• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd <yanok@emcraft.com>
4  * (C) Copyright 2008,2009 Eric Jarrige <eric.jarrige@armadeus.org>
5  * (C) Copyright 2008 Armadeus Systems nc
6  * (C) Copyright 2007 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
7  * (C) Copyright 2007 Pengutronix, Juergen Beisert <j.beisert@pengutronix.de>
8  */
9 
10 #include <common.h>
11 #include <cpu_func.h>
12 #include <dm.h>
13 #include <env.h>
14 #include <malloc.h>
15 #include <memalign.h>
16 #include <miiphy.h>
17 #include <net.h>
18 #include <netdev.h>
19 #include <power/regulator.h>
20 
21 #include <asm/io.h>
22 #include <linux/errno.h>
23 #include <linux/compiler.h>
24 
25 #include <asm/arch/clock.h>
26 #include <asm/arch/imx-regs.h>
27 #include <asm/mach-imx/sys_proto.h>
28 #include <asm-generic/gpio.h>
29 
30 #include "fec_mxc.h"
31 
32 DECLARE_GLOBAL_DATA_PTR;
33 
34 /*
35  * Timeout the transfer after 5 mS. This is usually a bit more, since
36  * the code in the tightloops this timeout is used in adds some overhead.
37  */
38 #define FEC_XFER_TIMEOUT	5000
39 
40 /*
41  * The standard 32-byte DMA alignment does not work on mx6solox, which requires
42  * 64-byte alignment in the DMA RX FEC buffer.
43  * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also
44  * satisfies the alignment on other SoCs (32-bytes)
45  */
46 #define FEC_DMA_RX_MINALIGN	64
47 
48 #ifndef CONFIG_MII
49 #error "CONFIG_MII has to be defined!"
50 #endif
51 
52 #ifndef CONFIG_FEC_XCV_TYPE
53 #define CONFIG_FEC_XCV_TYPE MII100
54 #endif
55 
56 /*
57  * The i.MX28 operates with packets in big endian. We need to swap them before
58  * sending and after receiving.
59  */
60 #ifdef CONFIG_MX28
61 #define CONFIG_FEC_MXC_SWAP_PACKET
62 #endif
63 
64 #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd))
65 
66 /* Check various alignment issues at compile time */
67 #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0))
68 #error "ARCH_DMA_MINALIGN must be multiple of 16!"
69 #endif
70 
71 #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \
72 	(PKTALIGN % ARCH_DMA_MINALIGN != 0))
73 #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!"
74 #endif
75 
76 #undef DEBUG
77 
78 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
swap_packet(uint32_t * packet,int length)79 static void swap_packet(uint32_t *packet, int length)
80 {
81 	int i;
82 
83 	for (i = 0; i < DIV_ROUND_UP(length, 4); i++)
84 		packet[i] = __swab32(packet[i]);
85 }
86 #endif
87 
88 /* MII-interface related functions */
fec_mdio_read(struct ethernet_regs * eth,uint8_t phyaddr,uint8_t regaddr)89 static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyaddr,
90 		uint8_t regaddr)
91 {
92 	uint32_t reg;		/* convenient holder for the PHY register */
93 	uint32_t phy;		/* convenient holder for the PHY */
94 	uint32_t start;
95 	int val;
96 
97 	/*
98 	 * reading from any PHY's register is done by properly
99 	 * programming the FEC's MII data register.
100 	 */
101 	writel(FEC_IEVENT_MII, &eth->ievent);
102 	reg = regaddr << FEC_MII_DATA_RA_SHIFT;
103 	phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
104 
105 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA |
106 			phy | reg, &eth->mii_data);
107 
108 	/* wait for the related interrupt */
109 	start = get_timer(0);
110 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
111 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
112 			printf("Read MDIO failed...\n");
113 			return -1;
114 		}
115 	}
116 
117 	/* clear mii interrupt bit */
118 	writel(FEC_IEVENT_MII, &eth->ievent);
119 
120 	/* it's now safe to read the PHY's register */
121 	val = (unsigned short)readl(&eth->mii_data);
122 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
123 	      regaddr, val);
124 	return val;
125 }
126 
127 #ifndef imx_get_fecclk
imx_get_fecclk(void)128 u32 __weak imx_get_fecclk(void)
129 {
130 	return 0;
131 }
132 #endif
133 
fec_get_clk_rate(void * udev,int idx)134 static int fec_get_clk_rate(void *udev, int idx)
135 {
136 	struct fec_priv *fec;
137 	struct udevice *dev;
138 	int ret;
139 
140 	if (IS_ENABLED(CONFIG_IMX8) ||
141 	    CONFIG_IS_ENABLED(CLK_CCF)) {
142 		dev = udev;
143 		if (!dev) {
144 			ret = uclass_get_device(UCLASS_ETH, idx, &dev);
145 			if (ret < 0) {
146 				debug("Can't get FEC udev: %d\n", ret);
147 				return ret;
148 			}
149 		}
150 
151 		fec = dev_get_priv(dev);
152 		if (fec)
153 			return fec->clk_rate;
154 
155 		return -EINVAL;
156 	} else {
157 		return imx_get_fecclk();
158 	}
159 }
160 
fec_mii_setspeed(struct ethernet_regs * eth)161 static void fec_mii_setspeed(struct ethernet_regs *eth)
162 {
163 	/*
164 	 * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock
165 	 * and do not drop the Preamble.
166 	 *
167 	 * The i.MX28 and i.MX6 types have another field in the MSCR (aka
168 	 * MII_SPEED) register that defines the MDIO output hold time. Earlier
169 	 * versions are RAZ there, so just ignore the difference and write the
170 	 * register always.
171 	 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
172 	 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
173 	 * output.
174 	 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
175 	 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
176 	 * holdtime cannot result in a value greater than 3.
