1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2008 RuggedCom, Inc.
4 * Richard Retanubun <RichardRetanubun@RuggedCom.com>
5 */
6
7 /*
8 * NOTE:
9 * when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this
10 * limits the maximum size of addressable storage to < 2 Terra Bytes
11 */
12 #include <asm/unaligned.h>
13 #include <common.h>
14 #include <command.h>
15 #include <fdtdec.h>
16 #include <ide.h>
17 #include <malloc.h>
18 #include <memalign.h>
19 #include <part_efi.h>
20 #include <linux/compiler.h>
21 #include <linux/ctype.h>
22 #include <u-boot/crc.h>
23
24 DECLARE_GLOBAL_DATA_PTR;
25
26 /*
27 * GUID for basic data partions.
28 */
29 static const efi_guid_t partition_basic_data_guid = PARTITION_BASIC_DATA_GUID;
30
31 #ifdef CONFIG_HAVE_BLOCK_DEVICE
32 /**
33 * efi_crc32() - EFI version of crc32 function
34 * @buf: buffer to calculate crc32 of
35 * @len - length of buf
36 *
37 * Description: Returns EFI-style CRC32 value for @buf
38 */
efi_crc32(const void * buf,u32 len)39 static inline u32 efi_crc32(const void *buf, u32 len)
40 {
41 return crc32(0, buf, len);
42 }
43
44 /*
45 * Private function prototypes
46 */
47
48 static int pmbr_part_valid(struct partition *part);
49 static int is_pmbr_valid(legacy_mbr * mbr);
50 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba,
51 gpt_header *pgpt_head, gpt_entry **pgpt_pte);
52 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc,
53 gpt_header *pgpt_head);
54 static int is_pte_valid(gpt_entry * pte);
55 static int find_valid_gpt(struct blk_desc *dev_desc, gpt_header *gpt_head,
56 gpt_entry **pgpt_pte);
57
print_efiname(gpt_entry * pte)58 static char *print_efiname(gpt_entry *pte)
59 {
60 static char name[PARTNAME_SZ + 1];
61 int i;
62 for (i = 0; i < PARTNAME_SZ; i++) {
63 u8 c;
64 c = pte->partition_name[i] & 0xff;
65 c = (c && !isprint(c)) ? '.' : c;
66 name[i] = c;
67 }
68 name[PARTNAME_SZ] = 0;
69 return name;
70 }
71
72 static const efi_guid_t system_guid = PARTITION_SYSTEM_GUID;
73
is_bootable(gpt_entry * p)74 static inline int is_bootable(gpt_entry *p)
75 {
76 return p->attributes.fields.legacy_bios_bootable ||
77 !memcmp(&(p->partition_type_guid), &system_guid,
78 sizeof(efi_guid_t));
79 }
80
validate_gpt_header(gpt_header * gpt_h,lbaint_t lba,lbaint_t lastlba)81 static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba,
82 lbaint_t lastlba)
83 {
84 uint32_t crc32_backup = 0;
85 uint32_t calc_crc32;
86
87 /* Check the GPT header signature */
88 if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE_UBOOT) {
89 printf("%s signature is wrong: 0x%llX != 0x%llX\n",
90 "GUID Partition Table Header",
91 le64_to_cpu(gpt_h->signature),
92 GPT_HEADER_SIGNATURE_UBOOT);
93 return -1;
94 }
95
96 /* Check the GUID Partition Table CRC */
97 memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup));
98 memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32));
99
100 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
101 le32_to_cpu(gpt_h->header_size));
102
103 memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup));
104
105 if (calc_crc32 != le32_to_cpu(crc32_backup)) {
106 printf("%s CRC is wrong: 0x%x != 0x%x\n",
107 "GUID Partition Table Header",
108 le32_to_cpu(crc32_backup), calc_crc32);
109 return -1;
110 }
111
112 /*
113 * Check that the my_lba entry points to the LBA that contains the GPT
114 */
115 if (le64_to_cpu(gpt_h->my_lba) != lba) {
116 printf("GPT: my_lba incorrect: %llX != " LBAF "\n",
117 le64_to_cpu(gpt_h->my_lba),
118 lba);
119 return -1;
120 }
121
122 /*
123 * Check that the first_usable_lba and that the last_usable_lba are
124 * within the disk.
