1 /*
2 * Copyright (c) 2015-2018, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <assert.h>
8 #include <stdbool.h>
9
10 #include <arch.h>
11 #include <arch_helpers.h>
12 #include <common/debug.h>
13 #include <common/interrupt_props.h>
14 #include <drivers/arm/gic_common.h>
15 #include <drivers/arm/gicv2.h>
16 #include <lib/spinlock.h>
17
18 #include "../common/gic_common_private.h"
19 #include "gicv2_private.h"
20
21 static const gicv2_driver_data_t *driver_data;
22
23 /*
24 * Spinlock to guard registers needing read-modify-write. APIs protected by this
25 * spinlock are used either at boot time (when only a single CPU is active), or
26 * when the system is fully coherent.
27 */
28 static spinlock_t gic_lock;
29
30 /*******************************************************************************
31 * Enable secure interrupts and use FIQs to route them. Disable legacy bypass
32 * and set the priority mask register to allow all interrupts to trickle in.
33 ******************************************************************************/
gicv2_cpuif_enable(void)34 void gicv2_cpuif_enable(void)
35 {
36 unsigned int val;
37
38 assert(driver_data != NULL);
39 assert(driver_data->gicc_base != 0U);
40
41 /*
42 * Enable the Group 0 interrupts, FIQEn and disable Group 0/1
43 * bypass.
44 */
45 val = CTLR_ENABLE_G0_BIT | FIQ_EN_BIT | FIQ_BYP_DIS_GRP0;
46 val |= IRQ_BYP_DIS_GRP0 | FIQ_BYP_DIS_GRP1 | IRQ_BYP_DIS_GRP1;
47
48 /* Program the idle priority in the PMR */
49 gicc_write_pmr(driver_data->gicc_base, GIC_PRI_MASK);
50 gicc_write_ctlr(driver_data->gicc_base, val);
51 }
52
53 /*******************************************************************************
54 * Place the cpu interface in a state where it can never make a cpu exit wfi as
55 * as result of an asserted interrupt. This is critical for powering down a cpu
56 ******************************************************************************/
gicv2_cpuif_disable(void)57 void gicv2_cpuif_disable(void)
58 {
59 unsigned int val;
60
61 assert(driver_data != NULL);
62 assert(driver_data->gicc_base != 0U);
63
64 /* Disable secure, non-secure interrupts and disable their bypass */
65 val = gicc_read_ctlr(driver_data->gicc_base);
66 val &= ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT);
67 val |= FIQ_BYP_DIS_GRP1 | FIQ_BYP_DIS_GRP0;
68 val |= IRQ_BYP_DIS_GRP0 | IRQ_BYP_DIS_GRP1;
69 gicc_write_ctlr(driver_data->gicc_base, val);
70 }
71
72 /*******************************************************************************
73 * Per cpu gic distributor setup which will be done by all cpus after a cold
74 * boot/hotplug. This marks out the secure SPIs and PPIs & enables them.
75 ******************************************************************************/
gicv2_pcpu_distif_init(void)76 void gicv2_pcpu_distif_init(void)
77 {
78 unsigned int ctlr;
79
80 assert(driver_data != NULL);
81 assert(driver_data->gicd_base != 0U);
82
83 gicv2_secure_ppi_sgi_setup_props(driver_data->gicd_base,
84 driver_data->interrupt_props,
85 driver_data->interrupt_props_num);
86
87 /* Enable G0 interrupts if not already */
88 ctlr = gicd_read_ctlr(driver_data->gicd_base);
89 if ((ctlr & CTLR_ENABLE_G0_BIT) == 0U) {
90 gicd_write_ctlr(driver_data->gicd_base,
91 ctlr | CTLR_ENABLE_G0_BIT);
92 }
93 }
94
95 /*******************************************************************************
96 * Global gic distributor init which will be done by the primary cpu after a
97 * cold boot. It marks out the secure SPIs, PPIs & SGIs and enables them. It
98 * then enables the secure GIC distributor interface.
