1 //===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with generation of the layout of virtual tables.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/VTableBuilder.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/RecordLayout.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "llvm/ADT/SetOperations.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/Support/Format.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include <algorithm>
25 #include <cstdio>
26
27 using namespace clang;
28
29 #define DUMP_OVERRIDERS 0
30
31 namespace {
32
33 /// BaseOffset - Represents an offset from a derived class to a direct or
34 /// indirect base class.
35 struct BaseOffset {
36 /// DerivedClass - The derived class.
37 const CXXRecordDecl *DerivedClass;
38
39 /// VirtualBase - If the path from the derived class to the base class
40 /// involves virtual base classes, this holds the declaration of the last
41 /// virtual base in this path (i.e. closest to the base class).
42 const CXXRecordDecl *VirtualBase;
43
44 /// NonVirtualOffset - The offset from the derived class to the base class.
45 /// (Or the offset from the virtual base class to the base class, if the
46 /// path from the derived class to the base class involves a virtual base
47 /// class.
48 CharUnits NonVirtualOffset;
49
BaseOffset__anon0519fbe30111::BaseOffset50 BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr),
51 NonVirtualOffset(CharUnits::Zero()) { }
BaseOffset__anon0519fbe30111::BaseOffset52 BaseOffset(const CXXRecordDecl *DerivedClass,
53 const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset)
54 : DerivedClass(DerivedClass), VirtualBase(VirtualBase),
55 NonVirtualOffset(NonVirtualOffset) { }
56
isEmpty__anon0519fbe30111::BaseOffset57 bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; }
58 };
59
60 /// FinalOverriders - Contains the final overrider member functions for all
61 /// member functions in the base subobjects of a class.
62 class FinalOverriders {
63 public:
64 /// OverriderInfo - Information about a final overrider.
65 struct OverriderInfo {
66 /// Method - The method decl of the overrider.
67 const CXXMethodDecl *Method;
68
69 /// VirtualBase - The virtual base class subobject of this overrider.
70 /// Note that this records the closest derived virtual base class subobject.
71 const CXXRecordDecl *VirtualBase;
72
73 /// Offset - the base offset of the overrider's parent in the layout class.
74 CharUnits Offset;
75
OverriderInfo__anon0519fbe30111::FinalOverriders::OverriderInfo76 OverriderInfo() : Method(nullptr), VirtualBase(nullptr),
77 Offset(CharUnits::Zero()) { }
78 };
79
80 private:
81 /// MostDerivedClass - The most derived class for which the final overriders
82 /// are stored.
83 const CXXRecordDecl *MostDerivedClass;
84
85 /// MostDerivedClassOffset - If we're building final overriders for a
86 /// construction vtable, this holds the offset from the layout class to the
87 /// most derived class.
88 const CharUnits MostDerivedClassOffset;
89
90 /// LayoutClass - The class we're using for layout information. Will be
91 /// different than the most derived class if the final overriders are for a
92 /// construction vtable.
93 const CXXRecordDecl *LayoutClass;
94
95 ASTContext &Context;
96
97 /// MostDerivedClassLayout - the AST record layout of the most derived class.
98 const ASTRecordLayout &MostDerivedClassLayout;
99
100 /// MethodBaseOffsetPairTy - Uniquely identifies a member function
101 /// in a base subobject.
102 typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy;
103
104 typedef llvm::DenseMap<MethodBaseOffsetPairTy,
105 OverriderInfo> OverridersMapTy;
106
107 /// OverridersMap - The final overriders for all virtual member functions of
108 /// all the base subobjects of the most derived class.
109 OverridersMapTy OverridersMap;
110
111 /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented
112 /// as a record decl and a subobject number) and its offsets in the most
113 /// derived class as well as the layout class.
114 typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>,
115 CharUnits> SubobjectOffsetMapTy;
116
117 typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy;
118
119 /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the
120 /// given base.
121 void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
122 CharUnits OffsetInLayoutClass,
123 SubobjectOffsetMapTy &SubobjectOffsets,
124 SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
125 SubobjectCountMapTy &SubobjectCounts);
126
127 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
128
129 /// dump - dump the final overriders for a base subobject, and all its direct
130 /// and indirect base subobjects.
131 void dump(raw_ostream &Out, BaseSubobject Base,
132 VisitedVirtualBasesSetTy& VisitedVirtualBases);
133
134 public:
135 FinalOverriders(const CXXRecordDecl *MostDerivedClass,
136 CharUnits MostDerivedClassOffset,
137 const CXXRecordDecl *LayoutClass);
138
139 /// getOverrider - Get the final overrider for the given method declaration in
140 /// the subobject with the given base offset.
getOverrider(const CXXMethodDecl * MD,CharUnits BaseOffset) const141 OverriderInfo getOverrider(const CXXMethodDecl *MD,
142 CharUnits BaseOffset) const {
143 assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) &&
144 "Did not find overrider!");
145
146 return OverridersMap.lookup(std::make_pair(MD, BaseOffset));
147 }
148
149 /// dump - dump the final overriders.
dump()150 void dump() {
151 VisitedVirtualBasesSetTy VisitedVirtualBases;
152 dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()),
153 VisitedVirtualBases);
154 }
155
156 };
157
FinalOverriders(const CXXRecordDecl * MostDerivedClass,CharUnits MostDerivedClassOffset,const CXXRecordDecl * LayoutClass)158 FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass,
159 CharUnits MostDerivedClassOffset,
160 const CXXRecordDecl *LayoutClass)
161 : MostDerivedClass(MostDerivedClass),
162 MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass),
163 Context(MostDerivedClass->getASTContext()),
164 MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) {
165
166 // Compute base offsets.
167 SubobjectOffsetMapTy SubobjectOffsets;
168 SubobjectOffsetMapTy SubobjectLayoutClassOffsets;
169 SubobjectCountMapTy SubobjectCounts;
170 ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()),
171 /*IsVirtual=*/false,
172 MostDerivedClassOffset,
173 SubobjectOffsets, SubobjectLayoutClassOffsets,
174 SubobjectCounts);
175
176 // Get the final overriders.
177 CXXFinalOverriderMap FinalOverriders;
178 MostDerivedClass->getFinalOverriders(FinalOverriders);
179
180 for (const auto &Overrider : FinalOverriders) {
181 const CXXMethodDecl *MD = Overrider.first;
182 const OverridingMethods &Methods = Overrider.second;
183
184 for (const auto &M : Methods) {
185 unsigned SubobjectNumber = M.first;
186 assert(SubobjectOffsets.count(std::make_pair(MD->getParent(),
187 SubobjectNumber)) &&
188 "Did not find subobject offset!");
189
190 CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(),
191 SubobjectNumber)];
192
193 assert(M.second.size() == 1 && "Final overrider is not unique!");
194 const UniqueVirtualMethod &Method = M.second.front();
195
196 const CXXRecordDecl *OverriderRD = Method.Method->getParent();
197 assert(SubobjectLayoutClassOffsets.count(
198 std::make_pair(OverriderRD, Method.Subobject))
199 && "Did not find subobject offset!");
200 CharUnits OverriderOffset =
201 SubobjectLayoutClassOffsets[std::make_pair(OverriderRD,
202 Method.Subobject)];
203
204 OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)];
205 assert(!Overrider.Method && "Overrider should not exist yet!");
206
207 Overrider.Offset = OverriderOffset;
208 Overrider.Method = Method.Method;
209 Overrider.VirtualBase = Method.InVirtualSubobject;
210 }
211 }
212
213 #if DUMP_OVERRIDERS
214 // And dump them (for now).
215 dump();
216 #endif
217 }
218
ComputeBaseOffset(const ASTContext & Context,const CXXRecordDecl * DerivedRD,const CXXBasePath & Path)219 static BaseOffset ComputeBaseOffset(const ASTContext &Context,
220 const CXXRecordDecl *DerivedRD,
221 const CXXBasePath &Path) {
222 CharUnits NonVirtualOffset = CharUnits::Zero();
223
224 unsigned NonVirtualStart = 0;
225 const CXXRecordDecl *VirtualBase = nullptr;
226
227 // First, look for the virtual base class.
228 for (int I = Path.size(), E = 0; I != E; --I) {
229 const CXXBasePathElement &Element = Path[I - 1];
230
231 if (Element.Base->isVirtual()) {
232 NonVirtualStart = I;
233 QualType VBaseType = Element.Base->getType();
234 VirtualBase = VBaseType->getAsCXXRecordDecl();
235 break;
236 }
237 }
238
239 // Now compute the non-virtual offset.
240 for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) {
241 const CXXBasePathElement &Element = Path[I];
242
243 // Check the base class offset.
244 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class);
245
246 const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl();
247
248 NonVirtualOffset += Layout.getBaseClassOffset(Base);
249 }
250
251 // FIXME: This should probably use CharUnits or something. Maybe we should
252 // even change the base offsets in ASTRecordLayout to be specified in
253 // CharUnits.
254 return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset);
255
256 }
257
ComputeBaseOffset(const ASTContext & Context,const CXXRecordDecl * BaseRD,const CXXRecordDecl * DerivedRD)258 static BaseOffset ComputeBaseOffset(const ASTContext &Context,
259 const CXXRecordDecl *BaseRD,
260 const CXXRecordDecl *DerivedRD) {
261 CXXBasePaths Paths(/*FindAmbiguities=*/false,
262 /*RecordPaths=*/true, /*DetectVirtual=*/false);
263
264 if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
265 llvm_unreachable("Class must be derived from the passed in base class!");
266
267 return ComputeBaseOffset(Context, DerivedRD, Paths.front());
268 }
269
270 static BaseOffset
ComputeReturnAdjustmentBaseOffset(ASTContext & Context,const CXXMethodDecl * DerivedMD,const CXXMethodDecl * BaseMD)271 ComputeReturnAdjustmentBaseOffset(ASTContext &Context,
272 const CXXMethodDecl *DerivedMD,
273 const CXXMethodDecl *BaseMD) {
274 const FunctionType *BaseFT = BaseMD->getType()->getAs<FunctionType>();
275 const FunctionType *DerivedFT = DerivedMD->getType()->getAs<FunctionType>();
276
277 // Canonicalize the return types.
278 CanQualType CanDerivedReturnType =
279 Context.getCanonicalType(DerivedFT->getReturnType());
280 CanQualType CanBaseReturnType =
281 Context.getCanonicalType(BaseFT->getReturnType());
282
283 assert(CanDerivedReturnType->getTypeClass() ==
284 CanBaseReturnType->getTypeClass() &&
285 "Types must have same type class!");
286
287 if (CanDerivedReturnType == CanBaseReturnType) {
288 // No adjustment needed.
289 return BaseOffset();
290 }
291
292 if (isa<ReferenceType>(CanDerivedReturnType)) {
293 CanDerivedReturnType =
294 CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType();
295 CanBaseReturnType =
296 CanBaseReturnType->getAs<ReferenceType>()->getPointeeType();
297 } else if (isa<PointerType>(CanDerivedReturnType)) {
298 CanDerivedReturnType =
299 CanDerivedReturnType->getAs<PointerType>()->getPointeeType();
300 CanBaseReturnType =
301 CanBaseReturnType->getAs<PointerType>()->getPointeeType();
302 } else {
303 llvm_unreachable("Unexpected return type!");
304 }
305
306 // We need to compare unqualified types here; consider
307 // const T *Base::foo();
308 // T *Derived::foo();
309 if (CanDerivedReturnType.getUnqualifiedType() ==
310 CanBaseReturnType.getUnqualifiedType()) {
311 // No adjustment needed.
312 return BaseOffset();
313 }
314
315 const CXXRecordDecl *DerivedRD =
316 cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl());
317
318 const CXXRecordDecl *BaseRD =
319 cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl());
320
321 return ComputeBaseOffset(Context, BaseRD, DerivedRD);
322 }
323
324 void
ComputeBaseOffsets(BaseSubobject Base,bool IsVirtual,CharUnits OffsetInLayoutClass,SubobjectOffsetMapTy & SubobjectOffsets,SubobjectOffsetMapTy & SubobjectLayoutClassOffsets,SubobjectCountMapTy & SubobjectCounts)325 FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual,
326 CharUnits OffsetInLayoutClass,
327 SubobjectOffsetMapTy &SubobjectOffsets,
328 SubobjectOffsetMapTy &SubobjectLayoutClassOffsets,
329 SubobjectCountMapTy &SubobjectCounts) {
330 const CXXRecordDecl *RD = Base.getBase();
331
332 unsigned SubobjectNumber = 0;
333 if (!IsVirtual)
334 SubobjectNumber = ++SubobjectCounts[RD];
335
336 // Set up the subobject to offset mapping.
337 assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber))
338 && "Subobject offset already exists!");
339 assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber))
340 && "Subobject offset already exists!");
341
342 SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset();
343 SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] =
344 OffsetInLayoutClass;
345
346 // Traverse our bases.
347 for (const auto &B : RD->bases()) {
348 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
349
350 CharUnits BaseOffset;
351 CharUnits BaseOffsetInLayoutClass;
352 if (B.isVirtual()) {
353 // Check if we've visited this virtual base before.
354 if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0)))
355 continue;
356
357 const ASTRecordLayout &LayoutClassLayout =
358 Context.getASTRecordLayout(LayoutClass);
359
360 BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
361 BaseOffsetInLayoutClass =
362 LayoutClassLayout.getVBaseClassOffset(BaseDecl);
363 } else {
364 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
365 CharUnits Offset = Layout.getBaseClassOffset(BaseDecl);
366
367 BaseOffset = Base.getBaseOffset() + Offset;
368 BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset;
369 }
370
371 ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset),
372 B.isVirtual(), BaseOffsetInLayoutClass,
373 SubobjectOffsets, SubobjectLayoutClassOffsets,
374 SubobjectCounts);
375 }
376 }
377
dump(raw_ostream & Out,BaseSubobject Base,VisitedVirtualBasesSetTy & VisitedVirtualBases)378 void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base,
379 VisitedVirtualBasesSetTy &VisitedVirtualBases) {
380 const CXXRecordDecl *RD = Base.getBase();
381 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
382
383 for (const auto &B : RD->bases()) {
384 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
385
386 // Ignore bases that don't have any virtual member functions.
387 if (!BaseDecl->isPolymorphic())
388 continue;
389
390 CharUnits BaseOffset;
391 if (B.isVirtual()) {
392 if (!VisitedVirtualBases.insert(BaseDecl).second) {
393 // We've visited this base before.
394 continue;
395 }
396
397 BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
398 } else {
399 BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset();
400 }
401
402 dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases);
403 }
404
405 Out << "Final overriders for (";
406 RD->printQualifiedName(Out);
407 Out << ", ";
408 Out << Base.getBaseOffset().getQuantity() << ")\n";
409
410 // Now dump the overriders for this base subobject.
411 for (const auto *MD : RD->methods()) {
412 if (!MD->isVirtual())
413 continue;
414 MD = MD->getCanonicalDecl();
415
416 OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset());
417
418 Out << " ";
419 MD->printQualifiedName(Out);
420 Out << " - (";
421 Overrider.Method->printQualifiedName(Out);
422 Out << ", " << Overrider.Offset.getQuantity() << ')';
423
424 BaseOffset Offset;
425 if (!Overrider.Method->isPure())
426 Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
427
428 if (!Offset.isEmpty()) {
429 Out << " [ret-adj: ";
430 if (Offset.VirtualBase) {
431 Offset.VirtualBase->printQualifiedName(Out);
432 Out << " vbase, ";
433 }
434
435 Out << Offset.NonVirtualOffset.getQuantity() << " nv]";
436 }
437
438 Out << "\n";
439 }
440 }
441
442 /// VCallOffsetMap - Keeps track of vcall offsets when building a vtable.
443 struct VCallOffsetMap {
444
445 typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy;
446
447 /// Offsets - Keeps track of methods and their offsets.
448 // FIXME: This should be a real map and not a vector.
449 SmallVector<MethodAndOffsetPairTy, 16> Offsets;
450
451 /// MethodsCanShareVCallOffset - Returns whether two virtual member functions
452 /// can share the same vcall offset.
453 static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
454 const CXXMethodDecl *RHS);
455
456 public:
457 /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the
458 /// add was successful, or false if there was already a member function with
459 /// the same signature in the map.
460 bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset);
461
462 /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the
463 /// vtable address point) for the given virtual member function.
464 CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD);
465
466 // empty - Return whether the offset map is empty or not.
empty__anon0519fbe30111::VCallOffsetMap467 bool empty() const { return Offsets.empty(); }
468 };
469
HasSameVirtualSignature(const CXXMethodDecl * LHS,const CXXMethodDecl * RHS)470 static bool HasSameVirtualSignature(const CXXMethodDecl *LHS,
471 const CXXMethodDecl *RHS) {
472 const FunctionProtoType *LT =
473 cast<FunctionProtoType>(LHS->getType().getCanonicalType());
474 const FunctionProtoType *RT =
475 cast<FunctionProtoType>(RHS->getType().getCanonicalType());
476
477 // Fast-path matches in the canonical types.
478 if (LT == RT) return true;
479
480 // Force the signatures to match. We can't rely on the overrides
481 // list here because there isn't necessarily an inheritance
482 // relationship between the two methods.
483 if (LT->getTypeQuals() != RT->getTypeQuals())
484 return false;
485 return LT->getParamTypes() == RT->getParamTypes();
486 }
487
MethodsCanShareVCallOffset(const CXXMethodDecl * LHS,const CXXMethodDecl * RHS)488 bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS,
489 const CXXMethodDecl *RHS) {
490 assert(LHS->isVirtual() && "LHS must be virtual!");
491 assert(RHS->isVirtual() && "LHS must be virtual!");
492
493 // A destructor can share a vcall offset with another destructor.
494 if (isa<CXXDestructorDecl>(LHS))
495 return isa<CXXDestructorDecl>(RHS);
496
497 // FIXME: We need to check more things here.
498
499 // The methods must have the same name.
500 DeclarationName LHSName = LHS->getDeclName();
501 DeclarationName RHSName = RHS->getDeclName();
502 if (LHSName != RHSName)
503 return false;
504
505 // And the same signatures.
506 return HasSameVirtualSignature(LHS, RHS);
507 }
508
AddVCallOffset(const CXXMethodDecl * MD,CharUnits OffsetOffset)509 bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD,
510 CharUnits OffsetOffset) {
511 // Check if we can reuse an offset.
