• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- AVRMCCodeEmitter.cpp - Convert AVR Code to Machine Code -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AVRMCCodeEmitter class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AVRMCCodeEmitter.h"
15 
16 #include "MCTargetDesc/AVRMCExpr.h"
17 #include "MCTargetDesc/AVRMCTargetDesc.h"
18 
19 #include "llvm/ADT/APFloat.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCExpr.h"
23 #include "llvm/MC/MCFixup.h"
24 #include "llvm/MC/MCInst.h"
25 #include "llvm/MC/MCInstrInfo.h"
26 #include "llvm/MC/MCRegisterInfo.h"
27 #include "llvm/MC/MCSubtargetInfo.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/raw_ostream.h"
30 
31 #define DEBUG_TYPE "mccodeemitter"
32 
33 #define GET_INSTRMAP_INFO
34 #include "AVRGenInstrInfo.inc"
35 #undef GET_INSTRMAP_INFO
36 
37 namespace llvm {
38 
39 /// Performs a post-encoding step on a `LD` or `ST` instruction.
40 ///
41 /// The encoding of the LD/ST family of instructions is inconsistent w.r.t
42 /// the pointer register and the addressing mode.
43 ///
44 /// The permutations of the format are as followed:
45 /// ld Rd, X    `1001 000d dddd 1100`
46 /// ld Rd, X+   `1001 000d dddd 1101`
47 /// ld Rd, -X   `1001 000d dddd 1110`
48 ///
49 /// ld Rd, Y    `1000 000d dddd 1000`
50 /// ld Rd, Y+   `1001 000d dddd 1001`
51 /// ld Rd, -Y   `1001 000d dddd 1010`
52 ///
53 /// ld Rd, Z    `1000 000d dddd 0000`
54 /// ld Rd, Z+   `1001 000d dddd 0001`
55 /// ld Rd, -Z   `1001 000d dddd 0010`
56 ///                 ^
57 ///                 |
58 /// Note this one inconsistent bit - it is 1 sometimes and 0 at other times.
59 /// There is no logical pattern. Looking at a truth table, the following
60 /// formula can be derived to fit the pattern:
61 //
62 /// ```
63 /// inconsistent_bit = is_predec OR is_postinc OR is_reg_x
64 /// ```
65 //
66 /// We manually set this bit in this post encoder method.
67 unsigned
loadStorePostEncoder(const MCInst & MI,unsigned EncodedValue,const MCSubtargetInfo & STI) const68 AVRMCCodeEmitter::loadStorePostEncoder(const MCInst &MI, unsigned EncodedValue,
69                                        const MCSubtargetInfo &STI) const {
70 
71   assert(MI.getOperand(0).isReg() && MI.getOperand(1).isReg() &&
72          "the load/store operands must be registers");
73 
74   unsigned Opcode = MI.getOpcode();
75 
76   // check whether either of the registers are the X pointer register.
77   bool IsRegX = MI.getOperand(0).getReg() == AVR::R27R26 ||
78                   MI.getOperand(1).getReg() == AVR::R27R26;
79 
80   bool IsPredec = Opcode == AVR::LDRdPtrPd || Opcode == AVR::STPtrPdRr;
81   bool IsPostinc = Opcode == AVR::LDRdPtrPi || Opcode == AVR::STPtrPiRr;
82 
83   // Check if we need to set the inconsistent bit
84   if (IsRegX || IsPredec || IsPostinc) {
85     EncodedValue |= (1 << 12);
86   }
87 
88   return EncodedValue;
89 }
90 
91 template <AVR::Fixups Fixup>
92 unsigned
encodeRelCondBrTarget(const MCInst & MI,unsigned OpNo,SmallVectorImpl<MCFixup> & Fixups,const MCSubtargetInfo & STI) const93 AVRMCCodeEmitter::encodeRelCondBrTarget(const MCInst &MI, unsigned OpNo,
94                                         SmallVectorImpl<MCFixup> &Fixups,
95                                         const MCSubtargetInfo &STI) const {
96   const MCOperand &MO = MI.getOperand(OpNo);
97 
98   if (MO.isExpr()) {
99     Fixups.push_back(MCFixup::create(0, MO.getExpr(),
100                      MCFixupKind(Fixup), MI.getLoc()));
101     return 0;
102   }
103 
104   assert(MO.isImm());
105 
106   // Take the size of the current instruction away.
107   // With labels, this is implicitly done.
