *bo,
1396 						      time_t time)
1397 {
1398 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1399 
1400 	assert(atomic_read(&bo_gem->refcount) > 0);
1401 	if (atomic_dec_and_test(&bo_gem->refcount))
1402 		drm_intel_gem_bo_unreference_final(bo, time);
1403 }
1404 
drm_intel_gem_bo_unreference(drm_intel_bo * bo)1405 static void drm_intel_gem_bo_unreference(drm_intel_bo *bo)
1406 {
1407 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1408 
1409 	assert(atomic_read(&bo_gem->refcount) > 0);
1410 
1411 	if (atomic_add_unless(&bo_gem->refcount, -1, 1)) {
1412 		drm_intel_bufmgr_gem *bufmgr_gem =
1413 		    (drm_intel_bufmgr_gem *) bo->bufmgr;
1414 		struct timespec time;
1415 
1416 		clock_gettime(CLOCK_MONOTONIC, &time);
1417 
1418 		pthread_mutex_lock(&bufmgr_gem->lock);
1419 
1420 		if (atomic_dec_and_test(&bo_gem->refcount)) {
1421 			drm_intel_gem_bo_unreference_final(bo, time.tv_sec);
1422 			drm_intel_gem_cleanup_bo_cache(bufmgr_gem, time.tv_sec);
1423 		}
1424 
1425 		pthread_mutex_unlock(&bufmgr_gem->lock);
1426 	}
1427 }
1428 
drm_intel_gem_bo_map(drm_intel_bo * bo,int write_enable)1429 static int drm_intel_gem_bo_map(drm_intel_bo *bo, int write_enable)
1430 {
1431 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1432 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1433 	struct drm_i915_gem_set_domain set_domain;
1434 	int ret;
1435 
1436 	if (bo_gem->is_userptr) {
1437 		/* Return the same user ptr */
1438 		bo->virtual = bo_gem->user_virtual;
1439 		return 0;
1440 	}
1441 
1442 	pthread_mutex_lock(&bufmgr_gem->lock);
1443 
1444 	if (bo_gem->map_count++ == 0)
1445 		drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
1446 
1447 	if (!bo_gem->mem_virtual) {
1448 		struct drm_i915_gem_mmap mmap_arg;
1449 
1450 		DBG("bo_map: %d (%s), map_count=%d\n",
1451 		    bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
1452 
1453 		memclear(mmap_arg);
1454 		mmap_arg.handle = bo_gem->gem_handle;
1455 		mmap_arg.size = bo->size;
1456 		ret = drmIoctl(bufmgr_gem->fd,
1457 			       DRM_IOCTL_I915_GEM_MMAP,
1458 			       &mmap_arg);
1459 		if (ret != 0) {
1460 			ret = -errno;
1461 			DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1462 			    __FILE__, __LINE__, bo_gem->gem_handle,
1463 			    bo_gem->name, strerror(errno));
1464 			if (--bo_gem->map_count == 0)
1465 				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1466 			pthread_mutex_unlock(&bufmgr_gem->lock);
1467 			return ret;
1468 		}
1469 		VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
1470 		bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr;
1471 	}
1472 	DBG("bo_map: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
1473 	    bo_gem->mem_virtual);
1474 	bo->virtual = bo_gem->mem_virtual;
1475 
1476 	memclear(set_domain);
1477 	set_domain.handle = bo_gem->gem_handle;
1478 	set_domain.read_domains = I915_GEM_DOMAIN_CPU;
1479 	if (write_enable)
1480 		set_domain.write_domain = I915_GEM_DOMAIN_CPU;
1481 	else
1482 		set_domain.write_domain = 0;
1483 	ret = drmIoctl(bufmgr_gem->fd,
1484 		       DRM_IOCTL_I915_GEM_SET_DOMAIN,
1485 		       &set_domain);
1486 	if (ret != 0) {
1487 		DBG("%s:%d: Error setting to CPU domain %d: %s\n",
1488 		    __FILE__, __LINE__, bo_gem->gem_handle,
1489 		    strerror(errno));
1490 	}
1491 
1492 	if (write_enable)
1493 		bo_gem->mapped_cpu_write = true;
1494 
1495 	drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1496 	VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->mem_virtual, bo->size));
1497 	pthread_mutex_unlock(&bufmgr_gem->lock);
1498 
1499 	return 0;
1500 }
1501 
1502 static int
map_gtt(drm_intel_bo * bo)1503 map_gtt(drm_intel_bo *bo)
1504 {
1505 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1506 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1507 	int ret;
1508 
1509 	if (bo_gem->is_userptr)
1510 		return -EINVAL;
1511 
1512 	if (bo_gem->map_count++ == 0)
1513 		drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
1514 
1515 	/* Get a mapping of the buffer if we haven't before. */
1516 	if (bo_gem->gtt_virtual == NULL) {
1517 		struct drm_i915_gem_mmap_gtt mmap_arg;
1518 
1519 		DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n",
1520 		    bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
1521 
1522 		memclear(mmap_arg);
1523 		mmap_arg.handle = bo_gem->gem_handle;
1524 
1525 		/* Get the fake offset back... */
1526 		ret = drmIoctl(bufmgr_gem->fd,
1527 			       DRM_IOCTL_I915_GEM_MMAP_GTT,
1528 			       &mmap_arg);
1529 		if (ret != 0) {
1530 			ret = -errno;
1531 			DBG("%s:%d: Error preparing buffer map %d (%s): %s .\n",
1532 			    __FILE__, __LINE__,
1533 			    bo_gem->gem_handle, bo_gem->name,
1534 			    strerror(errno));
1535 			if (--bo_gem->map_count == 0)
1536 				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1537 			return ret;
1538 		}
1539 
1540 		/* and mmap it */
1541 		bo_gem->gtt_virtual = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE,
1542 					       MAP_SHARED, bufmgr_gem->fd,
1543 					       mmap_arg.offset);
1544 		if (bo_gem->gtt_virtual == MAP_FAILED) {
1545 			bo_gem->gtt_virtual = NULL;
1546 			ret = -errno;
1547 			DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
1548 			    __FILE__, __LINE__,
1549 			    bo_gem->gem_handle, bo_gem->name,
1550 			    strerror(errno));
1551 			if (--bo_gem->map_count == 0)
1552 				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1553 			return ret;
1554 		}
1555 	}
1556 
1557 	bo->virtual = bo_gem->gtt_virtual;
1558 
1559 	DBG("bo_map_gtt: %d (%s) -> %p\n", bo_gem->gem_handle, bo_gem->name,
1560 	    bo_gem->gtt_virtual);
1561 
1562 	return 0;
1563 }
1564 
1565 drm_public int
drm_intel_gem_bo_map_gtt(drm_intel_bo * bo)1566 drm_intel_gem_bo_map_gtt(drm_intel_bo *bo)
1567 {
1568 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1569 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1570 	struct drm_i915_gem_set_domain set_domain;
1571 	int ret;
1572 
1573 	pthread_mutex_lock(&bufmgr_gem->lock);
1574 
1575 	ret = map_gtt(bo);
1576 	if (ret) {
1577 		pthread_mutex_unlock(&bufmgr_gem->lock);
1578 		return ret;
1579 	}
1580 
1581 	/* Now move it to the GTT domain so that the GPU and CPU
1582 	 * caches are flushed and the GPU isn't actively using the
1583 	 * buffer.
1584 	 *
1585 	 * The pagefault handler does this domain change for us when
1586 	 * it has unbound the BO from the GTT, but it's up to us to
1587 	 * tell it when we're about to use things if we had done
1588 	 * rendering and it still happens to be bound to the GTT.
1589 	 */
1590 	memclear(set_domain);
1591 	set_domain.handle = bo_gem->gem_handle;
1592 	set_domain.read_domains = I915_GEM_DOMAIN_GTT;
1593 	set_domain.write_domain = I915_GEM_DOMAIN_GTT;
1594 	ret = drmIoctl(bufmgr_gem->fd,
1595 		       DRM_IOCTL_I915_GEM_SET_DOMAIN,
1596 		       &set_domain);
1597 	if (ret != 0) {
1598 		DBG("%s:%d: Error setting domain %d: %s\n",
1599 		    __FILE__, __LINE__, bo_gem->gem_handle,
1600 		    strerror(errno));
1601 	}
1602 
1603 	drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1604 	VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
1605 	pthread_mutex_unlock(&bufmgr_gem->lock);
1606 
1607 	return 0;
1608 }
1609 
1610 /**
1611  * Performs a mapping of the buffer object like the normal GTT
1612  * mapping, but avoids waiting for the GPU to be done reading from or
1613  * rendering to the buffer.
1614  *
1615  * This is used in the implementation of GL_ARB_map_buffer_range: The
1616  * user asks to create a buffer, then does a mapping, fills some
1617  * space, runs a drawing command, then asks to map it again without
1618  * synchronizing because it guarantees that it won't write over the
1619  * data that the GPU is busy using (or, more specifically, that if it
1620  * does write over the data, it acknowledges that rendering is
1621  * undefined).
1622  */
1623 
1624 drm_public int
drm_intel_gem_bo_map_unsynchronized(drm_intel_bo * bo)1625 drm_intel_gem_bo_map_unsynchronized(drm_intel_bo *bo)
1626 {
1627 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1628 #if HAVE_VALGRIND
1629 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1630 #endif
1631 	int ret;
1632 
1633 	/* If the CPU cache isn't coherent with the GTT, then use a
1634 	 * regular synchronized mapping.  The problem is that we don't
1635 	 * track where the buffer was last used on the CPU side in
1636 	 * terms of drm_intel_bo_map vs drm_intel_gem_bo_map_gtt, so
1637 	 * we would potentially corrupt the buffer even when the user
1638 	 * does reasonable things.
1639 	 */
1640 	if (!bufmgr_gem->has_llc)
1641 		return drm_intel_gem_bo_map_gtt(bo);
1642 
1643 	pthread_mutex_lock(&bufmgr_gem->lock);
1644 
1645 	ret = map_gtt(bo);
1646 	if (ret == 0) {
1647 		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1648 		VG(VALGRIND_MAKE_MEM_DEFINED(bo_gem->gtt_virtual, bo->size));
1649 	}
1650 
1651 	pthread_mutex_unlock(&bufmgr_gem->lock);
1652 
1653 	return ret;
1654 }
1655 
drm_intel_gem_bo_unmap(drm_intel_bo * bo)1656 static int drm_intel_gem_bo_unmap(drm_intel_bo *bo)
1657 {
1658 	drm_intel_bufmgr_gem *bufmgr_gem;
1659 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1660 	int ret = 0;
1661 
1662 	if (bo == NULL)
1663 		return 0;
1664 
1665 	if (bo_gem->is_userptr)
1666 		return 0;
1667 
1668 	bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1669 
1670 	pthread_mutex_lock(&bufmgr_gem->lock);
1671 
1672 	if (bo_gem->map_count <= 0) {
1673 		DBG("attempted to unmap an unmapped bo\n");
1674 		pthread_mutex_unlock(&bufmgr_gem->lock);
1675 		/* Preserve the old behaviour of just treating this as a
1676 		 * no-op rather than reporting the error.
1677 		 */
1678 		return 0;
1679 	}
1680 
1681 	if (bo_gem->mapped_cpu_write) {
1682 		struct drm_i915_gem_sw_finish sw_finish;
1683 
1684 		/* Cause a flush to happen if the buffer's pinned for
1685 		 * scanout, so the results show up in a timely manner.
1686 		 * Unlike GTT set domains, this only does work if the
1687 		 * buffer should be scanout-related.
1688 		 */
1689 		memclear(sw_finish);
1690 		sw_finish.handle = bo_gem->gem_handle;
1691 		ret = drmIoctl(bufmgr_gem->fd,
1692 			       DRM_IOCTL_I915_GEM_SW_FINISH,
1693 			       &sw_finish);
1694 		ret = ret == -1 ? -errno : 0;
1695 
1696 		bo_gem->mapped_cpu_write = false;
1697 	}
1698 
1699 	/* We need to unmap after every innovation as we cannot track
1700 	 * an open vma for every bo as that will exhaust the system
1701 	 * limits and cause later failures.