177 	 */
178 	u32 pclk;
179 	u32 speed;
180 	u32 hold;
181 	int ret;
182 
183 	ret = fec_get_clk_rate(NULL, 0);
184 	if (ret < 0) {
185 		printf("Can't find FEC0 clk rate: %d\n", ret);
186 		return;
187 	}
188 	pclk = ret;
189 	speed = DIV_ROUND_UP(pclk, 5000000);
190 	hold = DIV_ROUND_UP(pclk, 100000000) - 1;
191 
192 #ifdef FEC_QUIRK_ENET_MAC
193 	speed--;
194 #endif
195 	writel(speed << 1 | hold << 8, &eth->mii_speed);
196 	debug("%s: mii_speed %08x\n", __func__, readl(&eth->mii_speed));
197 }
198 
fec_mdio_write(struct ethernet_regs * eth,uint8_t phyaddr,uint8_t regaddr,uint16_t data)199 static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyaddr,
200 		uint8_t regaddr, uint16_t data)
201 {
202 	uint32_t reg;		/* convenient holder for the PHY register */
203 	uint32_t phy;		/* convenient holder for the PHY */
204 	uint32_t start;
205 
206 	reg = regaddr << FEC_MII_DATA_RA_SHIFT;
207 	phy = phyaddr << FEC_MII_DATA_PA_SHIFT;
208 
209 	writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR |
210 		FEC_MII_DATA_TA | phy | reg | data, &eth->mii_data);
211 
212 	/* wait for the MII interrupt */
213 	start = get_timer(0);
214 	while (!(readl(&eth->ievent) & FEC_IEVENT_MII)) {
215 		if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) {
216 			printf("Write MDIO failed...\n");
217 			return -1;
218 		}
219 	}
220 
221 	/* clear MII interrupt bit */
222 	writel(FEC_IEVENT_MII, &eth->ievent);
223 	debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr,
224 	      regaddr, data);
225 
226 	return 0;
227 }
228 
fec_phy_read(struct mii_dev * bus,int phyaddr,int dev_addr,int regaddr)229 static int fec_phy_read(struct mii_dev *bus, int phyaddr, int dev_addr,
230 			int regaddr)
231 {
232 	return fec_mdio_read(bus->priv, phyaddr, regaddr);
233 }
234 
fec_phy_write(struct mii_dev * bus,int phyaddr,int dev_addr,int regaddr,u16 data)235 static int fec_phy_write(struct mii_dev *bus, int phyaddr, int dev_addr,
236 			 int regaddr, u16 data)
237 {
238 	return fec_mdio_write(bus->priv, phyaddr, regaddr, data);
239 }
240 
241 #ifndef CONFIG_PHYLIB
miiphy_restart_aneg(struct eth_device * dev)242 static int miiphy_restart_aneg(struct eth_device *dev)
243 {
244 	int ret = 0;
245 #if !defined(CONFIG_FEC_MXC_NO_ANEG)
246 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
247 	struct ethernet_regs *eth = fec->bus->priv;
248 
249 	/*
250 	 * Wake up from sleep if necessary
251 	 * Reset PHY, then delay 300ns
252 	 */
253 #ifdef CONFIG_MX27
254 	fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF);
255 #endif
256 	fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET);
257 	udelay(1000);
258 
259 	/* Set the auto-negotiation advertisement register bits */
260 	fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE,
261 		       LPA_100FULL | LPA_100HALF | LPA_10FULL |
262 		       LPA_10HALF | PHY_ANLPAR_PSB_802_3);
263 	fec_mdio_write(eth, fec->phy_id, MII_BMCR,
264 		       BMCR_ANENABLE | BMCR_ANRESTART);
265 
266 	if (fec->mii_postcall)
267 		ret = fec->mii_postcall(fec->phy_id);
268 
269 #endif
270 	return ret;
271 }
272 
273 #ifndef CONFIG_FEC_FIXED_SPEED
miiphy_wait_aneg(struct eth_device * dev)274 static int miiphy_wait_aneg(struct eth_device *dev)
275 {
276 	uint32_t start;
277 	int status;
278 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
279 	struct ethernet_regs *eth = fec->bus->priv;
280 
281 	/* Wait for AN completion */
282 	start = get_timer(0);
283 	do {
284 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
285 			printf("%s: Autonegotiation timeout\n", dev->name);
286 			return -1;
287 		}
288 
289 		status = fec_mdio_read(eth, fec->phy_id, MII_BMSR);
290 		if (status < 0) {
291 			printf("%s: Autonegotiation failed. status: %d\n",
292 			       dev->name, status);
293 			return -1;
294 		}
295 	} while (!(status & BMSR_LSTATUS));
296 
297 	return 0;
298 }
299 #endif /* CONFIG_FEC_FIXED_SPEED */
300 #endif
301 
fec_rx_task_enable(struct fec_priv * fec)302 static int fec_rx_task_enable(struct fec_priv *fec)
303 {
304 	writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active);
305 	return 0;
306 }
307 
fec_rx_task_disable(struct fec_priv * fec)308 static int fec_rx_task_disable(struct fec_priv *fec)
309 {
310 	return 0;
311 }
312 
fec_tx_task_enable(struct fec_priv * fec)313 static int fec_tx_task_enable(struct fec_priv *fec)
314 {
315 	writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active);
316 	return 0;
317 }
318 
fec_tx_task_disable(struct fec_priv * fec)319 static int fec_tx_task_disable(struct fec_priv *fec)
320 {
321 	return 0;
322 }
323 
324 /**
325  * Initialize receive task's buffer descriptors
326  * @param[in] fec all we know about the device yet
327  * @param[in] count receive buffer count to be allocated
328  * @param[in] dsize desired size of each receive buffer
329  * @return 0 on success
330  *
331  * Init all RX descriptors to default values.
332  */
fec_rbd_init(struct fec_priv * fec,int count,int dsize)333 static void fec_rbd_init(struct fec_priv *fec, int count, int dsize)
334 {
335 	uint32_t size;
336 	ulong data;
337 	int i;
338 
339 	/*
340 	 * Reload the RX descriptors with default values and wipe
341 	 * the RX buffers.
342 	 */
343 	size = roundup(dsize, ARCH_DMA_MINALIGN);
344 	for (i = 0; i < count; i++) {
345 		data = fec->rbd_base[i].data_pointer;
346 		memset((void *)data, 0, dsize);
347 		flush_dcache_range(data, data + size);
348 
349 		fec->rbd_base[i].status = FEC_RBD_EMPTY;
350 		fec->rbd_base[i].data_length = 0;
351 	}
352 
353 	/* Mark the last RBD to close the ring. */
354 	fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
355 	fec->rbd_index = 0;
356 
357 	flush_dcache_range((ulong)fec->rbd_base,
358 			   (ulong)fec->rbd_base + size);
359 }
360 
361 /**
362  * Initialize transmit task's buffer descriptors
363  * @param[in] fec all we know about the device yet
364  *
365  * Transmit buffers are created externally. We only have to init the BDs here.\n
366  * Note: There is a race condition in the hardware. When only one BD is in
367  * use it must be marked with the WRAP bit to use it for every transmitt.
368  * This bit in combination with the READY bit results into double transmit
369  * of each data buffer. It seems the state machine checks READY earlier then
370  * resetting it after the first transfer.
371  * Using two BDs solves this issue.