512 for (const auto &OffsetPair : Offsets) {
513 if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
514 return false;
515 }
516
517 // Add the offset.
518 Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset));
519 return true;
520 }
521
getVCallOffsetOffset(const CXXMethodDecl * MD)522 CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) {
523 // Look for an offset.
524 for (const auto &OffsetPair : Offsets) {
525 if (MethodsCanShareVCallOffset(OffsetPair.first, MD))
526 return OffsetPair.second;
527 }
528
529 llvm_unreachable("Should always find a vcall offset offset!");
530 }
531
532 /// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets.
533 class VCallAndVBaseOffsetBuilder {
534 public:
535 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
536 VBaseOffsetOffsetsMapTy;
537
538 private:
539 /// MostDerivedClass - The most derived class for which we're building vcall
540 /// and vbase offsets.
541 const CXXRecordDecl *MostDerivedClass;
542
543 /// LayoutClass - The class we're using for layout information. Will be
544 /// different than the most derived class if we're building a construction
545 /// vtable.
546 const CXXRecordDecl *LayoutClass;
547
548 /// Context - The ASTContext which we will use for layout information.
549 ASTContext &Context;
550
551 /// Components - vcall and vbase offset components
552 typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy;
553 VTableComponentVectorTy Components;
554
555 /// VisitedVirtualBases - Visited virtual bases.
556 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
557
558 /// VCallOffsets - Keeps track of vcall offsets.
559 VCallOffsetMap VCallOffsets;
560
561
562 /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets,
563 /// relative to the address point.
564 VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
565
566 /// FinalOverriders - The final overriders of the most derived class.
567 /// (Can be null when we're not building a vtable of the most derived class).
568 const FinalOverriders *Overriders;
569
570 /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the
571 /// given base subobject.
572 void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual,
573 CharUnits RealBaseOffset);
574
575 /// AddVCallOffsets - Add vcall offsets for the given base subobject.
576 void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset);
577
578 /// AddVBaseOffsets - Add vbase offsets for the given class.
579 void AddVBaseOffsets(const CXXRecordDecl *Base,
580 CharUnits OffsetInLayoutClass);
581
582 /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in
583 /// chars, relative to the vtable address point.
584 CharUnits getCurrentOffsetOffset() const;
585
586 public:
VCallAndVBaseOffsetBuilder(const CXXRecordDecl * MostDerivedClass,const CXXRecordDecl * LayoutClass,const FinalOverriders * Overriders,BaseSubobject Base,bool BaseIsVirtual,CharUnits OffsetInLayoutClass)587 VCallAndVBaseOffsetBuilder(const CXXRecordDecl *MostDerivedClass,
588 const CXXRecordDecl *LayoutClass,
589 const FinalOverriders *Overriders,
590 BaseSubobject Base, bool BaseIsVirtual,
591 CharUnits OffsetInLayoutClass)
592 : MostDerivedClass(MostDerivedClass), LayoutClass(LayoutClass),
593 Context(MostDerivedClass->getASTContext()), Overriders(Overriders) {
594
595 // Add vcall and vbase offsets.
596 AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass);
597 }
598
599 /// Methods for iterating over the components.
600 typedef VTableComponentVectorTy::const_reverse_iterator const_iterator;
components_begin() const601 const_iterator components_begin() const { return Components.rbegin(); }
components_end() const602 const_iterator components_end() const { return Components.rend(); }
603
getVCallOffsets() const604 const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; }
getVBaseOffsetOffsets() const605 const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
606 return VBaseOffsetOffsets;
607 }
608 };
609
610 void
AddVCallAndVBaseOffsets(BaseSubobject Base,bool BaseIsVirtual,CharUnits RealBaseOffset)611 VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base,
612 bool BaseIsVirtual,
613 CharUnits RealBaseOffset) {
614 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase());
615
616 // Itanium C++ ABI 2.5.2:
617 // ..in classes sharing a virtual table with a primary base class, the vcall
618 // and vbase offsets added by the derived class all come before the vcall
619 // and vbase offsets required by the base class, so that the latter may be
620 // laid out as required by the base class without regard to additions from
621 // the derived class(es).
622
623 // (Since we're emitting the vcall and vbase offsets in reverse order, we'll
624 // emit them for the primary base first).
625 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
626 bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
627
628 CharUnits PrimaryBaseOffset;
629
630 // Get the base offset of the primary base.
631 if (PrimaryBaseIsVirtual) {
632 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
633 "Primary vbase should have a zero offset!");
634
635 const ASTRecordLayout &MostDerivedClassLayout =
636 Context.getASTRecordLayout(MostDerivedClass);
637
638 PrimaryBaseOffset =
639 MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
640 } else {
641 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
642 "Primary base should have a zero offset!");
643
644 PrimaryBaseOffset = Base.getBaseOffset();
645 }
646
647 AddVCallAndVBaseOffsets(
648 BaseSubobject(PrimaryBase,PrimaryBaseOffset),
649 PrimaryBaseIsVirtual, RealBaseOffset);
650 }
651
652 AddVBaseOffsets(Base.getBase(), RealBaseOffset);
653
654 // We only want to add vcall offsets for virtual bases.
655 if (BaseIsVirtual)
656 AddVCallOffsets(Base, RealBaseOffset);
657 }
658
getCurrentOffsetOffset() const659 CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const {
660 // OffsetIndex is the index of this vcall or vbase offset, relative to the
661 // vtable address point. (We subtract 3 to account for the information just
662 // above the address point, the RTTI info, the offset to top, and the
663 // vcall offset itself).
664 int64_t OffsetIndex = -(int64_t)(3 + Components.size());
665
666 CharUnits PointerWidth =
667 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
668 CharUnits OffsetOffset = PointerWidth * OffsetIndex;
669 return OffsetOffset;
670 }
671
AddVCallOffsets(BaseSubobject Base,CharUnits VBaseOffset)672 void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base,
673 CharUnits VBaseOffset) {
674 const CXXRecordDecl *RD = Base.getBase();
675 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
676
677 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
678
679 // Handle the primary base first.
680 // We only want to add vcall offsets if the base is non-virtual; a virtual
681 // primary base will have its vcall and vbase offsets emitted already.
682 if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) {
683 // Get the base offset of the primary base.
684 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
685 "Primary base should have a zero offset!");
686
687 AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()),
688 VBaseOffset);
689 }
690
691 // Add the vcall offsets.
692 for (const auto *MD : RD->methods()) {
693 if (!MD->isVirtual())
694 continue;
695 MD = MD->getCanonicalDecl();
696
697 CharUnits OffsetOffset = getCurrentOffsetOffset();
698
699 // Don't add a vcall offset if we already have one for this member function
700 // signature.
701 if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset))
702 continue;
703
704 CharUnits Offset = CharUnits::Zero();
705
706 if (Overriders) {
707 // Get the final overrider.
708 FinalOverriders::OverriderInfo Overrider =
709 Overriders->getOverrider(MD, Base.getBaseOffset());
710
711 /// The vcall offset is the offset from the virtual base to the object
712 /// where the function was overridden.
713 Offset = Overrider.Offset - VBaseOffset;
714 }
715
716 Components.push_back(
717 VTableComponent::MakeVCallOffset(Offset));
718 }
719
720 // And iterate over all non-virtual bases (ignoring the primary base).
721 for (const auto &B : RD->bases()) {
722 if (B.isVirtual())
723 continue;
724
725 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
726 if (BaseDecl == PrimaryBase)
727 continue;
728
729 // Get the base offset of this base.
730 CharUnits BaseOffset = Base.getBaseOffset() +
731 Layout.getBaseClassOffset(BaseDecl);
732
733 AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset),
734 VBaseOffset);
735 }
736 }
737
738 void
AddVBaseOffsets(const CXXRecordDecl * RD,CharUnits OffsetInLayoutClass)739 VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD,
740 CharUnits OffsetInLayoutClass) {
741 const ASTRecordLayout &LayoutClassLayout =
742 Context.getASTRecordLayout(LayoutClass);
743
744 // Add vbase offsets.
745 for (const auto &B : RD->bases()) {
746 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
747
748 // Check if this is a virtual base that we haven't visited before.
749 if (B.isVirtual() && VisitedVirtualBases.insert(BaseDecl).second) {
750 CharUnits Offset =
751 LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass;
752
753 // Add the vbase offset offset.
754 assert(!VBaseOffsetOffsets.count(BaseDecl) &&
755 "vbase offset offset already exists!");
756
757 CharUnits VBaseOffsetOffset = getCurrentOffsetOffset();
758 VBaseOffsetOffsets.insert(
759 std::make_pair(BaseDecl, VBaseOffsetOffset));
760
761 Components.push_back(
762 VTableComponent::MakeVBaseOffset(Offset));
763 }
764
765 // Check the base class looking for more vbase offsets.
766 AddVBaseOffsets(BaseDecl, OffsetInLayoutClass);
767 }
768 }
769
770 /// ItaniumVTableBuilder - Class for building vtable layout information.
771 class ItaniumVTableBuilder {
772 public:
773 /// PrimaryBasesSetVectorTy - A set vector of direct and indirect
774 /// primary bases.
775 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8>
776 PrimaryBasesSetVectorTy;
777
778 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits>
779 VBaseOffsetOffsetsMapTy;
780
781 typedef llvm::DenseMap<BaseSubobject, uint64_t>
782 AddressPointsMapTy;
783
784 typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy;
785
786 private:
787 /// VTables - Global vtable information.
788 ItaniumVTableContext &VTables;
789
790 /// MostDerivedClass - The most derived class for which we're building this
791 /// vtable.
792 const CXXRecordDecl *MostDerivedClass;
793
794 /// MostDerivedClassOffset - If we're building a construction vtable, this
795 /// holds the offset from the layout class to the most derived class.
796 const CharUnits MostDerivedClassOffset;
797
798 /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual
799 /// base. (This only makes sense when building a construction vtable).
800 bool MostDerivedClassIsVirtual;
801
802 /// LayoutClass - The class we're using for layout information. Will be
803 /// different than the most derived class if we're building a construction
804 /// vtable.
805 const CXXRecordDecl *LayoutClass;
806
807 /// Context - The ASTContext which we will use for layout information.
808 ASTContext &Context;
809
810 /// FinalOverriders - The final overriders of the most derived class.
811 const FinalOverriders Overriders;
812
813 /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual
814 /// bases in this vtable.
815 llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases;
816
817 /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for
818 /// the most derived class.
819 VBaseOffsetOffsetsMapTy VBaseOffsetOffsets;
820
821 /// Components - The components of the vtable being built.
822 SmallVector<VTableComponent, 64> Components;
823
824 /// AddressPoints - Address points for the vtable being built.
825 AddressPointsMapTy AddressPoints;
826
827 /// MethodInfo - Contains information about a method in a vtable.
828 /// (Used for computing 'this' pointer adjustment thunks.
829 struct MethodInfo {
830 /// BaseOffset - The base offset of this method.
831 const CharUnits BaseOffset;
832
833 /// BaseOffsetInLayoutClass - The base offset in the layout class of this
834 /// method.
835 const CharUnits BaseOffsetInLayoutClass;
836
837 /// VTableIndex - The index in the vtable that this method has.
838 /// (For destructors, this is the index of the complete destructor).
839 const uint64_t VTableIndex;
840
MethodInfo__anon0519fbe30111::ItaniumVTableBuilder::MethodInfo841 MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass,
842 uint64_t VTableIndex)
843 : BaseOffset(BaseOffset),
844 BaseOffsetInLayoutClass(BaseOffsetInLayoutClass),
845 VTableIndex(VTableIndex) { }
846
MethodInfo__anon0519fbe30111::ItaniumVTableBuilder::MethodInfo847 MethodInfo()
848 : BaseOffset(CharUnits::Zero()),
849 BaseOffsetInLayoutClass(CharUnits::Zero()),
850 VTableIndex(0) { }
851 };
852
853 typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
854
855 /// MethodInfoMap - The information for all methods in the vtable we're
856 /// currently building.
857 MethodInfoMapTy MethodInfoMap;
858
859 /// MethodVTableIndices - Contains the index (relative to the vtable address
860 /// point) where the function pointer for a virtual function is stored.
861 MethodVTableIndicesTy MethodVTableIndices;
862
863 typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
864
865 /// VTableThunks - The thunks by vtable index in the vtable currently being
866 /// built.
867 VTableThunksMapTy VTableThunks;
868
869 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
870 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
871
872 /// Thunks - A map that contains all the thunks needed for all methods in the
873 /// most derived class for which the vtable is currently being built.
874 ThunksMapTy Thunks;
875
876 /// AddThunk - Add a thunk for the given method.
877 void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk);
878
879 /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the
880 /// part of the vtable we're currently building.
881 void ComputeThisAdjustments();
882
883 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
884
885 /// PrimaryVirtualBases - All known virtual bases who are a primary base of
886 /// some other base.
887 VisitedVirtualBasesSetTy PrimaryVirtualBases;
888
889 /// ComputeReturnAdjustment - Compute the return adjustment given a return
890 /// adjustment base offset.
891 ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset);
892
893 /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting
894 /// the 'this' pointer from the base subobject to the derived subobject.
895 BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base,
896 BaseSubobject Derived) const;
897
898 /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the
899 /// given virtual member function, its offset in the layout class and its
900 /// final overrider.
901 ThisAdjustment
902 ComputeThisAdjustment(const CXXMethodDecl *MD,
903 CharUnits BaseOffsetInLayoutClass,
904 FinalOverriders::OverriderInfo Overrider);
905
906 /// AddMethod - Add a single virtual member function to the vtable
907 /// components vector.
908 void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment);
909
910 /// IsOverriderUsed - Returns whether the overrider will ever be used in this
911 /// part of the vtable.
912 ///
913 /// Itanium C++ ABI 2.5.2:
914 ///
915 /// struct A { virtual void f(); };
916 /// struct B : virtual public A { int i; };
917 /// struct C : virtual public A { int j; };
918 /// struct D : public B, public C {};
919 ///
920 /// When B and C are declared, A is a primary base in each case, so although
921 /// vcall offsets are allocated in the A-in-B and A-in-C vtables, no this
922 /// adjustment is required and no thunk is generated. However, inside D
923 /// objects, A is no longer a primary base of C, so if we allowed calls to
924 /// C::f() to use the copy of A's vtable in the C subobject, we would need
925 /// to adjust this from C* to B::A*, which would require a third-party
926 /// thunk. Since we require that a call to C::f() first convert to A*,
927 /// C-in-D's copy of A's vtable is never referenced, so this is not
928 /// necessary.
929 bool IsOverriderUsed(const CXXMethodDecl *Overrider,
930 CharUnits BaseOffsetInLayoutClass,
931 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
932 CharUnits FirstBaseOffsetInLayoutClass) const;
933
934
935 /// AddMethods - Add the methods of this base subobject and all its
936 /// primary bases to the vtable components vector.
937 void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
938 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
939 CharUnits FirstBaseOffsetInLayoutClass,
940 PrimaryBasesSetVectorTy &PrimaryBases);
941
942 // LayoutVTable - Layout the vtable for the given base class, including its
943 // secondary vtables and any vtables for virtual bases.
944 void LayoutVTable();
945
946 /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the
947 /// given base subobject, as well as all its secondary vtables.
948 ///
949 /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
950 /// or a direct or indirect base of a virtual base.
951 ///
952 /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual
953 /// in the layout class.
954 void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,
955 bool BaseIsMorallyVirtual,
956 bool BaseIsVirtualInLayoutClass,
957 CharUnits OffsetInLayoutClass);
958
959 /// LayoutSecondaryVTables - Layout the secondary vtables for the given base
960 /// subobject.
961 ///
962 /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base
963 /// or a direct or indirect base of a virtual base.
964 void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual,
965 CharUnits OffsetInLayoutClass);
966
967 /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this
968 /// class hierarchy.
969 void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD,
970 CharUnits OffsetInLayoutClass,
971 VisitedVirtualBasesSetTy &VBases);
972
973 /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the
974 /// given base (excluding any primary bases).
975 void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD,
976 VisitedVirtualBasesSetTy &VBases);
977
978 /// isBuildingConstructionVTable - Return whether this vtable builder is
979 /// building a construction vtable.
isBuildingConstructorVTable() const980 bool isBuildingConstructorVTable() const {
981 return MostDerivedClass != LayoutClass;
982 }
983
984 public:
ItaniumVTableBuilder(ItaniumVTableContext & VTables,const CXXRecordDecl * MostDerivedClass,CharUnits MostDerivedClassOffset,bool MostDerivedClassIsVirtual,const CXXRecordDecl * LayoutClass)985 ItaniumVTableBuilder(ItaniumVTableContext &VTables,
986 const CXXRecordDecl *MostDerivedClass,
987 CharUnits MostDerivedClassOffset,
988 bool MostDerivedClassIsVirtual,
989 const CXXRecordDecl *LayoutClass)
990 : VTables(VTables), MostDerivedClass(MostDerivedClass),
991 MostDerivedClassOffset(MostDerivedClassOffset),
992 MostDerivedClassIsVirtual(MostDerivedClassIsVirtual),
993 LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()),
994 Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) {
995 assert(!Context.getTargetInfo().getCXXABI().isMicrosoft());
996
997 LayoutVTable();
998
999 if (Context.getLangOpts().DumpVTableLayouts)
1000 dumpLayout(llvm::outs());
1001 }
1002
getNumThunks() const1003 uint64_t getNumThunks() const {
1004 return Thunks.size();
1005 }
1006
thunks_begin() const1007 ThunksMapTy::const_iterator thunks_begin() const {
1008 return Thunks.begin();
1009 }
1010
thunks_end() const1011 ThunksMapTy::const_iterator thunks_end() const {
1012 return Thunks.end();
1013 }
1014
getVBaseOffsetOffsets() const1015 const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const {
1016 return VBaseOffsetOffsets;
1017 }
1018
getAddressPoints() const1019 const AddressPointsMapTy &getAddressPoints() const {
1020 return AddressPoints;
1021 }
1022
vtable_indices_begin() const1023 MethodVTableIndicesTy::const_iterator vtable_indices_begin() const {
1024 return MethodVTableIndices.begin();
1025 }
1026
vtable_indices_end() const1027 MethodVTableIndicesTy::const_iterator vtable_indices_end() const {
1028 return MethodVTableIndices.end();
1029 }
1030
1031 /// getNumVTableComponents - Return the number of components in the vtable
1032 /// currently built.
getNumVTableComponents() const1033 uint64_t getNumVTableComponents() const {
1034 return Components.size();
1035 }
1036
vtable_component_begin() const1037 const VTableComponent *vtable_component_begin() const {
1038 return Components.begin();
1039 }
1040
vtable_component_end() const1041 const VTableComponent *vtable_component_end() const {
1042 return Components.end();
1043 }
1044
address_points_begin() const1045 AddressPointsMapTy::const_iterator address_points_begin() const {
1046 return AddressPoints.begin();
1047 }
1048
address_points_end() const1049 AddressPointsMapTy::const_iterator address_points_end() const {
1050 return AddressPoints.end();
1051 }
1052
vtable_thunks_begin() const1053 VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
1054 return VTableThunks.begin();
1055 }
1056
vtable_thunks_end() const1057 VTableThunksMapTy::const_iterator vtable_thunks_end() const {
1058 return VTableThunks.end();
1059 }
1060
1061 /// dumpLayout - Dump the vtable layout.