1702 	 */
1703 	if (--bo_gem->map_count == 0) {
1704 		drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
1705 		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
1706 		bo->virtual = NULL;
1707 	}
1708 	pthread_mutex_unlock(&bufmgr_gem->lock);
1709 
1710 	return ret;
1711 }
1712 
1713 drm_public int
drm_intel_gem_bo_unmap_gtt(drm_intel_bo * bo)1714 drm_intel_gem_bo_unmap_gtt(drm_intel_bo *bo)
1715 {
1716 	return drm_intel_gem_bo_unmap(bo);
1717 }
1718 
1719 static int
drm_intel_gem_bo_subdata(drm_intel_bo * bo,unsigned long offset,unsigned long size,const void * data)1720 drm_intel_gem_bo_subdata(drm_intel_bo *bo, unsigned long offset,
1721 			 unsigned long size, const void *data)
1722 {
1723 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1724 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1725 	struct drm_i915_gem_pwrite pwrite;
1726 	int ret;
1727 
1728 	if (bo_gem->is_userptr)
1729 		return -EINVAL;
1730 
1731 	memclear(pwrite);
1732 	pwrite.handle = bo_gem->gem_handle;
1733 	pwrite.offset = offset;
1734 	pwrite.size = size;
1735 	pwrite.data_ptr = (uint64_t) (uintptr_t) data;
1736 	ret = drmIoctl(bufmgr_gem->fd,
1737 		       DRM_IOCTL_I915_GEM_PWRITE,
1738 		       &pwrite);
1739 	if (ret != 0) {
1740 		ret = -errno;
1741 		DBG("%s:%d: Error writing data to buffer %d: (%d %d) %s .\n",
1742 		    __FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
1743 		    (int)size, strerror(errno));
1744 	}
1745 
1746 	return ret;
1747 }
1748 
1749 static int
drm_intel_gem_get_pipe_from_crtc_id(drm_intel_bufmgr * bufmgr,int crtc_id)1750 drm_intel_gem_get_pipe_from_crtc_id(drm_intel_bufmgr *bufmgr, int crtc_id)
1751 {
1752 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1753 	struct drm_i915_get_pipe_from_crtc_id get_pipe_from_crtc_id;
1754 	int ret;
1755 
1756 	memclear(get_pipe_from_crtc_id);
1757 	get_pipe_from_crtc_id.crtc_id = crtc_id;
1758 	ret = drmIoctl(bufmgr_gem->fd,
1759 		       DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID,
1760 		       &get_pipe_from_crtc_id);
1761 	if (ret != 0) {
1762 		/* We return -1 here to signal that we don't
1763 		 * know which pipe is associated with this crtc.
1764 		 * This lets the caller know that this information
1765 		 * isn't available; using the wrong pipe for
1766 		 * vblank waiting can cause the chipset to lock up
1767 		 */
1768 		return -1;
1769 	}
1770 
1771 	return get_pipe_from_crtc_id.pipe;
1772 }
1773 
1774 static int
drm_intel_gem_bo_get_subdata(drm_intel_bo * bo,unsigned long offset,unsigned long size,void * data)1775 drm_intel_gem_bo_get_subdata(drm_intel_bo *bo, unsigned long offset,
1776 			     unsigned long size, void *data)
1777 {
1778 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1779 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1780 	struct drm_i915_gem_pread pread;
1781 	int ret;
1782 
1783 	if (bo_gem->is_userptr)
1784 		return -EINVAL;
1785 
1786 	memclear(pread);
1787 	pread.handle = bo_gem->gem_handle;
1788 	pread.offset = offset;
1789 	pread.size = size;
1790 	pread.data_ptr = (uint64_t) (uintptr_t) data;
1791 	ret = drmIoctl(bufmgr_gem->fd,
1792 		       DRM_IOCTL_I915_GEM_PREAD,
1793 		       &pread);
1794 	if (ret != 0) {
1795 		ret = -errno;
1796 		DBG("%s:%d: Error reading data from buffer %d: (%d %d) %s .\n",
1797 		    __FILE__, __LINE__, bo_gem->gem_handle, (int)offset,
1798 		    (int)size, strerror(errno));
1799 	}
1800 
1801 	return ret;
1802 }
1803 
1804 /** Waits for all GPU rendering with the object to have completed. */
1805 static void
drm_intel_gem_bo_wait_rendering(drm_intel_bo * bo)1806 drm_intel_gem_bo_wait_rendering(drm_intel_bo *bo)
1807 {
1808 	drm_intel_gem_bo_start_gtt_access(bo, 1);
1809 }
1810 
1811 /**
1812  * Waits on a BO for the given amount of time.
1813  *
1814  * @bo: buffer object to wait for
1815  * @timeout_ns: amount of time to wait in nanoseconds.
1816  *   If value is less than 0, an infinite wait will occur.
1817  *
1818  * Returns 0 if the wait was successful ie. the last batch referencing the
1819  * object has completed within the allotted time. Otherwise some negative return
1820  * value describes the error. Of particular interest is -ETIME when the wait has
1821  * failed to yield the desired result.
1822  *
1823  * Similar to drm_intel_gem_bo_wait_rendering except a timeout parameter allows
1824  * the operation to give up after a certain amount of time. Another subtle
1825  * difference is the internal locking semantics are different (this variant does
1826  * not hold the lock for the duration of the wait). This makes the wait subject
1827  * to a larger userspace race window.
1828  *
1829  * The implementation shall wait until the object is no longer actively
1830  * referenced within a batch buffer at the time of the call. The wait will
1831  * not guarantee that the buffer is re-issued via another thread, or an flinked
1832  * handle. Userspace must make sure this race does not occur if such precision
1833  * is important.
1834  *
1835  * Note that some kernels have broken the inifite wait for negative values
1836  * promise, upgrade to latest stable kernels if this is the case.
1837  */
1838 drm_public int
drm_intel_gem_bo_wait(drm_intel_bo * bo,int64_t timeout_ns)1839 drm_intel_gem_bo_wait(drm_intel_bo *bo, int64_t timeout_ns)
1840 {
1841 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1842 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1843 	struct drm_i915_gem_wait wait;
1844 	int ret;
1845 
1846 	if (!bufmgr_gem->has_wait_timeout) {
1847 		DBG("%s:%d: Timed wait is not supported. Falling back to "
1848 		    "infinite wait\n", __FILE__, __LINE__);
1849 		if (timeout_ns) {
1850 			drm_intel_gem_bo_wait_rendering(bo);
1851 			return 0;
1852 		} else {
1853 			return drm_intel_gem_bo_busy(bo) ? -ETIME : 0;
1854 		}
1855 	}
1856 
1857 	memclear(wait);
1858 	wait.bo_handle = bo_gem->gem_handle;
1859 	wait.timeout_ns = timeout_ns;
1860 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_WAIT, &wait);
1861 	if (ret == -1)
1862 		return -errno;
1863 
1864 	return ret;
1865 }
1866 
1867 /**
1868  * Sets the object to the GTT read and possibly write domain, used by the X
1869  * 2D driver in the absence of kernel support to do drm_intel_gem_bo_map_gtt().
1870  *
1871  * In combination with drm_intel_gem_bo_pin() and manual fence management, we
1872  * can do tiled pixmaps this way.
1873  */
1874 drm_public void
drm_intel_gem_bo_start_gtt_access(drm_intel_bo * bo,int write_enable)1875 drm_intel_gem_bo_start_gtt_access(drm_intel_bo *bo, int write_enable)
1876 {
1877 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1878 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1879 	struct drm_i915_gem_set_domain set_domain;
1880 	int ret;
1881 
1882 	memclear(set_domain);
1883 	set_domain.handle = bo_gem->gem_handle;
1884 	set_domain.read_domains = I915_GEM_DOMAIN_GTT;
1885 	set_domain.write_domain = write_enable ? I915_GEM_DOMAIN_GTT : 0;
1886 	ret = drmIoctl(bufmgr_gem->fd,
1887 		       DRM_IOCTL_I915_GEM_SET_DOMAIN,
1888 		       &set_domain);
1889 	if (ret != 0) {
1890 		DBG("%s:%d: Error setting memory domains %d (%08x %08x): %s .\n",
1891 		    __FILE__, __LINE__, bo_gem->gem_handle,
1892 		    set_domain.read_domains, set_domain.write_domain,
1893 		    strerror(errno));
1894 	}
1895 }
1896 
1897 static void
drm_intel_bufmgr_gem_destroy(drm_intel_bufmgr * bufmgr)1898 drm_intel_bufmgr_gem_destroy(drm_intel_bufmgr *bufmgr)
1899 {
1900 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
1901 	struct drm_gem_close close_bo;
1902 	int i, ret;
1903 
1904 	free(bufmgr_gem->exec2_objects);
1905 	free(bufmgr_gem->exec_objects);
1906 	free(bufmgr_gem->exec_bos);
1907 
1908 	pthread_mutex_destroy(&bufmgr_gem->lock);
1909 
1910 	/* Free any cached buffer objects we were going to reuse */
1911 	for (i = 0; i < bufmgr_gem->num_buckets; i++) {
1912 		struct drm_intel_gem_bo_bucket *bucket =
1913 		    &bufmgr_gem->cache_bucket[i];
1914 		drm_intel_bo_gem *bo_gem;
1915 
1916 		while (!DRMLISTEMPTY(&bucket->head)) {
1917 			bo_gem = DRMLISTENTRY(drm_intel_bo_gem,
1918 					      bucket->head.next, head);
1919 			DRMLISTDEL(&bo_gem->head);
1920 
1921 			drm_intel_gem_bo_free(&bo_gem->bo);
1922 		}
1923 	}
1924 
1925 	/* Release userptr bo kept hanging around for optimisation. */
1926 	if (bufmgr_gem->userptr_active.ptr) {
1927 		memclear(close_bo);
1928 		close_bo.handle = bufmgr_gem->userptr_active.handle;
1929 		ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_CLOSE, &close_bo);
1930 		free(bufmgr_gem->userptr_active.ptr);
1931 		if (ret)
1932 			fprintf(stderr,
1933 				"Failed to release test userptr object! (%d) "
1934 				"i915 kernel driver may not be sane!\n", errno);
1935 	}
1936 
1937 	free(bufmgr);
1938 }
1939 
1940 /**
1941  * Adds the target buffer to the validation list and adds the relocation
1942  * to the reloc_buffer's relocation list.
1943  *
1944  * The relocation entry at the given offset must already contain the
1945  * precomputed relocation value, because the kernel will optimize out
1946  * the relocation entry write when the buffer hasn't moved from the
1947  * last known offset in target_bo.
1948  */
1949 static int
do_bo_emit_reloc(drm_intel_bo * bo,uint32_t offset,drm_intel_bo * target_bo,uint32_t target_offset,uint32_t read_domains,uint32_t write_domain,bool need_fence)1950 do_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
1951 		 drm_intel_bo *target_bo, uint32_t target_offset,
1952 		 uint32_t read_domains, uint32_t write_domain,
1953 		 bool need_fence)
1954 {
1955 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
1956 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
1957 	drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
1958 	bool fenced_command;
1959 
1960 	if (bo_gem->has_error)
1961 		return -ENOMEM;
1962 
1963 	if (target_bo_gem->has_error) {
1964 		bo_gem->has_error = true;
1965 		return -ENOMEM;
1966 	}
1967 
1968 	/* We never use HW fences for rendering on 965+ */
1969 	if (bufmgr_gem->gen >= 4)
1970 		need_fence = false;
1971 
1972 	fenced_command = need_fence;
1973 	if (target_bo_gem->tiling_mode == I915_TILING_NONE)
1974 		need_fence = false;
1975 
1976 	/* Create a new relocation list if needed */
1977 	if (bo_gem->relocs == NULL && drm_intel_setup_reloc_list(bo))
1978 		return -ENOMEM;
1979 
1980 	/* Check overflow */
1981 	assert(bo_gem->reloc_count < bufmgr_gem->max_relocs);
1982 
1983 	/* Check args */
1984 	assert(offset <= bo->size - 4);
1985 	assert((write_domain & (write_domain - 1)) == 0);
1986 
1987 	/* An object needing a fence is a tiled buffer, so it won't have
1988 	 * relocs to other buffers.
1989 	 */
1990 	if (need_fence) {
1991 		assert(target_bo_gem->reloc_count == 0);
1992 		target_bo_gem->reloc_tree_fences = 1;
1993 	}
1994 
1995 	/* Make sure that we're not adding a reloc to something whose size has
1996 	 * already been accounted for.