125 */
126 if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) {
127 printf("GPT: first_usable_lba incorrect: %llX > " LBAF "\n",
128 le64_to_cpu(gpt_h->first_usable_lba), lastlba);
129 return -1;
130 }
131 if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) {
132 printf("GPT: last_usable_lba incorrect: %llX > " LBAF "\n",
133 le64_to_cpu(gpt_h->last_usable_lba), lastlba);
134 return -1;
135 }
136
137 debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: "
138 LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba),
139 le64_to_cpu(gpt_h->last_usable_lba), lastlba);
140
141 return 0;
142 }
143
validate_gpt_entries(gpt_header * gpt_h,gpt_entry * gpt_e)144 static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e)
145 {
146 uint32_t calc_crc32;
147
148 /* Check the GUID Partition Table Entry Array CRC */
149 calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
150 le32_to_cpu(gpt_h->num_partition_entries) *
151 le32_to_cpu(gpt_h->sizeof_partition_entry));
152
153 if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) {
154 printf("%s: 0x%x != 0x%x\n",
155 "GUID Partition Table Entry Array CRC is wrong",
156 le32_to_cpu(gpt_h->partition_entry_array_crc32),
157 calc_crc32);
158 return -1;
159 }
160
161 return 0;
162 }
163
prepare_backup_gpt_header(gpt_header * gpt_h)164 static void prepare_backup_gpt_header(gpt_header *gpt_h)
165 {
166 uint32_t calc_crc32;
167 uint64_t val;
168
169 /* recalculate the values for the Backup GPT Header */
170 val = le64_to_cpu(gpt_h->my_lba);
171 gpt_h->my_lba = gpt_h->alternate_lba;
172 gpt_h->alternate_lba = cpu_to_le64(val);
173 gpt_h->partition_entry_lba =
174 cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1);
175 gpt_h->header_crc32 = 0;
176
177 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
178 le32_to_cpu(gpt_h->header_size));
179 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
180 }
181
182 #if CONFIG_IS_ENABLED(EFI_PARTITION)
183 /*
184 * Public Functions (include/part.h)
185 */
186
187 /*
188 * UUID is displayed as 32 hexadecimal digits, in 5 groups,
189 * separated by hyphens, in the form 8-4-4-4-12 for a total of 36 characters
190 */
get_disk_guid(struct blk_desc * dev_desc,char * guid)191 int get_disk_guid(struct blk_desc * dev_desc, char *guid)
192 {
193 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
194 gpt_entry *gpt_pte = NULL;
195 unsigned char *guid_bin;
196
197 /* This function validates AND fills in the GPT header and PTE */
198 if (find_valid_gpt(dev_desc, gpt_head, &gpt_pte) != 1)
199 return -EINVAL;
200
201 guid_bin = gpt_head->disk_guid.b;
202 uuid_bin_to_str(guid_bin, guid, UUID_STR_FORMAT_GUID);
203
204 /* Remember to free pte */
205 free(gpt_pte);
206 return 0;
207 }
208
part_print_efi(struct blk_desc * dev_desc)209 void part_print_efi(struct blk_desc *dev_desc)
210 {
211 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
212 gpt_entry *gpt_pte = NULL;
213 int i = 0;
214 char uuid[UUID_STR_LEN + 1];
215 unsigned char *uuid_bin;
216
217 /* This function validates AND fills in the GPT header and PTE */
218 if (find_valid_gpt(dev_desc, gpt_head, &gpt_pte) != 1)
219 return;
220
221 debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
222
223 printf("Part\tStart LBA\tEnd LBA\t\tName\n");
224 printf("\tAttributes\n");
225 printf("\tType GUID\n");
226 printf("\tPartition GUID\n");
227
228 for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) {
229 /* Stop at the first non valid PTE */
230 if (!is_pte_valid(&gpt_pte[i]))
231 break;
232
233 printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1),