372  */
fec_tbd_init(struct fec_priv * fec)373 static void fec_tbd_init(struct fec_priv *fec)
374 {
375 	ulong addr = (ulong)fec->tbd_base;
376 	unsigned size = roundup(2 * sizeof(struct fec_bd),
377 				ARCH_DMA_MINALIGN);
378 
379 	memset(fec->tbd_base, 0, size);
380 	fec->tbd_base[0].status = 0;
381 	fec->tbd_base[1].status = FEC_TBD_WRAP;
382 	fec->tbd_index = 0;
383 	flush_dcache_range(addr, addr + size);
384 }
385 
386 /**
387  * Mark the given read buffer descriptor as free
388  * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0
389  * @param[in] prbd buffer descriptor to mark free again
390  */
fec_rbd_clean(int last,struct fec_bd * prbd)391 static void fec_rbd_clean(int last, struct fec_bd *prbd)
392 {
393 	unsigned short flags = FEC_RBD_EMPTY;
394 	if (last)
395 		flags |= FEC_RBD_WRAP;
396 	writew(flags, &prbd->status);
397 	writew(0, &prbd->data_length);
398 }
399 
fec_get_hwaddr(int dev_id,unsigned char * mac)400 static int fec_get_hwaddr(int dev_id, unsigned char *mac)
401 {
402 	imx_get_mac_from_fuse(dev_id, mac);
403 	return !is_valid_ethaddr(mac);
404 }
405 
406 #ifdef CONFIG_DM_ETH
fecmxc_set_hwaddr(struct udevice * dev)407 static int fecmxc_set_hwaddr(struct udevice *dev)
408 #else
409 static int fec_set_hwaddr(struct eth_device *dev)
410 #endif
411 {
412 #ifdef CONFIG_DM_ETH
413 	struct fec_priv *fec = dev_get_priv(dev);
414 	struct eth_pdata *pdata = dev_get_platdata(dev);
415 	uchar *mac = pdata->enetaddr;
416 #else
417 	uchar *mac = dev->enetaddr;
418 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
419 #endif
420 
421 	writel(0, &fec->eth->iaddr1);
422 	writel(0, &fec->eth->iaddr2);
423 	writel(0, &fec->eth->gaddr1);
424 	writel(0, &fec->eth->gaddr2);
425 
426 	/* Set physical address */
427 	writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3],
428 	       &fec->eth->paddr1);
429 	writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2);
430 
431 	return 0;
432 }
433 
434 /* Do initial configuration of the FEC registers */
fec_reg_setup(struct fec_priv * fec)435 static void fec_reg_setup(struct fec_priv *fec)
436 {
437 	uint32_t rcntrl;
438 
439 	/* Set interrupt mask register */
440 	writel(0x00000000, &fec->eth->imask);
441 
442 	/* Clear FEC-Lite interrupt event register(IEVENT) */
443 	writel(0xffffffff, &fec->eth->ievent);
444 
445 	/* Set FEC-Lite receive control register(R_CNTRL): */
446 
447 	/* Start with frame length = 1518, common for all modes. */
448 	rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT;
449 	if (fec->xcv_type != SEVENWIRE)		/* xMII modes */
450 		rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE;
451 	if (fec->xcv_type == RGMII)
452 		rcntrl |= FEC_RCNTRL_RGMII;
453 	else if (fec->xcv_type == RMII)
454 		rcntrl |= FEC_RCNTRL_RMII;
455 
456 	writel(rcntrl, &fec->eth->r_cntrl);
457 }
458 
459 /**
460  * Start the FEC engine
461  * @param[in] dev Our device to handle
462  */
463 #ifdef CONFIG_DM_ETH
fec_open(struct udevice * dev)464 static int fec_open(struct udevice *dev)
465 #else
466 static int fec_open(struct eth_device *edev)
467 #endif
468 {
469 #ifdef CONFIG_DM_ETH
470 	struct fec_priv *fec = dev_get_priv(dev);
471 #else
472 	struct fec_priv *fec = (struct fec_priv *)edev->priv;
473 #endif
474 	int speed;
475 	ulong addr, size;
476 	int i;
477 
478 	debug("fec_open: fec_open(dev)\n");
479 	/* full-duplex, heartbeat disabled */
480 	writel(1 << 2, &fec->eth->x_cntrl);
481 	fec->rbd_index = 0;
482 
483 	/* Invalidate all descriptors */
484 	for (i = 0; i < FEC_RBD_NUM - 1; i++)
485 		fec_rbd_clean(0, &fec->rbd_base[i]);
486 	fec_rbd_clean(1, &fec->rbd_base[i]);
487 
488 	/* Flush the descriptors into RAM */
489 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd),
490 			ARCH_DMA_MINALIGN);
491 	addr = (ulong)fec->rbd_base;
492 	flush_dcache_range(addr, addr + size);
493 
494 #ifdef FEC_QUIRK_ENET_MAC
495 	/* Enable ENET HW endian SWAP */
496 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP,
497 	       &fec->eth->ecntrl);
498 	/* Enable ENET store and forward mode */
499 	writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD,
500 	       &fec->eth->x_wmrk);
501 #endif
502 	/* Enable FEC-Lite controller */
503 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN,
504 	       &fec->eth->ecntrl);
505 
506 #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL)
507 	udelay(100);
508 
509 	/* setup the MII gasket for RMII mode */
510 	/* disable the gasket */
511 	writew(0, &fec->eth->miigsk_enr);
512 
513 	/* wait for the gasket to be disabled */
514 	while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY)
515 		udelay(2);
516 
517 	/* configure gasket for RMII, 50 MHz, no loopback, and no echo */
518 	writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr);
519 
520 	/* re-enable the gasket */
521 	writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr);
522 
523 	/* wait until MII gasket is ready */
524 	int max_loops = 10;
525 	while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) {
526 		if (--max_loops <= 0) {
527 			printf("WAIT for MII Gasket ready timed out\n");
528 			break;
529 		}
530 	}
531 #endif
532 
533 #ifdef CONFIG_PHYLIB
534 	{
535 		/* Start up the PHY */
536 		int ret = phy_startup(fec->phydev);
537 
538 		if (ret) {
539 			printf("Could not initialize PHY %s\n",
540 			       fec->phydev->dev->name);
541 			return ret;
542 		}
543 		speed = fec->phydev->speed;
544 	}
545 #elif CONFIG_FEC_FIXED_SPEED
546 	speed = CONFIG_FEC_FIXED_SPEED;
547 #else
548 	miiphy_wait_aneg(edev);
549 	speed = miiphy_speed(edev->name, fec->phy_id);
550 	miiphy_duplex(edev->name, fec->phy_id);
551 #endif
552 
553 #ifdef FEC_QUIRK_ENET_MAC
554 	{
555 		u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED;
556 		u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T;
557 		if (speed == _1000BASET)
558 			ecr |= FEC_ECNTRL_SPEED;
559 		else if (speed != _100BASET)
560 			rcr |= FEC_RCNTRL_RMII_10T;
561 		writel(ecr, &fec->eth->ecntrl);
562 		writel(rcr, &fec->eth->r_cntrl);
563 	}
564 #endif
565 	debug("%s:Speed=%i\n", __func__, speed);
566 
567 	/* Enable SmartDMA receive task */
568 	fec_rx_task_enable(fec);
569 
570 	udelay(100000);
571 	return 0;
572 }
573 
574 #ifdef CONFIG_DM_ETH
fecmxc_init(struct udevice * dev)575 static int fecmxc_init(struct udevice *dev)
576 #else
577 static int fec_init(struct eth_device *dev, bd_t *bd)
578 #endif
579 {
580 #ifdef CONFIG_DM_ETH
581 	struct fec_priv *fec = dev_get_priv(dev);
582 #else
583 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
584 #endif
585 	u8 *mib_ptr = (uint8_t *)&fec->eth->rmon_t_drop;
586 	u8 *i;
587 	ulong addr;
588 
589 	/* Initialize MAC address */
590 #ifdef CONFIG_DM_ETH
591 	fecmxc_set_hwaddr(dev);
592 #else
593 	fec_set_hwaddr(dev);
594 #endif
595 
596 	/* Setup transmit descriptors, there are two in total. */
597 	fec_tbd_init(fec);
598 
599 	/* Setup receive descriptors. */
600 	fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE);
601 
602 	fec_reg_setup(fec);
603 
604 	if (fec->xcv_type != SEVENWIRE)
605 		fec_mii_setspeed(fec->bus->priv);
606 
607 	/* Set Opcode/Pause Duration Register */
608 	writel(0x00010020, &fec->eth->op_pause);	/* FIXME 0xffff0020; */
609 	writel(0x2, &fec->eth->x_wmrk);
610 
611 	/* Set multicast address filter */
612 	writel(0x00000000, &fec->eth->gaddr1);
613 	writel(0x00000000, &fec->eth->gaddr2);
614 
615 	/* Do not access reserved register */
616 	if (!is_mx6ul() && !is_mx6ull() && !is_imx8() && !is_imx8m()) {
617 		/* clear MIB RAM */
618 		for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4)
619 			writel(0, i);
620 
621 		/* FIFO receive start register */
622 		writel(0x520, &fec->eth->r_fstart);
623 	}
624 
625 	/* size and address of each buffer */
626 	writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr);
627 
628 	addr = (ulong)fec->tbd_base;
629 	writel((uint32_t)addr, &fec->eth->etdsr);
630 
631 	addr = (ulong)fec->rbd_base;
632 	writel((uint32_t)addr, &fec->eth->erdsr);
633 
634 #ifndef CONFIG_PHYLIB
635 	if (fec->xcv_type != SEVENWIRE)
636 		miiphy_restart_aneg(dev);
637 #endif
638 	fec_open(dev);
639 	return 0;
640 }
641 
642 /**
643  * Halt the FEC engine
644  * @param[in] dev Our device to handle
645  */
646 #ifdef CONFIG_DM_ETH
fecmxc_halt(struct udevice * dev)647 static void fecmxc_halt(struct udevice *dev)
648 #else
649 static void fec_halt(struct eth_device *dev)
650 #endif
651 {
652 #ifdef CONFIG_DM_ETH
653 	struct fec_priv *fec = dev_get_priv(dev);
654 #else
655 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
656 #endif
657 	int counter = 0xffff;
658 
659 	/* issue graceful stop command to the FEC transmitter if necessary */
660 	writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl),
661 	       &fec->eth->x_cntrl);
662 
663 	debug("eth_halt: wait for stop regs\n");
664 	/* wait for graceful stop to register */
665 	while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA)))
666 		udelay(1);
667 
668 	/* Disable SmartDMA tasks */
669 	fec_tx_task_disable(fec);
670 	fec_rx_task_disable(fec);
671 
672 	/*
673 	 * Disable the Ethernet Controller
674 	 * Note: this will also reset the BD index counter!