1997 	 */
1998 	assert(!bo_gem->used_as_reloc_target);
1999 	if (target_bo_gem != bo_gem) {
2000 		target_bo_gem->used_as_reloc_target = true;
2001 		bo_gem->reloc_tree_size += target_bo_gem->reloc_tree_size;
2002 		bo_gem->reloc_tree_fences += target_bo_gem->reloc_tree_fences;
2003 	}
2004 
2005 	bo_gem->reloc_target_info[bo_gem->reloc_count].bo = target_bo;
2006 	if (target_bo != bo)
2007 		drm_intel_gem_bo_reference(target_bo);
2008 	if (fenced_command)
2009 		bo_gem->reloc_target_info[bo_gem->reloc_count].flags =
2010 			DRM_INTEL_RELOC_FENCE;
2011 	else
2012 		bo_gem->reloc_target_info[bo_gem->reloc_count].flags = 0;
2013 
2014 	bo_gem->relocs[bo_gem->reloc_count].offset = offset;
2015 	bo_gem->relocs[bo_gem->reloc_count].delta = target_offset;
2016 	bo_gem->relocs[bo_gem->reloc_count].target_handle =
2017 	    target_bo_gem->gem_handle;
2018 	bo_gem->relocs[bo_gem->reloc_count].read_domains = read_domains;
2019 	bo_gem->relocs[bo_gem->reloc_count].write_domain = write_domain;
2020 	bo_gem->relocs[bo_gem->reloc_count].presumed_offset = target_bo->offset64;
2021 	bo_gem->reloc_count++;
2022 
2023 	return 0;
2024 }
2025 
2026 static void
drm_intel_gem_bo_use_48b_address_range(drm_intel_bo * bo,uint32_t enable)2027 drm_intel_gem_bo_use_48b_address_range(drm_intel_bo *bo, uint32_t enable)
2028 {
2029 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2030 
2031 	if (enable)
2032 		bo_gem->kflags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2033 	else
2034 		bo_gem->kflags &= ~EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
2035 }
2036 
2037 static int
drm_intel_gem_bo_add_softpin_target(drm_intel_bo * bo,drm_intel_bo * target_bo)2038 drm_intel_gem_bo_add_softpin_target(drm_intel_bo *bo, drm_intel_bo *target_bo)
2039 {
2040 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2041 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2042 	drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
2043 	if (bo_gem->has_error)
2044 		return -ENOMEM;
2045 
2046 	if (target_bo_gem->has_error) {
2047 		bo_gem->has_error = true;
2048 		return -ENOMEM;
2049 	}
2050 
2051 	if (!(target_bo_gem->kflags & EXEC_OBJECT_PINNED))
2052 		return -EINVAL;
2053 	if (target_bo_gem == bo_gem)
2054 		return -EINVAL;
2055 
2056 	if (bo_gem->softpin_target_count == bo_gem->softpin_target_size) {
2057 		int new_size = bo_gem->softpin_target_size * 2;
2058 		if (new_size == 0)
2059 			new_size = bufmgr_gem->max_relocs;
2060 
2061 		bo_gem->softpin_target = realloc(bo_gem->softpin_target, new_size *
2062 				sizeof(drm_intel_bo *));
2063 		if (!bo_gem->softpin_target)
2064 			return -ENOMEM;
2065 
2066 		bo_gem->softpin_target_size = new_size;
2067 	}
2068 	bo_gem->softpin_target[bo_gem->softpin_target_count] = target_bo;
2069 	drm_intel_gem_bo_reference(target_bo);
2070 	bo_gem->softpin_target_count++;
2071 
2072 	return 0;
2073 }
2074 
2075 static int
drm_intel_gem_bo_emit_reloc(drm_intel_bo * bo,uint32_t offset,drm_intel_bo * target_bo,uint32_t target_offset,uint32_t read_domains,uint32_t write_domain)2076 drm_intel_gem_bo_emit_reloc(drm_intel_bo *bo, uint32_t offset,
2077 			    drm_intel_bo *target_bo, uint32_t target_offset,
2078 			    uint32_t read_domains, uint32_t write_domain)
2079 {
2080 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
2081 	drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *)target_bo;
2082 
2083 	if (target_bo_gem->kflags & EXEC_OBJECT_PINNED)
2084 		return drm_intel_gem_bo_add_softpin_target(bo, target_bo);
2085 	else
2086 		return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
2087 					read_domains, write_domain,
2088 					!bufmgr_gem->fenced_relocs);
2089 }
2090 
2091 static int
drm_intel_gem_bo_emit_reloc_fence(drm_intel_bo * bo,uint32_t offset,drm_intel_bo * target_bo,uint32_t target_offset,uint32_t read_domains,uint32_t write_domain)2092 drm_intel_gem_bo_emit_reloc_fence(drm_intel_bo *bo, uint32_t offset,
2093 				  drm_intel_bo *target_bo,
2094 				  uint32_t target_offset,
2095 				  uint32_t read_domains, uint32_t write_domain)
2096 {
2097 	return do_bo_emit_reloc(bo, offset, target_bo, target_offset,
2098 				read_domains, write_domain, true);
2099 }
2100 
2101 drm_public int
drm_intel_gem_bo_get_reloc_count(drm_intel_bo * bo)2102 drm_intel_gem_bo_get_reloc_count(drm_intel_bo *bo)
2103 {
2104 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2105 
2106 	return bo_gem->reloc_count;
2107 }
2108 
2109 /**
2110  * Removes existing relocation entries in the BO after "start".
2111  *
2112  * This allows a user to avoid a two-step process for state setup with
2113  * counting up all the buffer objects and doing a
2114  * drm_intel_bufmgr_check_aperture_space() before emitting any of the
2115  * relocations for the state setup.  Instead, save the state of the
2116  * batchbuffer including drm_intel_gem_get_reloc_count(), emit all the
2117  * state, and then check if it still fits in the aperture.
2118  *
2119  * Any further drm_intel_bufmgr_check_aperture_space() queries
2120  * involving this buffer in the tree are undefined after this call.
2121  *
2122  * This also removes all softpinned targets being referenced by the BO.
2123  */
2124 drm_public void
drm_intel_gem_bo_clear_relocs(drm_intel_bo * bo,int start)2125 drm_intel_gem_bo_clear_relocs(drm_intel_bo *bo, int start)
2126 {
2127 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2128 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2129 	int i;
2130 	struct timespec time;
2131 
2132 	clock_gettime(CLOCK_MONOTONIC, &time);
2133 
2134 	assert(bo_gem->reloc_count >= start);
2135 
2136 	/* Unreference the cleared target buffers */
2137 	pthread_mutex_lock(&bufmgr_gem->lock);
2138 
2139 	for (i = start; i < bo_gem->reloc_count; i++) {
2140 		drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) bo_gem->reloc_target_info[i].bo;
2141 		if (&target_bo_gem->bo != bo) {
2142 			bo_gem->reloc_tree_fences -= target_bo_gem->reloc_tree_fences;
2143 			drm_intel_gem_bo_unreference_locked_timed(&target_bo_gem->bo,
2144 								  time.tv_sec);
2145 		}
2146 	}
2147 	bo_gem->reloc_count = start;
2148 
2149 	for (i = 0; i < bo_gem->softpin_target_count; i++) {
2150 		drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) bo_gem->softpin_target[i];
2151 		drm_intel_gem_bo_unreference_locked_timed(&target_bo_gem->bo, time.tv_sec);
2152 	}
2153 	bo_gem->softpin_target_count = 0;
2154 
2155 	pthread_mutex_unlock(&bufmgr_gem->lock);
2156 
2157 }
2158 
2159 /**
2160  * Walk the tree of relocations rooted at BO and accumulate the list of
2161  * validations to be performed and update the relocation buffers with
2162  * index values into the validation list.
2163  */
2164 static void
drm_intel_gem_bo_process_reloc(drm_intel_bo * bo)2165 drm_intel_gem_bo_process_reloc(drm_intel_bo *bo)
2166 {
2167 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2168 	int i;
2169 
2170 	if (bo_gem->relocs == NULL)
2171 		return;
2172 
2173 	for (i = 0; i < bo_gem->reloc_count; i++) {
2174 		drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
2175 
2176 		if (target_bo == bo)
2177 			continue;
2178 
2179 		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
2180 
2181 		/* Continue walking the tree depth-first. */
2182 		drm_intel_gem_bo_process_reloc(target_bo);
2183 
2184 		/* Add the target to the validate list */
2185 		drm_intel_add_validate_buffer(target_bo);
2186 	}
2187 }
2188 
2189 static void
drm_intel_gem_bo_process_reloc2(drm_intel_bo * bo)2190 drm_intel_gem_bo_process_reloc2(drm_intel_bo *bo)
2191 {
2192 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2193 	int i;
2194 
2195 	if (bo_gem->relocs == NULL && bo_gem->softpin_target == NULL)
2196 		return;
2197 
2198 	for (i = 0; i < bo_gem->reloc_count; i++) {
2199 		drm_intel_bo *target_bo = bo_gem->reloc_target_info[i].bo;
2200 		int need_fence;
2201 
2202 		if (target_bo == bo)
2203 			continue;
2204 
2205 		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
2206 
2207 		/* Continue walking the tree depth-first. */
2208 		drm_intel_gem_bo_process_reloc2(target_bo);
2209 
2210 		need_fence = (bo_gem->reloc_target_info[i].flags &
2211 			      DRM_INTEL_RELOC_FENCE);
2212 
2213 		/* Add the target to the validate list */
2214 		drm_intel_add_validate_buffer2(target_bo, need_fence);
2215 	}
2216 
2217 	for (i = 0; i < bo_gem->softpin_target_count; i++) {
2218 		drm_intel_bo *target_bo = bo_gem->softpin_target[i];
2219 
2220 		if (target_bo == bo)
2221 			continue;
2222 
2223 		drm_intel_gem_bo_mark_mmaps_incoherent(bo);
2224 		drm_intel_gem_bo_process_reloc2(target_bo);
2225 		drm_intel_add_validate_buffer2(target_bo, false);
2226 	}
2227 }
2228 
2229 
2230 static void
drm_intel_update_buffer_offsets(drm_intel_bufmgr_gem * bufmgr_gem)2231 drm_intel_update_buffer_offsets(drm_intel_bufmgr_gem *bufmgr_gem)
2232 {
2233 	int i;
2234 
2235 	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2236 		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2237 		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2238 
2239 		/* Update the buffer offset */
2240 		if (bufmgr_gem->exec_objects[i].offset != bo->offset64) {
2241 			DBG("BO %d (%s) migrated: 0x%08x %08x -> 0x%08x %08x\n",
2242 			    bo_gem->gem_handle, bo_gem->name,
2243 			    upper_32_bits(bo->offset64),
2244 			    lower_32_bits(bo->offset64),
2245 			    upper_32_bits(bufmgr_gem->exec_objects[i].offset),
2246 			    lower_32_bits(bufmgr_gem->exec_objects[i].offset));
2247 			bo->offset64 = bufmgr_gem->exec_objects[i].offset;
2248 			bo->offset = bufmgr_gem->exec_objects[i].offset;
2249 		}
2250 	}
2251 }
2252 
2253 static void
drm_intel_update_buffer_offsets2(drm_intel_bufmgr_gem * bufmgr_gem)2254 drm_intel_update_buffer_offsets2 (drm_intel_bufmgr_gem *bufmgr_gem)
2255 {
2256 	int i;
2257 
2258 	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2259 		drm_intel_bo *bo = bufmgr_gem->exec_bos[i];
2260 		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *)bo;
2261 
2262 		/* Update the buffer offset */
2263 		if (bufmgr_gem->exec2_objects[i].offset != bo->offset64) {
2264 			/* If we're seeing softpinned object here it means that the kernel
2265 			 * has relocated our object... Indicating a programming error
2266 			 */
2267 			assert(!(bo_gem->kflags & EXEC_OBJECT_PINNED));
2268 			DBG("BO %d (%s) migrated: 0x%08x %08x -> 0x%08x %08x\n",
2269 			    bo_gem->gem_handle, bo_gem->name,
2270 			    upper_32_bits(bo->offset64),
2271 			    lower_32_bits(bo->offset64),
2272 			    upper_32_bits(bufmgr_gem->exec2_objects[i].offset),
2273 			    lower_32_bits(bufmgr_gem->exec2_objects[i].offset));
2274 			bo->offset64 = bufmgr_gem->exec2_objects[i].offset;
2275 			bo->offset = bufmgr_gem->exec2_objects[i].offset;
2276 		}
2277 	}
2278 }
2279 
2280 drm_public void
drm_intel_gem_bo_aub_dump_bmp(drm_intel_bo * bo,int x1,int y1,int width,int height,enum aub_dump_bmp_format format,int pitch,int offset)2281 drm_intel_gem_bo_aub_dump_bmp(drm_intel_bo *bo,
2282 			      int x1, int y1, int width, int height,
2283 			      enum aub_dump_bmp_format format,
2284 			      int pitch, int offset)
2285 {
2286 }
2287 
2288 static int
drm_intel_gem_bo_exec(drm_intel_bo * bo,int used,drm_clip_rect_t * cliprects,int num_cliprects,int DR4)2289 drm_intel_gem_bo_exec(drm_intel_bo *bo, int used,
2290 		      drm_clip_rect_t * cliprects, int num_cliprects, int DR4)
2291 {
2292 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2293 	struct drm_i915_gem_execbuffer execbuf;
2294 	int ret, i;
2295 
2296 	if (to_bo_gem(bo)->has_error)
2297 		return -ENOMEM;
2298 
2299 	pthread_mutex_lock(&bufmgr_gem->lock);
2300 	/* Update indices and set up the validate list. */
2301 	drm_intel_gem_bo_process_reloc(bo);
2302 
2303 	/* Add the batch buffer to the validation list.  There are no
2304 	 * relocations pointing to it.