99 ******************************************************************************/
gicv2_distif_init(void)100 void gicv2_distif_init(void)
101 {
102 unsigned int ctlr;
103
104 assert(driver_data != NULL);
105 assert(driver_data->gicd_base != 0U);
106
107 /* Disable the distributor before going further */
108 ctlr = gicd_read_ctlr(driver_data->gicd_base);
109 gicd_write_ctlr(driver_data->gicd_base,
110 ctlr & ~(CTLR_ENABLE_G0_BIT | CTLR_ENABLE_G1_BIT));
111
112 /* Set the default attribute of all SPIs */
113 gicv2_spis_configure_defaults(driver_data->gicd_base);
114
115 gicv2_secure_spis_configure_props(driver_data->gicd_base,
116 driver_data->interrupt_props,
117 driver_data->interrupt_props_num);
118
119
120 /* Re-enable the secure SPIs now that they have been configured */
121 gicd_write_ctlr(driver_data->gicd_base, ctlr | CTLR_ENABLE_G0_BIT);
122 }
123
124 /*******************************************************************************
125 * Initialize the ARM GICv2 driver with the provided platform inputs
126 ******************************************************************************/
gicv2_driver_init(const gicv2_driver_data_t * plat_driver_data)127 void gicv2_driver_init(const gicv2_driver_data_t *plat_driver_data)
128 {
129 unsigned int gic_version;
130
131 assert(plat_driver_data != NULL);
132 assert(plat_driver_data->gicd_base != 0U);
133 assert(plat_driver_data->gicc_base != 0U);
134
135 assert(plat_driver_data->interrupt_props_num > 0 ?
136 plat_driver_data->interrupt_props != NULL : 1);
137
138 /* Ensure that this is a GICv2 system */
139 gic_version = gicd_read_pidr2(plat_driver_data->gicd_base);
140 gic_version = (gic_version >> PIDR2_ARCH_REV_SHIFT)
141 & PIDR2_ARCH_REV_MASK;
142
143 /*
144 * GICv1 with security extension complies with trusted firmware
145 * GICv2 driver as far as virtualization and few tricky power
146 * features are not used. GICv2 features that are not supported
147 * by GICv1 with Security Extensions are:
148 * - virtual interrupt support.
149 * - wake up events.
150 * - writeable GIC state register (for power sequences)
151 * - interrupt priority drop.
152 * - interrupt signal bypass.
153 */
154 assert((gic_version == ARCH_REV_GICV2) ||
155 (gic_version == ARCH_REV_GICV1));
156
157 driver_data = plat_driver_data;
158
159 /*
160 * The GIC driver data is initialized by the primary CPU with caches
161 * enabled. When the secondary CPU boots up, it initializes the
162 * GICC/GICR interface with the caches disabled. Hence flush the
163 * driver_data to ensure coherency. This is not required if the
164 * platform has HW_ASSISTED_COHERENCY or WARMBOOT_ENABLE_DCACHE_EARLY
165 * enabled.
166 */
167 #if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
168 flush_dcache_range((uintptr_t) &driver_data, sizeof(driver_data));
169 flush_dcache_range((uintptr_t) driver_data, sizeof(*driver_data));
170 #endif
171 INFO("ARM GICv2 driver initialized\n");
172 }
173
174 /******************************************************************************
175 * This function returns whether FIQ is enabled in the GIC CPU interface.
176 *****************************************************************************/
gicv2_is_fiq_enabled(void)177 unsigned int gicv2_is_fiq_enabled(void)
178 {
179 unsigned int gicc_ctlr;
180
181 assert(driver_data != NULL);
182 assert(driver_data->gicc_base != 0U);
183
184 gicc_ctlr = gicc_read_ctlr(driver_data->gicc_base);
185 return (gicc_ctlr >> FIQ_EN_SHIFT) & 0x1U;
186 }
187
188 /*******************************************************************************
189 * This function returns the type of the highest priority pending interrupt at
190 * the GIC cpu interface. The return values can be one of the following :
191 * PENDING_G1_INTID : The interrupt type is non secure Group 1.
192 * 0 - 1019 : The interrupt type is secure Group 0.
193 * GIC_SPURIOUS_INTERRUPT : there is no pending interrupt with
194 * sufficient priority to be signaled
195 ******************************************************************************/
gicv2_get_pending_interrupt_type(void)196 unsigned int gicv2_get_pending_interrupt_type(void)
197 {
198 assert(driver_data != NULL);
199 assert(driver_data->gicc_base != 0U);
200
201 return gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK;
202 }
203
204 /*******************************************************************************
205 * This function returns the id of the highest priority pending interrupt at
206 * the GIC cpu interface. GIC_SPURIOUS_INTERRUPT is returned when there is no
207 * interrupt pending.