675 	 */
676 	writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN,
677 	       &fec->eth->ecntrl);
678 	fec->rbd_index = 0;
679 	fec->tbd_index = 0;
680 	debug("eth_halt: done\n");
681 }
682 
683 /**
684  * Transmit one frame
685  * @param[in] dev Our ethernet device to handle
686  * @param[in] packet Pointer to the data to be transmitted
687  * @param[in] length Data count in bytes
688  * @return 0 on success
689  */
690 #ifdef CONFIG_DM_ETH
fecmxc_send(struct udevice * dev,void * packet,int length)691 static int fecmxc_send(struct udevice *dev, void *packet, int length)
692 #else
693 static int fec_send(struct eth_device *dev, void *packet, int length)
694 #endif
695 {
696 	unsigned int status;
697 	u32 size;
698 	ulong addr, end;
699 	int timeout = FEC_XFER_TIMEOUT;
700 	int ret = 0;
701 
702 	/*
703 	 * This routine transmits one frame.  This routine only accepts
704 	 * 6-byte Ethernet addresses.
705 	 */
706 #ifdef CONFIG_DM_ETH
707 	struct fec_priv *fec = dev_get_priv(dev);
708 #else
709 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
710 #endif
711 
712 	/*
713 	 * Check for valid length of data.
714 	 */
715 	if ((length > 1500) || (length <= 0)) {
716 		printf("Payload (%d) too large\n", length);
717 		return -1;
718 	}
719 
720 	/*
721 	 * Setup the transmit buffer. We are always using the first buffer for
722 	 * transmission, the second will be empty and only used to stop the DMA
723 	 * engine. We also flush the packet to RAM here to avoid cache trouble.
724 	 */
725 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
726 	swap_packet((uint32_t *)packet, length);
727 #endif
728 
729 	addr = (ulong)packet;
730 	end = roundup(addr + length, ARCH_DMA_MINALIGN);
731 	addr &= ~(ARCH_DMA_MINALIGN - 1);
732 	flush_dcache_range(addr, end);
733 
734 	writew(length, &fec->tbd_base[fec->tbd_index].data_length);
735 	writel((uint32_t)addr, &fec->tbd_base[fec->tbd_index].data_pointer);
736 
737 	/*
738 	 * update BD's status now
739 	 * This block:
740 	 * - is always the last in a chain (means no chain)
741 	 * - should transmitt the CRC
742 	 * - might be the last BD in the list, so the address counter should
743 	 *   wrap (-> keep the WRAP flag)
744 	 */
745 	status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP;
746 	status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY;
747 	writew(status, &fec->tbd_base[fec->tbd_index].status);
748 
749 	/*
750 	 * Flush data cache. This code flushes both TX descriptors to RAM.
751 	 * After this code, the descriptors will be safely in RAM and we
752 	 * can start DMA.
753 	 */
754 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
755 	addr = (ulong)fec->tbd_base;
756 	flush_dcache_range(addr, addr + size);
757 
758 	/*
759 	 * Below we read the DMA descriptor's last four bytes back from the
760 	 * DRAM. This is important in order to make sure that all WRITE
761 	 * operations on the bus that were triggered by previous cache FLUSH
762 	 * have completed.
763 	 *
764 	 * Otherwise, on MX28, it is possible to observe a corruption of the
765 	 * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM
766 	 * for the bus structure of MX28. The scenario is as follows:
767 	 *
768 	 * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going
769 	 *    to DRAM due to flush_dcache_range()
770 	 * 2) ARM core writes the FEC registers via AHB_ARB2
771 	 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3
772 	 *
773 	 * Note that 2) does sometimes finish before 1) due to reordering of
774 	 * WRITE accesses on the AHB bus, therefore triggering 3) before the
775 	 * DMA descriptor is fully written into DRAM. This results in occasional
776 	 * corruption of the DMA descriptor.
777 	 */
778 	readl(addr + size - 4);
779 
780 	/* Enable SmartDMA transmit task */
781 	fec_tx_task_enable(fec);
782 
783 	/*
784 	 * Wait until frame is sent. On each turn of the wait cycle, we must
785 	 * invalidate data cache to see what's really in RAM. Also, we need
786 	 * barrier here.
787 	 */
788 	while (--timeout) {
789 		if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR))
790 			break;
791 	}
792 
793 	if (!timeout) {
794 		ret = -EINVAL;
795 		goto out;
796 	}
797 
798 	/*
799 	 * The TDAR bit is cleared when the descriptors are all out from TX
800 	 * but on mx6solox we noticed that the READY bit is still not cleared
801 	 * right after TDAR.
802 	 * These are two distinct signals, and in IC simulation, we found that
803 	 * TDAR always gets cleared prior than the READY bit of last BD becomes
804 	 * cleared.
805 	 * In mx6solox, we use a later version of FEC IP. It looks like that
806 	 * this intrinsic behaviour of TDAR bit has changed in this newer FEC
807 	 * version.
808 	 *
809 	 * Fix this by polling the READY bit of BD after the TDAR polling,
810 	 * which covers the mx6solox case and does not harm the other SoCs.