2305 	 */
2306 	drm_intel_add_validate_buffer(bo);
2307 
2308 	memclear(execbuf);
2309 	execbuf.buffers_ptr = (uintptr_t) bufmgr_gem->exec_objects;
2310 	execbuf.buffer_count = bufmgr_gem->exec_count;
2311 	execbuf.batch_start_offset = 0;
2312 	execbuf.batch_len = used;
2313 	execbuf.cliprects_ptr = (uintptr_t) cliprects;
2314 	execbuf.num_cliprects = num_cliprects;
2315 	execbuf.DR1 = 0;
2316 	execbuf.DR4 = DR4;
2317 
2318 	ret = drmIoctl(bufmgr_gem->fd,
2319 		       DRM_IOCTL_I915_GEM_EXECBUFFER,
2320 		       &execbuf);
2321 	if (ret != 0) {
2322 		ret = -errno;
2323 		if (errno == ENOSPC) {
2324 			DBG("Execbuffer fails to pin. "
2325 			    "Estimate: %u. Actual: %u. Available: %u\n",
2326 			    drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
2327 							       bufmgr_gem->
2328 							       exec_count),
2329 			    drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
2330 							      bufmgr_gem->
2331 							      exec_count),
2332 			    (unsigned int)bufmgr_gem->gtt_size);
2333 		}
2334 	}
2335 	drm_intel_update_buffer_offsets(bufmgr_gem);
2336 
2337 	if (bufmgr_gem->bufmgr.debug)
2338 		drm_intel_gem_dump_validation_list(bufmgr_gem);
2339 
2340 	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2341 		drm_intel_bo_gem *bo_gem = to_bo_gem(bufmgr_gem->exec_bos[i]);
2342 
2343 		bo_gem->idle = false;
2344 
2345 		/* Disconnect the buffer from the validate list */
2346 		bo_gem->validate_index = -1;
2347 		bufmgr_gem->exec_bos[i] = NULL;
2348 	}
2349 	bufmgr_gem->exec_count = 0;
2350 	pthread_mutex_unlock(&bufmgr_gem->lock);
2351 
2352 	return ret;
2353 }
2354 
2355 static int
do_exec2(drm_intel_bo * bo,int used,drm_intel_context * ctx,drm_clip_rect_t * cliprects,int num_cliprects,int DR4,int in_fence,int * out_fence,unsigned int flags)2356 do_exec2(drm_intel_bo *bo, int used, drm_intel_context *ctx,
2357 	 drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
2358 	 int in_fence, int *out_fence,
2359 	 unsigned int flags)
2360 {
2361 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bo->bufmgr;
2362 	struct drm_i915_gem_execbuffer2 execbuf;
2363 	int ret = 0;
2364 	int i;
2365 
2366 	if (to_bo_gem(bo)->has_error)
2367 		return -ENOMEM;
2368 
2369 	switch (flags & 0x7) {
2370 	default:
2371 		return -EINVAL;
2372 	case I915_EXEC_BLT:
2373 		if (!bufmgr_gem->has_blt)
2374 			return -EINVAL;
2375 		break;
2376 	case I915_EXEC_BSD:
2377 		if (!bufmgr_gem->has_bsd)
2378 			return -EINVAL;
2379 		break;
2380 	case I915_EXEC_VEBOX:
2381 		if (!bufmgr_gem->has_vebox)
2382 			return -EINVAL;
2383 		break;
2384 	case I915_EXEC_RENDER:
2385 	case I915_EXEC_DEFAULT:
2386 		break;
2387 	}
2388 
2389 	pthread_mutex_lock(&bufmgr_gem->lock);
2390 	/* Update indices and set up the validate list. */
2391 	drm_intel_gem_bo_process_reloc2(bo);
2392 
2393 	/* Add the batch buffer to the validation list.  There are no relocations
2394 	 * pointing to it.
2395 	 */
2396 	drm_intel_add_validate_buffer2(bo, 0);
2397 
2398 	memclear(execbuf);
2399 	execbuf.buffers_ptr = (uintptr_t)bufmgr_gem->exec2_objects;
2400 	execbuf.buffer_count = bufmgr_gem->exec_count;
2401 	execbuf.batch_start_offset = 0;
2402 	execbuf.batch_len = used;
2403 	execbuf.cliprects_ptr = (uintptr_t)cliprects;
2404 	execbuf.num_cliprects = num_cliprects;
2405 	execbuf.DR1 = 0;
2406 	execbuf.DR4 = DR4;
2407 	execbuf.flags = flags;
2408 	if (ctx == NULL)
2409 		i915_execbuffer2_set_context_id(execbuf, 0);
2410 	else
2411 		i915_execbuffer2_set_context_id(execbuf, ctx->ctx_id);
2412 	execbuf.rsvd2 = 0;
2413 	if (in_fence != -1) {
2414 		execbuf.rsvd2 = in_fence;
2415 		execbuf.flags |= I915_EXEC_FENCE_IN;
2416 	}
2417 	if (out_fence != NULL) {
2418 		*out_fence = -1;
2419 		execbuf.flags |= I915_EXEC_FENCE_OUT;
2420 	}
2421 
2422 	if (bufmgr_gem->no_exec)
2423 		goto skip_execution;
2424 
2425 	ret = drmIoctl(bufmgr_gem->fd,
2426 		       DRM_IOCTL_I915_GEM_EXECBUFFER2_WR,
2427 		       &execbuf);
2428 	if (ret != 0) {
2429 		ret = -errno;
2430 		if (ret == -ENOSPC) {
2431 			DBG("Execbuffer fails to pin. "
2432 			    "Estimate: %u. Actual: %u. Available: %u\n",
2433 			    drm_intel_gem_estimate_batch_space(bufmgr_gem->exec_bos,
2434 							       bufmgr_gem->exec_count),
2435 			    drm_intel_gem_compute_batch_space(bufmgr_gem->exec_bos,
2436 							      bufmgr_gem->exec_count),
2437 			    (unsigned int) bufmgr_gem->gtt_size);
2438 		}
2439 	}
2440 	drm_intel_update_buffer_offsets2(bufmgr_gem);
2441 
2442 	if (ret == 0 && out_fence != NULL)
2443 		*out_fence = execbuf.rsvd2 >> 32;
2444 
2445 skip_execution:
2446 	if (bufmgr_gem->bufmgr.debug)
2447 		drm_intel_gem_dump_validation_list(bufmgr_gem);
2448 
2449 	for (i = 0; i < bufmgr_gem->exec_count; i++) {
2450 		drm_intel_bo_gem *bo_gem = to_bo_gem(bufmgr_gem->exec_bos[i]);
2451 
2452 		bo_gem->idle = false;
2453 
2454 		/* Disconnect the buffer from the validate list */
2455 		bo_gem->validate_index = -1;
2456 		bufmgr_gem->exec_bos[i] = NULL;
2457 	}
2458 	bufmgr_gem->exec_count = 0;
2459 	pthread_mutex_unlock(&bufmgr_gem->lock);
2460 
2461 	return ret;
2462 }
2463 
2464 static int
drm_intel_gem_bo_exec2(drm_intel_bo * bo,int used,drm_clip_rect_t * cliprects,int num_cliprects,int DR4)2465 drm_intel_gem_bo_exec2(drm_intel_bo *bo, int used,
2466 		       drm_clip_rect_t *cliprects, int num_cliprects,
2467 		       int DR4)
2468 {
2469 	return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
2470 			-1, NULL, I915_EXEC_RENDER);
2471 }
2472 
2473 static int
drm_intel_gem_bo_mrb_exec2(drm_intel_bo * bo,int used,drm_clip_rect_t * cliprects,int num_cliprects,int DR4,unsigned int flags)2474 drm_intel_gem_bo_mrb_exec2(drm_intel_bo *bo, int used,
2475 			drm_clip_rect_t *cliprects, int num_cliprects, int DR4,
2476 			unsigned int flags)
2477 {
2478 	return do_exec2(bo, used, NULL, cliprects, num_cliprects, DR4,
2479 			-1, NULL, flags);
2480 }
2481 
2482 drm_public int
drm_intel_gem_bo_context_exec(drm_intel_bo * bo,drm_intel_context * ctx,int used,unsigned int flags)2483 drm_intel_gem_bo_context_exec(drm_intel_bo *bo, drm_intel_context *ctx,
2484 			      int used, unsigned int flags)
2485 {
2486 	return do_exec2(bo, used, ctx, NULL, 0, 0, -1, NULL, flags);
2487 }
2488 
2489 drm_public int
drm_intel_gem_bo_fence_exec(drm_intel_bo * bo,drm_intel_context * ctx,int used,int in_fence,int * out_fence,unsigned int flags)2490 drm_intel_gem_bo_fence_exec(drm_intel_bo *bo,
2491 			    drm_intel_context *ctx,
2492 			    int used,
2493 			    int in_fence,
2494 			    int *out_fence,
2495 			    unsigned int flags)
2496 {
2497 	return do_exec2(bo, used, ctx, NULL, 0, 0, in_fence, out_fence, flags);
2498 }
2499 
2500 static int
drm_intel_gem_bo_pin(drm_intel_bo * bo,uint32_t alignment)2501 drm_intel_gem_bo_pin(drm_intel_bo *bo, uint32_t alignment)
2502 {
2503 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2504 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2505 	struct drm_i915_gem_pin pin;
2506 	int ret;
2507 
2508 	memclear(pin);
2509 	pin.handle = bo_gem->gem_handle;
2510 	pin.alignment = alignment;
2511 
2512 	ret = drmIoctl(bufmgr_gem->fd,
2513 		       DRM_IOCTL_I915_GEM_PIN,
2514 		       &pin);
2515 	if (ret != 0)
2516 		return -errno;
2517 
2518 	bo->offset64 = pin.offset;
2519 	bo->offset = pin.offset;
2520 	return 0;
2521 }
2522 
2523 static int
drm_intel_gem_bo_unpin(drm_intel_bo * bo)2524 drm_intel_gem_bo_unpin(drm_intel_bo *bo)
2525 {
2526 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2527 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2528 	struct drm_i915_gem_unpin unpin;
2529 	int ret;
2530 
2531 	memclear(unpin);
2532 	unpin.handle = bo_gem->gem_handle;
2533 
2534 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_UNPIN, &unpin);
2535 	if (ret != 0)
2536 		return -errno;
2537 
2538 	return 0;
2539 }
2540 
2541 static int
drm_intel_gem_bo_set_tiling_internal(drm_intel_bo * bo,uint32_t tiling_mode,uint32_t stride)2542 drm_intel_gem_bo_set_tiling_internal(drm_intel_bo *bo,
2543 				     uint32_t tiling_mode,
2544 				     uint32_t stride)
2545 {
2546 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2547 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2548 	struct drm_i915_gem_set_tiling set_tiling;
2549 	int ret;
2550 
2551 	if (bo_gem->global_name == 0 &&
2552 	    tiling_mode == bo_gem->tiling_mode &&
2553 	    stride == bo_gem->stride)
2554 		return 0;
2555 
2556 	memset(&set_tiling, 0, sizeof(set_tiling));
2557 	do {
2558 		/* set_tiling is slightly broken and overwrites the
2559 		 * input on the error path, so we have to open code
2560 		 * rmIoctl.
2561 		 */
2562 		set_tiling.handle = bo_gem->gem_handle;
2563 		set_tiling.tiling_mode = tiling_mode;
2564 		set_tiling.stride = stride;
2565 
2566 		ret = ioctl(bufmgr_gem->fd,
2567 			    DRM_IOCTL_I915_GEM_SET_TILING,
2568 			    &set_tiling);
2569 	} while (ret == -1 && (errno == EINTR || errno == EAGAIN));
2570 	if (ret == -1)
2571 		return -errno;
2572 
2573 	bo_gem->tiling_mode = set_tiling.tiling_mode;
2574 	bo_gem->swizzle_mode = set_tiling.swizzle_mode;
2575 	bo_gem->stride = set_tiling.stride;
2576 	return 0;
2577 }
2578 
2579 static int
drm_intel_gem_bo_set_tiling(drm_intel_bo * bo,uint32_t * tiling_mode,uint32_t stride)2580 drm_intel_gem_bo_set_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
2581 			    uint32_t stride)
2582 {
2583 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2584 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2585 	int ret;
2586 
2587 	/* Tiling with userptr surfaces is not supported
2588 	 * on all hardware so refuse it for time being.
2589 	 */
2590 	if (bo_gem->is_userptr)
2591 		return -EINVAL;
2592 
2593 	/* Linear buffers have no stride. By ensuring that we only ever use
2594 	 * stride 0 with linear buffers, we simplify our code.