108   auto target = MO.getImm();
109   AVR::fixups::adjustBranchTarget(target);
110   return target;
111 }
112 
encodeLDSTPtrReg(const MCInst & MI,unsigned OpNo,SmallVectorImpl<MCFixup> & Fixups,const MCSubtargetInfo & STI) const113 unsigned AVRMCCodeEmitter::encodeLDSTPtrReg(const MCInst &MI, unsigned OpNo,
114                                             SmallVectorImpl<MCFixup> &Fixups,
115                                             const MCSubtargetInfo &STI) const {
116   auto MO = MI.getOperand(OpNo);
117 
118   // The operand should be a pointer register.
119   assert(MO.isReg());
120 
121   switch (MO.getReg()) {
122   case AVR::R27R26: return 0x03; // X: 0b11
123   case AVR::R29R28: return 0x02; // Y: 0b10
124   case AVR::R31R30: return 0x00; // Z: 0b00
125   default:
126     llvm_unreachable("invalid pointer register");
127   }
128 }
129 
130 /// Encodes a `memri` operand.
131 /// The operand is 7-bits.
132 /// * The lower 6 bits is the immediate
133 /// * The upper bit is the pointer register bit (Z=0,Y=1)
encodeMemri(const MCInst & MI,unsigned OpNo,SmallVectorImpl<MCFixup> & Fixups,const MCSubtargetInfo & STI) const134 unsigned AVRMCCodeEmitter::encodeMemri(const MCInst &MI, unsigned OpNo,
135                                        SmallVectorImpl<MCFixup> &Fixups,
136                                        const MCSubtargetInfo &STI) const {
137   auto RegOp = MI.getOperand(OpNo);
138   auto OffsetOp = MI.getOperand(OpNo + 1);
139 
140   assert(RegOp.isReg() && "Expected register operand");
141 
142   uint8_t RegBit = 0;
143 
144   switch (RegOp.getReg()) {
145   default:
146     llvm_unreachable("Expected either Y or Z register");
147   case AVR::R31R30:
148     RegBit = 0;
149     break; // Z register
150   case AVR::R29R28:
151     RegBit = 1;
152     break; // Y register
153   }
154 
155   int8_t OffsetBits;
156 
157   if (OffsetOp.isImm()) {
158     OffsetBits = OffsetOp.getImm();
159   } else if (OffsetOp.isExpr()) {
160     OffsetBits = 0;
161     Fixups.push_back(MCFixup::create(0, OffsetOp.getExpr(),
162                      MCFixupKind(AVR::fixup_6), MI.getLoc()));
163   } else {
164     llvm_unreachable("invalid value for offset");
165   }
166 
167   return (RegBit << 6) | OffsetBits;
168 }
169 
encodeComplement(const MCInst & MI,unsigned OpNo,SmallVectorImpl<MCFixup> & Fixups,const MCSubtargetInfo & STI) const170 unsigned AVRMCCodeEmitter::encodeComplement(const MCInst &MI, unsigned OpNo,
171                                             SmallVectorImpl<MCFixup> &Fixups,
172                                             const MCSubtargetInfo &STI) const {
173   // The operand should be an immediate.
174   assert(MI.getOperand(OpNo).isImm());
175 
176   auto Imm = MI.getOperand(OpNo).getImm();
177   return (~0) - Imm;
178 }
179 
180 template <AVR::Fixups Fixup, unsigned Offset>
encodeImm(const MCInst & MI,unsigned OpNo,SmallVectorImpl<MCFixup> & Fixups,const MCSubtargetInfo & STI) const181 unsigned AVRMCCodeEmitter::encodeImm(const MCInst &MI, unsigned OpNo,
182                                      SmallVectorImpl<MCFixup> &Fixups,
183                                      const MCSubtargetInfo &STI) const {
184   auto MO = MI.getOperand(OpNo);
185 
186   if (MO.isExpr()) {
187     if (isa<AVRMCExpr>(MO.getExpr())) {
188       // If the expression is already an AVRMCExpr (i.e. a lo8(symbol),
189       // we shouldn't perform any more fixups. Without this check, we would
190       // instead create a fixup to the symbol named 'lo8(symbol)' which
191       // is not correct.