811 	 */
812 	timeout = FEC_XFER_TIMEOUT;
813 	while (--timeout) {
814 		invalidate_dcache_range(addr, addr + size);
815 		if (!(readw(&fec->tbd_base[fec->tbd_index].status) &
816 		    FEC_TBD_READY))
817 			break;
818 	}
819 
820 	if (!timeout)
821 		ret = -EINVAL;
822 
823 out:
824 	debug("fec_send: status 0x%x index %d ret %i\n",
825 	      readw(&fec->tbd_base[fec->tbd_index].status),
826 	      fec->tbd_index, ret);
827 	/* for next transmission use the other buffer */
828 	if (fec->tbd_index)
829 		fec->tbd_index = 0;
830 	else
831 		fec->tbd_index = 1;
832 
833 	return ret;
834 }
835 
836 /**
837  * Pull one frame from the card
838  * @param[in] dev Our ethernet device to handle
839  * @return Length of packet read
840  */
841 #ifdef CONFIG_DM_ETH
fecmxc_recv(struct udevice * dev,int flags,uchar ** packetp)842 static int fecmxc_recv(struct udevice *dev, int flags, uchar **packetp)
843 #else
844 static int fec_recv(struct eth_device *dev)
845 #endif
846 {
847 #ifdef CONFIG_DM_ETH
848 	struct fec_priv *fec = dev_get_priv(dev);
849 #else
850 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
851 #endif
852 	struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index];
853 	unsigned long ievent;
854 	int frame_length, len = 0;
855 	uint16_t bd_status;
856 	ulong addr, size, end;
857 	int i;
858 
859 #ifdef CONFIG_DM_ETH
860 	*packetp = memalign(ARCH_DMA_MINALIGN, FEC_MAX_PKT_SIZE);
861 	if (*packetp == 0) {
862 		printf("%s: error allocating packetp\n", __func__);
863 		return -ENOMEM;
864 	}
865 #else
866 	ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE);
867 #endif
868 
869 	/* Check if any critical events have happened */
870 	ievent = readl(&fec->eth->ievent);
871 	writel(ievent, &fec->eth->ievent);
872 	debug("fec_recv: ievent 0x%lx\n", ievent);
873 	if (ievent & FEC_IEVENT_BABR) {
874 #ifdef CONFIG_DM_ETH
875 		fecmxc_halt(dev);
876 		fecmxc_init(dev);
877 #else
878 		fec_halt(dev);
879 		fec_init(dev, fec->bd);
880 #endif
881 		printf("some error: 0x%08lx\n", ievent);
882 		return 0;
883 	}
884 	if (ievent & FEC_IEVENT_HBERR) {
885 		/* Heartbeat error */
886 		writel(0x00000001 | readl(&fec->eth->x_cntrl),
887 		       &fec->eth->x_cntrl);
888 	}
889 	if (ievent & FEC_IEVENT_GRA) {
890 		/* Graceful stop complete */
891 		if (readl(&fec->eth->x_cntrl) & 0x00000001) {
892 #ifdef CONFIG_DM_ETH
893 			fecmxc_halt(dev);
894 #else
895 			fec_halt(dev);
896 #endif
897 			writel(~0x00000001 & readl(&fec->eth->x_cntrl),
898 			       &fec->eth->x_cntrl);
899 #ifdef CONFIG_DM_ETH
900 			fecmxc_init(dev);
901 #else
902 			fec_init(dev, fec->bd);
903 #endif
904 		}
905 	}
906 
907 	/*
908 	 * Read the buffer status. Before the status can be read, the data cache
909 	 * must be invalidated, because the data in RAM might have been changed
910 	 * by DMA. The descriptors are properly aligned to cachelines so there's
911 	 * no need to worry they'd overlap.
912 	 *
913 	 * WARNING: By invalidating the descriptor here, we also invalidate
914 	 * the descriptors surrounding this one. Therefore we can NOT change the
915 	 * contents of this descriptor nor the surrounding ones. The problem is
916 	 * that in order to mark the descriptor as processed, we need to change
917 	 * the descriptor. The solution is to mark the whole cache line when all
918 	 * descriptors in the cache line are processed.
919 	 */
920 	addr = (ulong)rbd;
921 	addr &= ~(ARCH_DMA_MINALIGN - 1);
922 	size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
923 	invalidate_dcache_range(addr, addr + size);
924 
925 	bd_status = readw(&rbd->status);
926 	debug("fec_recv: status 0x%x\n", bd_status);
927 
928 	if (!(bd_status & FEC_RBD_EMPTY)) {
929 		if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) &&
930 		    ((readw(&rbd->data_length) - 4) > 14)) {
931 			/* Get buffer address and size */
932 			addr = readl(&rbd->data_pointer);
933 			frame_length = readw(&rbd->data_length) - 4;
934 			/* Invalidate data cache over the buffer */
935 			end = roundup(addr + frame_length, ARCH_DMA_MINALIGN);
936 			addr &= ~(ARCH_DMA_MINALIGN - 1);
937 			invalidate_dcache_range(addr, end);
938 
939 			/* Fill the buffer and pass it to upper layers */
940 #ifdef CONFIG_FEC_MXC_SWAP_PACKET
941 			swap_packet((uint32_t *)addr, frame_length);
942 #endif
943 
944 #ifdef CONFIG_DM_ETH
945 			memcpy(*packetp, (char *)addr, frame_length);
946 #else
947 			memcpy(buff, (char *)addr, frame_length);
948 			net_process_received_packet(buff, frame_length);
949 #endif
950 			len = frame_length;
951 		} else {
952 			if (bd_status & FEC_RBD_ERR)
953 				debug("error frame: 0x%08lx 0x%08x\n",
954 				      addr, bd_status);
955 		}
956 
957 		/*
958 		 * Free the current buffer, restart the engine and move forward
959 		 * to the next buffer. Here we check if the whole cacheline of
960 		 * descriptors was already processed and if so, we mark it free
961 		 * as whole.