1062 void dumpLayout(raw_ostream&);
1063 };
1064
AddThunk(const CXXMethodDecl * MD,const ThunkInfo & Thunk)1065 void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD,
1066 const ThunkInfo &Thunk) {
1067 assert(!isBuildingConstructorVTable() &&
1068 "Can't add thunks for construction vtable");
1069
1070 SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD];
1071
1072 // Check if we have this thunk already.
1073 if (std::find(ThunksVector.begin(), ThunksVector.end(), Thunk) !=
1074 ThunksVector.end())
1075 return;
1076
1077 ThunksVector.push_back(Thunk);
1078 }
1079
1080 typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy;
1081
1082 /// Visit all the methods overridden by the given method recursively,
1083 /// in a depth-first pre-order. The Visitor's visitor method returns a bool
1084 /// indicating whether to continue the recursion for the given overridden
1085 /// method (i.e. returning false stops the iteration).
1086 template <class VisitorTy>
1087 static void
visitAllOverriddenMethods(const CXXMethodDecl * MD,VisitorTy & Visitor)1088 visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) {
1089 assert(MD->isVirtual() && "Method is not virtual!");
1090
1091 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1092 E = MD->end_overridden_methods(); I != E; ++I) {
1093 const CXXMethodDecl *OverriddenMD = *I;
1094 if (!Visitor(OverriddenMD))
1095 continue;
1096 visitAllOverriddenMethods(OverriddenMD, Visitor);
1097 }
1098 }
1099
1100 /// ComputeAllOverriddenMethods - Given a method decl, will return a set of all
1101 /// the overridden methods that the function decl overrides.
1102 static void
ComputeAllOverriddenMethods(const CXXMethodDecl * MD,OverriddenMethodsSetTy & OverriddenMethods)1103 ComputeAllOverriddenMethods(const CXXMethodDecl *MD,
1104 OverriddenMethodsSetTy& OverriddenMethods) {
1105 auto OverriddenMethodsCollector = [&](const CXXMethodDecl *MD) {
1106 // Don't recurse on this method if we've already collected it.
1107 return OverriddenMethods.insert(MD).second;
1108 };
1109 visitAllOverriddenMethods(MD, OverriddenMethodsCollector);
1110 }
1111
ComputeThisAdjustments()1112 void ItaniumVTableBuilder::ComputeThisAdjustments() {
1113 // Now go through the method info map and see if any of the methods need
1114 // 'this' pointer adjustments.
1115 for (const auto &MI : MethodInfoMap) {
1116 const CXXMethodDecl *MD = MI.first;
1117 const MethodInfo &MethodInfo = MI.second;
1118
1119 // Ignore adjustments for unused function pointers.
1120 uint64_t VTableIndex = MethodInfo.VTableIndex;
1121 if (Components[VTableIndex].getKind() ==
1122 VTableComponent::CK_UnusedFunctionPointer)
1123 continue;
1124
1125 // Get the final overrider for this method.
1126 FinalOverriders::OverriderInfo Overrider =
1127 Overriders.getOverrider(MD, MethodInfo.BaseOffset);
1128
1129 // Check if we need an adjustment at all.
1130 if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) {
1131 // When a return thunk is needed by a derived class that overrides a
1132 // virtual base, gcc uses a virtual 'this' adjustment as well.
1133 // While the thunk itself might be needed by vtables in subclasses or
1134 // in construction vtables, there doesn't seem to be a reason for using
1135 // the thunk in this vtable. Still, we do so to match gcc.
1136 if (VTableThunks.lookup(VTableIndex).Return.isEmpty())
1137 continue;
1138 }
1139
1140 ThisAdjustment ThisAdjustment =
1141 ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider);
1142
1143 if (ThisAdjustment.isEmpty())
1144 continue;
1145
1146 // Add it.
1147 VTableThunks[VTableIndex].This = ThisAdjustment;
1148
1149 if (isa<CXXDestructorDecl>(MD)) {
1150 // Add an adjustment for the deleting destructor as well.
1151 VTableThunks[VTableIndex + 1].This = ThisAdjustment;
1152 }
1153 }
1154
1155 /// Clear the method info map.
1156 MethodInfoMap.clear();
1157
1158 if (isBuildingConstructorVTable()) {
1159 // We don't need to store thunk information for construction vtables.
1160 return;
1161 }
1162
1163 for (const auto &TI : VTableThunks) {
1164 const VTableComponent &Component = Components[TI.first];
1165 const ThunkInfo &Thunk = TI.second;
1166 const CXXMethodDecl *MD;
1167
1168 switch (Component.getKind()) {
1169 default:
1170 llvm_unreachable("Unexpected vtable component kind!");
1171 case VTableComponent::CK_FunctionPointer:
1172 MD = Component.getFunctionDecl();
1173 break;
1174 case VTableComponent::CK_CompleteDtorPointer:
1175 MD = Component.getDestructorDecl();
1176 break;
1177 case VTableComponent::CK_DeletingDtorPointer:
1178 // We've already added the thunk when we saw the complete dtor pointer.
1179 continue;
1180 }
1181
1182 if (MD->getParent() == MostDerivedClass)
1183 AddThunk(MD, Thunk);
1184 }
1185 }
1186
1187 ReturnAdjustment
ComputeReturnAdjustment(BaseOffset Offset)1188 ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) {
1189 ReturnAdjustment Adjustment;
1190
1191 if (!Offset.isEmpty()) {
1192 if (Offset.VirtualBase) {
1193 // Get the virtual base offset offset.
1194 if (Offset.DerivedClass == MostDerivedClass) {
1195 // We can get the offset offset directly from our map.
1196 Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1197 VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity();
1198 } else {
1199 Adjustment.Virtual.Itanium.VBaseOffsetOffset =
1200 VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass,
1201 Offset.VirtualBase).getQuantity();
1202 }
1203 }
1204
1205 Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1206 }
1207
1208 return Adjustment;
1209 }
1210
ComputeThisAdjustmentBaseOffset(BaseSubobject Base,BaseSubobject Derived) const1211 BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset(
1212 BaseSubobject Base, BaseSubobject Derived) const {
1213 const CXXRecordDecl *BaseRD = Base.getBase();
1214 const CXXRecordDecl *DerivedRD = Derived.getBase();
1215
1216 CXXBasePaths Paths(/*FindAmbiguities=*/true,
1217 /*RecordPaths=*/true, /*DetectVirtual=*/true);
1218
1219 if (!DerivedRD->isDerivedFrom(BaseRD, Paths))
1220 llvm_unreachable("Class must be derived from the passed in base class!");
1221
1222 // We have to go through all the paths, and see which one leads us to the
1223 // right base subobject.
1224 for (const CXXBasePath &Path : Paths) {
1225 BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, Path);
1226
1227 CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset;
1228
1229 if (Offset.VirtualBase) {
1230 // If we have a virtual base class, the non-virtual offset is relative
1231 // to the virtual base class offset.
1232 const ASTRecordLayout &LayoutClassLayout =
1233 Context.getASTRecordLayout(LayoutClass);
1234
1235 /// Get the virtual base offset, relative to the most derived class
1236 /// layout.
1237 OffsetToBaseSubobject +=
1238 LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase);
1239 } else {
1240 // Otherwise, the non-virtual offset is relative to the derived class
1241 // offset.
1242 OffsetToBaseSubobject += Derived.getBaseOffset();
1243 }
1244
1245 // Check if this path gives us the right base subobject.
1246 if (OffsetToBaseSubobject == Base.getBaseOffset()) {
1247 // Since we're going from the base class _to_ the derived class, we'll
1248 // invert the non-virtual offset here.
1249 Offset.NonVirtualOffset = -Offset.NonVirtualOffset;
1250 return Offset;
1251 }
1252 }
1253
1254 return BaseOffset();
1255 }
1256
ComputeThisAdjustment(const CXXMethodDecl * MD,CharUnits BaseOffsetInLayoutClass,FinalOverriders::OverriderInfo Overrider)1257 ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment(
1258 const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass,
1259 FinalOverriders::OverriderInfo Overrider) {
1260 // Ignore adjustments for pure virtual member functions.
1261 if (Overrider.Method->isPure())
1262 return ThisAdjustment();
1263
1264 BaseSubobject OverriddenBaseSubobject(MD->getParent(),
1265 BaseOffsetInLayoutClass);
1266
1267 BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(),
1268 Overrider.Offset);
1269
1270 // Compute the adjustment offset.
1271 BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject,
1272 OverriderBaseSubobject);
1273 if (Offset.isEmpty())
1274 return ThisAdjustment();
1275
1276 ThisAdjustment Adjustment;
1277
1278 if (Offset.VirtualBase) {
1279 // Get the vcall offset map for this virtual base.
1280 VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase];
1281
1282 if (VCallOffsets.empty()) {
1283 // We don't have vcall offsets for this virtual base, go ahead and
1284 // build them.
1285 VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, MostDerivedClass,
1286 /*FinalOverriders=*/nullptr,
1287 BaseSubobject(Offset.VirtualBase,
1288 CharUnits::Zero()),
1289 /*BaseIsVirtual=*/true,
1290 /*OffsetInLayoutClass=*/
1291 CharUnits::Zero());
1292
1293 VCallOffsets = Builder.getVCallOffsets();
1294 }
1295
1296 Adjustment.Virtual.Itanium.VCallOffsetOffset =
1297 VCallOffsets.getVCallOffsetOffset(MD).getQuantity();
1298 }
1299
1300 // Set the non-virtual part of the adjustment.
1301 Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity();
1302
1303 return Adjustment;
1304 }
1305
AddMethod(const CXXMethodDecl * MD,ReturnAdjustment ReturnAdjustment)1306 void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD,
1307 ReturnAdjustment ReturnAdjustment) {
1308 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1309 assert(ReturnAdjustment.isEmpty() &&
1310 "Destructor can't have return adjustment!");
1311
1312 // Add both the complete destructor and the deleting destructor.
1313 Components.push_back(VTableComponent::MakeCompleteDtor(DD));
1314 Components.push_back(VTableComponent::MakeDeletingDtor(DD));
1315 } else {
1316 // Add the return adjustment if necessary.
1317 if (!ReturnAdjustment.isEmpty())
1318 VTableThunks[Components.size()].Return = ReturnAdjustment;
1319
1320 // Add the function.
1321 Components.push_back(VTableComponent::MakeFunction(MD));
1322 }
1323 }
1324
1325 /// OverridesIndirectMethodInBase - Return whether the given member function
1326 /// overrides any methods in the set of given bases.
1327 /// Unlike OverridesMethodInBase, this checks "overriders of overriders".
1328 /// For example, if we have:
1329 ///
1330 /// struct A { virtual void f(); }
1331 /// struct B : A { virtual void f(); }
1332 /// struct C : B { virtual void f(); }
1333 ///
1334 /// OverridesIndirectMethodInBase will return true if given C::f as the method
1335 /// and { A } as the set of bases.
OverridesIndirectMethodInBases(const CXXMethodDecl * MD,ItaniumVTableBuilder::PrimaryBasesSetVectorTy & Bases)1336 static bool OverridesIndirectMethodInBases(
1337 const CXXMethodDecl *MD,
1338 ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) {
1339 if (Bases.count(MD->getParent()))
1340 return true;
1341
1342 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1343 E = MD->end_overridden_methods(); I != E; ++I) {
1344 const CXXMethodDecl *OverriddenMD = *I;
1345
1346 // Check "indirect overriders".
1347 if (OverridesIndirectMethodInBases(OverriddenMD, Bases))
1348 return true;
1349 }
1350
1351 return false;
1352 }
1353
IsOverriderUsed(const CXXMethodDecl * Overrider,CharUnits BaseOffsetInLayoutClass,const CXXRecordDecl * FirstBaseInPrimaryBaseChain,CharUnits FirstBaseOffsetInLayoutClass) const1354 bool ItaniumVTableBuilder::IsOverriderUsed(
1355 const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass,
1356 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1357 CharUnits FirstBaseOffsetInLayoutClass) const {
1358 // If the base and the first base in the primary base chain have the same
1359 // offsets, then this overrider will be used.
1360 if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass)
1361 return true;
1362
1363 // We know now that Base (or a direct or indirect base of it) is a primary
1364 // base in part of the class hierarchy, but not a primary base in the most
1365 // derived class.
1366
1367 // If the overrider is the first base in the primary base chain, we know
1368 // that the overrider will be used.
1369 if (Overrider->getParent() == FirstBaseInPrimaryBaseChain)
1370 return true;
1371
1372 ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases;
1373
1374 const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain;
1375 PrimaryBases.insert(RD);
1376
1377 // Now traverse the base chain, starting with the first base, until we find
1378 // the base that is no longer a primary base.
1379 while (true) {
1380 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1381 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1382
1383 if (!PrimaryBase)
1384 break;
1385
1386 if (Layout.isPrimaryBaseVirtual()) {
1387 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1388 "Primary base should always be at offset 0!");
1389
1390 const ASTRecordLayout &LayoutClassLayout =
1391 Context.getASTRecordLayout(LayoutClass);
1392
1393 // Now check if this is the primary base that is not a primary base in the
1394 // most derived class.
1395 if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1396 FirstBaseOffsetInLayoutClass) {
1397 // We found it, stop walking the chain.
1398 break;
1399 }
1400 } else {
1401 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1402 "Primary base should always be at offset 0!");
1403 }
1404
1405 if (!PrimaryBases.insert(PrimaryBase))
1406 llvm_unreachable("Found a duplicate primary base!");
1407
1408 RD = PrimaryBase;
1409 }
1410
1411 // If the final overrider is an override of one of the primary bases,
1412 // then we know that it will be used.
1413 return OverridesIndirectMethodInBases(Overrider, PrimaryBases);
1414 }
1415
1416 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy;
1417
1418 /// FindNearestOverriddenMethod - Given a method, returns the overridden method
1419 /// from the nearest base. Returns null if no method was found.
1420 /// The Bases are expected to be sorted in a base-to-derived order.
1421 static const CXXMethodDecl *
FindNearestOverriddenMethod(const CXXMethodDecl * MD,BasesSetVectorTy & Bases)1422 FindNearestOverriddenMethod(const CXXMethodDecl *MD,
1423 BasesSetVectorTy &Bases) {
1424 OverriddenMethodsSetTy OverriddenMethods;
1425 ComputeAllOverriddenMethods(MD, OverriddenMethods);
1426
1427 for (const CXXRecordDecl *PrimaryBase :
1428 llvm::make_range(Bases.rbegin(), Bases.rend())) {
1429 // Now check the overridden methods.
1430 for (const CXXMethodDecl *OverriddenMD : OverriddenMethods) {
1431 // We found our overridden method.
1432 if (OverriddenMD->getParent() == PrimaryBase)
1433 return OverriddenMD;
1434 }
1435 }
1436
1437 return nullptr;
1438 }
1439
AddMethods(BaseSubobject Base,CharUnits BaseOffsetInLayoutClass,const CXXRecordDecl * FirstBaseInPrimaryBaseChain,CharUnits FirstBaseOffsetInLayoutClass,PrimaryBasesSetVectorTy & PrimaryBases)1440 void ItaniumVTableBuilder::AddMethods(
1441 BaseSubobject Base, CharUnits BaseOffsetInLayoutClass,
1442 const CXXRecordDecl *FirstBaseInPrimaryBaseChain,
1443 CharUnits FirstBaseOffsetInLayoutClass,
1444 PrimaryBasesSetVectorTy &PrimaryBases) {
1445 // Itanium C++ ABI 2.5.2:
1446 // The order of the virtual function pointers in a virtual table is the
1447 // order of declaration of the corresponding member functions in the class.
1448 //
1449 // There is an entry for any virtual function declared in a class,
1450 // whether it is a new function or overrides a base class function,
1451 // unless it overrides a function from the primary base, and conversion
1452 // between their return types does not require an adjustment.
1453
1454 const CXXRecordDecl *RD = Base.getBase();
1455 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1456
1457 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1458 CharUnits PrimaryBaseOffset;
1459 CharUnits PrimaryBaseOffsetInLayoutClass;
1460 if (Layout.isPrimaryBaseVirtual()) {
1461 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() &&
1462 "Primary vbase should have a zero offset!");
1463
1464 const ASTRecordLayout &MostDerivedClassLayout =
1465 Context.getASTRecordLayout(MostDerivedClass);
1466
1467 PrimaryBaseOffset =
1468 MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase);
1469
1470 const ASTRecordLayout &LayoutClassLayout =
1471 Context.getASTRecordLayout(LayoutClass);
1472
1473 PrimaryBaseOffsetInLayoutClass =
1474 LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1475 } else {
1476 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() &&
1477 "Primary base should have a zero offset!");
1478
1479 PrimaryBaseOffset = Base.getBaseOffset();
1480 PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass;
1481 }
1482
1483 AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset),
1484 PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain,
1485 FirstBaseOffsetInLayoutClass, PrimaryBases);
1486
1487 if (!PrimaryBases.insert(PrimaryBase))
1488 llvm_unreachable("Found a duplicate primary base!");
1489 }
1490
1491 const CXXDestructorDecl *ImplicitVirtualDtor = nullptr;
1492
1493 typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy;
1494 NewVirtualFunctionsTy NewVirtualFunctions;
1495
1496 // Now go through all virtual member functions and add them.
1497 for (const auto *MD : RD->methods()) {
1498 if (!MD->isVirtual())
1499 continue;
1500 MD = MD->getCanonicalDecl();
1501
1502 // Get the final overrider.