2595 	 */
2596 	if (*tiling_mode == I915_TILING_NONE)
2597 		stride = 0;
2598 
2599 	ret = drm_intel_gem_bo_set_tiling_internal(bo, *tiling_mode, stride);
2600 	if (ret == 0)
2601 		drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
2602 
2603 	*tiling_mode = bo_gem->tiling_mode;
2604 	return ret;
2605 }
2606 
2607 static int
drm_intel_gem_bo_get_tiling(drm_intel_bo * bo,uint32_t * tiling_mode,uint32_t * swizzle_mode)2608 drm_intel_gem_bo_get_tiling(drm_intel_bo *bo, uint32_t * tiling_mode,
2609 			    uint32_t * swizzle_mode)
2610 {
2611 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2612 
2613 	*tiling_mode = bo_gem->tiling_mode;
2614 	*swizzle_mode = bo_gem->swizzle_mode;
2615 	return 0;
2616 }
2617 
2618 static int
drm_intel_gem_bo_set_softpin_offset(drm_intel_bo * bo,uint64_t offset)2619 drm_intel_gem_bo_set_softpin_offset(drm_intel_bo *bo, uint64_t offset)
2620 {
2621 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2622 
2623 	bo->offset64 = offset;
2624 	bo->offset = offset;
2625 	bo_gem->kflags |= EXEC_OBJECT_PINNED;
2626 
2627 	return 0;
2628 }
2629 
2630 drm_public drm_intel_bo *
drm_intel_bo_gem_create_from_prime(drm_intel_bufmgr * bufmgr,int prime_fd,int size)2631 drm_intel_bo_gem_create_from_prime(drm_intel_bufmgr *bufmgr, int prime_fd, int size)
2632 {
2633 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2634 	int ret;
2635 	uint32_t handle;
2636 	drm_intel_bo_gem *bo_gem;
2637 	struct drm_i915_gem_get_tiling get_tiling;
2638 
2639 	pthread_mutex_lock(&bufmgr_gem->lock);
2640 	ret = drmPrimeFDToHandle(bufmgr_gem->fd, prime_fd, &handle);
2641 	if (ret) {
2642 		DBG("create_from_prime: failed to obtain handle from fd: %s\n", strerror(errno));
2643 		pthread_mutex_unlock(&bufmgr_gem->lock);
2644 		return NULL;
2645 	}
2646 
2647 	/*
2648 	 * See if the kernel has already returned this buffer to us. Just as
2649 	 * for named buffers, we must not create two bo's pointing at the same
2650 	 * kernel object
2651 	 */
2652 	HASH_FIND(handle_hh, bufmgr_gem->handle_table,
2653 		  &handle, sizeof(handle), bo_gem);
2654 	if (bo_gem) {
2655 		drm_intel_gem_bo_reference(&bo_gem->bo);
2656 		goto out;
2657 	}
2658 
2659 	bo_gem = calloc(1, sizeof(*bo_gem));
2660 	if (!bo_gem)
2661 		goto out;
2662 
2663 	atomic_set(&bo_gem->refcount, 1);
2664 	DRMINITLISTHEAD(&bo_gem->vma_list);
2665 
2666 	/* Determine size of bo.  The fd-to-handle ioctl really should
2667 	 * return the size, but it doesn't.  If we have kernel 3.12 or
2668 	 * later, we can lseek on the prime fd to get the size.  Older
2669 	 * kernels will just fail, in which case we fall back to the
2670 	 * provided (estimated or guess size). */
2671 	ret = lseek(prime_fd, 0, SEEK_END);
2672 	if (ret != -1)
2673 		bo_gem->bo.size = ret;
2674 	else
2675 		bo_gem->bo.size = size;
2676 
2677 	bo_gem->bo.handle = handle;
2678 	bo_gem->bo.bufmgr = bufmgr;
2679 
2680 	bo_gem->gem_handle = handle;
2681 	HASH_ADD(handle_hh, bufmgr_gem->handle_table,
2682 		 gem_handle, sizeof(bo_gem->gem_handle), bo_gem);
2683 
2684 	bo_gem->name = "prime";
2685 	bo_gem->validate_index = -1;
2686 	bo_gem->reloc_tree_fences = 0;
2687 	bo_gem->used_as_reloc_target = false;
2688 	bo_gem->has_error = false;
2689 	bo_gem->reusable = false;
2690 
2691 	memclear(get_tiling);
2692 	get_tiling.handle = bo_gem->gem_handle;
2693 	if (drmIoctl(bufmgr_gem->fd,
2694 		     DRM_IOCTL_I915_GEM_GET_TILING,
2695 		     &get_tiling))
2696 		goto err;
2697 
2698 	bo_gem->tiling_mode = get_tiling.tiling_mode;
2699 	bo_gem->swizzle_mode = get_tiling.swizzle_mode;
2700 	/* XXX stride is unknown */
2701 	drm_intel_bo_gem_set_in_aperture_size(bufmgr_gem, bo_gem, 0);
2702 
2703 out:
2704 	pthread_mutex_unlock(&bufmgr_gem->lock);
2705 	return &bo_gem->bo;
2706 
2707 err:
2708 	drm_intel_gem_bo_free(&bo_gem->bo);
2709 	pthread_mutex_unlock(&bufmgr_gem->lock);
2710 	return NULL;
2711 }
2712 
2713 drm_public int
drm_intel_bo_gem_export_to_prime(drm_intel_bo * bo,int * prime_fd)2714 drm_intel_bo_gem_export_to_prime(drm_intel_bo *bo, int *prime_fd)
2715 {
2716 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2717 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2718 
2719 	if (drmPrimeHandleToFD(bufmgr_gem->fd, bo_gem->gem_handle,
2720 			       DRM_CLOEXEC, prime_fd) != 0)
2721 		return -errno;
2722 
2723 	bo_gem->reusable = false;
2724 
2725 	return 0;
2726 }
2727 
2728 static int
drm_intel_gem_bo_flink(drm_intel_bo * bo,uint32_t * name)2729 drm_intel_gem_bo_flink(drm_intel_bo *bo, uint32_t * name)
2730 {
2731 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
2732 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2733 
2734 	if (!bo_gem->global_name) {
2735 		struct drm_gem_flink flink;
2736 
2737 		memclear(flink);
2738 		flink.handle = bo_gem->gem_handle;
2739 		if (drmIoctl(bufmgr_gem->fd, DRM_IOCTL_GEM_FLINK, &flink))
2740 			return -errno;
2741 
2742 		pthread_mutex_lock(&bufmgr_gem->lock);
2743 		if (!bo_gem->global_name) {
2744 			bo_gem->global_name = flink.name;
2745 			bo_gem->reusable = false;
2746 
2747 			HASH_ADD(name_hh, bufmgr_gem->name_table,
2748 				 global_name, sizeof(bo_gem->global_name),
2749 				 bo_gem);
2750 		}
2751 		pthread_mutex_unlock(&bufmgr_gem->lock);
2752 	}
2753 
2754 	*name = bo_gem->global_name;
2755 	return 0;
2756 }
2757 
2758 /**
2759  * Enables unlimited caching of buffer objects for reuse.
2760  *
2761  * This is potentially very memory expensive, as the cache at each bucket
2762  * size is only bounded by how many buffers of that size we've managed to have
2763  * in flight at once.
2764  */
2765 drm_public void
drm_intel_bufmgr_gem_enable_reuse(drm_intel_bufmgr * bufmgr)2766 drm_intel_bufmgr_gem_enable_reuse(drm_intel_bufmgr *bufmgr)
2767 {
2768 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2769 
2770 	bufmgr_gem->bo_reuse = true;
2771 }
2772 
2773 /**
2774  * Disables implicit synchronisation before executing the bo
2775  *
2776  * This will cause rendering corruption unless you correctly manage explicit
2777  * fences for all rendering involving this buffer - including use by others.
2778  * Disabling the implicit serialisation is only required if that serialisation
2779  * is too coarse (for example, you have split the buffer into many
2780  * non-overlapping regions and are sharing the whole buffer between concurrent
2781  * independent command streams).
2782  *
2783  * Note the kernel must advertise support via I915_PARAM_HAS_EXEC_ASYNC,
2784  * which can be checked using drm_intel_bufmgr_can_disable_implicit_sync,
2785  * or subsequent execbufs involving the bo will generate EINVAL.
2786  */
2787 drm_public void
drm_intel_gem_bo_disable_implicit_sync(drm_intel_bo * bo)2788 drm_intel_gem_bo_disable_implicit_sync(drm_intel_bo *bo)
2789 {
2790 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2791 
2792 	bo_gem->kflags |= EXEC_OBJECT_ASYNC;
2793 }
2794 
2795 /**
2796  * Enables implicit synchronisation before executing the bo
2797  *
2798  * This is the default behaviour of the kernel, to wait upon prior writes
2799  * completing on the object before rendering with it, or to wait for prior
2800  * reads to complete before writing into the object.
2801  * drm_intel_gem_bo_disable_implicit_sync() can stop this behaviour, telling
2802  * the kernel never to insert a stall before using the object. Then this
2803  * function can be used to restore the implicit sync before subsequent
2804  * rendering.
2805  */
2806 drm_public void
drm_intel_gem_bo_enable_implicit_sync(drm_intel_bo * bo)2807 drm_intel_gem_bo_enable_implicit_sync(drm_intel_bo *bo)
2808 {
2809 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2810 
2811 	bo_gem->kflags &= ~EXEC_OBJECT_ASYNC;
2812 }
2813 
2814 /**
2815  * Query whether the kernel supports disabling of its implicit synchronisation
2816  * before execbuf. See drm_intel_gem_bo_disable_implicit_sync()
2817  */
2818 drm_public int
drm_intel_bufmgr_gem_can_disable_implicit_sync(drm_intel_bufmgr * bufmgr)2819 drm_intel_bufmgr_gem_can_disable_implicit_sync(drm_intel_bufmgr *bufmgr)
2820 {
2821 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bufmgr;
2822 
2823 	return bufmgr_gem->has_exec_async;
2824 }
2825 
2826 /**
2827  * Enable use of fenced reloc type.
2828  *
2829  * New code should enable this to avoid unnecessary fence register
2830  * allocation.  If this option is not enabled, all relocs will have fence
2831  * register allocated.
2832  */
2833 drm_public void
drm_intel_bufmgr_gem_enable_fenced_relocs(drm_intel_bufmgr * bufmgr)2834 drm_intel_bufmgr_gem_enable_fenced_relocs(drm_intel_bufmgr *bufmgr)
2835 {
2836 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
2837 
2838 	if (bufmgr_gem->bufmgr.bo_exec == drm_intel_gem_bo_exec2)
2839 		bufmgr_gem->fenced_relocs = true;
2840 }
2841 
2842 /**
2843  * Return the additional aperture space required by the tree of buffer objects
2844  * rooted at bo.
2845  */
2846 static int
drm_intel_gem_bo_get_aperture_space(drm_intel_bo * bo)2847 drm_intel_gem_bo_get_aperture_space(drm_intel_bo *bo)
2848 {
2849 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2850 	int i;
2851 	int total = 0;
2852 
2853 	if (bo == NULL || bo_gem->included_in_check_aperture)
2854 		return 0;
2855 
2856 	total += bo->size;
2857 	bo_gem->included_in_check_aperture = true;
2858 
2859 	for (i = 0; i < bo_gem->reloc_count; i++)
2860 		total +=
2861 		    drm_intel_gem_bo_get_aperture_space(bo_gem->
2862 							reloc_target_info[i].bo);
2863 
2864 	return total;
2865 }
2866 
2867 /**
2868  * Count the number of buffers in this list that need a fence reg
2869  *
2870  * If the count is greater than the number of available regs, we'll have
2871  * to ask the caller to resubmit a batch with fewer tiled buffers.
2872  *
2873  * This function over-counts if the same buffer is used multiple times.
2874  */
2875 static unsigned int
drm_intel_gem_total_fences(drm_intel_bo ** bo_array,int count)2876 drm_intel_gem_total_fences(drm_intel_bo ** bo_array, int count)
2877 {
2878 	int i;
2879 	unsigned int total = 0;
2880 
2881 	for (i = 0; i < count; i++) {
2882 		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
2883 
2884 		if (bo_gem == NULL)
2885 			continue;
2886 
2887 		total += bo_gem->reloc_tree_fences;
2888 	}
2889 	return total;
2890 }
2891 
2892 /**
2893  * Clear the flag set by drm_intel_gem_bo_get_aperture_space() so we're ready
2894  * for the next drm_intel_bufmgr_check_aperture_space() call.
2895  */
2896 static void
drm_intel_gem_bo_clear_aperture_space_flag(drm_intel_bo * bo)2897 drm_intel_gem_bo_clear_aperture_space_flag(drm_intel_bo *bo)
2898 {
2899 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
2900 	int i;
2901 
2902 	if (bo == NULL || !bo_gem->included_in_check_aperture)
2903 		return;
2904 
2905 	bo_gem->included_in_check_aperture = false;
2906 
2907 	for (i = 0; i < bo_gem->reloc_count; i++)
2908 		drm_intel_gem_bo_clear_aperture_space_flag(bo_gem->
2909 							   reloc_target_info[i].bo);
2910 }
2911 
2912 /**
2913  * Return a conservative estimate for the amount of aperture required
2914  * for a collection of buffers. This may double-count some buffers.
2915  */
2916 static unsigned int
drm_intel_gem_estimate_batch_space(drm_intel_bo ** bo_array,int count)2917 drm_intel_gem_estimate_batch_space(drm_intel_bo **bo_array, int count)
2918 {
2919 	int i;
2920 	unsigned int total = 0;
2921 
2922 	for (i = 0; i < count; i++) {
2923 		drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo_array[i];
2924 		if (bo_gem != NULL)
2925 			total += bo_gem->reloc_tree_size;
2926 	}
2927 	return total;
2928 }
2929 
2930 /**
2931  * Return the amount of aperture needed for a collection of buffers.
2932  * This avoids double counting any buffers, at the cost of looking
2933  * at every buffer in the set.