962 		 */
963 		size = RXDESC_PER_CACHELINE - 1;
964 		if ((fec->rbd_index & size) == size) {
965 			i = fec->rbd_index - size;
966 			addr = (ulong)&fec->rbd_base[i];
967 			for (; i <= fec->rbd_index ; i++) {
968 				fec_rbd_clean(i == (FEC_RBD_NUM - 1),
969 					      &fec->rbd_base[i]);
970 			}
971 			flush_dcache_range(addr,
972 					   addr + ARCH_DMA_MINALIGN);
973 		}
974 
975 		fec_rx_task_enable(fec);
976 		fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM;
977 	}
978 	debug("fec_recv: stop\n");
979 
980 	return len;
981 }
982 
fec_set_dev_name(char * dest,int dev_id)983 static void fec_set_dev_name(char *dest, int dev_id)
984 {
985 	sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id);
986 }
987 
fec_alloc_descs(struct fec_priv * fec)988 static int fec_alloc_descs(struct fec_priv *fec)
989 {
990 	unsigned int size;
991 	int i;
992 	uint8_t *data;
993 	ulong addr;
994 
995 	/* Allocate TX descriptors. */
996 	size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
997 	fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size);
998 	if (!fec->tbd_base)
999 		goto err_tx;
1000 
1001 	/* Allocate RX descriptors. */
1002 	size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN);
1003 	fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size);
1004 	if (!fec->rbd_base)
1005 		goto err_rx;
1006 
1007 	memset(fec->rbd_base, 0, size);
1008 
1009 	/* Allocate RX buffers. */
1010 
1011 	/* Maximum RX buffer size. */
1012 	size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN);
1013 	for (i = 0; i < FEC_RBD_NUM; i++) {
1014 		data = memalign(FEC_DMA_RX_MINALIGN, size);
1015 		if (!data) {
1016 			printf("%s: error allocating rxbuf %d\n", __func__, i);
1017 			goto err_ring;
1018 		}
1019 
1020 		memset(data, 0, size);
1021 
1022 		addr = (ulong)data;
1023 		fec->rbd_base[i].data_pointer = (uint32_t)addr;
1024 		fec->rbd_base[i].status = FEC_RBD_EMPTY;
1025 		fec->rbd_base[i].data_length = 0;
1026 		/* Flush the buffer to memory. */
1027 		flush_dcache_range(addr, addr + size);
1028 	}
1029 
1030 	/* Mark the last RBD to close the ring. */
1031 	fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY;
1032 
1033 	fec->rbd_index = 0;
1034 	fec->tbd_index = 0;
1035 
1036 	return 0;
1037 
1038 err_ring:
1039 	for (; i >= 0; i--) {
1040 		addr = fec->rbd_base[i].data_pointer;
1041 		free((void *)addr);
1042 	}
1043 	free(fec->rbd_base);
1044 err_rx:
1045 	free(fec->tbd_base);
1046 err_tx:
1047 	return -ENOMEM;
1048 }
1049 
fec_free_descs(struct fec_priv * fec)1050 static void fec_free_descs(struct fec_priv *fec)
1051 {
1052 	int i;
1053 	ulong addr;
1054 
1055 	for (i = 0; i < FEC_RBD_NUM; i++) {
1056 		addr = fec->rbd_base[i].data_pointer;
1057 		free((void *)addr);
1058 	}
1059 	free(fec->rbd_base);
1060 	free(fec->tbd_base);
1061 }
1062 
fec_get_miibus(ulong base_addr,int dev_id)1063 struct mii_dev *fec_get_miibus(ulong base_addr, int dev_id)
1064 {
1065 	struct ethernet_regs *eth = (struct ethernet_regs *)base_addr;
1066 	struct mii_dev *bus;
1067 	int ret;
1068 
1069 	bus = mdio_alloc();
1070 	if (!bus) {
1071 		printf("mdio_alloc failed\n");
1072 		return NULL;
1073 	}
1074 	bus->read = fec_phy_read;
1075 	bus->write = fec_phy_write;
1076 	bus->priv = eth;
1077 	fec_set_dev_name(bus->name, dev_id);
1078 
1079 	ret = mdio_register(bus);
1080 	if (ret) {
1081 		printf("mdio_register failed\n");
1082 		free(bus);
1083 		return NULL;
1084 	}
1085 	fec_mii_setspeed(eth);
1086 	return bus;
1087 }
1088 
1089 #ifndef CONFIG_DM_ETH
1090 #ifdef CONFIG_PHYLIB
fec_probe(bd_t * bd,int dev_id,uint32_t base_addr,struct mii_dev * bus,struct phy_device * phydev)1091 int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
1092 		struct mii_dev *bus, struct phy_device *phydev)
1093 #else
1094 static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr,
1095 		struct mii_dev *bus, int phy_id)
1096 #endif
1097 {
1098 	struct eth_device *edev;
1099 	struct fec_priv *fec;
1100 	unsigned char ethaddr[6];
1101 	char mac[16];
1102 	uint32_t start;
1103 	int ret = 0;
1104 
1105 	/* create and fill edev struct */
1106 	edev = (struct eth_device *)malloc(sizeof(struct eth_device));
1107 	if (!edev) {
1108 		puts("fec_mxc: not enough malloc memory for eth_device\n");
1109 		ret = -ENOMEM;
1110 		goto err1;
1111 	}
1112 
1113 	fec = (struct fec_priv *)malloc(sizeof(struct fec_priv));
1114 	if (!fec) {
1115 		puts("fec_mxc: not enough malloc memory for fec_priv\n");
1116 		ret = -ENOMEM;
1117 		goto err2;
1118 	}
1119 
1120 	memset(edev, 0, sizeof(*edev));
1121 	memset(fec, 0, sizeof(*fec));
1122 
1123 	ret = fec_alloc_descs(fec);
1124 	if (ret)
1125 		goto err3;
1126 
1127 	edev->priv = fec;
1128 	edev->init = fec_init;
1129 	edev->send = fec_send;
1130 	edev->recv = fec_recv;
1131 	edev->halt = fec_halt;
1132 	edev->write_hwaddr = fec_set_hwaddr;
1133 
1134 	fec->eth = (struct ethernet_regs *)(ulong)base_addr;
1135 	fec->bd = bd;
1136 
1137 	fec->xcv_type = CONFIG_FEC_XCV_TYPE;
1138 
1139 	/* Reset chip. */
1140 	writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl);
1141 	start = get_timer(0);
1142 	while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) {
1143 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1144 			printf("FEC MXC: Timeout resetting chip\n");
1145 			goto err4;
1146 		}
1147 		udelay(10);
1148 	}
1149 
1150 	fec_reg_setup(fec);
1151 	fec_set_dev_name(edev->name, dev_id);
1152 	fec->dev_id = (dev_id == -1) ? 0 : dev_id;
1153 	fec->bus = bus;
1154 	fec_mii_setspeed(bus->priv);
1155 #ifdef CONFIG_PHYLIB
1156 	fec->phydev = phydev;
1157 	phy_connect_dev(phydev, edev);
1158 	/* Configure phy */
1159 	phy_config(phydev);
1160 #else
1161 	fec->phy_id = phy_id;
1162 #endif
1163 	eth_register(edev);
1164 	/* only support one eth device, the index number pointed by dev_id */
1165 	edev->index = fec->dev_id;
1166 
1167 	if (fec_get_hwaddr(fec->dev_id, ethaddr) == 0) {
1168 		debug("got MAC%d address from fuse: %pM\n", fec->dev_id, ethaddr);
1169 		memcpy(edev->enetaddr, ethaddr, 6);
1170 		if (fec->dev_id)
1171 			sprintf(mac, "eth%daddr", fec->dev_id);
1172 		else
1173 			strcpy(mac, "ethaddr");
1174 		if (!env_get(mac))
1175 			eth_env_set_enetaddr(mac, ethaddr);
1176 	}
1177 	return ret;
1178 err4:
1179 	fec_free_descs(fec);
1180 err3:
1181 	free(fec);
1182 err2:
1183 	free(edev);
1184 err1:
1185 	return ret;
1186 }
1187 
fecmxc_initialize_multi(bd_t * bd,int dev_id,int phy_id,uint32_t addr)1188 int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr)
1189 {
1190 	uint32_t base_mii;
1191 	struct mii_dev *bus = NULL;
1192 #ifdef CONFIG_PHYLIB
1193 	struct phy_device *phydev = NULL;
1194 #endif
1195 	int ret;
1196 
1197 #ifdef CONFIG_FEC_MXC_MDIO_BASE
1198 	/*
1199 	 * The i.MX28 has two ethernet interfaces, but they are not equal.
1200 	 * Only the first one can access the MDIO bus.
