1 // Copyright 2019 The libgav1 Authors
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "src/threading_strategy.h"
16
17 #include <algorithm>
18 #include <cassert>
19 #include <memory>
20
21 #include "src/frame_scratch_buffer.h"
22 #include "src/utils/constants.h"
23 #include "src/utils/logging.h"
24 #include "src/utils/vector.h"
25
26 namespace libgav1 {
27 namespace {
28
29 #if !defined(LIBGAV1_FRAME_PARALLEL_THRESHOLD_MULTIPLIER)
30 constexpr int kFrameParallelThresholdMultiplier = 4;
31 #else
32 constexpr int kFrameParallelThresholdMultiplier =
33 LIBGAV1_FRAME_PARALLEL_THRESHOLD_MULTIPLIER;
34 #endif
35
36 // Computes the number of frame threads to be used based on the following
37 // heuristic:
38 // * If |thread_count| == 1, return 0.
39 // * If |thread_count| <= |tile_count| * 4, return 0.
40 // * Otherwise, return the largest value of i which satisfies the following
41 // condition: i + i * tile_columns <= thread_count. This ensures that there
42 // are at least |tile_columns| worker threads for each frame thread.
43 // * This function will never return 1 or a value > |thread_count|.
44 //
45 // This heuristic is based empirical performance data. The in-frame threading
46 // model (combination of tile multithreading, superblock row multithreading and
47 // post filter multithreading) performs better than the frame parallel model
48 // until we reach the threshold of |thread_count| > |tile_count| *
49 // kFrameParallelThresholdMultiplier.
50 //
51 // It is a function of |tile_count| since tile threading and superblock row
52 // multithreading will scale only as a factor of |tile_count|. The threshold 4
53 // is arrived at based on empirical data. The general idea is that superblock
54 // row multithreading plateaus at 4 * |tile_count| because in most practical
55 // cases there aren't more than that many superblock rows and columns available
56 // to work on in parallel.
ComputeFrameThreadCount(int thread_count,int tile_count,int tile_columns)57 int ComputeFrameThreadCount(int thread_count, int tile_count,
58 int tile_columns) {
59 assert(thread_count > 0);
60 if (thread_count == 1) return 0;
61 return (thread_count <= tile_count * kFrameParallelThresholdMultiplier)
62 ? 0
63 : std::max(2, thread_count / (1 + tile_columns));
64 }
65
66 } // namespace
67
Reset(const ObuFrameHeader & frame_header,int thread_count)68 bool ThreadingStrategy::Reset(const ObuFrameHeader& frame_header,
69 int thread_count) {
70 assert(thread_count > 0);
71 frame_parallel_ = false;
72
73 if (thread_count == 1) {
74 thread_pool_.reset(nullptr);
75 tile_thread_count_ = 0;
76 max_tile_index_for_row_threads_ = 0;
77 return true;
78 }
79
80 // We do work in the current thread, so it is sufficient to create
81 // |thread_count|-1 threads in the threadpool.
82 thread_count = std::min(thread_count, static_cast<int>(kMaxThreads)) - 1;
83
84 if (thread_pool_ == nullptr || thread_pool_->num_threads() != thread_count) {
85 thread_pool_ = ThreadPool::Create("libgav1", thread_count);
86 if (thread_pool_ == nullptr) {
87 LIBGAV1_DLOG(ERROR, "Failed to create a thread pool with %d threads.",
88 thread_count);
89 tile_thread_count_ = 0;
90 max_tile_index_for_row_threads_ = 0;
91 return false;
92 }
93 }
94
95 // Prefer tile threads first (but only if there is more than one tile).
96 const int tile_count = frame_header.tile_info.tile_count;
97 if (tile_count > 1) {
98 // We want 1 + tile_thread_count_ <= tile_count because the current thread
99 // is also used to decode tiles. This is equivalent to
100 // tile_thread_count_ <= tile_count - 1.
101 tile_thread_count_ = std::min(thread_count, tile_count - 1);
102 thread_count -= tile_thread_count_;
103 if (thread_count == 0) {
104 max_tile_index_for_row_threads_ = 0;
105 return true;
106 }
107 } else {
108 tile_thread_count_ = 0;
109 }
110
111 #if defined(__ANDROID__)
112 // Assign the remaining threads for each Tile. The heuristic used here is that
113 // we will assign two threads for each Tile. So for example, if |thread_count|
114 // is 2, for a stream with 2 tiles the first tile would get both the threads
115 // and the second tile would have row multi-threading turned off. This
116 // heuristic is based on the fact that row multi-threading is fast enough only
117 // when there are at least two threads to do the decoding (since one thread
118 // always does the parsing).
119 //
120 // This heuristic might stop working when SIMD optimizations make the decoding
121 // much faster and the parsing thread is only as fast as the decoding threads.