1503 FinalOverriders::OverriderInfo Overrider =
1504 Overriders.getOverrider(MD, Base.getBaseOffset());
1505
1506 // Check if this virtual member function overrides a method in a primary
1507 // base. If this is the case, and the return type doesn't require adjustment
1508 // then we can just use the member function from the primary base.
1509 if (const CXXMethodDecl *OverriddenMD =
1510 FindNearestOverriddenMethod(MD, PrimaryBases)) {
1511 if (ComputeReturnAdjustmentBaseOffset(Context, MD,
1512 OverriddenMD).isEmpty()) {
1513 // Replace the method info of the overridden method with our own
1514 // method.
1515 assert(MethodInfoMap.count(OverriddenMD) &&
1516 "Did not find the overridden method!");
1517 MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD];
1518
1519 MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1520 OverriddenMethodInfo.VTableIndex);
1521
1522 assert(!MethodInfoMap.count(MD) &&
1523 "Should not have method info for this method yet!");
1524
1525 MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1526 MethodInfoMap.erase(OverriddenMD);
1527
1528 // If the overridden method exists in a virtual base class or a direct
1529 // or indirect base class of a virtual base class, we need to emit a
1530 // thunk if we ever have a class hierarchy where the base class is not
1531 // a primary base in the complete object.
1532 if (!isBuildingConstructorVTable() && OverriddenMD != MD) {
1533 // Compute the this adjustment.
1534 ThisAdjustment ThisAdjustment =
1535 ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass,
1536 Overrider);
1537
1538 if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset &&
1539 Overrider.Method->getParent() == MostDerivedClass) {
1540
1541 // There's no return adjustment from OverriddenMD and MD,
1542 // but that doesn't mean there isn't one between MD and
1543 // the final overrider.
1544 BaseOffset ReturnAdjustmentOffset =
1545 ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD);
1546 ReturnAdjustment ReturnAdjustment =
1547 ComputeReturnAdjustment(ReturnAdjustmentOffset);
1548
1549 // This is a virtual thunk for the most derived class, add it.
1550 AddThunk(Overrider.Method,
1551 ThunkInfo(ThisAdjustment, ReturnAdjustment));
1552 }
1553 }
1554
1555 continue;
1556 }
1557 }
1558
1559 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1560 if (MD->isImplicit()) {
1561 // Itanium C++ ABI 2.5.2:
1562 // If a class has an implicitly-defined virtual destructor,
1563 // its entries come after the declared virtual function pointers.
1564
1565 assert(!ImplicitVirtualDtor &&
1566 "Did already see an implicit virtual dtor!");
1567 ImplicitVirtualDtor = DD;
1568 continue;
1569 }
1570 }
1571
1572 NewVirtualFunctions.push_back(MD);
1573 }
1574
1575 if (ImplicitVirtualDtor)
1576 NewVirtualFunctions.push_back(ImplicitVirtualDtor);
1577
1578 for (const CXXMethodDecl *MD : NewVirtualFunctions) {
1579 // Get the final overrider.
1580 FinalOverriders::OverriderInfo Overrider =
1581 Overriders.getOverrider(MD, Base.getBaseOffset());
1582
1583 // Insert the method info for this method.
1584 MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass,
1585 Components.size());
1586
1587 assert(!MethodInfoMap.count(MD) &&
1588 "Should not have method info for this method yet!");
1589 MethodInfoMap.insert(std::make_pair(MD, MethodInfo));
1590
1591 // Check if this overrider is going to be used.
1592 const CXXMethodDecl *OverriderMD = Overrider.Method;
1593 if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass,
1594 FirstBaseInPrimaryBaseChain,
1595 FirstBaseOffsetInLayoutClass)) {
1596 Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD));
1597 continue;
1598 }
1599
1600 // Check if this overrider needs a return adjustment.
1601 // We don't want to do this for pure virtual member functions.
1602 BaseOffset ReturnAdjustmentOffset;
1603 if (!OverriderMD->isPure()) {
1604 ReturnAdjustmentOffset =
1605 ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD);
1606 }
1607
1608 ReturnAdjustment ReturnAdjustment =
1609 ComputeReturnAdjustment(ReturnAdjustmentOffset);
1610
1611 AddMethod(Overrider.Method, ReturnAdjustment);
1612 }
1613 }
1614
LayoutVTable()1615 void ItaniumVTableBuilder::LayoutVTable() {
1616 LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass,
1617 CharUnits::Zero()),
1618 /*BaseIsMorallyVirtual=*/false,
1619 MostDerivedClassIsVirtual,
1620 MostDerivedClassOffset);
1621
1622 VisitedVirtualBasesSetTy VBases;
1623
1624 // Determine the primary virtual bases.
1625 DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset,
1626 VBases);
1627 VBases.clear();
1628
1629 LayoutVTablesForVirtualBases(MostDerivedClass, VBases);
1630
1631 // -fapple-kext adds an extra entry at end of vtbl.
1632 bool IsAppleKext = Context.getLangOpts().AppleKext;
1633 if (IsAppleKext)
1634 Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero()));
1635 }
1636
LayoutPrimaryAndSecondaryVTables(BaseSubobject Base,bool BaseIsMorallyVirtual,bool BaseIsVirtualInLayoutClass,CharUnits OffsetInLayoutClass)1637 void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables(
1638 BaseSubobject Base, bool BaseIsMorallyVirtual,
1639 bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) {
1640 assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!");
1641
1642 // Add vcall and vbase offsets for this vtable.
1643 VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, LayoutClass, &Overriders,
1644 Base, BaseIsVirtualInLayoutClass,
1645 OffsetInLayoutClass);
1646 Components.append(Builder.components_begin(), Builder.components_end());
1647
1648 // Check if we need to add these vcall offsets.
1649 if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) {
1650 VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()];
1651
1652 if (VCallOffsets.empty())
1653 VCallOffsets = Builder.getVCallOffsets();
1654 }
1655
1656 // If we're laying out the most derived class we want to keep track of the
1657 // virtual base class offset offsets.
1658 if (Base.getBase() == MostDerivedClass)
1659 VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets();
1660
1661 // Add the offset to top.
1662 CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass;
1663 Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop));
1664
1665 // Next, add the RTTI.
1666 Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
1667
1668 uint64_t AddressPoint = Components.size();
1669
1670 // Now go through all virtual member functions and add them.
1671 PrimaryBasesSetVectorTy PrimaryBases;
1672 AddMethods(Base, OffsetInLayoutClass,
1673 Base.getBase(), OffsetInLayoutClass,
1674 PrimaryBases);
1675
1676 const CXXRecordDecl *RD = Base.getBase();
1677 if (RD == MostDerivedClass) {
1678 assert(MethodVTableIndices.empty());
1679 for (const auto &I : MethodInfoMap) {
1680 const CXXMethodDecl *MD = I.first;
1681 const MethodInfo &MI = I.second;
1682 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1683 MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)]
1684 = MI.VTableIndex - AddressPoint;
1685 MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)]
1686 = MI.VTableIndex + 1 - AddressPoint;
1687 } else {
1688 MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint;
1689 }
1690 }
1691 }
1692
1693 // Compute 'this' pointer adjustments.
1694 ComputeThisAdjustments();
1695
1696 // Add all address points.
1697 while (true) {
1698 AddressPoints.insert(std::make_pair(
1699 BaseSubobject(RD, OffsetInLayoutClass),
1700 AddressPoint));
1701
1702 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1703 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1704
1705 if (!PrimaryBase)
1706 break;
1707
1708 if (Layout.isPrimaryBaseVirtual()) {
1709 // Check if this virtual primary base is a primary base in the layout
1710 // class. If it's not, we don't want to add it.
1711 const ASTRecordLayout &LayoutClassLayout =
1712 Context.getASTRecordLayout(LayoutClass);
1713
1714 if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) !=
1715 OffsetInLayoutClass) {
1716 // We don't want to add this class (or any of its primary bases).
1717 break;
1718 }
1719 }
1720
1721 RD = PrimaryBase;
1722 }
1723
1724 // Layout secondary vtables.
1725 LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass);
1726 }
1727
1728 void
LayoutSecondaryVTables(BaseSubobject Base,bool BaseIsMorallyVirtual,CharUnits OffsetInLayoutClass)1729 ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base,
1730 bool BaseIsMorallyVirtual,
1731 CharUnits OffsetInLayoutClass) {
1732 // Itanium C++ ABI 2.5.2:
1733 // Following the primary virtual table of a derived class are secondary
1734 // virtual tables for each of its proper base classes, except any primary
1735 // base(s) with which it shares its primary virtual table.
1736
1737 const CXXRecordDecl *RD = Base.getBase();
1738 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1739 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
1740
1741 for (const auto &B : RD->bases()) {
1742 // Ignore virtual bases, we'll emit them later.
1743 if (B.isVirtual())
1744 continue;
1745
1746 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1747
1748 // Ignore bases that don't have a vtable.
1749 if (!BaseDecl->isDynamicClass())
1750 continue;
1751
1752 if (isBuildingConstructorVTable()) {
1753 // Itanium C++ ABI 2.6.4:
1754 // Some of the base class subobjects may not need construction virtual
1755 // tables, which will therefore not be present in the construction
1756 // virtual table group, even though the subobject virtual tables are
1757 // present in the main virtual table group for the complete object.
1758 if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases())
1759 continue;
1760 }
1761
1762 // Get the base offset of this base.
1763 CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl);
1764 CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset;
1765
1766 CharUnits BaseOffsetInLayoutClass =
1767 OffsetInLayoutClass + RelativeBaseOffset;
1768
1769 // Don't emit a secondary vtable for a primary base. We might however want
1770 // to emit secondary vtables for other bases of this base.
1771 if (BaseDecl == PrimaryBase) {
1772 LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset),
1773 BaseIsMorallyVirtual, BaseOffsetInLayoutClass);
1774 continue;
1775 }
1776
1777 // Layout the primary vtable (and any secondary vtables) for this base.
1778 LayoutPrimaryAndSecondaryVTables(
1779 BaseSubobject(BaseDecl, BaseOffset),
1780 BaseIsMorallyVirtual,
1781 /*BaseIsVirtualInLayoutClass=*/false,
1782 BaseOffsetInLayoutClass);
1783 }
1784 }
1785
DeterminePrimaryVirtualBases(const CXXRecordDecl * RD,CharUnits OffsetInLayoutClass,VisitedVirtualBasesSetTy & VBases)1786 void ItaniumVTableBuilder::DeterminePrimaryVirtualBases(
1787 const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass,
1788 VisitedVirtualBasesSetTy &VBases) {
1789 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1790
1791 // Check if this base has a primary base.
1792 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
1793
1794 // Check if it's virtual.
1795 if (Layout.isPrimaryBaseVirtual()) {
1796 bool IsPrimaryVirtualBase = true;
1797
1798 if (isBuildingConstructorVTable()) {
1799 // Check if the base is actually a primary base in the class we use for
1800 // layout.
1801 const ASTRecordLayout &LayoutClassLayout =
1802 Context.getASTRecordLayout(LayoutClass);
1803
1804 CharUnits PrimaryBaseOffsetInLayoutClass =
1805 LayoutClassLayout.getVBaseClassOffset(PrimaryBase);
1806
1807 // We know that the base is not a primary base in the layout class if
1808 // the base offsets are different.
1809 if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass)
1810 IsPrimaryVirtualBase = false;
1811 }
1812
1813 if (IsPrimaryVirtualBase)
1814 PrimaryVirtualBases.insert(PrimaryBase);
1815 }
1816 }
1817
1818 // Traverse bases, looking for more primary virtual bases.
1819 for (const auto &B : RD->bases()) {
1820 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1821
1822 CharUnits BaseOffsetInLayoutClass;
1823
1824 if (B.isVirtual()) {
1825 if (!VBases.insert(BaseDecl).second)
1826 continue;
1827
1828 const ASTRecordLayout &LayoutClassLayout =
1829 Context.getASTRecordLayout(LayoutClass);
1830
1831 BaseOffsetInLayoutClass =
1832 LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1833 } else {
1834 BaseOffsetInLayoutClass =
1835 OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl);
1836 }
1837
1838 DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases);
1839 }
1840 }
1841
LayoutVTablesForVirtualBases(const CXXRecordDecl * RD,VisitedVirtualBasesSetTy & VBases)1842 void ItaniumVTableBuilder::LayoutVTablesForVirtualBases(
1843 const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) {
1844 // Itanium C++ ABI 2.5.2:
1845 // Then come the virtual base virtual tables, also in inheritance graph
1846 // order, and again excluding primary bases (which share virtual tables with
1847 // the classes for which they are primary).
1848 for (const auto &B : RD->bases()) {
1849 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl();
1850
1851 // Check if this base needs a vtable. (If it's virtual, not a primary base
1852 // of some other class, and we haven't visited it before).
1853 if (B.isVirtual() && BaseDecl->isDynamicClass() &&
1854 !PrimaryVirtualBases.count(BaseDecl) &&
1855 VBases.insert(BaseDecl).second) {
1856 const ASTRecordLayout &MostDerivedClassLayout =
1857 Context.getASTRecordLayout(MostDerivedClass);
1858 CharUnits BaseOffset =
1859 MostDerivedClassLayout.getVBaseClassOffset(BaseDecl);
1860
1861 const ASTRecordLayout &LayoutClassLayout =
1862 Context.getASTRecordLayout(LayoutClass);
1863 CharUnits BaseOffsetInLayoutClass =
1864 LayoutClassLayout.getVBaseClassOffset(BaseDecl);
1865
1866 LayoutPrimaryAndSecondaryVTables(
1867 BaseSubobject(BaseDecl, BaseOffset),
1868 /*BaseIsMorallyVirtual=*/true,
1869 /*BaseIsVirtualInLayoutClass=*/true,
1870 BaseOffsetInLayoutClass);
1871 }
1872
1873 // We only need to check the base for virtual base vtables if it actually
1874 // has virtual bases.
1875 if (BaseDecl->getNumVBases())
1876 LayoutVTablesForVirtualBases(BaseDecl, VBases);
1877 }
1878 }
1879
1880 /// dumpLayout - Dump the vtable layout.
dumpLayout(raw_ostream & Out)1881 void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) {
1882 // FIXME: write more tests that actually use the dumpLayout output to prevent
1883 // ItaniumVTableBuilder regressions.
1884
1885 if (isBuildingConstructorVTable()) {
1886 Out << "Construction vtable for ('";
1887 MostDerivedClass->printQualifiedName(Out);
1888 Out << "', ";
1889 Out << MostDerivedClassOffset.getQuantity() << ") in '";
1890 LayoutClass->printQualifiedName(Out);
1891 } else {
1892 Out << "Vtable for '";
1893 MostDerivedClass->printQualifiedName(Out);
1894 }
1895 Out << "' (" << Components.size() << " entries).\n";
1896
1897 // Iterate through the address points and insert them into a new map where
1898 // they are keyed by the index and not the base object.
1899 // Since an address point can be shared by multiple subobjects, we use an
1900 // STL multimap.
1901 std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex;
1902 for (const auto &AP : AddressPoints) {
1903 const BaseSubobject &Base = AP.first;
1904 uint64_t Index = AP.second;
1905
1906 AddressPointsByIndex.insert(std::make_pair(Index, Base));
1907 }
1908
1909 for (unsigned I = 0, E = Components.size(); I != E; ++I) {
1910 uint64_t Index = I;
1911
1912 Out << llvm::format("%4d | ", I);
1913
1914 const VTableComponent &Component = Components[I];
1915
1916 // Dump the component.
1917 switch (Component.getKind()) {
1918
1919 case VTableComponent::CK_VCallOffset:
1920 Out << "vcall_offset ("
1921 << Component.getVCallOffset().getQuantity()
1922 << ")";
1923 break;
1924
1925 case VTableComponent::CK_VBaseOffset:
1926 Out << "vbase_offset ("
1927 << Component.getVBaseOffset().getQuantity()
1928 << ")";
1929 break;
1930
1931 case VTableComponent::CK_OffsetToTop:
1932 Out << "offset_to_top ("
1933 << Component.getOffsetToTop().getQuantity()
1934 << ")";
1935 break;
1936
1937 case VTableComponent::CK_RTTI:
1938 Component.getRTTIDecl()->printQualifiedName(Out);
1939 Out << " RTTI";
1940 break;
1941
1942 case VTableComponent::CK_FunctionPointer: {
1943 const CXXMethodDecl *MD = Component.getFunctionDecl();
1944
1945 std::string Str =
1946 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
1947 MD);
1948 Out << Str;
1949 if (MD->isPure())
1950 Out << " [pure]";
1951
1952 if (MD->isDeleted())
1953 Out << " [deleted]";
1954
1955 ThunkInfo Thunk = VTableThunks.lookup(I);
1956 if (!Thunk.isEmpty()) {
1957 // If this function pointer has a return adjustment, dump it.
1958 if (!Thunk.Return.isEmpty()) {
1959 Out << "\n [return adjustment: ";
1960 Out << Thunk.Return.NonVirtual << " non-virtual";
1961
1962 if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
1963 Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
1964 Out << " vbase offset offset";
1965 }
1966
1967 Out << ']';
1968 }
1969
1970 // If this function pointer has a 'this' pointer adjustment, dump it.
1971 if (!Thunk.This.isEmpty()) {
1972 Out << "\n [this adjustment: ";
1973 Out << Thunk.This.NonVirtual << " non-virtual";
1974
1975 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
1976 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
1977 Out << " vcall offset offset";
1978 }
1979
1980 Out << ']';
1981 }
1982 }
1983
1984 break;
1985 }
1986
1987 case VTableComponent::CK_CompleteDtorPointer:
1988 case VTableComponent::CK_DeletingDtorPointer: {
1989 bool IsComplete =
1990 Component.getKind() == VTableComponent::CK_CompleteDtorPointer;
1991
1992 const CXXDestructorDecl *DD = Component.getDestructorDecl();
1993
1994 DD->printQualifiedName(Out);
1995 if (IsComplete)
1996 Out << "() [complete]";
1997 else
1998 Out << "() [deleting]";
1999
2000 if (DD->isPure())
2001 Out << " [pure]";
2002
2003 ThunkInfo Thunk = VTableThunks.lookup(I);
2004 if (!Thunk.isEmpty()) {
2005 // If this destructor has a 'this' pointer adjustment, dump it.