2934  */
2935 static unsigned int
drm_intel_gem_compute_batch_space(drm_intel_bo ** bo_array,int count)2936 drm_intel_gem_compute_batch_space(drm_intel_bo **bo_array, int count)
2937 {
2938 	int i;
2939 	unsigned int total = 0;
2940 
2941 	for (i = 0; i < count; i++) {
2942 		total += drm_intel_gem_bo_get_aperture_space(bo_array[i]);
2943 		/* For the first buffer object in the array, we get an
2944 		 * accurate count back for its reloc_tree size (since nothing
2945 		 * had been flagged as being counted yet).  We can save that
2946 		 * value out as a more conservative reloc_tree_size that
2947 		 * avoids double-counting target buffers.  Since the first
2948 		 * buffer happens to usually be the batch buffer in our
2949 		 * callers, this can pull us back from doing the tree
2950 		 * walk on every new batch emit.
2951 		 */
2952 		if (i == 0) {
2953 			drm_intel_bo_gem *bo_gem =
2954 			    (drm_intel_bo_gem *) bo_array[i];
2955 			bo_gem->reloc_tree_size = total;
2956 		}
2957 	}
2958 
2959 	for (i = 0; i < count; i++)
2960 		drm_intel_gem_bo_clear_aperture_space_flag(bo_array[i]);
2961 	return total;
2962 }
2963 
2964 /**
2965  * Return -1 if the batchbuffer should be flushed before attempting to
2966  * emit rendering referencing the buffers pointed to by bo_array.
2967  *
2968  * This is required because if we try to emit a batchbuffer with relocations
2969  * to a tree of buffers that won't simultaneously fit in the aperture,
2970  * the rendering will return an error at a point where the software is not
2971  * prepared to recover from it.
2972  *
2973  * However, we also want to emit the batchbuffer significantly before we reach
2974  * the limit, as a series of batchbuffers each of which references buffers
2975  * covering almost all of the aperture means that at each emit we end up
2976  * waiting to evict a buffer from the last rendering, and we get synchronous
2977  * performance.  By emitting smaller batchbuffers, we eat some CPU overhead to
2978  * get better parallelism.
2979  */
2980 static int
drm_intel_gem_check_aperture_space(drm_intel_bo ** bo_array,int count)2981 drm_intel_gem_check_aperture_space(drm_intel_bo **bo_array, int count)
2982 {
2983 	drm_intel_bufmgr_gem *bufmgr_gem =
2984 	    (drm_intel_bufmgr_gem *) bo_array[0]->bufmgr;
2985 	unsigned int total = 0;
2986 	unsigned int threshold = bufmgr_gem->gtt_size * 3 / 4;
2987 	int total_fences;
2988 
2989 	/* Check for fence reg constraints if necessary */
2990 	if (bufmgr_gem->available_fences) {
2991 		total_fences = drm_intel_gem_total_fences(bo_array, count);
2992 		if (total_fences > bufmgr_gem->available_fences)
2993 			return -ENOSPC;
2994 	}
2995 
2996 	total = drm_intel_gem_estimate_batch_space(bo_array, count);
2997 
2998 	if (total > threshold)
2999 		total = drm_intel_gem_compute_batch_space(bo_array, count);
3000 
3001 	if (total > threshold) {
3002 		DBG("check_space: overflowed available aperture, "
3003 		    "%dkb vs %dkb\n",
3004 		    total / 1024, (int)bufmgr_gem->gtt_size / 1024);
3005 		return -ENOSPC;
3006 	} else {
3007 		DBG("drm_check_space: total %dkb vs bufgr %dkb\n", total / 1024,
3008 		    (int)bufmgr_gem->gtt_size / 1024);
3009 		return 0;
3010 	}
3011 }
3012 
3013 /*
3014  * Disable buffer reuse for objects which are shared with the kernel
3015  * as scanout buffers
3016  */
3017 static int
drm_intel_gem_bo_disable_reuse(drm_intel_bo * bo)3018 drm_intel_gem_bo_disable_reuse(drm_intel_bo *bo)
3019 {
3020 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3021 
3022 	bo_gem->reusable = false;
3023 	return 0;
3024 }
3025 
3026 static int
drm_intel_gem_bo_is_reusable(drm_intel_bo * bo)3027 drm_intel_gem_bo_is_reusable(drm_intel_bo *bo)
3028 {
3029 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3030 
3031 	return bo_gem->reusable;
3032 }
3033 
3034 static int
_drm_intel_gem_bo_references(drm_intel_bo * bo,drm_intel_bo * target_bo)3035 _drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
3036 {
3037 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3038 	int i;
3039 
3040 	for (i = 0; i < bo_gem->reloc_count; i++) {
3041 		if (bo_gem->reloc_target_info[i].bo == target_bo)
3042 			return 1;
3043 		if (bo == bo_gem->reloc_target_info[i].bo)
3044 			continue;
3045 		if (_drm_intel_gem_bo_references(bo_gem->reloc_target_info[i].bo,
3046 						target_bo))
3047 			return 1;
3048 	}
3049 
3050 	for (i = 0; i< bo_gem->softpin_target_count; i++) {
3051 		if (bo_gem->softpin_target[i] == target_bo)
3052 			return 1;
3053 		if (_drm_intel_gem_bo_references(bo_gem->softpin_target[i], target_bo))
3054 			return 1;
3055 	}
3056 
3057 	return 0;
3058 }
3059 
3060 /** Return true if target_bo is referenced by bo's relocation tree. */
3061 static int
drm_intel_gem_bo_references(drm_intel_bo * bo,drm_intel_bo * target_bo)3062 drm_intel_gem_bo_references(drm_intel_bo *bo, drm_intel_bo *target_bo)
3063 {
3064 	drm_intel_bo_gem *target_bo_gem = (drm_intel_bo_gem *) target_bo;
3065 
3066 	if (bo == NULL || target_bo == NULL)
3067 		return 0;
3068 	if (target_bo_gem->used_as_reloc_target)
3069 		return _drm_intel_gem_bo_references(bo, target_bo);
3070 	return 0;
3071 }
3072 
3073 static void
add_bucket(drm_intel_bufmgr_gem * bufmgr_gem,int size)3074 add_bucket(drm_intel_bufmgr_gem *bufmgr_gem, int size)
3075 {
3076 	unsigned int i = bufmgr_gem->num_buckets;
3077 
3078 	assert(i < ARRAY_SIZE(bufmgr_gem->cache_bucket));
3079 
3080 	DRMINITLISTHEAD(&bufmgr_gem->cache_bucket[i].head);
3081 	bufmgr_gem->cache_bucket[i].size = size;
3082 	bufmgr_gem->num_buckets++;
3083 }
3084 
3085 static void
init_cache_buckets(drm_intel_bufmgr_gem * bufmgr_gem)3086 init_cache_buckets(drm_intel_bufmgr_gem *bufmgr_gem)
3087 {
3088 	unsigned long size, cache_max_size = 64 * 1024 * 1024;
3089 
3090 	/* OK, so power of two buckets was too wasteful of memory.
3091 	 * Give 3 other sizes between each power of two, to hopefully
3092 	 * cover things accurately enough.  (The alternative is
3093 	 * probably to just go for exact matching of sizes, and assume
3094 	 * that for things like composited window resize the tiled
3095 	 * width/height alignment and rounding of sizes to pages will
3096 	 * get us useful cache hit rates anyway)
3097 	 */
3098 	add_bucket(bufmgr_gem, 4096);
3099 	add_bucket(bufmgr_gem, 4096 * 2);
3100 	add_bucket(bufmgr_gem, 4096 * 3);
3101 
3102 	/* Initialize the linked lists for BO reuse cache. */
3103 	for (size = 4 * 4096; size <= cache_max_size; size *= 2) {
3104 		add_bucket(bufmgr_gem, size);
3105 
3106 		add_bucket(bufmgr_gem, size + size * 1 / 4);
3107 		add_bucket(bufmgr_gem, size + size * 2 / 4);
3108 		add_bucket(bufmgr_gem, size + size * 3 / 4);
3109 	}
3110 }
3111 
3112 drm_public void
drm_intel_bufmgr_gem_set_vma_cache_size(drm_intel_bufmgr * bufmgr,int limit)3113 drm_intel_bufmgr_gem_set_vma_cache_size(drm_intel_bufmgr *bufmgr, int limit)
3114 {
3115 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3116 
3117 	bufmgr_gem->vma_max = limit;
3118 
3119 	drm_intel_gem_bo_purge_vma_cache(bufmgr_gem);
3120 }
3121 
3122 static int
parse_devid_override(const char * devid_override)3123 parse_devid_override(const char *devid_override)
3124 {
3125 	static const struct {
3126 		const char *name;
3127 		int pci_id;
3128 	} name_map[] = {
3129 		{ "brw", PCI_CHIP_I965_GM },
3130 		{ "g4x", PCI_CHIP_GM45_GM },
3131 		{ "ilk", PCI_CHIP_ILD_G },
3132 		{ "snb", PCI_CHIP_SANDYBRIDGE_M_GT2_PLUS },
3133 		{ "ivb", PCI_CHIP_IVYBRIDGE_S_GT2 },
3134 		{ "hsw", PCI_CHIP_HASWELL_CRW_E_GT3 },
3135 		{ "byt", PCI_CHIP_VALLEYVIEW_3 },
3136 		{ "bdw", 0x1620 | BDW_ULX },
3137 		{ "skl", PCI_CHIP_SKYLAKE_DT_GT2 },
3138 		{ "kbl", PCI_CHIP_KABYLAKE_DT_GT2 },
3139 	};
3140 	unsigned int i;
3141 
3142 	for (i = 0; i < ARRAY_SIZE(name_map); i++) {
3143 		if (!strcmp(name_map[i].name, devid_override))
3144 			return name_map[i].pci_id;
3145 	}
3146 
3147 	return strtod(devid_override, NULL);
3148 }
3149 
3150 /**
3151  * Get the PCI ID for the device.  This can be overridden by setting the
3152  * INTEL_DEVID_OVERRIDE environment variable to the desired ID.
3153  */
3154 static int
get_pci_device_id(drm_intel_bufmgr_gem * bufmgr_gem)3155 get_pci_device_id(drm_intel_bufmgr_gem *bufmgr_gem)
3156 {
3157 	char *devid_override;
3158 	int devid = 0;
3159 	int ret;
3160 	drm_i915_getparam_t gp;
3161 
3162 	if (geteuid() == getuid()) {
3163 		devid_override = getenv("INTEL_DEVID_OVERRIDE");
3164 		if (devid_override) {
3165 			bufmgr_gem->no_exec = true;
3166 			return parse_devid_override(devid_override);
3167 		}
3168 	}
3169 
3170 	memclear(gp);
3171 	gp.param = I915_PARAM_CHIPSET_ID;
3172 	gp.value = &devid;
3173 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3174 	if (ret) {
3175 		fprintf(stderr, "get chip id failed: %d [%d]\n", ret, errno);
3176 		fprintf(stderr, "param: %d, val: %d\n", gp.param, *gp.value);
3177 	}
3178 	return devid;
3179 }
3180 
3181 drm_public int
drm_intel_bufmgr_gem_get_devid(drm_intel_bufmgr * bufmgr)3182 drm_intel_bufmgr_gem_get_devid(drm_intel_bufmgr *bufmgr)
3183 {
3184 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3185 
3186 	return bufmgr_gem->pci_device;
3187 }
3188 
3189 /**
3190  * Sets the AUB filename.
3191  *
3192  * This function has to be called before drm_intel_bufmgr_gem_set_aub_dump()
3193  * for it to have any effect.
3194  */
3195 drm_public void
drm_intel_bufmgr_gem_set_aub_filename(drm_intel_bufmgr * bufmgr,const char * filename)3196 drm_intel_bufmgr_gem_set_aub_filename(drm_intel_bufmgr *bufmgr,
3197 				      const char *filename)
3198 {
3199 }
3200 
3201 /**
3202  * Sets up AUB dumping.
3203  *
3204  * This is a trace file format that can be used with the simulator.
3205  * Packets are emitted in a format somewhat like GPU command packets.
3206  * You can set up a GTT and upload your objects into the referenced
3207  * space, then send off batchbuffers and get BMPs out the other end.