122 // So we will have to revisit this later to make sure that this is still
123 // optimal.
124 //
125 // Note that while this heuristic significantly improves performance on high
126 // end devices (like the Pixel 3), there are some performance regressions in
127 // some lower end devices (in some cases) and that needs to be revisited as we
128 // bring in more optimizations. Overall, the gains because of this heuristic
129 // seems to be much larger than the regressions.
130 for (int i = 0; i < tile_count; ++i) {
131 max_tile_index_for_row_threads_ = i + 1;
132 thread_count -= 2;
133 if (thread_count <= 0) break;
134 }
135 #else // !defined(__ANDROID__)
136 // Assign the remaining threads to each Tile.
137 for (int i = 0; i < tile_count; ++i) {
138 const int count = thread_count / tile_count +
139 static_cast<int>(i < thread_count % tile_count);
140 if (count == 0) {
141 // Once we see a 0 value, all subsequent values will be 0 since it is
142 // supposed to be assigned in a round-robin fashion.
143 break;
144 }
145 max_tile_index_for_row_threads_ = i + 1;
146 }
147 #endif // defined(__ANDROID__)
148 return true;
149 }
150
Reset(int thread_count)151 bool ThreadingStrategy::Reset(int thread_count) {
152 assert(thread_count > 0);
153 frame_parallel_ = true;
154
155 // In frame parallel mode, we simply access the underlying |thread_pool_|
156 // directly. So ensure all the other threadpool getter functions return
157 // nullptr. Also, superblock row multithreading is always disabled in frame
158 // parallel mode.
159 tile_thread_count_ = 0;
160 max_tile_index_for_row_threads_ = 0;
161
162 if (thread_pool_ == nullptr || thread_pool_->num_threads() != thread_count) {
163 thread_pool_ = ThreadPool::Create("libgav1-fp", thread_count);
164 if (thread_pool_ == nullptr) {
165 LIBGAV1_DLOG(ERROR, "Failed to create a thread pool with %d threads.",
166 thread_count);
167 return false;
168 }
169 }
170 return true;
171 }
172
InitializeThreadPoolsForFrameParallel(int thread_count,int tile_count,int tile_columns,std::unique_ptr<ThreadPool> * const frame_thread_pool,FrameScratchBufferPool * const frame_scratch_buffer_pool)173 bool InitializeThreadPoolsForFrameParallel(
174 int thread_count, int tile_count, int tile_columns,
175 std::unique_ptr<ThreadPool>* const frame_thread_pool,
176 FrameScratchBufferPool* const frame_scratch_buffer_pool) {
177 assert(*frame_thread_pool == nullptr);
178 thread_count = std::min(thread_count, static_cast<int>(kMaxThreads));
179 const int frame_threads =
180 ComputeFrameThreadCount(thread_count, tile_count, tile_columns);
181 if (frame_threads == 0) return true;
182 *frame_thread_pool = ThreadPool::Create(frame_threads);
183 if (*frame_thread_pool == nullptr) {
184 LIBGAV1_DLOG(ERROR, "Failed to create frame thread pool with %d threads.",
185 frame_threads);
186 return false;
187 }
188 int remaining_threads = thread_count - frame_threads;
189 if (remaining_threads == 0) return true;
190 int threads_per_frame = remaining_threads / frame_threads;
191 const int extra_threads = remaining_threads % frame_threads;
192 Vector<std::unique_ptr<FrameScratchBuffer>> frame_scratch_buffers;
193 if (!frame_scratch_buffers.reserve(frame_threads)) return false;
194 // Create the tile thread pools.
195 for (int i = 0; i < frame_threads && remaining_threads > 0; ++i) {
196 std::unique_ptr<FrameScratchBuffer> frame_scratch_buffer =
197 frame_scratch_buffer_pool->Get();
198 if (frame_scratch_buffer == nullptr) {
199 return false;
200 }
201 // If the number of tile threads cannot be divided equally amongst all the
202 // frame threads, assign one extra thread to the first |extra_threads| frame
203 // threads.
204 const int current_frame_thread_count =
205 threads_per_frame + static_cast<int>(i < extra_threads);
206 if (!frame_scratch_buffer->threading_strategy.Reset(
207 current_frame_thread_count)) {
208 return false;
209 }
210 remaining_threads -= current_frame_thread_count;
211 frame_scratch_buffers.push_back_unchecked(std::move(frame_scratch_buffer));
212 }
213 // We release the frame scratch buffers in reverse order so that the extra
214 // threads are allocated to buffers in the top of the stack.
215 for (int i = static_cast<int>(frame_scratch_buffers.size()) - 1; i >= 0;
216 --i) {
217 frame_scratch_buffer_pool->Release(std::move(frame_scratch_buffers[i]));
218 }
219 return true;
220 }
221
222 } // namespace libgav1
223