1201 	 */
1202 	base_mii = CONFIG_FEC_MXC_MDIO_BASE;
1203 #else
1204 	base_mii = addr;
1205 #endif
1206 	debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr);
1207 	bus = fec_get_miibus(base_mii, dev_id);
1208 	if (!bus)
1209 		return -ENOMEM;
1210 #ifdef CONFIG_PHYLIB
1211 	phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII);
1212 	if (!phydev) {
1213 		mdio_unregister(bus);
1214 		free(bus);
1215 		return -ENOMEM;
1216 	}
1217 	ret = fec_probe(bd, dev_id, addr, bus, phydev);
1218 #else
1219 	ret = fec_probe(bd, dev_id, addr, bus, phy_id);
1220 #endif
1221 	if (ret) {
1222 #ifdef CONFIG_PHYLIB
1223 		free(phydev);
1224 #endif
1225 		mdio_unregister(bus);
1226 		free(bus);
1227 	}
1228 	return ret;
1229 }
1230 
1231 #ifdef CONFIG_FEC_MXC_PHYADDR
fecmxc_initialize(bd_t * bd)1232 int fecmxc_initialize(bd_t *bd)
1233 {
1234 	return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR,
1235 			IMX_FEC_BASE);
1236 }
1237 #endif
1238 
1239 #ifndef CONFIG_PHYLIB
fecmxc_register_mii_postcall(struct eth_device * dev,int (* cb)(int))1240 int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int))
1241 {
1242 	struct fec_priv *fec = (struct fec_priv *)dev->priv;
1243 	fec->mii_postcall = cb;
1244 	return 0;
1245 }
1246 #endif
1247 
1248 #else
1249 
fecmxc_read_rom_hwaddr(struct udevice * dev)1250 static int fecmxc_read_rom_hwaddr(struct udevice *dev)
1251 {
1252 	struct fec_priv *priv = dev_get_priv(dev);
1253 	struct eth_pdata *pdata = dev_get_platdata(dev);
1254 
1255 	return fec_get_hwaddr(priv->dev_id, pdata->enetaddr);
1256 }
1257 
fecmxc_free_pkt(struct udevice * dev,uchar * packet,int length)1258 static int fecmxc_free_pkt(struct udevice *dev, uchar *packet, int length)
1259 {
1260 	if (packet)
1261 		free(packet);
1262 
1263 	return 0;
1264 }
1265 
1266 static const struct eth_ops fecmxc_ops = {
1267 	.start			= fecmxc_init,
1268 	.send			= fecmxc_send,
1269 	.recv			= fecmxc_recv,
1270 	.free_pkt		= fecmxc_free_pkt,
1271 	.stop			= fecmxc_halt,
1272 	.write_hwaddr		= fecmxc_set_hwaddr,
1273 	.read_rom_hwaddr	= fecmxc_read_rom_hwaddr,
1274 };
1275 
device_get_phy_addr(struct udevice * dev)1276 static int device_get_phy_addr(struct udevice *dev)
1277 {
1278 	struct ofnode_phandle_args phandle_args;
1279 	int reg;
1280 
1281 	if (dev_read_phandle_with_args(dev, "phy-handle", NULL, 0, 0,
1282 				       &phandle_args)) {
1283 		debug("Failed to find phy-handle");
1284 		return -ENODEV;
1285 	}
1286 
1287 	reg = ofnode_read_u32_default(phandle_args.node, "reg", 0);
1288 
1289 	return reg;
1290 }
1291 
fec_phy_init(struct fec_priv * priv,struct udevice * dev)1292 static int fec_phy_init(struct fec_priv *priv, struct udevice *dev)
1293 {
1294 	struct phy_device *phydev;
1295 	int addr;
1296 
1297 	addr = device_get_phy_addr(dev);
1298 #ifdef CONFIG_FEC_MXC_PHYADDR
1299 	addr = CONFIG_FEC_MXC_PHYADDR;
1300 #endif
1301 
1302 	phydev = phy_connect(priv->bus, addr, dev, priv->interface);
1303 	if (!phydev)
1304 		return -ENODEV;
1305 
1306 	priv->phydev = phydev;
1307 	phy_config(phydev);
1308 
1309 	return 0;
1310 }
1311 
1312 #ifdef CONFIG_DM_GPIO
1313 /* FEC GPIO reset */
fec_gpio_reset(struct fec_priv * priv)1314 static void fec_gpio_reset(struct fec_priv *priv)
1315 {
1316 	debug("fec_gpio_reset: fec_gpio_reset(dev)\n");
1317 	if (dm_gpio_is_valid(&priv->phy_reset_gpio)) {
1318 		dm_gpio_set_value(&priv->phy_reset_gpio, 1);
1319 		mdelay(priv->reset_delay);
1320 		dm_gpio_set_value(&priv->phy_reset_gpio, 0);
1321 		if (priv->reset_post_delay)
1322 			mdelay(priv->reset_post_delay);
1323 	}
1324 }
1325 #endif
1326 
fecmxc_probe(struct udevice * dev)1327 static int fecmxc_probe(struct udevice *dev)
1328 {
1329 	struct eth_pdata *pdata = dev_get_platdata(dev);
1330 	struct fec_priv *priv = dev_get_priv(dev);
1331 	struct mii_dev *bus = NULL;
1332 	uint32_t start;
1333 	int ret;
1334 
1335 	if (IS_ENABLED(CONFIG_IMX8)) {
1336 		ret = clk_get_by_name(dev, "ipg", &priv->ipg_clk);
1337 		if (ret < 0) {
1338 			debug("Can't get FEC ipg clk: %d\n", ret);
1339 			return ret;
1340 		}
1341 		ret = clk_enable(&priv->ipg_clk);
1342 		if (ret < 0) {
1343 			debug("Can't enable FEC ipg clk: %d\n", ret);
1344 			return ret;
1345 		}
1346 
1347 		priv->clk_rate = clk_get_rate(&priv->ipg_clk);
1348 	} else if (CONFIG_IS_ENABLED(CLK_CCF)) {
1349 		ret = clk_get_by_name(dev, "ipg", &priv->ipg_clk);
1350 		if (ret < 0) {
1351 			debug("Can't get FEC ipg clk: %d\n", ret);
1352 			return ret;
1353 		}
1354 		ret = clk_enable(&priv->ipg_clk);
1355 		if(ret)
1356 			return ret;
1357 
1358 		ret = clk_get_by_name(dev, "ahb", &priv->ahb_clk);
1359 		if (ret < 0) {
1360 			debug("Can't get FEC ahb clk: %d\n", ret);
1361 			return ret;
1362 		}
1363 		ret = clk_enable(&priv->ahb_clk);
1364 		if (ret)
1365 			return ret;
1366 
1367 		ret = clk_get_by_name(dev, "enet_out", &priv->clk_enet_out);
1368 		if (!ret) {
1369 			ret = clk_enable(&priv->clk_enet_out);
1370 			if (ret)
1371 				return ret;
1372 		}
1373 
1374 		ret = clk_get_by_name(dev, "enet_clk_ref", &priv->clk_ref);
1375 		if (!ret) {
1376 			ret = clk_enable(&priv->clk_ref);
1377 			if (ret)
1378 				return ret;
1379 		}
1380 
1381 		ret = clk_get_by_name(dev, "ptp", &priv->clk_ptp);