3208  */
3209 drm_public void
drm_intel_bufmgr_gem_set_aub_dump(drm_intel_bufmgr * bufmgr,int enable)3210 drm_intel_bufmgr_gem_set_aub_dump(drm_intel_bufmgr *bufmgr, int enable)
3211 {
3212 	fprintf(stderr, "libdrm aub dumping is deprecated.\n\n"
3213 		"Use intel_aubdump from intel-gpu-tools instead.  Install intel-gpu-tools,\n"
3214 		"then run (for example)\n\n"
3215 		"\t$ intel_aubdump --output=trace.aub glxgears -geometry 500x500\n\n"
3216 		"See the intel_aubdump man page for more details.\n");
3217 }
3218 
3219 drm_public drm_intel_context *
drm_intel_gem_context_create(drm_intel_bufmgr * bufmgr)3220 drm_intel_gem_context_create(drm_intel_bufmgr *bufmgr)
3221 {
3222 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3223 	struct drm_i915_gem_context_create create;
3224 	drm_intel_context *context = NULL;
3225 	int ret;
3226 
3227 	context = calloc(1, sizeof(*context));
3228 	if (!context)
3229 		return NULL;
3230 
3231 	memclear(create);
3232 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_CREATE, &create);
3233 	if (ret != 0) {
3234 		DBG("DRM_IOCTL_I915_GEM_CONTEXT_CREATE failed: %s\n",
3235 		    strerror(errno));
3236 		free(context);
3237 		return NULL;
3238 	}
3239 
3240 	context->ctx_id = create.ctx_id;
3241 	context->bufmgr = bufmgr;
3242 
3243 	return context;
3244 }
3245 
3246 drm_public int
drm_intel_gem_context_get_id(drm_intel_context * ctx,uint32_t * ctx_id)3247 drm_intel_gem_context_get_id(drm_intel_context *ctx, uint32_t *ctx_id)
3248 {
3249 	if (ctx == NULL)
3250 		return -EINVAL;
3251 
3252 	*ctx_id = ctx->ctx_id;
3253 
3254 	return 0;
3255 }
3256 
3257 drm_public void
drm_intel_gem_context_destroy(drm_intel_context * ctx)3258 drm_intel_gem_context_destroy(drm_intel_context *ctx)
3259 {
3260 	drm_intel_bufmgr_gem *bufmgr_gem;
3261 	struct drm_i915_gem_context_destroy destroy;
3262 	int ret;
3263 
3264 	if (ctx == NULL)
3265 		return;
3266 
3267 	memclear(destroy);
3268 
3269 	bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr;
3270 	destroy.ctx_id = ctx->ctx_id;
3271 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GEM_CONTEXT_DESTROY,
3272 		       &destroy);
3273 	if (ret != 0)
3274 		fprintf(stderr, "DRM_IOCTL_I915_GEM_CONTEXT_DESTROY failed: %s\n",
3275 			strerror(errno));
3276 
3277 	free(ctx);
3278 }
3279 
3280 drm_public int
drm_intel_get_reset_stats(drm_intel_context * ctx,uint32_t * reset_count,uint32_t * active,uint32_t * pending)3281 drm_intel_get_reset_stats(drm_intel_context *ctx,
3282 			  uint32_t *reset_count,
3283 			  uint32_t *active,
3284 			  uint32_t *pending)
3285 {
3286 	drm_intel_bufmgr_gem *bufmgr_gem;
3287 	struct drm_i915_reset_stats stats;
3288 	int ret;
3289 
3290 	if (ctx == NULL)
3291 		return -EINVAL;
3292 
3293 	memclear(stats);
3294 
3295 	bufmgr_gem = (drm_intel_bufmgr_gem *)ctx->bufmgr;
3296 	stats.ctx_id = ctx->ctx_id;
3297 	ret = drmIoctl(bufmgr_gem->fd,
3298 		       DRM_IOCTL_I915_GET_RESET_STATS,
3299 		       &stats);
3300 	if (ret == 0) {
3301 		if (reset_count != NULL)
3302 			*reset_count = stats.reset_count;
3303 
3304 		if (active != NULL)
3305 			*active = stats.batch_active;
3306 
3307 		if (pending != NULL)
3308 			*pending = stats.batch_pending;
3309 	}
3310 
3311 	return ret;
3312 }
3313 
3314 drm_public int
drm_intel_reg_read(drm_intel_bufmgr * bufmgr,uint32_t offset,uint64_t * result)3315 drm_intel_reg_read(drm_intel_bufmgr *bufmgr,
3316 		   uint32_t offset,
3317 		   uint64_t *result)
3318 {
3319 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3320 	struct drm_i915_reg_read reg_read;
3321 	int ret;
3322 
3323 	memclear(reg_read);
3324 	reg_read.offset = offset;
3325 
3326 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_REG_READ, &reg_read);
3327 
3328 	*result = reg_read.val;
3329 	return ret;
3330 }
3331 
3332 drm_public int
drm_intel_get_subslice_total(int fd,unsigned int * subslice_total)3333 drm_intel_get_subslice_total(int fd, unsigned int *subslice_total)
3334 {
3335 	drm_i915_getparam_t gp;
3336 	int ret;
3337 
3338 	memclear(gp);
3339 	gp.value = (int*)subslice_total;
3340 	gp.param = I915_PARAM_SUBSLICE_TOTAL;
3341 	ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp);
3342 	if (ret)
3343 		return -errno;
3344 
3345 	return 0;
3346 }
3347 
3348 drm_public int
drm_intel_get_eu_total(int fd,unsigned int * eu_total)3349 drm_intel_get_eu_total(int fd, unsigned int *eu_total)
3350 {
3351 	drm_i915_getparam_t gp;
3352 	int ret;
3353 
3354 	memclear(gp);
3355 	gp.value = (int*)eu_total;
3356 	gp.param = I915_PARAM_EU_TOTAL;
3357 	ret = drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp);
3358 	if (ret)
3359 		return -errno;
3360 
3361 	return 0;
3362 }
3363 
3364 drm_public int
drm_intel_get_pooled_eu(int fd)3365 drm_intel_get_pooled_eu(int fd)
3366 {
3367 	drm_i915_getparam_t gp;
3368 	int ret = -1;
3369 
3370 	memclear(gp);
3371 	gp.param = I915_PARAM_HAS_POOLED_EU;
3372 	gp.value = &ret;
3373 	if (drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp))
3374 		return -errno;
3375 
3376 	return ret;
3377 }
3378 
3379 drm_public int
drm_intel_get_min_eu_in_pool(int fd)3380 drm_intel_get_min_eu_in_pool(int fd)
3381 {
3382 	drm_i915_getparam_t gp;
3383 	int ret = -1;
3384 
3385 	memclear(gp);
3386 	gp.param = I915_PARAM_MIN_EU_IN_POOL;
3387 	gp.value = &ret;
3388 	if (drmIoctl(fd, DRM_IOCTL_I915_GETPARAM, &gp))
3389 		return -errno;
3390 
3391 	return ret;
3392 }
3393 
3394 /**
3395  * Annotate the given bo for use in aub dumping.
3396  *
3397  * \param annotations is an array of drm_intel_aub_annotation objects
3398  * describing the type of data in various sections of the bo.  Each
3399  * element of the array specifies the type and subtype of a section of
3400  * the bo, and the past-the-end offset of that section.  The elements
3401  * of \c annotations must be sorted so that ending_offset is
3402  * increasing.
3403  *
3404  * \param count is the number of elements in the \c annotations array.
3405  * If \c count is zero, then \c annotations will not be dereferenced.
3406  *
3407  * Annotations are copied into a private data structure, so caller may
3408  * re-use the memory pointed to by \c annotations after the call
3409  * returns.
3410  *
3411  * Annotations are stored for the lifetime of the bo; to reset to the
3412  * default state (no annotations), call this function with a \c count
3413  * of zero.
3414  */
drm_intel_bufmgr_gem_set_aub_annotations(drm_intel_bo * bo,drm_intel_aub_annotation * annotations,unsigned count)3415 drm_public void drm_intel_bufmgr_gem_set_aub_annotations(drm_intel_bo *bo,
3416 					 drm_intel_aub_annotation *annotations,
3417 					 unsigned count)
3418 {
3419 }
3420 
3421 static pthread_mutex_t bufmgr_list_mutex = PTHREAD_MUTEX_INITIALIZER;
3422 static drmMMListHead bufmgr_list = { &bufmgr_list, &bufmgr_list };
3423 
3424 static drm_intel_bufmgr_gem *
drm_intel_bufmgr_gem_find(int fd)3425 drm_intel_bufmgr_gem_find(int fd)
3426 {
3427 	drm_intel_bufmgr_gem *bufmgr_gem;
3428 
3429 	DRMLISTFOREACHENTRY(bufmgr_gem, &bufmgr_list, managers) {
3430 		if (bufmgr_gem->fd == fd) {
3431 			atomic_inc(&bufmgr_gem->refcount);
3432 			return bufmgr_gem;
3433 		}
3434 	}
3435 
3436 	return NULL;
3437 }
3438 
3439 static void
drm_intel_bufmgr_gem_unref(drm_intel_bufmgr * bufmgr)3440 drm_intel_bufmgr_gem_unref(drm_intel_bufmgr *bufmgr)
3441 {
3442 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *)bufmgr;
3443 
3444 	if (atomic_add_unless(&bufmgr_gem->refcount, -1, 1)) {
3445 		pthread_mutex_lock(&bufmgr_list_mutex);
3446 
3447 		if (atomic_dec_and_test(&bufmgr_gem->refcount)) {
3448 			DRMLISTDEL(&bufmgr_gem->managers);
3449 			drm_intel_bufmgr_gem_destroy(bufmgr);
3450 		}
3451 
3452 		pthread_mutex_unlock(&bufmgr_list_mutex);
3453 	}
3454 }
3455 
drm_intel_gem_bo_map__gtt(drm_intel_bo * bo)3456 drm_public void *drm_intel_gem_bo_map__gtt(drm_intel_bo *bo)
3457 {
3458 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
3459 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3460 
3461 	if (bo_gem->gtt_virtual)
3462 		return bo_gem->gtt_virtual;
3463 
3464 	if (bo_gem->is_userptr)
3465 		return NULL;
3466 
3467 	pthread_mutex_lock(&bufmgr_gem->lock);
3468 	if (bo_gem->gtt_virtual == NULL) {
3469 		struct drm_i915_gem_mmap_gtt mmap_arg;
3470 		void *ptr;
3471 
3472 		DBG("bo_map_gtt: mmap %d (%s), map_count=%d\n",
3473 		    bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
3474 
3475 		if (bo_gem->map_count++ == 0)
3476 			drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
3477 
3478 		memclear(mmap_arg);
3479 		mmap_arg.handle = bo_gem->gem_handle;
3480 
3481 		/* Get the fake offset back... */
3482 		ptr = MAP_FAILED;
3483 		if (drmIoctl(bufmgr_gem->fd,
3484 			     DRM_IOCTL_I915_GEM_MMAP_GTT,
3485 			     &mmap_arg) == 0) {
3486 			/* and mmap it */
3487 			ptr = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE,
3488 				       MAP_SHARED, bufmgr_gem->fd,
3489 				       mmap_arg.offset);
3490 		}
3491 		if (ptr == MAP_FAILED) {
3492 			if (--bo_gem->map_count == 0)
3493 				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
3494 			ptr = NULL;
3495 		}
3496 
3497 		bo_gem->gtt_virtual = ptr;
3498 	}
3499 	pthread_mutex_unlock(&bufmgr_gem->lock);
3500 
3501 	return bo_gem->gtt_virtual;
3502 }
3503 
drm_intel_gem_bo_map__cpu(drm_intel_bo * bo)3504 drm_public void *drm_intel_gem_bo_map__cpu(drm_intel_bo *bo)
3505 {
3506 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
3507 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3508 
3509 	if (bo_gem->mem_virtual)
3510 		return bo_gem->mem_virtual;
3511 
3512 	if (bo_gem->is_userptr) {
3513 		/* Return the same user ptr */
3514 		return bo_gem->user_virtual;
3515 	}
3516 
3517 	pthread_mutex_lock(&bufmgr_gem->lock);
3518 	if (!bo_gem->mem_virtual) {
3519 		struct drm_i915_gem_mmap mmap_arg;
3520 
3521 		if (bo_gem->map_count++ == 0)
3522 			drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
3523 
3524 		DBG("bo_map: %d (%s), map_count=%d\n",
3525 		    bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
3526 
3527 		memclear(mmap_arg);
3528 		mmap_arg.handle = bo_gem->gem_handle;
3529 		mmap_arg.size = bo->size;
3530 		if (drmIoctl(bufmgr_gem->fd,
3531 			     DRM_IOCTL_I915_GEM_MMAP,
3532 			     &mmap_arg)) {
3533 			DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
3534 			    __FILE__, __LINE__, bo_gem->gem_handle,
3535 			    bo_gem->name, strerror(errno));
3536 			if (--bo_gem->map_count == 0)
3537 				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
3538 		} else {
3539 			VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
3540 			bo_gem->mem_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr;
3541 		}
3542 	}
3543 	pthread_mutex_unlock(&bufmgr_gem->lock);
3544 
3545 	return bo_gem->mem_virtual;
3546 }
3547 
drm_intel_gem_bo_map__wc(drm_intel_bo * bo)3548 drm_public void *drm_intel_gem_bo_map__wc(drm_intel_bo *bo)
3549 {
3550 	drm_intel_bufmgr_gem *bufmgr_gem = (drm_intel_bufmgr_gem *) bo->bufmgr;
3551 	drm_intel_bo_gem *bo_gem = (drm_intel_bo_gem *) bo;
3552 
3553 	if (bo_gem->wc_virtual)
3554 		return bo_gem->wc_virtual;
3555 
3556 	if (bo_gem->is_userptr)
3557 		return NULL;
3558 
3559 	pthread_mutex_lock(&bufmgr_gem->lock);
3560 	if (!bo_gem->wc_virtual) {
3561 		struct drm_i915_gem_mmap mmap_arg;
3562 
3563 		if (bo_gem->map_count++ == 0)
3564 			drm_intel_gem_bo_open_vma(bufmgr_gem, bo_gem);
3565 
3566 		DBG("bo_map: %d (%s), map_count=%d\n",
3567 		    bo_gem->gem_handle, bo_gem->name, bo_gem->map_count);
3568 
3569 		memclear(mmap_arg);
3570 		mmap_arg.handle = bo_gem->gem_handle;
3571 		mmap_arg.size = bo->size;
3572 		mmap_arg.flags = I915_MMAP_WC;
3573 		if (drmIoctl(bufmgr_gem->fd,
3574 			     DRM_IOCTL_I915_GEM_MMAP,
3575 			     &mmap_arg)) {
3576 			DBG("%s:%d: Error mapping buffer %d (%s): %s .\n",
3577 			    __FILE__, __LINE__, bo_gem->gem_handle,
3578 			    bo_gem->name, strerror(errno));
3579 			if (--bo_gem->map_count == 0)
3580 				drm_intel_gem_bo_close_vma(bufmgr_gem, bo_gem);
3581 		} else {
3582 			VG(VALGRIND_MALLOCLIKE_BLOCK(mmap_arg.addr_ptr, mmap_arg.size, 0, 1));
3583 			bo_gem->wc_virtual = (void *)(uintptr_t) mmap_arg.addr_ptr;
3584 		}
3585 	}
3586 	pthread_mutex_unlock(&bufmgr_gem->lock);
3587 
3588 	return bo_gem->wc_virtual;
3589 }
3590 
3591 /**
3592  * Initializes the GEM buffer manager, which uses the kernel to allocate, map,
3593  * and manage map buffer objections.