208 ******************************************************************************/
gicv2_get_pending_interrupt_id(void)209 unsigned int gicv2_get_pending_interrupt_id(void)
210 {
211 unsigned int id;
212
213 assert(driver_data != NULL);
214 assert(driver_data->gicc_base != 0U);
215
216 id = gicc_read_hppir(driver_data->gicc_base) & INT_ID_MASK;
217
218 /*
219 * Find out which non-secure interrupt it is under the assumption that
220 * the GICC_CTLR.AckCtl bit is 0.
221 */
222 if (id == PENDING_G1_INTID)
223 id = gicc_read_ahppir(driver_data->gicc_base) & INT_ID_MASK;
224
225 return id;
226 }
227
228 /*******************************************************************************
229 * This functions reads the GIC cpu interface Interrupt Acknowledge register
230 * to start handling the pending secure 0 interrupt. It returns the
231 * contents of the IAR.
232 ******************************************************************************/
gicv2_acknowledge_interrupt(void)233 unsigned int gicv2_acknowledge_interrupt(void)
234 {
235 assert(driver_data != NULL);
236 assert(driver_data->gicc_base != 0U);
237
238 return gicc_read_IAR(driver_data->gicc_base);
239 }
240
241 /*******************************************************************************
242 * This functions writes the GIC cpu interface End Of Interrupt register with
243 * the passed value to finish handling the active secure group 0 interrupt.
244 ******************************************************************************/
gicv2_end_of_interrupt(unsigned int id)245 void gicv2_end_of_interrupt(unsigned int id)
246 {
247 assert(driver_data != NULL);
248 assert(driver_data->gicc_base != 0U);
249
250 gicc_write_EOIR(driver_data->gicc_base, id);
251 }
252
253 /*******************************************************************************
254 * This function returns the type of the interrupt id depending upon the group
255 * this interrupt has been configured under by the interrupt controller i.e.
256 * group0 secure or group1 non secure. It returns zero for Group 0 secure and
257 * one for Group 1 non secure interrupt.
258 ******************************************************************************/
gicv2_get_interrupt_group(unsigned int id)259 unsigned int gicv2_get_interrupt_group(unsigned int id)
260 {
261 assert(driver_data != NULL);
262 assert(driver_data->gicd_base != 0U);
263
264 return gicd_get_igroupr(driver_data->gicd_base, id);
265 }
266
267 /*******************************************************************************
268 * This function returns the priority of the interrupt the processor is
269 * currently servicing.
270 ******************************************************************************/
gicv2_get_running_priority(void)271 unsigned int gicv2_get_running_priority(void)
272 {
273 assert(driver_data != NULL);
274 assert(driver_data->gicc_base != 0U);
275
276 return gicc_read_rpr(driver_data->gicc_base);
277 }
278
279 /*******************************************************************************
280 * This function sets the GICv2 target mask pattern for the current PE. The PE
281 * target mask is used to translate linear PE index (returned by platform core
282 * position) to a bit mask used when targeting interrupts to a PE (for example
283 * when raising SGIs and routing SPIs).
284 ******************************************************************************/
gicv2_set_pe_target_mask(unsigned int proc_num)285 void gicv2_set_pe_target_mask(unsigned int proc_num)
286 {
287 assert(driver_data != NULL);
288 assert(driver_data->gicd_base != 0U);
289 assert(driver_data->target_masks != NULL);
290 assert((unsigned int)proc_num < GICV2_MAX_TARGET_PE);
291 assert((unsigned int)proc_num < driver_data->target_masks_num);
292
293 /* Return if the target mask is already populated */
294 if (driver_data->target_masks[proc_num] != 0U)
295 return;
296
297 /*
298 * Update target register corresponding to this CPU and flush for it to
299 * be visible to other CPUs.
300 */
301 if (driver_data->target_masks[proc_num] == 0U) {
302 driver_data->target_masks[proc_num] =
303 gicv2_get_cpuif_id(driver_data->gicd_base);
304 #if !(HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
305 /*
306 * PEs only update their own masks. Primary updates it with
307 * caches on. But because secondaries does it with caches off,
308 * all updates go to memory directly, and there's no danger of
309 * secondaries overwriting each others' mask, despite
310 * target_masks[] not being cache line aligned.