2006 if (!Thunk.This.isEmpty()) {
2007 Out << "\n [this adjustment: ";
2008 Out << Thunk.This.NonVirtual << " non-virtual";
2009
2010 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2011 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2012 Out << " vcall offset offset";
2013 }
2014
2015 Out << ']';
2016 }
2017 }
2018
2019 break;
2020 }
2021
2022 case VTableComponent::CK_UnusedFunctionPointer: {
2023 const CXXMethodDecl *MD = Component.getUnusedFunctionDecl();
2024
2025 std::string Str =
2026 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2027 MD);
2028 Out << "[unused] " << Str;
2029 if (MD->isPure())
2030 Out << " [pure]";
2031 }
2032
2033 }
2034
2035 Out << '\n';
2036
2037 // Dump the next address point.
2038 uint64_t NextIndex = Index + 1;
2039 if (AddressPointsByIndex.count(NextIndex)) {
2040 if (AddressPointsByIndex.count(NextIndex) == 1) {
2041 const BaseSubobject &Base =
2042 AddressPointsByIndex.find(NextIndex)->second;
2043
2044 Out << " -- (";
2045 Base.getBase()->printQualifiedName(Out);
2046 Out << ", " << Base.getBaseOffset().getQuantity();
2047 Out << ") vtable address --\n";
2048 } else {
2049 CharUnits BaseOffset =
2050 AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset();
2051
2052 // We store the class names in a set to get a stable order.
2053 std::set<std::string> ClassNames;
2054 for (const auto &I :
2055 llvm::make_range(AddressPointsByIndex.equal_range(NextIndex))) {
2056 assert(I.second.getBaseOffset() == BaseOffset &&
2057 "Invalid base offset!");
2058 const CXXRecordDecl *RD = I.second.getBase();
2059 ClassNames.insert(RD->getQualifiedNameAsString());
2060 }
2061
2062 for (const std::string &Name : ClassNames) {
2063 Out << " -- (" << Name;
2064 Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n";
2065 }
2066 }
2067 }
2068 }
2069
2070 Out << '\n';
2071
2072 if (isBuildingConstructorVTable())
2073 return;
2074
2075 if (MostDerivedClass->getNumVBases()) {
2076 // We store the virtual base class names and their offsets in a map to get
2077 // a stable order.
2078
2079 std::map<std::string, CharUnits> ClassNamesAndOffsets;
2080 for (const auto &I : VBaseOffsetOffsets) {
2081 std::string ClassName = I.first->getQualifiedNameAsString();
2082 CharUnits OffsetOffset = I.second;
2083 ClassNamesAndOffsets.insert(std::make_pair(ClassName, OffsetOffset));
2084 }
2085
2086 Out << "Virtual base offset offsets for '";
2087 MostDerivedClass->printQualifiedName(Out);
2088 Out << "' (";
2089 Out << ClassNamesAndOffsets.size();
2090 Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n";
2091
2092 for (const auto &I : ClassNamesAndOffsets)
2093 Out << " " << I.first << " | " << I.second.getQuantity() << '\n';
2094
2095 Out << "\n";
2096 }
2097
2098 if (!Thunks.empty()) {
2099 // We store the method names in a map to get a stable order.
2100 std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
2101
2102 for (const auto &I : Thunks) {
2103 const CXXMethodDecl *MD = I.first;
2104 std::string MethodName =
2105 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2106 MD);
2107
2108 MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
2109 }
2110
2111 for (const auto &I : MethodNamesAndDecls) {
2112 const std::string &MethodName = I.first;
2113 const CXXMethodDecl *MD = I.second;
2114
2115 ThunkInfoVectorTy ThunksVector = Thunks[MD];
2116 std::sort(ThunksVector.begin(), ThunksVector.end(),
2117 [](const ThunkInfo &LHS, const ThunkInfo &RHS) {
2118 assert(LHS.Method == nullptr && RHS.Method == nullptr);
2119 return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
2120 });
2121
2122 Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
2123 Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
2124
2125 for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
2126 const ThunkInfo &Thunk = ThunksVector[I];
2127
2128 Out << llvm::format("%4d | ", I);
2129
2130 // If this function pointer has a return pointer adjustment, dump it.
2131 if (!Thunk.Return.isEmpty()) {
2132 Out << "return adjustment: " << Thunk.Return.NonVirtual;
2133 Out << " non-virtual";
2134 if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) {
2135 Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset;
2136 Out << " vbase offset offset";
2137 }
2138
2139 if (!Thunk.This.isEmpty())
2140 Out << "\n ";
2141 }
2142
2143 // If this function pointer has a 'this' pointer adjustment, dump it.
2144 if (!Thunk.This.isEmpty()) {
2145 Out << "this adjustment: ";
2146 Out << Thunk.This.NonVirtual << " non-virtual";
2147
2148 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) {
2149 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset;
2150 Out << " vcall offset offset";
2151 }
2152 }
2153
2154 Out << '\n';
2155 }
2156
2157 Out << '\n';
2158 }
2159 }
2160
2161 // Compute the vtable indices for all the member functions.
2162 // Store them in a map keyed by the index so we'll get a sorted table.
2163 std::map<uint64_t, std::string> IndicesMap;
2164
2165 for (const auto *MD : MostDerivedClass->methods()) {
2166 // We only want virtual member functions.
2167 if (!MD->isVirtual())
2168 continue;
2169 MD = MD->getCanonicalDecl();
2170
2171 std::string MethodName =
2172 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual,
2173 MD);
2174
2175 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2176 GlobalDecl GD(DD, Dtor_Complete);
2177 assert(MethodVTableIndices.count(GD));
2178 uint64_t VTableIndex = MethodVTableIndices[GD];
2179 IndicesMap[VTableIndex] = MethodName + " [complete]";
2180 IndicesMap[VTableIndex + 1] = MethodName + " [deleting]";
2181 } else {
2182 assert(MethodVTableIndices.count(MD));
2183 IndicesMap[MethodVTableIndices[MD]] = MethodName;
2184 }
2185 }
2186
2187 // Print the vtable indices for all the member functions.
2188 if (!IndicesMap.empty()) {
2189 Out << "VTable indices for '";
2190 MostDerivedClass->printQualifiedName(Out);
2191 Out << "' (" << IndicesMap.size() << " entries).\n";
2192
2193 for (const auto &I : IndicesMap) {
2194 uint64_t VTableIndex = I.first;
2195 const std::string &MethodName = I.second;
2196
2197 Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName
2198 << '\n';
2199 }
2200 }
2201
2202 Out << '\n';
2203 }
2204 }
2205
VTableLayout(uint64_t NumVTableComponents,const VTableComponent * VTableComponents,uint64_t NumVTableThunks,const VTableThunkTy * VTableThunks,const AddressPointsMapTy & AddressPoints,bool IsMicrosoftABI)2206 VTableLayout::VTableLayout(uint64_t NumVTableComponents,
2207 const VTableComponent *VTableComponents,
2208 uint64_t NumVTableThunks,
2209 const VTableThunkTy *VTableThunks,
2210 const AddressPointsMapTy &AddressPoints,
2211 bool IsMicrosoftABI)
2212 : NumVTableComponents(NumVTableComponents),
2213 VTableComponents(new VTableComponent[NumVTableComponents]),
2214 NumVTableThunks(NumVTableThunks),
2215 VTableThunks(new VTableThunkTy[NumVTableThunks]),
2216 AddressPoints(AddressPoints),
2217 IsMicrosoftABI(IsMicrosoftABI) {
2218 std::copy(VTableComponents, VTableComponents+NumVTableComponents,
2219 this->VTableComponents.get());
2220 std::copy(VTableThunks, VTableThunks+NumVTableThunks,
2221 this->VTableThunks.get());
2222 std::sort(this->VTableThunks.get(),
2223 this->VTableThunks.get() + NumVTableThunks,
2224 [](const VTableLayout::VTableThunkTy &LHS,
2225 const VTableLayout::VTableThunkTy &RHS) {
2226 assert((LHS.first != RHS.first || LHS.second == RHS.second) &&
2227 "Different thunks should have unique indices!");
2228 return LHS.first < RHS.first;
2229 });
2230 }
2231
~VTableLayout()2232 VTableLayout::~VTableLayout() { }
2233
ItaniumVTableContext(ASTContext & Context)2234 ItaniumVTableContext::ItaniumVTableContext(ASTContext &Context)
2235 : VTableContextBase(/*MS=*/false) {}
2236
~ItaniumVTableContext()2237 ItaniumVTableContext::~ItaniumVTableContext() {
2238 llvm::DeleteContainerSeconds(VTableLayouts);
2239 }
2240
getMethodVTableIndex(GlobalDecl GD)2241 uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) {
2242 MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD);
2243 if (I != MethodVTableIndices.end())
2244 return I->second;
2245
2246 const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
2247
2248 computeVTableRelatedInformation(RD);
2249
2250 I = MethodVTableIndices.find(GD);
2251 assert(I != MethodVTableIndices.end() && "Did not find index!");
2252 return I->second;
2253 }
2254
2255 CharUnits
getVirtualBaseOffsetOffset(const CXXRecordDecl * RD,const CXXRecordDecl * VBase)2256 ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD,
2257 const CXXRecordDecl *VBase) {
2258 ClassPairTy ClassPair(RD, VBase);
2259
2260 VirtualBaseClassOffsetOffsetsMapTy::iterator I =
2261 VirtualBaseClassOffsetOffsets.find(ClassPair);
2262 if (I != VirtualBaseClassOffsetOffsets.end())
2263 return I->second;
2264
2265 VCallAndVBaseOffsetBuilder Builder(RD, RD, /*FinalOverriders=*/nullptr,
2266 BaseSubobject(RD, CharUnits::Zero()),
2267 /*BaseIsVirtual=*/false,
2268 /*OffsetInLayoutClass=*/CharUnits::Zero());
2269
2270 for (const auto &I : Builder.getVBaseOffsetOffsets()) {
2271 // Insert all types.
2272 ClassPairTy ClassPair(RD, I.first);
2273
2274 VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
2275 }
2276
2277 I = VirtualBaseClassOffsetOffsets.find(ClassPair);
2278 assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!");
2279
2280 return I->second;
2281 }
2282
CreateVTableLayout(const ItaniumVTableBuilder & Builder)2283 static VTableLayout *CreateVTableLayout(const ItaniumVTableBuilder &Builder) {
2284 SmallVector<VTableLayout::VTableThunkTy, 1>
2285 VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
2286
2287 return new VTableLayout(Builder.getNumVTableComponents(),
2288 Builder.vtable_component_begin(),
2289 VTableThunks.size(),
2290 VTableThunks.data(),
2291 Builder.getAddressPoints(),
2292 /*IsMicrosoftABI=*/false);
2293 }
2294
2295 void
computeVTableRelatedInformation(const CXXRecordDecl * RD)2296 ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) {
2297 const VTableLayout *&Entry = VTableLayouts[RD];
2298
2299 // Check if we've computed this information before.
2300 if (Entry)
2301 return;
2302
2303 ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(),
2304 /*MostDerivedClassIsVirtual=*/0, RD);
2305 Entry = CreateVTableLayout(Builder);
2306
2307 MethodVTableIndices.insert(Builder.vtable_indices_begin(),
2308 Builder.vtable_indices_end());
2309
2310 // Add the known thunks.
2311 Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
2312
2313 // If we don't have the vbase information for this class, insert it.
2314 // getVirtualBaseOffsetOffset will compute it separately without computing
2315 // the rest of the vtable related information.
2316 if (!RD->getNumVBases())
2317 return;
2318
2319 const CXXRecordDecl *VBase =
2320 RD->vbases_begin()->getType()->getAsCXXRecordDecl();
2321
2322 if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase)))
2323 return;
2324
2325 for (const auto &I : Builder.getVBaseOffsetOffsets()) {
2326 // Insert all types.
2327 ClassPairTy ClassPair(RD, I.first);
2328
2329 VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second));
2330 }
2331 }
2332
createConstructionVTableLayout(const CXXRecordDecl * MostDerivedClass,CharUnits MostDerivedClassOffset,bool MostDerivedClassIsVirtual,const CXXRecordDecl * LayoutClass)2333 VTableLayout *ItaniumVTableContext::createConstructionVTableLayout(
2334 const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset,
2335 bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) {
2336 ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset,
2337 MostDerivedClassIsVirtual, LayoutClass);
2338 return CreateVTableLayout(Builder);
2339 }
2340
2341 namespace {
2342
2343 // Vtables in the Microsoft ABI are different from the Itanium ABI.
2344 //
2345 // The main differences are:
2346 // 1. Separate vftable and vbtable.
2347 //
2348 // 2. Each subobject with a vfptr gets its own vftable rather than an address
2349 // point in a single vtable shared between all the subobjects.
2350 // Each vftable is represented by a separate section and virtual calls
2351 // must be done using the vftable which has a slot for the function to be
2352 // called.
2353 //
2354 // 3. Virtual method definitions expect their 'this' parameter to point to the
2355 // first vfptr whose table provides a compatible overridden method. In many
2356 // cases, this permits the original vf-table entry to directly call
2357 // the method instead of passing through a thunk.
2358 // See example before VFTableBuilder::ComputeThisOffset below.
2359 //
2360 // A compatible overridden method is one which does not have a non-trivial
2361 // covariant-return adjustment.
2362 //
2363 // The first vfptr is the one with the lowest offset in the complete-object
2364 // layout of the defining class, and the method definition will subtract
2365 // that constant offset from the parameter value to get the real 'this'
2366 // value. Therefore, if the offset isn't really constant (e.g. if a virtual
2367 // function defined in a virtual base is overridden in a more derived
2368 // virtual base and these bases have a reverse order in the complete
2369 // object), the vf-table may require a this-adjustment thunk.
2370 //
2371 // 4. vftables do not contain new entries for overrides that merely require
2372 // this-adjustment. Together with #3, this keeps vf-tables smaller and
2373 // eliminates the need for this-adjustment thunks in many cases, at the cost
2374 // of often requiring redundant work to adjust the "this" pointer.
2375 //
2376 // 5. Instead of VTT and constructor vtables, vbtables and vtordisps are used.
2377 // Vtordisps are emitted into the class layout if a class has
2378 // a) a user-defined ctor/dtor
2379 // and
2380 // b) a method overriding a method in a virtual base.
2381 //
2382 // To get a better understanding of this code,
2383 // you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp
2384
2385 class VFTableBuilder {
2386 public:
2387 typedef MicrosoftVTableContext::MethodVFTableLocation MethodVFTableLocation;
2388
2389 typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation>
2390 MethodVFTableLocationsTy;
2391
2392 typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator>
2393 method_locations_range;
2394
2395 private:
2396 /// VTables - Global vtable information.
2397 MicrosoftVTableContext &VTables;
2398
2399 /// Context - The ASTContext which we will use for layout information.
2400 ASTContext &Context;
2401
2402 /// MostDerivedClass - The most derived class for which we're building this
2403 /// vtable.
2404 const CXXRecordDecl *MostDerivedClass;
2405
2406 const ASTRecordLayout &MostDerivedClassLayout;
2407
2408 const VPtrInfo &WhichVFPtr;
2409
2410 /// FinalOverriders - The final overriders of the most derived class.
2411 const FinalOverriders Overriders;
2412
2413 /// Components - The components of the vftable being built.
2414 SmallVector<VTableComponent, 64> Components;
2415
2416 MethodVFTableLocationsTy MethodVFTableLocations;
2417
2418 /// \brief Does this class have an RTTI component?
2419 bool HasRTTIComponent = false;
2420
2421 /// MethodInfo - Contains information about a method in a vtable.
2422 /// (Used for computing 'this' pointer adjustment thunks.
2423 struct MethodInfo {
2424 /// VBTableIndex - The nonzero index in the vbtable that
2425 /// this method's base has, or zero.
2426 const uint64_t VBTableIndex;
2427
2428 /// VFTableIndex - The index in the vftable that this method has.
2429 const uint64_t VFTableIndex;
2430
2431 /// Shadowed - Indicates if this vftable slot is shadowed by
2432 /// a slot for a covariant-return override. If so, it shouldn't be printed
2433 /// or used for vcalls in the most derived class.
2434 bool Shadowed;
2435
2436 /// UsesExtraSlot - Indicates if this vftable slot was created because
2437 /// any of the overridden slots required a return adjusting thunk.
2438 bool UsesExtraSlot;
2439
MethodInfo__anon0519fbe30511::VFTableBuilder::MethodInfo2440 MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex,
2441 bool UsesExtraSlot = false)
2442 : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex),
2443 Shadowed(false), UsesExtraSlot(UsesExtraSlot) {}
2444
MethodInfo__anon0519fbe30511::VFTableBuilder::MethodInfo2445 MethodInfo()
2446 : VBTableIndex(0), VFTableIndex(0), Shadowed(false),
2447 UsesExtraSlot(false) {}
2448 };
2449
2450 typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy;
2451
2452 /// MethodInfoMap - The information for all methods in the vftable we're
2453 /// currently building.
2454 MethodInfoMapTy MethodInfoMap;
2455
2456 typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy;
2457
2458 /// VTableThunks - The thunks by vftable index in the vftable currently being
2459 /// built.
2460 VTableThunksMapTy VTableThunks;
2461
2462 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy;
2463 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy;
2464
2465 /// Thunks - A map that contains all the thunks needed for all methods in the
2466 /// most derived class for which the vftable is currently being built.
2467 ThunksMapTy Thunks;
2468
2469 /// AddThunk - Add a thunk for the given method.
AddThunk(const CXXMethodDecl * MD,const ThunkInfo & Thunk)2470 void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) {
2471 SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD];
2472
2473 // Check if we have this thunk already.
2474 if (std::find(ThunksVector.begin(), ThunksVector.end(), Thunk) !=
2475 ThunksVector.end())
2476 return;
2477
2478 ThunksVector.push_back(Thunk);
2479 }
2480
2481 /// ComputeThisOffset - Returns the 'this' argument offset for the given
2482 /// method, relative to the beginning of the MostDerivedClass.
2483 CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider);
2484
2485 void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider,
2486 CharUnits ThisOffset, ThisAdjustment &TA);
2487
2488 /// AddMethod - Add a single virtual member function to the vftable
2489 /// components vector.