3594  *
3595  * \param fd File descriptor of the opened DRM device.
3596  */
3597 drm_public drm_intel_bufmgr *
drm_intel_bufmgr_gem_init(int fd,int batch_size)3598 drm_intel_bufmgr_gem_init(int fd, int batch_size)
3599 {
3600 	drm_intel_bufmgr_gem *bufmgr_gem;
3601 	struct drm_i915_gem_get_aperture aperture;
3602 	drm_i915_getparam_t gp;
3603 	int ret, tmp;
3604 	bool exec2 = false;
3605 
3606 	pthread_mutex_lock(&bufmgr_list_mutex);
3607 
3608 	bufmgr_gem = drm_intel_bufmgr_gem_find(fd);
3609 	if (bufmgr_gem)
3610 		goto exit;
3611 
3612 	bufmgr_gem = calloc(1, sizeof(*bufmgr_gem));
3613 	if (bufmgr_gem == NULL)
3614 		goto exit;
3615 
3616 	bufmgr_gem->fd = fd;
3617 	atomic_set(&bufmgr_gem->refcount, 1);
3618 
3619 	if (pthread_mutex_init(&bufmgr_gem->lock, NULL) != 0) {
3620 		free(bufmgr_gem);
3621 		bufmgr_gem = NULL;
3622 		goto exit;
3623 	}
3624 
3625 	memclear(aperture);
3626 	ret = drmIoctl(bufmgr_gem->fd,
3627 		       DRM_IOCTL_I915_GEM_GET_APERTURE,
3628 		       &aperture);
3629 
3630 	if (ret == 0)
3631 		bufmgr_gem->gtt_size = aperture.aper_available_size;
3632 	else {
3633 		fprintf(stderr, "DRM_IOCTL_I915_GEM_APERTURE failed: %s\n",
3634 			strerror(errno));
3635 		bufmgr_gem->gtt_size = 128 * 1024 * 1024;
3636 		fprintf(stderr, "Assuming %dkB available aperture size.\n"
3637 			"May lead to reduced performance or incorrect "
3638 			"rendering.\n",
3639 			(int)bufmgr_gem->gtt_size / 1024);
3640 	}
3641 
3642 	bufmgr_gem->pci_device = get_pci_device_id(bufmgr_gem);
3643 
3644 	if (IS_GEN2(bufmgr_gem->pci_device))
3645 		bufmgr_gem->gen = 2;
3646 	else if (IS_GEN3(bufmgr_gem->pci_device))
3647 		bufmgr_gem->gen = 3;
3648 	else if (IS_GEN4(bufmgr_gem->pci_device))
3649 		bufmgr_gem->gen = 4;
3650 	else if (IS_GEN5(bufmgr_gem->pci_device))
3651 		bufmgr_gem->gen = 5;
3652 	else if (IS_GEN6(bufmgr_gem->pci_device))
3653 		bufmgr_gem->gen = 6;
3654 	else if (IS_GEN7(bufmgr_gem->pci_device))
3655 		bufmgr_gem->gen = 7;
3656 	else if (IS_GEN8(bufmgr_gem->pci_device))
3657 		bufmgr_gem->gen = 8;
3658 	else if (!intel_get_genx(bufmgr_gem->pci_device, &bufmgr_gem->gen)) {
3659 		free(bufmgr_gem);
3660 		bufmgr_gem = NULL;
3661 		goto exit;
3662 	}
3663 
3664 	if (IS_GEN3(bufmgr_gem->pci_device) &&
3665 	    bufmgr_gem->gtt_size > 256*1024*1024) {
3666 		/* The unmappable part of gtt on gen 3 (i.e. above 256MB) can't
3667 		 * be used for tiled blits. To simplify the accounting, just
3668 		 * subtract the unmappable part (fixed to 256MB on all known
3669 		 * gen3 devices) if the kernel advertises it. */
3670 		bufmgr_gem->gtt_size -= 256*1024*1024;
3671 	}
3672 
3673 	memclear(gp);
3674 	gp.value = &tmp;
3675 
3676 	gp.param = I915_PARAM_HAS_EXECBUF2;
3677 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3678 	if (!ret)
3679 		exec2 = true;
3680 
3681 	gp.param = I915_PARAM_HAS_BSD;
3682 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3683 	bufmgr_gem->has_bsd = ret == 0;
3684 
3685 	gp.param = I915_PARAM_HAS_BLT;
3686 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3687 	bufmgr_gem->has_blt = ret == 0;
3688 
3689 	gp.param = I915_PARAM_HAS_RELAXED_FENCING;
3690 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3691 	bufmgr_gem->has_relaxed_fencing = ret == 0;
3692 
3693 	gp.param = I915_PARAM_HAS_EXEC_ASYNC;
3694 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3695 	bufmgr_gem->has_exec_async = ret == 0;
3696 
3697 	bufmgr_gem->bufmgr.bo_alloc_userptr = check_bo_alloc_userptr;
3698 
3699 	gp.param = I915_PARAM_HAS_WAIT_TIMEOUT;
3700 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3701 	bufmgr_gem->has_wait_timeout = ret == 0;
3702 
3703 	gp.param = I915_PARAM_HAS_LLC;
3704 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3705 	if (ret != 0) {
3706 		/* Kernel does not supports HAS_LLC query, fallback to GPU
3707 		 * generation detection and assume that we have LLC on GEN6/7
3708 		 */
3709 		bufmgr_gem->has_llc = (IS_GEN6(bufmgr_gem->pci_device) |
3710 				IS_GEN7(bufmgr_gem->pci_device));
3711 	} else
3712 		bufmgr_gem->has_llc = *gp.value;
3713 
3714 	gp.param = I915_PARAM_HAS_VEBOX;
3715 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3716 	bufmgr_gem->has_vebox = (ret == 0) & (*gp.value > 0);
3717 
3718 	gp.param = I915_PARAM_HAS_EXEC_SOFTPIN;
3719 	ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3720 	if (ret == 0 && *gp.value > 0)
3721 		bufmgr_gem->bufmgr.bo_set_softpin_offset = drm_intel_gem_bo_set_softpin_offset;
3722 
3723 	if (bufmgr_gem->gen < 4) {
3724 		gp.param = I915_PARAM_NUM_FENCES_AVAIL;
3725 		gp.value = &bufmgr_gem->available_fences;
3726 		ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3727 		if (ret) {
3728 			fprintf(stderr, "get fences failed: %d [%d]\n", ret,
3729 				errno);
3730 			fprintf(stderr, "param: %d, val: %d\n", gp.param,
3731 				*gp.value);
3732 			bufmgr_gem->available_fences = 0;
3733 		} else {
3734 			/* XXX The kernel reports the total number of fences,
3735 			 * including any that may be pinned.
3736 			 *
3737 			 * We presume that there will be at least one pinned
3738 			 * fence for the scanout buffer, but there may be more
3739 			 * than one scanout and the user may be manually
3740 			 * pinning buffers. Let's move to execbuffer2 and
3741 			 * thereby forget the insanity of using fences...
3742 			 */
3743 			bufmgr_gem->available_fences -= 2;
3744 			if (bufmgr_gem->available_fences < 0)
3745 				bufmgr_gem->available_fences = 0;
3746 		}
3747 	}
3748 
3749 	if (bufmgr_gem->gen >= 8) {
3750 		gp.param = I915_PARAM_HAS_ALIASING_PPGTT;
3751 		ret = drmIoctl(bufmgr_gem->fd, DRM_IOCTL_I915_GETPARAM, &gp);
3752 		if (ret == 0 && *gp.value == 3)
3753 			bufmgr_gem->bufmgr.bo_use_48b_address_range = drm_intel_gem_bo_use_48b_address_range;
3754 	}
3755 
3756 	/* Let's go with one relocation per every 2 dwords (but round down a bit
3757 	 * since a power of two will mean an extra page allocation for the reloc
3758 	 * buffer).
3759 	 *
3760 	 * Every 4 was too few for the blender benchmark.
3761 	 */
3762 	bufmgr_gem->max_relocs = batch_size / sizeof(uint32_t) / 2 - 2;
3763 
3764 	bufmgr_gem->bufmgr.bo_alloc = drm_intel_gem_bo_alloc;
3765 	bufmgr_gem->bufmgr.bo_alloc_for_render =
3766 	    drm_intel_gem_bo_alloc_for_render;
3767 	bufmgr_gem->bufmgr.bo_alloc_tiled = drm_intel_gem_bo_alloc_tiled;
3768 	bufmgr_gem->bufmgr.bo_reference = drm_intel_gem_bo_reference;
3769 	bufmgr_gem->bufmgr.bo_unreference = drm_intel_gem_bo_unreference;
3770 	bufmgr_gem->bufmgr.bo_map = drm_intel_gem_bo_map;
3771 	bufmgr_gem->bufmgr.bo_unmap = drm_intel_gem_bo_unmap;
3772 	bufmgr_gem->bufmgr.bo_subdata = drm_intel_gem_bo_subdata;
3773 	bufmgr_gem->bufmgr.bo_get_subdata = drm_intel_gem_bo_get_subdata;
3774 	bufmgr_gem->bufmgr.bo_wait_rendering = drm_intel_gem_bo_wait_rendering;
3775 	bufmgr_gem->bufmgr.bo_emit_reloc = drm_intel_gem_bo_emit_reloc;
3776 	bufmgr_gem->bufmgr.bo_emit_reloc_fence = drm_intel_gem_bo_emit_reloc_fence;
3777 	bufmgr_gem->bufmgr.bo_pin = drm_intel_gem_bo_pin;
3778 	bufmgr_gem->bufmgr.bo_unpin = drm_intel_gem_bo_unpin;
3779 	bufmgr_gem->bufmgr.bo_get_tiling = drm_intel_gem_bo_get_tiling;
3780 	bufmgr_gem->bufmgr.bo_set_tiling = drm_intel_gem_bo_set_tiling;
3781 	bufmgr_gem->bufmgr.bo_flink = drm_intel_gem_bo_flink;
3782 	/* Use the new one if available */
3783 	if (exec2) {
3784 		bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec2;
3785 		bufmgr_gem->bufmgr.bo_mrb_exec = drm_intel_gem_bo_mrb_exec2;
3786 	} else
3787 		bufmgr_gem->bufmgr.bo_exec = drm_intel_gem_bo_exec;
3788 	bufmgr_gem->bufmgr.bo_busy = drm_intel_gem_bo_busy;
3789 	bufmgr_gem->bufmgr.bo_madvise = drm_intel_gem_bo_madvise;
3790 	bufmgr_gem->bufmgr.destroy = drm_intel_bufmgr_gem_unref;
3791 	bufmgr_gem->bufmgr.debug = 0;
3792 	bufmgr_gem->bufmgr.check_aperture_space =
3793 	    drm_intel_gem_check_aperture_space;
3794 	bufmgr_gem->bufmgr.bo_disable_reuse = drm_intel_gem_bo_disable_reuse;
3795 	bufmgr_gem->bufmgr.bo_is_reusable = drm_intel_gem_bo_is_reusable;
3796 	bufmgr_gem->bufmgr.get_pipe_from_crtc_id =
3797 	    drm_intel_gem_get_pipe_from_crtc_id;
3798 	bufmgr_gem->bufmgr.bo_references = drm_intel_gem_bo_references;
3799 
3800 	init_cache_buckets(bufmgr_gem);
3801 
3802 	DRMINITLISTHEAD(&bufmgr_gem->vma_cache);
3803 	bufmgr_gem->vma_max = -1; /* unlimited by default */
3804 
3805 	DRMLISTADD(&bufmgr_gem->managers, &bufmgr_list);
3806 
3807 exit:
3808 	pthread_mutex_unlock(&bufmgr_list_mutex);
3809 
3810 	return bufmgr_gem != NULL ? &bufmgr_gem->bufmgr : NULL;
3811 }
3812