1382 		if (!ret) {
1383 			ret = clk_enable(&priv->clk_ptp);
1384 			if (ret)
1385 				return ret;
1386 		}
1387 
1388 		priv->clk_rate = clk_get_rate(&priv->ipg_clk);
1389 	}
1390 
1391 	ret = fec_alloc_descs(priv);
1392 	if (ret)
1393 		return ret;
1394 
1395 #ifdef CONFIG_DM_REGULATOR
1396 	if (priv->phy_supply) {
1397 		ret = regulator_set_enable(priv->phy_supply, true);
1398 		if (ret) {
1399 			printf("%s: Error enabling phy supply\n", dev->name);
1400 			return ret;
1401 		}
1402 	}
1403 #endif
1404 
1405 #ifdef CONFIG_DM_GPIO
1406 	fec_gpio_reset(priv);
1407 #endif
1408 	/* Reset chip. */
1409 	writel(readl(&priv->eth->ecntrl) | FEC_ECNTRL_RESET,
1410 	       &priv->eth->ecntrl);
1411 	start = get_timer(0);
1412 	while (readl(&priv->eth->ecntrl) & FEC_ECNTRL_RESET) {
1413 		if (get_timer(start) > (CONFIG_SYS_HZ * 5)) {
1414 			printf("FEC MXC: Timeout reseting chip\n");
1415 			goto err_timeout;
1416 		}
1417 		udelay(10);
1418 	}
1419 
1420 	fec_reg_setup(priv);
1421 
1422 	priv->dev_id = dev->seq;
1423 #ifdef CONFIG_FEC_MXC_MDIO_BASE
1424 	bus = fec_get_miibus((ulong)CONFIG_FEC_MXC_MDIO_BASE, dev->seq);
1425 #else
1426 	bus = fec_get_miibus((ulong)priv->eth, dev->seq);
1427 #endif
1428 	if (!bus) {
1429 		ret = -ENOMEM;
1430 		goto err_mii;
1431 	}
1432 
1433 	priv->bus = bus;
1434 	priv->interface = pdata->phy_interface;
1435 	switch (priv->interface) {
1436 	case PHY_INTERFACE_MODE_MII:
1437 		priv->xcv_type = MII100;
1438 		break;
1439 	case PHY_INTERFACE_MODE_RMII:
1440 		priv->xcv_type = RMII;
1441 		break;
1442 	case PHY_INTERFACE_MODE_RGMII:
1443 	case PHY_INTERFACE_MODE_RGMII_ID:
1444 	case PHY_INTERFACE_MODE_RGMII_RXID:
1445 	case PHY_INTERFACE_MODE_RGMII_TXID:
1446 		priv->xcv_type = RGMII;
1447 		break;
1448 	default:
1449 		priv->xcv_type = CONFIG_FEC_XCV_TYPE;
1450 		printf("Unsupported interface type %d defaulting to %d\n",
1451 		       priv->interface, priv->xcv_type);
1452 		break;
1453 	}
1454 
1455 	ret = fec_phy_init(priv, dev);
1456 	if (ret)
1457 		goto err_phy;
1458 
1459 	return 0;
1460 
1461 err_phy:
1462 	mdio_unregister(bus);
1463 	free(bus);
1464 err_mii:
1465 err_timeout:
1466 	fec_free_descs(priv);
1467 	return ret;
1468 }
1469 
fecmxc_remove(struct udevice * dev)1470 static int fecmxc_remove(struct udevice *dev)
1471 {
1472 	struct fec_priv *priv = dev_get_priv(dev);
1473 
1474 	free(priv->phydev);
1475 	fec_free_descs(priv);
1476 	mdio_unregister(priv->bus);
1477 	mdio_free(priv->bus);
1478 
1479 #ifdef CONFIG_DM_REGULATOR
1480 	if (priv->phy_supply)
1481 		regulator_set_enable(priv->phy_supply, false);
1482 #endif
1483 
1484 	return 0;
1485 }
1486 
fecmxc_ofdata_to_platdata(struct udevice * dev)1487 static int fecmxc_ofdata_to_platdata(struct udevice *dev)
1488 {
1489 	int ret = 0;
1490 	struct eth_pdata *pdata = dev_get_platdata(dev);
1491 	struct fec_priv *priv = dev_get_priv(dev);
1492 	const char *phy_mode;
1493 
1494 	pdata->iobase = (phys_addr_t)devfdt_get_addr(dev);
1495 	priv->eth = (struct ethernet_regs *)pdata->iobase;
1496 
1497 	pdata->phy_interface = -1;
1498 	phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode",
1499 			       NULL);
1500 	if (phy_mode)
1501 		pdata->phy_interface = phy_get_interface_by_name(phy_mode);
1502 	if (pdata->phy_interface == -1) {
1503 		debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode);
1504 		return -EINVAL;
1505 	}
1506 
1507 #ifdef CONFIG_DM_REGULATOR
1508 	device_get_supply_regulator(dev, "phy-supply", &priv->phy_supply);
1509 #endif
1510 
1511 #ifdef CONFIG_DM_GPIO
1512 	ret = gpio_request_by_name(dev, "phy-reset-gpios", 0,
1513 				   &priv->phy_reset_gpio, GPIOD_IS_OUT);
1514 	if (ret < 0)
1515 		return 0; /* property is optional, don't return error! */
1516 
1517 	priv->reset_delay = dev_read_u32_default(dev, "phy-reset-duration", 1);
1518 	if (priv->reset_delay > 1000) {
1519 		printf("FEC MXC: phy reset duration should be <= 1000ms\n");
1520 		/* property value wrong, use default value */
1521 		priv->reset_delay = 1;
1522 	}
1523 
1524 	priv->reset_post_delay = dev_read_u32_default(dev,
1525 						      "phy-reset-post-delay",
1526 						      0);
1527 	if (priv->reset_post_delay > 1000) {
1528 		printf("FEC MXC: phy reset post delay should be <= 1000ms\n");
1529 		/* property value wrong, use default value */
1530 		priv->reset_post_delay = 0;
1531 	}
1532 #endif
1533 
1534 	return 0;
1535 }
1536 
1537 static const struct udevice_id fecmxc_ids[] = {
1538 	{ .compatible = "fsl,imx28-fec" },
1539 	{ .compatible = "fsl,imx6q-fec" },
1540 	{ .compatible = "fsl,imx6sl-fec" },
1541 	{ .compatible = "fsl,imx6sx-fec" },
1542 	{ .compatible = "fsl,imx6ul-fec" },
1543 	{ .compatible = "fsl,imx53-fec" },
1544 	{ .compatible = "fsl,imx7d-fec" },
1545 	{ .compatible = "fsl,mvf600-fec" },
1546 	{ }
1547 };
1548 
1549 U_BOOT_DRIVER(fecmxc_gem) = {
1550 	.name	= "fecmxc",
1551 	.id	= UCLASS_ETH,
1552 	.of_match = fecmxc_ids,
1553 	.ofdata_to_platdata = fecmxc_ofdata_to_platdata,
1554 	.probe	= fecmxc_probe,
1555 	.remove	= fecmxc_remove,
1556 	.ops	= &fecmxc_ops,
1557 	.priv_auto_alloc_size = sizeof(struct fec_priv),
1558 	.platdata_auto_alloc_size = sizeof(struct eth_pdata),
1559 };
1560 #endif
1561