234 le64_to_cpu(gpt_pte[i].starting_lba),
235 le64_to_cpu(gpt_pte[i].ending_lba),
236 print_efiname(&gpt_pte[i]));
237 printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw);
238 uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b;
239 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
240 printf("\ttype:\t%s\n", uuid);
241 #ifdef CONFIG_PARTITION_TYPE_GUID
242 if (!uuid_guid_get_str(uuid_bin, uuid))
243 printf("\ttype:\t%s\n", uuid);
244 #endif
245 uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b;
246 uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
247 printf("\tguid:\t%s\n", uuid);
248 }
249
250 /* Remember to free pte */
251 free(gpt_pte);
252 return;
253 }
254
part_get_info_efi(struct blk_desc * dev_desc,int part,disk_partition_t * info)255 int part_get_info_efi(struct blk_desc *dev_desc, int part,
256 disk_partition_t *info)
257 {
258 ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
259 gpt_entry *gpt_pte = NULL;
260
261 /* "part" argument must be at least 1 */
262 if (part < 1) {
263 printf("%s: Invalid Argument(s)\n", __func__);
264 return -1;
265 }
266
267 /* This function validates AND fills in the GPT header and PTE */
268 if (find_valid_gpt(dev_desc, gpt_head, &gpt_pte) != 1)
269 return -1;
270
271 if (part > le32_to_cpu(gpt_head->num_partition_entries) ||
272 !is_pte_valid(&gpt_pte[part - 1])) {
273 debug("%s: *** ERROR: Invalid partition number %d ***\n",
274 __func__, part);
275 free(gpt_pte);
276 return -1;
277 }
278
279 /* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */
280 info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba);
281 /* The ending LBA is inclusive, to calculate size, add 1 to it */
282 info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1
283 - info->start;
284 info->blksz = dev_desc->blksz;
285
286 snprintf((char *)info->name, sizeof(info->name), "%s",
287 print_efiname(&gpt_pte[part - 1]));
288 strcpy((char *)info->type, "U-Boot");
289 info->bootable = is_bootable(&gpt_pte[part - 1]);
290 #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
291 uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid,
292 UUID_STR_FORMAT_GUID);
293 #endif
294 #ifdef CONFIG_PARTITION_TYPE_GUID
295 uuid_bin_to_str(gpt_pte[part - 1].partition_type_guid.b,
296 info->type_guid, UUID_STR_FORMAT_GUID);
297 #endif
298
299 debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__,
300 info->start, info->size, info->name);
301
302 /* Remember to free pte */
303 free(gpt_pte);
304 return 0;
305 }
306
part_test_efi(struct blk_desc * dev_desc)307 static int part_test_efi(struct blk_desc *dev_desc)
308 {
309 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz);
310
311 /* Read legacy MBR from block 0 and validate it */
312 if ((blk_dread(dev_desc, 0, 1, (ulong *)legacymbr) != 1)
313 || (is_pmbr_valid(legacymbr) != 1)) {
314 return -1;
315 }
316 return 0;
317 }
318
319 /**
320 * set_protective_mbr(): Set the EFI protective MBR
321 * @param dev_desc - block device descriptor
322 *
323 * @return - zero on success, otherwise error
324 */
set_protective_mbr(struct blk_desc * dev_desc)325 static int set_protective_mbr(struct blk_desc *dev_desc)
326 {
327 /* Setup the Protective MBR */
328 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, p_mbr, 1, dev_desc->blksz);
329 if (p_mbr == NULL) {
330 printf("%s: calloc failed!\n", __func__);
331 return -1;
332 }
333
334 /* Read MBR to backup boot code if it exists */
335 if (blk_dread(dev_desc, 0, 1, p_mbr) != 1) {
336 pr_err("** Can't read from device %d **\n", dev_desc->devnum);