192       return getExprOpValue(MO.getExpr(), Fixups, STI);
193     }
194 
195     MCFixupKind FixupKind = static_cast<MCFixupKind>(Fixup);
196     Fixups.push_back(MCFixup::create(Offset, MO.getExpr(), FixupKind, MI.getLoc()));
197 
198     return 0;
199   }
200 
201   assert(MO.isImm());
202   return MO.getImm();
203 }
204 
encodeCallTarget(const MCInst & MI,unsigned OpNo,SmallVectorImpl<MCFixup> & Fixups,const MCSubtargetInfo & STI) const205 unsigned AVRMCCodeEmitter::encodeCallTarget(const MCInst &MI, unsigned OpNo,
206                                             SmallVectorImpl<MCFixup> &Fixups,
207                                             const MCSubtargetInfo &STI) const {
208   auto MO = MI.getOperand(OpNo);
209 
210   if (MO.isExpr()) {
211     MCFixupKind FixupKind = static_cast<MCFixupKind>(AVR::fixup_call);
212     Fixups.push_back(MCFixup::create(0, MO.getExpr(), FixupKind, MI.getLoc()));
213     return 0;
214   }
215 
216   assert(MO.isImm());
217 
218   auto Target = MO.getImm();
219   AVR::fixups::adjustBranchTarget(Target);
220   return Target;
221 }
222 
getExprOpValue(const MCExpr * Expr,SmallVectorImpl<MCFixup> & Fixups,const MCSubtargetInfo & STI) const223 unsigned AVRMCCodeEmitter::getExprOpValue(const MCExpr *Expr,
224                                           SmallVectorImpl<MCFixup> &Fixups,
225                                           const MCSubtargetInfo &STI) const {
226 
227   MCExpr::ExprKind Kind = Expr->getKind();
228 
229   if (Kind == MCExpr::Binary) {
230     Expr = static_cast<const MCBinaryExpr *>(Expr)->getLHS();
231     Kind = Expr->getKind();
232   }
233 
234   if (Kind == MCExpr::Target) {
235     AVRMCExpr const *AVRExpr = cast<AVRMCExpr>(Expr);
236     int64_t Result;
237     if (AVRExpr->evaluateAsConstant(Result)) {
238       return Result;
239     }
240 
241     MCFixupKind FixupKind = static_cast<MCFixupKind>(AVRExpr->getFixupKind());
242     Fixups.push_back(MCFixup::create(0, AVRExpr, FixupKind));
243     return 0;
244   }
245 
246   assert(Kind == MCExpr::SymbolRef);
247   return 0;
248 }
249 
getMachineOpValue(const MCInst & MI,const MCOperand & MO,SmallVectorImpl<MCFixup> & Fixups,const MCSubtargetInfo & STI) const250 unsigned AVRMCCodeEmitter::getMachineOpValue(const MCInst &MI,
251                                              const MCOperand &MO,
252                                              SmallVectorImpl<MCFixup> &Fixups,
253                                              const MCSubtargetInfo &STI) const {
254   if (MO.isReg()) return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg());
255   if (MO.isImm()) return static_cast<unsigned>(MO.getImm());
256 
257   if (MO.isFPImm())
258     return static_cast<unsigned>(APFloat(MO.getFPImm())
259                                      .bitcastToAPInt()
260                                      .getHiBits(32)
261                                      .getLimitedValue());
262 
263   // MO must be an Expr.
264   assert(MO.isExpr());
265 
266   return getExprOpValue(MO.getExpr(), Fixups, STI);
267 }
268 
emitInstruction(uint64_t Val,unsigned Size,const MCSubtargetInfo & STI,raw_ostream & OS) const269 void AVRMCCodeEmitter::emitInstruction(uint64_t Val, unsigned Size,
270                                        const MCSubtargetInfo &STI,
271                                        raw_ostream &OS) const {
272   const uint16_t *Words = reinterpret_cast<uint16_t const *>(&Val);
273   size_t WordCount = Size / 2;
274 
275   for (int64_t i = WordCount - 1; i >= 0; --i) {
276     uint16_t Word = Words[i];
277 
278     OS << (uint8_t) ((Word & 0x00ff) >> 0);
279     OS << (uint8_t) ((Word & 0xff00) >> 8);
280   }
281 }
282 
encodeInstruction(const MCInst & MI,raw_ostream & OS,SmallVectorImpl<MCFixup> & Fixups,const MCSubtargetInfo & STI) const283 void AVRMCCodeEmitter::encodeInstruction(const MCInst &MI, raw_ostream &OS,
284                                          SmallVectorImpl<MCFixup> &Fixups,
285                                          const MCSubtargetInfo &STI) const {
286   const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
287 
288   // Get byte count of instruction
289   unsigned Size = Desc.getSize();
290 
291   assert(Size > 0 && "Instruction size cannot be zero");
292 
293   uint64_t BinaryOpCode = getBinaryCodeForInstr(MI, Fixups, STI);
294   emitInstruction(BinaryOpCode, Size, STI, OS);
295 }
296 
createAVRMCCodeEmitter(const MCInstrInfo & MCII,const MCRegisterInfo & MRI,MCContext & Ctx)297 MCCodeEmitter *createAVRMCCodeEmitter(const MCInstrInfo &MCII,
298                                       const MCRegisterInfo &MRI,
299                                       MCContext &Ctx) {
300   return new AVRMCCodeEmitter(MCII, Ctx);
301 }
302 
303 #include "AVRGenMCCodeEmitter.inc"
304 
305 } // end of namespace llvm
306