AddMethod(const CXXMethodDecl * MD,ThunkInfo TI)2490 void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) {
2491 if (!TI.isEmpty()) {
2492 VTableThunks[Components.size()] = TI;
2493 AddThunk(MD, TI);
2494 }
2495 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2496 assert(TI.Return.isEmpty() &&
2497 "Destructor can't have return adjustment!");
2498 Components.push_back(VTableComponent::MakeDeletingDtor(DD));
2499 } else {
2500 Components.push_back(VTableComponent::MakeFunction(MD));
2501 }
2502 }
2503
2504 /// AddMethods - Add the methods of this base subobject and the relevant
2505 /// subbases to the vftable we're currently laying out.
2506 void AddMethods(BaseSubobject Base, unsigned BaseDepth,
2507 const CXXRecordDecl *LastVBase,
2508 BasesSetVectorTy &VisitedBases);
2509
LayoutVFTable()2510 void LayoutVFTable() {
2511 // RTTI data goes before all other entries.
2512 if (HasRTTIComponent)
2513 Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass));
2514
2515 BasesSetVectorTy VisitedBases;
2516 AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, nullptr,
2517 VisitedBases);
2518 assert((HasRTTIComponent ? Components.size() - 1 : Components.size()) &&
2519 "vftable can't be empty");
2520
2521 assert(MethodVFTableLocations.empty());
2522 for (const auto &I : MethodInfoMap) {
2523 const CXXMethodDecl *MD = I.first;
2524 const MethodInfo &MI = I.second;
2525 // Skip the methods that the MostDerivedClass didn't override
2526 // and the entries shadowed by return adjusting thunks.
2527 if (MD->getParent() != MostDerivedClass || MI.Shadowed)
2528 continue;
2529 MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(),
2530 WhichVFPtr.NonVirtualOffset, MI.VFTableIndex);
2531 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
2532 MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc;
2533 } else {
2534 MethodVFTableLocations[MD] = Loc;
2535 }
2536 }
2537 }
2538
2539 public:
VFTableBuilder(MicrosoftVTableContext & VTables,const CXXRecordDecl * MostDerivedClass,const VPtrInfo * Which)2540 VFTableBuilder(MicrosoftVTableContext &VTables,
2541 const CXXRecordDecl *MostDerivedClass, const VPtrInfo *Which)
2542 : VTables(VTables),
2543 Context(MostDerivedClass->getASTContext()),
2544 MostDerivedClass(MostDerivedClass),
2545 MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)),
2546 WhichVFPtr(*Which),
2547 Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) {
2548 // Provide the RTTI component if RTTIData is enabled. If the vftable would
2549 // be available externally, we should not provide the RTTI componenent. It
2550 // is currently impossible to get available externally vftables with either
2551 // dllimport or extern template instantiations, but eventually we may add a
2552 // flag to support additional devirtualization that needs this.
2553 if (Context.getLangOpts().RTTIData)
2554 HasRTTIComponent = true;
2555
2556 LayoutVFTable();
2557
2558 if (Context.getLangOpts().DumpVTableLayouts)
2559 dumpLayout(llvm::outs());
2560 }
2561
getNumThunks() const2562 uint64_t getNumThunks() const { return Thunks.size(); }
2563
thunks_begin() const2564 ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); }
2565
thunks_end() const2566 ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); }
2567
vtable_locations() const2568 method_locations_range vtable_locations() const {
2569 return method_locations_range(MethodVFTableLocations.begin(),
2570 MethodVFTableLocations.end());
2571 }
2572
getNumVTableComponents() const2573 uint64_t getNumVTableComponents() const { return Components.size(); }
2574
vtable_component_begin() const2575 const VTableComponent *vtable_component_begin() const {
2576 return Components.begin();
2577 }
2578
vtable_component_end() const2579 const VTableComponent *vtable_component_end() const {
2580 return Components.end();
2581 }
2582
vtable_thunks_begin() const2583 VTableThunksMapTy::const_iterator vtable_thunks_begin() const {
2584 return VTableThunks.begin();
2585 }
2586
vtable_thunks_end() const2587 VTableThunksMapTy::const_iterator vtable_thunks_end() const {
2588 return VTableThunks.end();
2589 }
2590
2591 void dumpLayout(raw_ostream &);
2592 };
2593
2594 } // end namespace
2595
2596 // Let's study one class hierarchy as an example:
2597 // struct A {
2598 // virtual void f();
2599 // int x;
2600 // };
2601 //
2602 // struct B : virtual A {
2603 // virtual void f();
2604 // };
2605 //
2606 // Record layouts:
2607 // struct A:
2608 // 0 | (A vftable pointer)
2609 // 4 | int x
2610 //
2611 // struct B:
2612 // 0 | (B vbtable pointer)
2613 // 4 | struct A (virtual base)
2614 // 4 | (A vftable pointer)
2615 // 8 | int x
2616 //
2617 // Let's assume we have a pointer to the A part of an object of dynamic type B:
2618 // B b;
2619 // A *a = (A*)&b;
2620 // a->f();
2621 //
2622 // In this hierarchy, f() belongs to the vftable of A, so B::f() expects
2623 // "this" parameter to point at the A subobject, which is B+4.
2624 // In the B::f() prologue, it adjusts "this" back to B by subtracting 4,
2625 // performed as a *static* adjustment.
2626 //
2627 // Interesting thing happens when we alter the relative placement of A and B
2628 // subobjects in a class:
2629 // struct C : virtual B { };
2630 //
2631 // C c;
2632 // A *a = (A*)&c;
2633 // a->f();
2634 //
2635 // Respective record layout is:
2636 // 0 | (C vbtable pointer)
2637 // 4 | struct A (virtual base)
2638 // 4 | (A vftable pointer)
2639 // 8 | int x
2640 // 12 | struct B (virtual base)
2641 // 12 | (B vbtable pointer)
2642 //
2643 // The final overrider of f() in class C is still B::f(), so B+4 should be
2644 // passed as "this" to that code. However, "a" points at B-8, so the respective
2645 // vftable entry should hold a thunk that adds 12 to the "this" argument before
2646 // performing a tail call to B::f().
2647 //
2648 // With this example in mind, we can now calculate the 'this' argument offset
2649 // for the given method, relative to the beginning of the MostDerivedClass.
2650 CharUnits
ComputeThisOffset(FinalOverriders::OverriderInfo Overrider)2651 VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) {
2652 BasesSetVectorTy Bases;
2653
2654 {
2655 // Find the set of least derived bases that define the given method.
2656 OverriddenMethodsSetTy VisitedOverriddenMethods;
2657 auto InitialOverriddenDefinitionCollector = [&](
2658 const CXXMethodDecl *OverriddenMD) {
2659 if (OverriddenMD->size_overridden_methods() == 0)
2660 Bases.insert(OverriddenMD->getParent());
2661 // Don't recurse on this method if we've already collected it.
2662 return VisitedOverriddenMethods.insert(OverriddenMD).second;
2663 };
2664 visitAllOverriddenMethods(Overrider.Method,
2665 InitialOverriddenDefinitionCollector);
2666 }
2667
2668 // If there are no overrides then 'this' is located
2669 // in the base that defines the method.
2670 if (Bases.size() == 0)
2671 return Overrider.Offset;
2672
2673 CXXBasePaths Paths;
2674 Overrider.Method->getParent()->lookupInBases(
2675 [&Bases](const CXXBaseSpecifier *Specifier, CXXBasePath &) {
2676 return Bases.count(Specifier->getType()->getAsCXXRecordDecl());
2677 },
2678 Paths);
2679
2680 // This will hold the smallest this offset among overridees of MD.
2681 // This implies that an offset of a non-virtual base will dominate an offset
2682 // of a virtual base to potentially reduce the number of thunks required
2683 // in the derived classes that inherit this method.
2684 CharUnits Ret;
2685 bool First = true;
2686
2687 const ASTRecordLayout &OverriderRDLayout =
2688 Context.getASTRecordLayout(Overrider.Method->getParent());
2689 for (const CXXBasePath &Path : Paths) {
2690 CharUnits ThisOffset = Overrider.Offset;
2691 CharUnits LastVBaseOffset;
2692
2693 // For each path from the overrider to the parents of the overridden
2694 // methods, traverse the path, calculating the this offset in the most
2695 // derived class.
2696 for (const CXXBasePathElement &Element : Path) {
2697 QualType CurTy = Element.Base->getType();
2698 const CXXRecordDecl *PrevRD = Element.Class,
2699 *CurRD = CurTy->getAsCXXRecordDecl();
2700 const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD);
2701
2702 if (Element.Base->isVirtual()) {
2703 // The interesting things begin when you have virtual inheritance.
2704 // The final overrider will use a static adjustment equal to the offset
2705 // of the vbase in the final overrider class.
2706 // For example, if the final overrider is in a vbase B of the most
2707 // derived class and it overrides a method of the B's own vbase A,
2708 // it uses A* as "this". In its prologue, it can cast A* to B* with
2709 // a static offset. This offset is used regardless of the actual
2710 // offset of A from B in the most derived class, requiring an
2711 // this-adjusting thunk in the vftable if A and B are laid out
2712 // differently in the most derived class.
2713 LastVBaseOffset = ThisOffset =
2714 Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(CurRD);
2715 } else {
2716 ThisOffset += Layout.getBaseClassOffset(CurRD);
2717 }
2718 }
2719
2720 if (isa<CXXDestructorDecl>(Overrider.Method)) {
2721 if (LastVBaseOffset.isZero()) {
2722 // If a "Base" class has at least one non-virtual base with a virtual
2723 // destructor, the "Base" virtual destructor will take the address
2724 // of the "Base" subobject as the "this" argument.
2725 ThisOffset = Overrider.Offset;
2726 } else {
2727 // A virtual destructor of a virtual base takes the address of the
2728 // virtual base subobject as the "this" argument.
2729 ThisOffset = LastVBaseOffset;
2730 }
2731 }
2732
2733 if (Ret > ThisOffset || First) {
2734 First = false;
2735 Ret = ThisOffset;
2736 }
2737 }
2738
2739 assert(!First && "Method not found in the given subobject?");
2740 return Ret;
2741 }
2742
2743 // Things are getting even more complex when the "this" adjustment has to
2744 // use a dynamic offset instead of a static one, or even two dynamic offsets.
2745 // This is sometimes required when a virtual call happens in the middle of
2746 // a non-most-derived class construction or destruction.
2747 //
2748 // Let's take a look at the following example:
2749 // struct A {
2750 // virtual void f();
2751 // };
2752 //
2753 // void foo(A *a) { a->f(); } // Knows nothing about siblings of A.
2754 //
2755 // struct B : virtual A {
2756 // virtual void f();
2757 // B() {
2758 // foo(this);
2759 // }
2760 // };
2761 //
2762 // struct C : virtual B {
2763 // virtual void f();
2764 // };
2765 //
2766 // Record layouts for these classes are:
2767 // struct A
2768 // 0 | (A vftable pointer)
2769 //
2770 // struct B
2771 // 0 | (B vbtable pointer)
2772 // 4 | (vtordisp for vbase A)
2773 // 8 | struct A (virtual base)
2774 // 8 | (A vftable pointer)
2775 //
2776 // struct C
2777 // 0 | (C vbtable pointer)
2778 // 4 | (vtordisp for vbase A)
2779 // 8 | struct A (virtual base) // A precedes B!
2780 // 8 | (A vftable pointer)
2781 // 12 | struct B (virtual base)
2782 // 12 | (B vbtable pointer)
2783 //
2784 // When one creates an object of type C, the C constructor:
2785 // - initializes all the vbptrs, then
2786 // - calls the A subobject constructor
2787 // (initializes A's vfptr with an address of A vftable), then
2788 // - calls the B subobject constructor
2789 // (initializes A's vfptr with an address of B vftable and vtordisp for A),
2790 // that in turn calls foo(), then
2791 // - initializes A's vfptr with an address of C vftable and zeroes out the
2792 // vtordisp
2793 // FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable
2794 // without vtordisp thunks?
2795 // FIXME: how are vtordisp handled in the presence of nooverride/final?
2796 //
2797 // When foo() is called, an object with a layout of class C has a vftable
2798 // referencing B::f() that assumes a B layout, so the "this" adjustments are
2799 // incorrect, unless an extra adjustment is done. This adjustment is called
2800 // "vtordisp adjustment". Vtordisp basically holds the difference between the
2801 // actual location of a vbase in the layout class and the location assumed by
2802 // the vftable of the class being constructed/destructed. Vtordisp is only
2803 // needed if "this" escapes a
2804 // structor (or we can't prove otherwise).
2805 // [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an
2806 // estimation of a dynamic adjustment]
2807 //
2808 // foo() gets a pointer to the A vbase and doesn't know anything about B or C,
2809 // so it just passes that pointer as "this" in a virtual call.
2810 // If there was no vtordisp, that would just dispatch to B::f().
2811 // However, B::f() assumes B+8 is passed as "this",
2812 // yet the pointer foo() passes along is B-4 (i.e. C+8).
2813 // An extra adjustment is needed, so we emit a thunk into the B vftable.
2814 // This vtordisp thunk subtracts the value of vtordisp
2815 // from the "this" argument (-12) before making a tailcall to B::f().
2816 //
2817 // Let's consider an even more complex example:
2818 // struct D : virtual B, virtual C {
2819 // D() {
2820 // foo(this);
2821 // }
2822 // };
2823 //
2824 // struct D
2825 // 0 | (D vbtable pointer)
2826 // 4 | (vtordisp for vbase A)
2827 // 8 | struct A (virtual base) // A precedes both B and C!
2828 // 8 | (A vftable pointer)
2829 // 12 | struct B (virtual base) // B precedes C!
2830 // 12 | (B vbtable pointer)
2831 // 16 | struct C (virtual base)
2832 // 16 | (C vbtable pointer)
2833 //
2834 // When D::D() calls foo(), we find ourselves in a thunk that should tailcall
2835 // to C::f(), which assumes C+8 as its "this" parameter. This time, foo()
2836 // passes along A, which is C-8. The A vtordisp holds
2837 // "D.vbptr[index_of_A] - offset_of_A_in_D"
2838 // and we statically know offset_of_A_in_D, so can get a pointer to D.
2839 // When we know it, we can make an extra vbtable lookup to locate the C vbase
2840 // and one extra static adjustment to calculate the expected value of C+8.
CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider,CharUnits ThisOffset,ThisAdjustment & TA)2841 void VFTableBuilder::CalculateVtordispAdjustment(
2842 FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset,
2843 ThisAdjustment &TA) {
2844 const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap =
2845 MostDerivedClassLayout.getVBaseOffsetsMap();
2846 const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry =
2847 VBaseMap.find(WhichVFPtr.getVBaseWithVPtr());
2848 assert(VBaseMapEntry != VBaseMap.end());
2849
2850 // If there's no vtordisp or the final overrider is defined in the same vbase
2851 // as the initial declaration, we don't need any vtordisp adjustment.
2852 if (!VBaseMapEntry->second.hasVtorDisp() ||
2853 Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr())
2854 return;
2855
2856 // OK, now we know we need to use a vtordisp thunk.
2857 // The implicit vtordisp field is located right before the vbase.
2858 CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset;
2859 TA.Virtual.Microsoft.VtordispOffset =
2860 (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4;
2861
2862 // A simple vtordisp thunk will suffice if the final overrider is defined
2863 // in either the most derived class or its non-virtual base.
2864 if (Overrider.Method->getParent() == MostDerivedClass ||
2865 !Overrider.VirtualBase)
2866 return;
2867
2868 // Otherwise, we need to do use the dynamic offset of the final overrider
2869 // in order to get "this" adjustment right.
2870 TA.Virtual.Microsoft.VBPtrOffset =
2871 (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset -
2872 MostDerivedClassLayout.getVBPtrOffset()).getQuantity();
2873 TA.Virtual.Microsoft.VBOffsetOffset =
2874 Context.getTypeSizeInChars(Context.IntTy).getQuantity() *
2875 VTables.getVBTableIndex(MostDerivedClass, Overrider.VirtualBase);
2876
2877 TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity();
2878 }
2879
GroupNewVirtualOverloads(const CXXRecordDecl * RD,SmallVector<const CXXMethodDecl *,10> & VirtualMethods)2880 static void GroupNewVirtualOverloads(
2881 const CXXRecordDecl *RD,
2882 SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) {
2883 // Put the virtual methods into VirtualMethods in the proper order:
2884 // 1) Group overloads by declaration name. New groups are added to the
2885 // vftable in the order of their first declarations in this class
2886 // (including overrides, non-virtual methods and any other named decl that
2887 // might be nested within the class).
2888 // 2) In each group, new overloads appear in the reverse order of declaration.
2889 typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup;
2890 SmallVector<MethodGroup, 10> Groups;
2891 typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy;
2892 VisitedGroupIndicesTy VisitedGroupIndices;
2893 for (const auto *D : RD->decls()) {
2894 const auto *ND = dyn_cast<NamedDecl>(D);
2895 if (!ND)
2896 continue;
2897 VisitedGroupIndicesTy::iterator J;
2898 bool Inserted;
2899 std::tie(J, Inserted) = VisitedGroupIndices.insert(
2900 std::make_pair(ND->getDeclName(), Groups.size()));
2901 if (Inserted)
2902 Groups.push_back(MethodGroup());
2903 if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
2904 if (MD->isVirtual())
2905 Groups[J->second].push_back(MD->getCanonicalDecl());
2906 }
2907
2908 for (const MethodGroup &Group : Groups)
2909 VirtualMethods.append(Group.rbegin(), Group.rend());
2910 }
2911
isDirectVBase(const CXXRecordDecl * Base,const CXXRecordDecl * RD)2912 static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) {
2913 for (const auto &B : RD->bases()) {
2914 if (B.isVirtual() && B.getType()->getAsCXXRecordDecl() == Base)
2915 return true;
2916 }
2917 return false;
2918 }
2919
AddMethods(BaseSubobject Base,unsigned BaseDepth,const CXXRecordDecl * LastVBase,BasesSetVectorTy & VisitedBases)2920 void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth,
2921 const CXXRecordDecl *LastVBase,
2922 BasesSetVectorTy &VisitedBases) {
2923 const CXXRecordDecl *RD = Base.getBase();
2924 if (!RD->isPolymorphic())
2925 return;
2926
2927 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2928
2929 // See if this class expands a vftable of the base we look at, which is either
2930 // the one defined by the vfptr base path or the primary base of the current
2931 // class.