337 return -1;
338 }
339
340 /* Clear all data in MBR except of backed up boot code */
341 memset((char *)p_mbr + MSDOS_MBR_BOOT_CODE_SIZE, 0, sizeof(*p_mbr) -
342 MSDOS_MBR_BOOT_CODE_SIZE);
343
344 /* Append signature */
345 p_mbr->signature = MSDOS_MBR_SIGNATURE;
346 p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT;
347 p_mbr->partition_record[0].start_sect = 1;
348 p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba - 1;
349
350 /* Write MBR sector to the MMC device */
351 if (blk_dwrite(dev_desc, 0, 1, p_mbr) != 1) {
352 printf("** Can't write to device %d **\n",
353 dev_desc->devnum);
354 return -1;
355 }
356
357 return 0;
358 }
359
write_gpt_table(struct blk_desc * dev_desc,gpt_header * gpt_h,gpt_entry * gpt_e)360 int write_gpt_table(struct blk_desc *dev_desc,
361 gpt_header *gpt_h, gpt_entry *gpt_e)
362 {
363 const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries
364 * sizeof(gpt_entry)), dev_desc);
365 u32 calc_crc32;
366
367 debug("max lba: %x\n", (u32) dev_desc->lba);
368 /* Setup the Protective MBR */
369 if (set_protective_mbr(dev_desc) < 0)
370 goto err;
371
372 /* Generate CRC for the Primary GPT Header */
373 calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
374 le32_to_cpu(gpt_h->num_partition_entries) *
375 le32_to_cpu(gpt_h->sizeof_partition_entry));
376 gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32);
377
378 calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
379 le32_to_cpu(gpt_h->header_size));
380 gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
381
382 /* Write the First GPT to the block right after the Legacy MBR */
383 if (blk_dwrite(dev_desc, 1, 1, gpt_h) != 1)
384 goto err;
385
386 if (blk_dwrite(dev_desc, le64_to_cpu(gpt_h->partition_entry_lba),
387 pte_blk_cnt, gpt_e) != pte_blk_cnt)
388 goto err;
389
390 prepare_backup_gpt_header(gpt_h);
391
392 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba)
393 + 1, pte_blk_cnt, gpt_e) != pte_blk_cnt)
394 goto err;
395
396 if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1,
397 gpt_h) != 1)
398 goto err;
399
400 debug("GPT successfully written to block device!\n");
401 return 0;
402
403 err:
404 printf("** Can't write to device %d **\n", dev_desc->devnum);
405 return -1;
406 }
407
gpt_fill_pte(struct blk_desc * dev_desc,gpt_header * gpt_h,gpt_entry * gpt_e,disk_partition_t * partitions,int parts)408 int gpt_fill_pte(struct blk_desc *dev_desc,
409 gpt_header *gpt_h, gpt_entry *gpt_e,
410 disk_partition_t *partitions, int parts)
411 {
412 lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba);
413 lbaint_t last_usable_lba = (lbaint_t)
414 le64_to_cpu(gpt_h->last_usable_lba);
415 int i, k;
416 size_t efiname_len, dosname_len;
417 #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
418 char *str_uuid;
419 unsigned char *bin_uuid;
420 #endif
421 #ifdef CONFIG_PARTITION_TYPE_GUID
422 char *str_type_guid;
423 unsigned char *bin_type_guid;
424 #endif
425 size_t hdr_start = gpt_h->my_lba;
426 size_t hdr_end = hdr_start + 1;
427
428 size_t pte_start = gpt_h->partition_entry_lba;
429 size_t pte_end = pte_start +
430 gpt_h->num_partition_entries * gpt_h->sizeof_partition_entry /
431 dev_desc->blksz;
432
433 for (i = 0; i < parts; i++) {
434 /* partition starting lba */
435 lbaint_t start = partitions[i].start;
436 lbaint_t size = partitions[i].size;
437
438 if (start) {
439 offset = start + size;
440 } else {
441 start = offset;
442 offset += size;
443 }
444
445 /*
446 * If our partition overlaps with either the GPT
447 * header, or the partition entry, reject it.