311 */
312 flush_dcache_range((uintptr_t)
313 &driver_data->target_masks[proc_num],
314 sizeof(driver_data->target_masks[proc_num]));
315 #endif
316 }
317 }
318
319 /*******************************************************************************
320 * This function returns the active status of the interrupt (either because the
321 * state is active, or active and pending).
322 ******************************************************************************/
gicv2_get_interrupt_active(unsigned int id)323 unsigned int gicv2_get_interrupt_active(unsigned int id)
324 {
325 assert(driver_data != NULL);
326 assert(driver_data->gicd_base != 0U);
327 assert(id <= MAX_SPI_ID);
328
329 return gicd_get_isactiver(driver_data->gicd_base, id);
330 }
331
332 /*******************************************************************************
333 * This function enables the interrupt identified by id.
334 ******************************************************************************/
gicv2_enable_interrupt(unsigned int id)335 void gicv2_enable_interrupt(unsigned int id)
336 {
337 assert(driver_data != NULL);
338 assert(driver_data->gicd_base != 0U);
339 assert(id <= MAX_SPI_ID);
340
341 /*
342 * Ensure that any shared variable updates depending on out of band
343 * interrupt trigger are observed before enabling interrupt.
344 */
345 dsbishst();
346 gicd_set_isenabler(driver_data->gicd_base, id);
347 }
348
349 /*******************************************************************************
350 * This function disables the interrupt identified by id.
351 ******************************************************************************/
gicv2_disable_interrupt(unsigned int id)352 void gicv2_disable_interrupt(unsigned int id)
353 {
354 assert(driver_data != NULL);
355 assert(driver_data->gicd_base != 0U);
356 assert(id <= MAX_SPI_ID);
357
358 /*
359 * Disable interrupt, and ensure that any shared variable updates
360 * depending on out of band interrupt trigger are observed afterwards.
361 */
362 gicd_set_icenabler(driver_data->gicd_base, id);
363 dsbishst();
364 }
365
366 /*******************************************************************************
367 * This function sets the interrupt priority as supplied for the given interrupt
368 * id.
369 ******************************************************************************/
gicv2_set_interrupt_priority(unsigned int id,unsigned int priority)370 void gicv2_set_interrupt_priority(unsigned int id, unsigned int priority)
371 {
372 assert(driver_data != NULL);
373 assert(driver_data->gicd_base != 0U);
374 assert(id <= MAX_SPI_ID);
375
376 gicd_set_ipriorityr(driver_data->gicd_base, id, priority);
377 }
378
379 /*******************************************************************************
380 * This function assigns group for the interrupt identified by id. The group can
381 * be any of GICV2_INTR_GROUP*
382 ******************************************************************************/
gicv2_set_interrupt_type(unsigned int id,unsigned int type)383 void gicv2_set_interrupt_type(unsigned int id, unsigned int type)
384 {
385 assert(driver_data != NULL);
386 assert(driver_data->gicd_base != 0U);
387 assert(id <= MAX_SPI_ID);
388
389 /* Serialize read-modify-write to Distributor registers */
390 spin_lock(&gic_lock);
391 switch (type) {
392 case GICV2_INTR_GROUP1:
393 gicd_set_igroupr(driver_data->gicd_base, id);
394 break;
395 case GICV2_INTR_GROUP0:
396 gicd_clr_igroupr(driver_data->gicd_base, id);
397 break;
398 default:
399 assert(false);
400 break;
401 }
402 spin_unlock(&gic_lock);
403 }
404
405 /*******************************************************************************
406 * This function raises the specified SGI to requested targets.
407 *
408 * The proc_num parameter must be the linear index of the target PE in the
409 * system.
410 ******************************************************************************/
gicv2_raise_sgi(int sgi_num,int proc_num)411 void gicv2_raise_sgi(int sgi_num, int proc_num)
412 {
413 unsigned int sgir_val, target;
414
415 assert(driver_data != NULL);
416 assert((unsigned int)proc_num < GICV2_MAX_TARGET_PE);
417 assert(driver_data->gicd_base != 0U);
418
419 /*
420 * Target masks array must have been supplied, and the core position
421 * should be valid.
422 */
423 assert(driver_data->target_masks != NULL);
424 assert((unsigned int)proc_num < driver_data->target_masks_num);
425
426 /* Don't raise SGI if the mask hasn't been populated */
427 target = driver_data->target_masks[proc_num];
428 assert(target != 0U);
429
430 sgir_val = GICV2_SGIR_VALUE(SGIR_TGT_SPECIFIC, target, sgi_num);
431
432 /*
433 * Ensure that any shared variable updates depending on out of band
434 * interrupt trigger are observed before raising SGI.