2932 const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase;
2933 CharUnits NextBaseOffset;
2934 if (BaseDepth < WhichVFPtr.PathToBaseWithVPtr.size()) {
2935 NextBase = WhichVFPtr.PathToBaseWithVPtr[BaseDepth];
2936 if (isDirectVBase(NextBase, RD)) {
2937 NextLastVBase = NextBase;
2938 NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase);
2939 } else {
2940 NextBaseOffset =
2941 Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase);
2942 }
2943 } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) {
2944 assert(!Layout.isPrimaryBaseVirtual() &&
2945 "No primary virtual bases in this ABI");
2946 NextBase = PrimaryBase;
2947 NextBaseOffset = Base.getBaseOffset();
2948 }
2949
2950 if (NextBase) {
2951 AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1,
2952 NextLastVBase, VisitedBases);
2953 if (!VisitedBases.insert(NextBase))
2954 llvm_unreachable("Found a duplicate primary base!");
2955 }
2956
2957 SmallVector<const CXXMethodDecl*, 10> VirtualMethods;
2958 // Put virtual methods in the proper order.
2959 GroupNewVirtualOverloads(RD, VirtualMethods);
2960
2961 // Now go through all virtual member functions and add them to the current
2962 // vftable. This is done by
2963 // - replacing overridden methods in their existing slots, as long as they
2964 // don't require return adjustment; calculating This adjustment if needed.
2965 // - adding new slots for methods of the current base not present in any
2966 // sub-bases;
2967 // - adding new slots for methods that require Return adjustment.
2968 // We keep track of the methods visited in the sub-bases in MethodInfoMap.
2969 for (const CXXMethodDecl *MD : VirtualMethods) {
2970 FinalOverriders::OverriderInfo FinalOverrider =
2971 Overriders.getOverrider(MD, Base.getBaseOffset());
2972 const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method;
2973 const CXXMethodDecl *OverriddenMD =
2974 FindNearestOverriddenMethod(MD, VisitedBases);
2975
2976 ThisAdjustment ThisAdjustmentOffset;
2977 bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false;
2978 CharUnits ThisOffset = ComputeThisOffset(FinalOverrider);
2979 ThisAdjustmentOffset.NonVirtual =
2980 (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity();
2981 if ((OverriddenMD || FinalOverriderMD != MD) &&
2982 WhichVFPtr.getVBaseWithVPtr())
2983 CalculateVtordispAdjustment(FinalOverrider, ThisOffset,
2984 ThisAdjustmentOffset);
2985
2986 if (OverriddenMD) {
2987 // If MD overrides anything in this vftable, we need to update the
2988 // entries.
2989 MethodInfoMapTy::iterator OverriddenMDIterator =
2990 MethodInfoMap.find(OverriddenMD);
2991
2992 // If the overridden method went to a different vftable, skip it.
2993 if (OverriddenMDIterator == MethodInfoMap.end())
2994 continue;
2995
2996 MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second;
2997
2998 // Let's check if the overrider requires any return adjustments.
2999 // We must create a new slot if the MD's return type is not trivially
3000 // convertible to the OverriddenMD's one.
3001 // Once a chain of method overrides adds a return adjusting vftable slot,
3002 // all subsequent overrides will also use an extra method slot.
3003 ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset(
3004 Context, MD, OverriddenMD).isEmpty() ||
3005 OverriddenMethodInfo.UsesExtraSlot;
3006
3007 if (!ReturnAdjustingThunk) {
3008 // No return adjustment needed - just replace the overridden method info
3009 // with the current info.
3010 MethodInfo MI(OverriddenMethodInfo.VBTableIndex,
3011 OverriddenMethodInfo.VFTableIndex);
3012 MethodInfoMap.erase(OverriddenMDIterator);
3013
3014 assert(!MethodInfoMap.count(MD) &&
3015 "Should not have method info for this method yet!");
3016 MethodInfoMap.insert(std::make_pair(MD, MI));
3017 continue;
3018 }
3019
3020 // In case we need a return adjustment, we'll add a new slot for
3021 // the overrider. Mark the overriden method as shadowed by the new slot.
3022 OverriddenMethodInfo.Shadowed = true;
3023
3024 // Force a special name mangling for a return-adjusting thunk
3025 // unless the method is the final overrider without this adjustment.
3026 ForceReturnAdjustmentMangling =
3027 !(MD == FinalOverriderMD && ThisAdjustmentOffset.isEmpty());
3028 } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC ||
3029 MD->size_overridden_methods()) {
3030 // Skip methods that don't belong to the vftable of the current class,
3031 // e.g. each method that wasn't seen in any of the visited sub-bases
3032 // but overrides multiple methods of other sub-bases.
3033 continue;
3034 }
3035
3036 // If we got here, MD is a method not seen in any of the sub-bases or
3037 // it requires return adjustment. Insert the method info for this method.
3038 unsigned VBIndex =
3039 LastVBase ? VTables.getVBTableIndex(MostDerivedClass, LastVBase) : 0;
3040 MethodInfo MI(VBIndex,
3041 HasRTTIComponent ? Components.size() - 1 : Components.size(),
3042 ReturnAdjustingThunk);
3043
3044 assert(!MethodInfoMap.count(MD) &&
3045 "Should not have method info for this method yet!");
3046 MethodInfoMap.insert(std::make_pair(MD, MI));
3047
3048 // Check if this overrider needs a return adjustment.
3049 // We don't want to do this for pure virtual member functions.
3050 BaseOffset ReturnAdjustmentOffset;
3051 ReturnAdjustment ReturnAdjustment;
3052 if (!FinalOverriderMD->isPure()) {
3053 ReturnAdjustmentOffset =
3054 ComputeReturnAdjustmentBaseOffset(Context, FinalOverriderMD, MD);
3055 }
3056 if (!ReturnAdjustmentOffset.isEmpty()) {
3057 ForceReturnAdjustmentMangling = true;
3058 ReturnAdjustment.NonVirtual =
3059 ReturnAdjustmentOffset.NonVirtualOffset.getQuantity();
3060 if (ReturnAdjustmentOffset.VirtualBase) {
3061 const ASTRecordLayout &DerivedLayout =
3062 Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass);
3063 ReturnAdjustment.Virtual.Microsoft.VBPtrOffset =
3064 DerivedLayout.getVBPtrOffset().getQuantity();
3065 ReturnAdjustment.Virtual.Microsoft.VBIndex =
3066 VTables.getVBTableIndex(ReturnAdjustmentOffset.DerivedClass,
3067 ReturnAdjustmentOffset.VirtualBase);
3068 }
3069 }
3070
3071 AddMethod(FinalOverriderMD,
3072 ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment,
3073 ForceReturnAdjustmentMangling ? MD : nullptr));
3074 }
3075 }
3076
PrintBasePath(const VPtrInfo::BasePath & Path,raw_ostream & Out)3077 static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) {
3078 for (const CXXRecordDecl *Elem :
3079 llvm::make_range(Path.rbegin(), Path.rend())) {
3080 Out << "'";
3081 Elem->printQualifiedName(Out);
3082 Out << "' in ";
3083 }
3084 }
3085
dumpMicrosoftThunkAdjustment(const ThunkInfo & TI,raw_ostream & Out,bool ContinueFirstLine)3086 static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out,
3087 bool ContinueFirstLine) {
3088 const ReturnAdjustment &R = TI.Return;
3089 bool Multiline = false;
3090 const char *LinePrefix = "\n ";
3091 if (!R.isEmpty() || TI.Method) {
3092 if (!ContinueFirstLine)
3093 Out << LinePrefix;
3094 Out << "[return adjustment (to type '"
3095 << TI.Method->getReturnType().getCanonicalType().getAsString()
3096 << "'): ";
3097 if (R.Virtual.Microsoft.VBPtrOffset)
3098 Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", ";
3099 if (R.Virtual.Microsoft.VBIndex)
3100 Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", ";
3101 Out << R.NonVirtual << " non-virtual]";
3102 Multiline = true;
3103 }
3104
3105 const ThisAdjustment &T = TI.This;
3106 if (!T.isEmpty()) {
3107 if (Multiline || !ContinueFirstLine)
3108 Out << LinePrefix;
3109 Out << "[this adjustment: ";
3110 if (!TI.This.Virtual.isEmpty()) {
3111 assert(T.Virtual.Microsoft.VtordispOffset < 0);
3112 Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", ";
3113 if (T.Virtual.Microsoft.VBPtrOffset) {
3114 Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset
3115 << " to the left,";
3116 assert(T.Virtual.Microsoft.VBOffsetOffset > 0);
3117 Out << LinePrefix << " vboffset at "
3118 << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, ";
3119 }
3120 }
3121 Out << T.NonVirtual << " non-virtual]";
3122 }
3123 }
3124
dumpLayout(raw_ostream & Out)3125 void VFTableBuilder::dumpLayout(raw_ostream &Out) {
3126 Out << "VFTable for ";
3127 PrintBasePath(WhichVFPtr.PathToBaseWithVPtr, Out);
3128 Out << "'";
3129 MostDerivedClass->printQualifiedName(Out);
3130 Out << "' (" << Components.size()
3131 << (Components.size() == 1 ? " entry" : " entries") << ").\n";
3132
3133 for (unsigned I = 0, E = Components.size(); I != E; ++I) {
3134 Out << llvm::format("%4d | ", I);
3135
3136 const VTableComponent &Component = Components[I];
3137
3138 // Dump the component.
3139 switch (Component.getKind()) {
3140 case VTableComponent::CK_RTTI:
3141 Component.getRTTIDecl()->printQualifiedName(Out);
3142 Out << " RTTI";
3143 break;
3144
3145 case VTableComponent::CK_FunctionPointer: {
3146 const CXXMethodDecl *MD = Component.getFunctionDecl();
3147
3148 // FIXME: Figure out how to print the real thunk type, since they can
3149 // differ in the return type.
3150 std::string Str = PredefinedExpr::ComputeName(
3151 PredefinedExpr::PrettyFunctionNoVirtual, MD);
3152 Out << Str;
3153 if (MD->isPure())
3154 Out << " [pure]";
3155
3156 if (MD->isDeleted())
3157 Out << " [deleted]";
3158
3159 ThunkInfo Thunk = VTableThunks.lookup(I);
3160 if (!Thunk.isEmpty())
3161 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
3162
3163 break;
3164 }
3165
3166 case VTableComponent::CK_DeletingDtorPointer: {
3167 const CXXDestructorDecl *DD = Component.getDestructorDecl();
3168
3169 DD->printQualifiedName(Out);
3170 Out << "() [scalar deleting]";
3171
3172 if (DD->isPure())
3173 Out << " [pure]";
3174
3175 ThunkInfo Thunk = VTableThunks.lookup(I);
3176 if (!Thunk.isEmpty()) {
3177 assert(Thunk.Return.isEmpty() &&
3178 "No return adjustment needed for destructors!");
3179 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false);
3180 }
3181
3182 break;
3183 }
3184
3185 default:
3186 DiagnosticsEngine &Diags = Context.getDiagnostics();
3187 unsigned DiagID = Diags.getCustomDiagID(
3188 DiagnosticsEngine::Error,
3189 "Unexpected vftable component type %0 for component number %1");
3190 Diags.Report(MostDerivedClass->getLocation(), DiagID)
3191 << I << Component.getKind();
3192 }
3193
3194 Out << '\n';
3195 }
3196
3197 Out << '\n';
3198
3199 if (!Thunks.empty()) {
3200 // We store the method names in a map to get a stable order.
3201 std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls;
3202
3203 for (const auto &I : Thunks) {
3204 const CXXMethodDecl *MD = I.first;
3205 std::string MethodName = PredefinedExpr::ComputeName(
3206 PredefinedExpr::PrettyFunctionNoVirtual, MD);
3207
3208 MethodNamesAndDecls.insert(std::make_pair(MethodName, MD));
3209 }
3210
3211 for (const auto &MethodNameAndDecl : MethodNamesAndDecls) {
3212 const std::string &MethodName = MethodNameAndDecl.first;
3213 const CXXMethodDecl *MD = MethodNameAndDecl.second;
3214
3215 ThunkInfoVectorTy ThunksVector = Thunks[MD];
3216 std::stable_sort(ThunksVector.begin(), ThunksVector.end(),
3217 [](const ThunkInfo &LHS, const ThunkInfo &RHS) {
3218 // Keep different thunks with the same adjustments in the order they
3219 // were put into the vector.
3220 return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return);
3221 });
3222
3223 Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size();
3224 Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n";
3225
3226 for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) {
3227 const ThunkInfo &Thunk = ThunksVector[I];
3228
3229 Out << llvm::format("%4d | ", I);
3230 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/true);
3231 Out << '\n';
3232 }
3233
3234 Out << '\n';
3235 }
3236 }
3237
3238 Out.flush();
3239 }
3240
setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *,4> & A,ArrayRef<const CXXRecordDecl * > B)3241 static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A,
3242 ArrayRef<const CXXRecordDecl *> B) {
3243 for (const CXXRecordDecl *Decl : B) {
3244 if (A.count(Decl))
3245 return true;
3246 }
3247 return false;
3248 }
3249
3250 static bool rebucketPaths(VPtrInfoVector &Paths);
3251
3252 /// Produces MSVC-compatible vbtable data. The symbols produced by this
3253 /// algorithm match those produced by MSVC 2012 and newer, which is different
3254 /// from MSVC 2010.
3255 ///
3256 /// MSVC 2012 appears to minimize the vbtable names using the following
3257 /// algorithm. First, walk the class hierarchy in the usual order, depth first,
3258 /// left to right, to find all of the subobjects which contain a vbptr field.
3259 /// Visiting each class node yields a list of inheritance paths to vbptrs. Each
3260 /// record with a vbptr creates an initially empty path.
3261 ///
3262 /// To combine paths from child nodes, the paths are compared to check for
3263 /// ambiguity. Paths are "ambiguous" if multiple paths have the same set of
3264 /// components in the same order. Each group of ambiguous paths is extended by
3265 /// appending the class of the base from which it came. If the current class
3266 /// node produced an ambiguous path, its path is extended with the current class.
3267 /// After extending paths, MSVC again checks for ambiguity, and extends any
3268 /// ambiguous path which wasn't already extended. Because each node yields an
3269 /// unambiguous set of paths, MSVC doesn't need to extend any path more than once
3270 /// to produce an unambiguous set of paths.
3271 ///
3272 /// TODO: Presumably vftables use the same algorithm.
computeVTablePaths(bool ForVBTables,const CXXRecordDecl * RD,VPtrInfoVector & Paths)3273 void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables,
3274 const CXXRecordDecl *RD,
3275 VPtrInfoVector &Paths) {
3276 assert(Paths.empty());
3277 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3278
3279 // Base case: this subobject has its own vptr.
3280 if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr())
3281 Paths.push_back(new VPtrInfo(RD));
3282
3283 // Recursive case: get all the vbtables from our bases and remove anything
3284 // that shares a virtual base.
3285 llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen;
3286 for (const auto &B : RD->bases()) {
3287 const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl();
3288 if (B.isVirtual() && VBasesSeen.count(Base))
3289 continue;
3290
3291 if (!Base->isDynamicClass())
3292 continue;
3293
3294 const VPtrInfoVector &BasePaths =
3295 ForVBTables ? enumerateVBTables(Base) : getVFPtrOffsets(Base);
3296
3297 for (VPtrInfo *BaseInfo : BasePaths) {
3298 // Don't include the path if it goes through a virtual base that we've
3299 // already included.
3300 if (setsIntersect(VBasesSeen, BaseInfo->ContainingVBases))
3301 continue;
3302
3303 // Copy the path and adjust it as necessary.
3304 VPtrInfo *P = new VPtrInfo(*BaseInfo);
3305
3306 // We mangle Base into the path if the path would've been ambiguous and it
3307 // wasn't already extended with Base.
3308 if (P->MangledPath.empty() || P->MangledPath.back() != Base)
3309 P->NextBaseToMangle = Base;
3310
3311 // Keep track of which vtable the derived class is going to extend with
3312 // new methods or bases. We append to either the vftable of our primary
3313 // base, or the first non-virtual base that has a vbtable.
3314 if (P->ReusingBase == Base &&
3315 Base == (ForVBTables ? Layout.getBaseSharingVBPtr()
3316 : Layout.getPrimaryBase()))
3317 P->ReusingBase = RD;
3318
3319 // Keep track of the full adjustment from the MDC to this vtable. The
3320 // adjustment is captured by an optional vbase and a non-virtual offset.
3321 if (B.isVirtual())
3322 P->ContainingVBases.push_back(Base);
3323 else if (P->ContainingVBases.empty())
3324 P->NonVirtualOffset += Layout.getBaseClassOffset(Base);
3325
3326 // Update the full offset in the MDC.
3327 P->FullOffsetInMDC = P->NonVirtualOffset;
3328 if (const CXXRecordDecl *VB = P->getVBaseWithVPtr())
3329 P->FullOffsetInMDC += Layout.getVBaseClassOffset(VB);
3330
3331 Paths.push_back(P);
3332 }
3333
3334 if (B.isVirtual())
3335 VBasesSeen.insert(Base);
3336
3337 // After visiting any direct base, we've transitively visited all of its
3338 // morally virtual bases.
3339 for (const auto &VB : Base->vbases())
3340 VBasesSeen.insert(VB.getType()->getAsCXXRecordDecl());
3341 }
3342
3343 // Sort the paths into buckets, and if any of them are ambiguous, extend all
3344 // paths in ambiguous buckets.
3345 bool Changed = true;
3346 while (Changed)
3347 Changed = rebucketPaths(Paths);
3348 }
3349
extendPath(VPtrInfo * P)3350 static bool extendPath(VPtrInfo *P) {
3351 if (P->NextBaseToMangle) {
3352 P->MangledPath.push_back(P->NextBaseToMangle);
3353 P->NextBaseToMangle = nullptr;// Prevent the path from being extended twice.
3354 return true;
3355 }
3356 return false;
3357 }
3358
rebucketPaths(VPtrInfoVector & Paths)3359 static bool rebucketPaths(VPtrInfoVector &Paths) {
3360 // What we're essentially doing here is bucketing together ambiguous paths.
3361 // Any bucket with more than one path in it gets extended by NextBase, which
3362 // is usually the direct base of the inherited the vbptr. This code uses a
3363 // sorted vector to implement a multiset to form the buckets. Note that the
3364 // ordering is based on pointers, but it doesn't change our output order. The
3365 // current algorithm is designed to match MSVC 2012's names.
3366 VPtrInfoVector PathsSorted(Paths);
3367 std::sort(PathsSorted.begin(), PathsSorted.end(),
3368 [](const VPtrInfo *LHS, const VPtrInfo *RHS) {
3369 return LHS->MangledPath < RHS->MangledPath;
3370 });
3371 bool Changed = false;
3372 for (size_t I = 0, E = PathsSorted.size(); I != E;) {
3373 // Scan forward to find the end of the bucket.