448 */
449 if (((start < hdr_end && hdr_start < (start + size)) ||
450 (start < pte_end && pte_start < (start + size)))) {
451 printf("Partition overlap\n");
452 return -1;
453 }
454
455 gpt_e[i].starting_lba = cpu_to_le64(start);
456
457 if (offset > (last_usable_lba + 1)) {
458 printf("Partitions layout exceds disk size\n");
459 return -1;
460 }
461 /* partition ending lba */
462 if ((i == parts - 1) && (size == 0))
463 /* extend the last partition to maximuim */
464 gpt_e[i].ending_lba = gpt_h->last_usable_lba;
465 else
466 gpt_e[i].ending_lba = cpu_to_le64(offset - 1);
467
468 #ifdef CONFIG_PARTITION_TYPE_GUID
469 str_type_guid = partitions[i].type_guid;
470 bin_type_guid = gpt_e[i].partition_type_guid.b;
471 if (strlen(str_type_guid)) {
472 if (uuid_str_to_bin(str_type_guid, bin_type_guid,
473 UUID_STR_FORMAT_GUID)) {
474 printf("Partition no. %d: invalid type guid: %s\n",
475 i, str_type_guid);
476 return -1;
477 }
478 } else {
479 /* default partition type GUID */
480 memcpy(bin_type_guid,
481 &partition_basic_data_guid, 16);
482 }
483 #else
484 /* partition type GUID */
485 memcpy(gpt_e[i].partition_type_guid.b,
486 &partition_basic_data_guid, 16);
487 #endif
488
489 #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
490 str_uuid = partitions[i].uuid;
491 bin_uuid = gpt_e[i].unique_partition_guid.b;
492
493 if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_GUID)) {
494 printf("Partition no. %d: invalid guid: %s\n",
495 i, str_uuid);
496 return -1;
497 }
498 #endif
499
500 /* partition attributes */
501 memset(&gpt_e[i].attributes, 0,
502 sizeof(gpt_entry_attributes));
503
504 if (partitions[i].bootable)
505 gpt_e[i].attributes.fields.legacy_bios_bootable = 1;
506
507 /* partition name */
508 efiname_len = sizeof(gpt_e[i].partition_name)
509 / sizeof(efi_char16_t);
510 dosname_len = sizeof(partitions[i].name);
511
512 memset(gpt_e[i].partition_name, 0,
513 sizeof(gpt_e[i].partition_name));
514
515 for (k = 0; k < min(dosname_len, efiname_len); k++)
516 gpt_e[i].partition_name[k] =
517 (efi_char16_t)(partitions[i].name[k]);
518
519 debug("%s: name: %s offset[%d]: 0x" LBAF
520 " size[%d]: 0x" LBAF "\n",
521 __func__, partitions[i].name, i,
522 offset, i, size);
523 }
524
525 return 0;
526 }
527
partition_entries_offset(struct blk_desc * dev_desc)528 static uint32_t partition_entries_offset(struct blk_desc *dev_desc)
529 {
530 uint32_t offset_blks = 2;
531 uint32_t __maybe_unused offset_bytes;
532 int __maybe_unused config_offset;
533
534 #if defined(CONFIG_EFI_PARTITION_ENTRIES_OFF)
535 /*
536 * Some architectures require their SPL loader at a fixed
537 * address within the first 16KB of the disk. To avoid an
538 * overlap with the partition entries of the EFI partition
539 * table, the first safe offset (in bytes, from the start of
540 * the disk) for the entries can be set in
541 * CONFIG_EFI_PARTITION_ENTRIES_OFF.
542 */
543 offset_bytes =
544 PAD_TO_BLOCKSIZE(CONFIG_EFI_PARTITION_ENTRIES_OFF, dev_desc);
545 offset_blks = offset_bytes / dev_desc->blksz;
546 #endif
547
548 #if defined(CONFIG_OF_CONTROL)
549 /*
550 * Allow the offset of the first partition entires (in bytes
551 * from the start of the device) to be specified as a property
552 * of the device tree '/config' node.
553 */
554 config_offset = fdtdec_get_config_int(gd->fdt_blob,
555 "u-boot,efi-partition-entries-offset",
556 -EINVAL);
557 if (config_offset != -EINVAL) {
558 offset_bytes = PAD_TO_BLOCKSIZE(config_offset, dev_desc);
559 offset_blks = offset_bytes / dev_desc->blksz;
560 }
561 #endif
562
563 debug("efi: partition entries offset (in blocks): %d\n", offset_blks);
564
565 /*
566 * The earliest LBA this can be at is LBA#2 (i.e. right behind
567 * the (protective) MBR and the GPT header.