435 */
436 dsbishst();
437 gicd_write_sgir(driver_data->gicd_base, sgir_val);
438 }
439
440 /*******************************************************************************
441 * This function sets the interrupt routing for the given SPI interrupt id.
442 * The interrupt routing is specified in routing mode. The proc_num parameter is
443 * linear index of the PE to target SPI. When proc_num < 0, the SPI may target
444 * all PEs.
445 ******************************************************************************/
gicv2_set_spi_routing(unsigned int id,int proc_num)446 void gicv2_set_spi_routing(unsigned int id, int proc_num)
447 {
448 unsigned int target;
449
450 assert(driver_data != NULL);
451 assert(driver_data->gicd_base != 0U);
452
453 assert((id >= MIN_SPI_ID) && (id <= MAX_SPI_ID));
454
455 /*
456 * Target masks array must have been supplied, and the core position
457 * should be valid.
458 */
459 assert(driver_data->target_masks != NULL);
460 assert((unsigned int)proc_num < GICV2_MAX_TARGET_PE);
461 assert((unsigned int)proc_num < driver_data->target_masks_num);
462
463 if (proc_num < 0) {
464 /* Target all PEs */
465 target = GIC_TARGET_CPU_MASK;
466 } else {
467 /* Don't route interrupt if the mask hasn't been populated */
468 target = driver_data->target_masks[proc_num];
469 assert(target != 0U);
470 }
471
472 gicd_set_itargetsr(driver_data->gicd_base, id, target);
473 }
474
475 /*******************************************************************************
476 * This function clears the pending status of an interrupt identified by id.
477 ******************************************************************************/
gicv2_clear_interrupt_pending(unsigned int id)478 void gicv2_clear_interrupt_pending(unsigned int id)
479 {
480 assert(driver_data != NULL);
481 assert(driver_data->gicd_base != 0U);
482
483 /* SGIs can't be cleared pending */
484 assert(id >= MIN_PPI_ID);
485
486 /*
487 * Clear pending interrupt, and ensure that any shared variable updates
488 * depending on out of band interrupt trigger are observed afterwards.
489 */
490 gicd_set_icpendr(driver_data->gicd_base, id);
491 dsbishst();
492 }
493
494 /*******************************************************************************
495 * This function sets the pending status of an interrupt identified by id.
496 ******************************************************************************/
gicv2_set_interrupt_pending(unsigned int id)497 void gicv2_set_interrupt_pending(unsigned int id)
498 {
499 assert(driver_data != NULL);
500 assert(driver_data->gicd_base != 0U);
501
502 /* SGIs can't be cleared pending */
503 assert(id >= MIN_PPI_ID);
504
505 /*
506 * Ensure that any shared variable updates depending on out of band
507 * interrupt trigger are observed before setting interrupt pending.
508 */
509 dsbishst();
510 gicd_set_ispendr(driver_data->gicd_base, id);
511 }
512
513 /*******************************************************************************
514 * This function sets the PMR register with the supplied value. Returns the
515 * original PMR.
516 ******************************************************************************/
gicv2_set_pmr(unsigned int mask)517 unsigned int gicv2_set_pmr(unsigned int mask)
518 {
519 unsigned int old_mask;
520
521 assert(driver_data != NULL);
522 assert(driver_data->gicc_base != 0U);
523
524 old_mask = gicc_read_pmr(driver_data->gicc_base);
525
526 /*
527 * Order memory updates w.r.t. PMR write, and ensure they're visible
528 * before potential out of band interrupt trigger because of PMR update.
529 */
530 dmbishst();
531 gicc_write_pmr(driver_data->gicc_base, mask);
532 dsbishst();
533
534 return old_mask;
535 }
536
537 /*******************************************************************************
538 * This function updates single interrupt configuration to be level/edge
539 * triggered
540 ******************************************************************************/
gicv2_interrupt_set_cfg(unsigned int id,unsigned int cfg)541 void gicv2_interrupt_set_cfg(unsigned int id, unsigned int cfg)
542 {
543 gicd_set_icfgr(driver_data->gicd_base, id, cfg);
544 }
545