3374 size_t BucketStart = I;
3375 do {
3376 ++I;
3377 } while (I != E && PathsSorted[BucketStart]->MangledPath ==
3378 PathsSorted[I]->MangledPath);
3379
3380 // If this bucket has multiple paths, extend them all.
3381 if (I - BucketStart > 1) {
3382 for (size_t II = BucketStart; II != I; ++II)
3383 Changed |= extendPath(PathsSorted[II]);
3384 assert(Changed && "no paths were extended to fix ambiguity");
3385 }
3386 }
3387 return Changed;
3388 }
3389
~MicrosoftVTableContext()3390 MicrosoftVTableContext::~MicrosoftVTableContext() {
3391 for (auto &P : VFPtrLocations)
3392 llvm::DeleteContainerPointers(*P.second);
3393 llvm::DeleteContainerSeconds(VFPtrLocations);
3394 llvm::DeleteContainerSeconds(VFTableLayouts);
3395 llvm::DeleteContainerSeconds(VBaseInfo);
3396 }
3397
3398 namespace {
3399 typedef llvm::SetVector<BaseSubobject, std::vector<BaseSubobject>,
3400 llvm::DenseSet<BaseSubobject>> FullPathTy;
3401 }
3402
3403 // This recursive function finds all paths from a subobject centered at
3404 // (RD, Offset) to the subobject located at BaseWithVPtr.
findPathsToSubobject(ASTContext & Context,const ASTRecordLayout & MostDerivedLayout,const CXXRecordDecl * RD,CharUnits Offset,BaseSubobject BaseWithVPtr,FullPathTy & FullPath,std::list<FullPathTy> & Paths)3405 static void findPathsToSubobject(ASTContext &Context,
3406 const ASTRecordLayout &MostDerivedLayout,
3407 const CXXRecordDecl *RD, CharUnits Offset,
3408 BaseSubobject BaseWithVPtr,
3409 FullPathTy &FullPath,
3410 std::list<FullPathTy> &Paths) {
3411 if (BaseSubobject(RD, Offset) == BaseWithVPtr) {
3412 Paths.push_back(FullPath);
3413 return;
3414 }
3415
3416 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3417
3418 for (const CXXBaseSpecifier &BS : RD->bases()) {
3419 const CXXRecordDecl *Base = BS.getType()->getAsCXXRecordDecl();
3420 CharUnits NewOffset = BS.isVirtual()
3421 ? MostDerivedLayout.getVBaseClassOffset(Base)
3422 : Offset + Layout.getBaseClassOffset(Base);
3423 FullPath.insert(BaseSubobject(Base, NewOffset));
3424 findPathsToSubobject(Context, MostDerivedLayout, Base, NewOffset,
3425 BaseWithVPtr, FullPath, Paths);
3426 FullPath.pop_back();
3427 }
3428 }
3429
3430 // Return the paths which are not subsets of other paths.
removeRedundantPaths(std::list<FullPathTy> & FullPaths)3431 static void removeRedundantPaths(std::list<FullPathTy> &FullPaths) {
3432 FullPaths.remove_if([&](const FullPathTy &SpecificPath) {
3433 for (const FullPathTy &OtherPath : FullPaths) {
3434 if (&SpecificPath == &OtherPath)
3435 continue;
3436 if (std::all_of(SpecificPath.begin(), SpecificPath.end(),
3437 [&](const BaseSubobject &BSO) {
3438 return OtherPath.count(BSO) != 0;
3439 })) {
3440 return true;
3441 }
3442 }
3443 return false;
3444 });
3445 }
3446
getOffsetOfFullPath(ASTContext & Context,const CXXRecordDecl * RD,const FullPathTy & FullPath)3447 static CharUnits getOffsetOfFullPath(ASTContext &Context,
3448 const CXXRecordDecl *RD,
3449 const FullPathTy &FullPath) {
3450 const ASTRecordLayout &MostDerivedLayout =
3451 Context.getASTRecordLayout(RD);
3452 CharUnits Offset = CharUnits::fromQuantity(-1);
3453 for (const BaseSubobject &BSO : FullPath) {
3454 const CXXRecordDecl *Base = BSO.getBase();
3455 // The first entry in the path is always the most derived record, skip it.
3456 if (Base == RD) {
3457 assert(Offset.getQuantity() == -1);
3458 Offset = CharUnits::Zero();
3459 continue;
3460 }
3461 assert(Offset.getQuantity() != -1);
3462 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3463 // While we know which base has to be traversed, we don't know if that base
3464 // was a virtual base.
3465 const CXXBaseSpecifier *BaseBS = std::find_if(
3466 RD->bases_begin(), RD->bases_end(), [&](const CXXBaseSpecifier &BS) {
3467 return BS.getType()->getAsCXXRecordDecl() == Base;
3468 });
3469 Offset = BaseBS->isVirtual() ? MostDerivedLayout.getVBaseClassOffset(Base)
3470 : Offset + Layout.getBaseClassOffset(Base);
3471 RD = Base;
3472 }
3473 return Offset;
3474 }
3475
3476 // We want to select the path which introduces the most covariant overrides. If
3477 // two paths introduce overrides which the other path doesn't contain, issue a
3478 // diagnostic.
selectBestPath(ASTContext & Context,const CXXRecordDecl * RD,VPtrInfo * Info,std::list<FullPathTy> & FullPaths)3479 static const FullPathTy *selectBestPath(ASTContext &Context,
3480 const CXXRecordDecl *RD, VPtrInfo *Info,
3481 std::list<FullPathTy> &FullPaths) {
3482 // Handle some easy cases first.
3483 if (FullPaths.empty())
3484 return nullptr;
3485 if (FullPaths.size() == 1)
3486 return &FullPaths.front();
3487
3488 const FullPathTy *BestPath = nullptr;
3489 typedef std::set<const CXXMethodDecl *> OverriderSetTy;
3490 OverriderSetTy LastOverrides;
3491 for (const FullPathTy &SpecificPath : FullPaths) {
3492 assert(!SpecificPath.empty());
3493 OverriderSetTy CurrentOverrides;
3494 const CXXRecordDecl *TopLevelRD = SpecificPath.begin()->getBase();
3495 // Find the distance from the start of the path to the subobject with the
3496 // VPtr.
3497 CharUnits BaseOffset =
3498 getOffsetOfFullPath(Context, TopLevelRD, SpecificPath);
3499 FinalOverriders Overriders(TopLevelRD, CharUnits::Zero(), TopLevelRD);
3500 for (const CXXMethodDecl *MD : Info->BaseWithVPtr->methods()) {
3501 if (!MD->isVirtual())
3502 continue;
3503 FinalOverriders::OverriderInfo OI =
3504 Overriders.getOverrider(MD->getCanonicalDecl(), BaseOffset);
3505 const CXXMethodDecl *OverridingMethod = OI.Method;
3506 // Only overriders which have a return adjustment introduce problematic
3507 // thunks.
3508 if (ComputeReturnAdjustmentBaseOffset(Context, OverridingMethod, MD)
3509 .isEmpty())
3510 continue;
3511 // It's possible that the overrider isn't in this path. If so, skip it
3512 // because this path didn't introduce it.
3513 const CXXRecordDecl *OverridingParent = OverridingMethod->getParent();
3514 if (std::none_of(SpecificPath.begin(), SpecificPath.end(),
3515 [&](const BaseSubobject &BSO) {
3516 return BSO.getBase() == OverridingParent;
3517 }))
3518 continue;
3519 CurrentOverrides.insert(OverridingMethod);
3520 }
3521 OverriderSetTy NewOverrides =
3522 llvm::set_difference(CurrentOverrides, LastOverrides);
3523 if (NewOverrides.empty())
3524 continue;
3525 OverriderSetTy MissingOverrides =
3526 llvm::set_difference(LastOverrides, CurrentOverrides);
3527 if (MissingOverrides.empty()) {
3528 // This path is a strict improvement over the last path, let's use it.
3529 BestPath = &SpecificPath;
3530 std::swap(CurrentOverrides, LastOverrides);
3531 } else {
3532 // This path introduces an overrider with a conflicting covariant thunk.
3533 DiagnosticsEngine &Diags = Context.getDiagnostics();
3534 const CXXMethodDecl *CovariantMD = *NewOverrides.begin();
3535 const CXXMethodDecl *ConflictMD = *MissingOverrides.begin();
3536 Diags.Report(RD->getLocation(), diag::err_vftable_ambiguous_component)
3537 << RD;
3538 Diags.Report(CovariantMD->getLocation(), diag::note_covariant_thunk)
3539 << CovariantMD;
3540 Diags.Report(ConflictMD->getLocation(), diag::note_covariant_thunk)
3541 << ConflictMD;
3542 }
3543 }
3544 // Go with the path that introduced the most covariant overrides. If there is
3545 // no such path, pick the first path.
3546 return BestPath ? BestPath : &FullPaths.front();
3547 }
3548
computeFullPathsForVFTables(ASTContext & Context,const CXXRecordDecl * RD,VPtrInfoVector & Paths)3549 static void computeFullPathsForVFTables(ASTContext &Context,
3550 const CXXRecordDecl *RD,
3551 VPtrInfoVector &Paths) {
3552 const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(RD);
3553 FullPathTy FullPath;
3554 std::list<FullPathTy> FullPaths;
3555 for (VPtrInfo *Info : Paths) {
3556 findPathsToSubobject(
3557 Context, MostDerivedLayout, RD, CharUnits::Zero(),
3558 BaseSubobject(Info->BaseWithVPtr, Info->FullOffsetInMDC), FullPath,
3559 FullPaths);
3560 FullPath.clear();
3561 removeRedundantPaths(FullPaths);
3562 Info->PathToBaseWithVPtr.clear();
3563 if (const FullPathTy *BestPath =
3564 selectBestPath(Context, RD, Info, FullPaths))
3565 for (const BaseSubobject &BSO : *BestPath)
3566 Info->PathToBaseWithVPtr.push_back(BSO.getBase());
3567 FullPaths.clear();
3568 }
3569 }
3570
computeVTableRelatedInformation(const CXXRecordDecl * RD)3571 void MicrosoftVTableContext::computeVTableRelatedInformation(
3572 const CXXRecordDecl *RD) {
3573 assert(RD->isDynamicClass());
3574
3575 // Check if we've computed this information before.
3576 if (VFPtrLocations.count(RD))
3577 return;
3578
3579 const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap;
3580
3581 VPtrInfoVector *VFPtrs = new VPtrInfoVector();
3582 computeVTablePaths(/*ForVBTables=*/false, RD, *VFPtrs);
3583 computeFullPathsForVFTables(Context, RD, *VFPtrs);
3584 VFPtrLocations[RD] = VFPtrs;
3585
3586 MethodVFTableLocationsTy NewMethodLocations;
3587 for (const VPtrInfo *VFPtr : *VFPtrs) {
3588 VFTableBuilder Builder(*this, RD, VFPtr);
3589
3590 VFTableIdTy id(RD, VFPtr->FullOffsetInMDC);
3591 assert(VFTableLayouts.count(id) == 0);
3592 SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks(
3593 Builder.vtable_thunks_begin(), Builder.vtable_thunks_end());
3594 VFTableLayouts[id] = new VTableLayout(
3595 Builder.getNumVTableComponents(), Builder.vtable_component_begin(),
3596 VTableThunks.size(), VTableThunks.data(), EmptyAddressPointsMap, true);
3597 Thunks.insert(Builder.thunks_begin(), Builder.thunks_end());
3598
3599 for (const auto &Loc : Builder.vtable_locations()) {
3600 GlobalDecl GD = Loc.first;
3601 MethodVFTableLocation NewLoc = Loc.second;
3602 auto M = NewMethodLocations.find(GD);
3603 if (M == NewMethodLocations.end() || NewLoc < M->second)
3604 NewMethodLocations[GD] = NewLoc;
3605 }
3606 }
3607
3608 MethodVFTableLocations.insert(NewMethodLocations.begin(),
3609 NewMethodLocations.end());
3610 if (Context.getLangOpts().DumpVTableLayouts)
3611 dumpMethodLocations(RD, NewMethodLocations, llvm::outs());
3612 }
3613
dumpMethodLocations(const CXXRecordDecl * RD,const MethodVFTableLocationsTy & NewMethods,raw_ostream & Out)3614 void MicrosoftVTableContext::dumpMethodLocations(
3615 const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods,
3616 raw_ostream &Out) {
3617 // Compute the vtable indices for all the member functions.
3618 // Store them in a map keyed by the location so we'll get a sorted table.
3619 std::map<MethodVFTableLocation, std::string> IndicesMap;
3620 bool HasNonzeroOffset = false;
3621
3622 for (const auto &I : NewMethods) {
3623 const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I.first.getDecl());
3624 assert(MD->isVirtual());
3625
3626 std::string MethodName = PredefinedExpr::ComputeName(
3627 PredefinedExpr::PrettyFunctionNoVirtual, MD);
3628
3629 if (isa<CXXDestructorDecl>(MD)) {
3630 IndicesMap[I.second] = MethodName + " [scalar deleting]";
3631 } else {
3632 IndicesMap[I.second] = MethodName;
3633 }
3634
3635 if (!I.second.VFPtrOffset.isZero() || I.second.VBTableIndex != 0)
3636 HasNonzeroOffset = true;
3637 }
3638
3639 // Print the vtable indices for all the member functions.
3640 if (!IndicesMap.empty()) {
3641 Out << "VFTable indices for ";
3642 Out << "'";
3643 RD->printQualifiedName(Out);
3644 Out << "' (" << IndicesMap.size()
3645 << (IndicesMap.size() == 1 ? " entry" : " entries") << ").\n";
3646
3647 CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1);
3648 uint64_t LastVBIndex = 0;
3649 for (const auto &I : IndicesMap) {
3650 CharUnits VFPtrOffset = I.first.VFPtrOffset;
3651 uint64_t VBIndex = I.first.VBTableIndex;
3652 if (HasNonzeroOffset &&
3653 (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) {
3654 assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset);
3655 Out << " -- accessible via ";
3656 if (VBIndex)
3657 Out << "vbtable index " << VBIndex << ", ";
3658 Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n";
3659 LastVFPtrOffset = VFPtrOffset;
3660 LastVBIndex = VBIndex;
3661 }
3662
3663 uint64_t VTableIndex = I.first.Index;
3664 const std::string &MethodName = I.second;
3665 Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n';
3666 }
3667 Out << '\n';
3668 }
3669
3670 Out.flush();
3671 }
3672
computeVBTableRelatedInformation(const CXXRecordDecl * RD)3673 const VirtualBaseInfo *MicrosoftVTableContext::computeVBTableRelatedInformation(
3674 const CXXRecordDecl *RD) {
3675 VirtualBaseInfo *VBI;
3676
3677 {
3678 // Get or create a VBI for RD. Don't hold a reference to the DenseMap cell,
3679 // as it may be modified and rehashed under us.
3680 VirtualBaseInfo *&Entry = VBaseInfo[RD];
3681 if (Entry)
3682 return Entry;
3683 Entry = VBI = new VirtualBaseInfo();
3684 }
3685
3686 computeVTablePaths(/*ForVBTables=*/true, RD, VBI->VBPtrPaths);
3687
3688 // First, see if the Derived class shared the vbptr with a non-virtual base.
3689 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3690 if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) {
3691 // If the Derived class shares the vbptr with a non-virtual base, the shared
3692 // virtual bases come first so that the layout is the same.
3693 const VirtualBaseInfo *BaseInfo =
3694 computeVBTableRelatedInformation(VBPtrBase);
3695 VBI->VBTableIndices.insert(BaseInfo->VBTableIndices.begin(),
3696 BaseInfo->VBTableIndices.end());
3697 }
3698
3699 // New vbases are added to the end of the vbtable.
3700 // Skip the self entry and vbases visited in the non-virtual base, if any.
3701 unsigned VBTableIndex = 1 + VBI->VBTableIndices.size();
3702 for (const auto &VB : RD->vbases()) {
3703 const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl();
3704 if (!VBI->VBTableIndices.count(CurVBase))
3705 VBI->VBTableIndices[CurVBase] = VBTableIndex++;
3706 }
3707
3708 return VBI;
3709 }
3710
getVBTableIndex(const CXXRecordDecl * Derived,const CXXRecordDecl * VBase)3711 unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived,
3712 const CXXRecordDecl *VBase) {
3713 const VirtualBaseInfo *VBInfo = computeVBTableRelatedInformation(Derived);
3714 assert(VBInfo->VBTableIndices.count(VBase));
3715 return VBInfo->VBTableIndices.find(VBase)->second;
3716 }
3717
3718 const VPtrInfoVector &
enumerateVBTables(const CXXRecordDecl * RD)3719 MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) {
3720 return computeVBTableRelatedInformation(RD)->VBPtrPaths;
3721 }
3722
3723 const VPtrInfoVector &
getVFPtrOffsets(const CXXRecordDecl * RD)3724 MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) {
3725 computeVTableRelatedInformation(RD);
3726
3727 assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations");
3728 return *VFPtrLocations[RD];
3729 }
3730
3731 const VTableLayout &
getVFTableLayout(const CXXRecordDecl * RD,CharUnits VFPtrOffset)3732 MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD,
3733 CharUnits VFPtrOffset) {
3734 computeVTableRelatedInformation(RD);
3735
3736 VFTableIdTy id(RD, VFPtrOffset);
3737 assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset");
3738 return *VFTableLayouts[id];
3739 }
3740
3741 const MicrosoftVTableContext::MethodVFTableLocation &
getMethodVFTableLocation(GlobalDecl GD)3742 MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) {
3743 assert(cast<CXXMethodDecl>(GD.getDecl())->isVirtual() &&
3744 "Only use this method for virtual methods or dtors");
3745 if (isa<CXXDestructorDecl>(GD.getDecl()))
3746 assert(GD.getDtorType() == Dtor_Deleting);
3747
3748 MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD);
3749 if (I != MethodVFTableLocations.end())
3750 return I->second;
3751
3752 const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent();
3753
3754 computeVTableRelatedInformation(RD);
3755
3756 I = MethodVFTableLocations.find(GD);
3757 assert(I != MethodVFTableLocations.end() && "Did not find index!");
3758 return I->second;
3759 }
3760