568 */
569 if (offset_blks < 2)
570 offset_blks = 2;
571
572 return offset_blks;
573 }
574
gpt_fill_header(struct blk_desc * dev_desc,gpt_header * gpt_h,char * str_guid,int parts_count)575 int gpt_fill_header(struct blk_desc *dev_desc, gpt_header *gpt_h,
576 char *str_guid, int parts_count)
577 {
578 gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE_UBOOT);
579 gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1);
580 gpt_h->header_size = cpu_to_le32(sizeof(gpt_header));
581 gpt_h->my_lba = cpu_to_le64(1);
582 gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1);
583 gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34);
584 gpt_h->partition_entry_lba =
585 cpu_to_le64(partition_entries_offset(dev_desc));
586 gpt_h->first_usable_lba =
587 cpu_to_le64(le64_to_cpu(gpt_h->partition_entry_lba) + 32);
588 gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS);
589 gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry));
590 gpt_h->header_crc32 = 0;
591 gpt_h->partition_entry_array_crc32 = 0;
592
593 if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID))
594 return -1;
595
596 return 0;
597 }
598
gpt_restore(struct blk_desc * dev_desc,char * str_disk_guid,disk_partition_t * partitions,int parts_count)599 int gpt_restore(struct blk_desc *dev_desc, char *str_disk_guid,
600 disk_partition_t *partitions, int parts_count)
601 {
602 gpt_header *gpt_h;
603 gpt_entry *gpt_e;
604 int ret, size;
605
606 size = PAD_TO_BLOCKSIZE(sizeof(gpt_header), dev_desc);
607 gpt_h = malloc_cache_aligned(size);
608 if (gpt_h == NULL) {
609 printf("%s: calloc failed!\n", __func__);
610 return -1;
611 }
612 memset(gpt_h, 0, size);
613
614 size = PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS * sizeof(gpt_entry),
615 dev_desc);
616 gpt_e = malloc_cache_aligned(size);
617 if (gpt_e == NULL) {
618 printf("%s: calloc failed!\n", __func__);
619 free(gpt_h);
620 return -1;
621 }
622 memset(gpt_e, 0, size);
623
624 /* Generate Primary GPT header (LBA1) */
625 ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count);
626 if (ret)
627 goto err;
628
629 /* Generate partition entries */
630 ret = gpt_fill_pte(dev_desc, gpt_h, gpt_e, partitions, parts_count);
631 if (ret)
632 goto err;
633
634 /* Write GPT partition table */
635 ret = write_gpt_table(dev_desc, gpt_h, gpt_e);
636
637 err:
638 free(gpt_e);
639 free(gpt_h);
640 return ret;
641 }
642
643 /**
644 * gpt_convert_efi_name_to_char() - convert u16 string to char string
645 *
646 * TODO: this conversion only supports ANSI characters
647 *
648 * @s: target buffer
649 * @es: u16 string to be converted
650 * @n: size of target buffer
651 */
gpt_convert_efi_name_to_char(char * s,void * es,int n)652 static void gpt_convert_efi_name_to_char(char *s, void *es, int n)
653 {
654 char *ess = es;
655 int i, j;
656
657 memset(s, '\0', n);
658
659 for (i = 0, j = 0; j < n; i += 2, j++) {
660 s[j] = ess[i];
661 if (!ess[i])
662 return;
663 }
664 }
665
gpt_verify_headers(struct blk_desc * dev_desc,gpt_header * gpt_head,gpt_entry ** gpt_pte)666 int gpt_verify_headers(struct blk_desc *dev_desc, gpt_header *gpt_head,
667 gpt_entry **gpt_pte)
668 {
669 /*
670 * This function validates AND
671 * fills in the GPT header and PTE
672 */
673 if (is_gpt_valid(dev_desc,
674 GPT_PRIMARY_PARTITION_TABLE_LBA,
675 gpt_head, gpt_pte) != 1) {
676 printf("%s: *** ERROR: Invalid GPT ***\n",
677 __func__);
678 return -1;
679 }
680
681 /* Free pte before allocating again */
682 free(*gpt_pte);
683
684 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
685 gpt_head, gpt_pte) != 1) {
686 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
687 __func__);
688 return -1;
689 }
690
691 return 0;
692 }
693
gpt_verify_partitions(struct blk_desc * dev_desc,disk_partition_t * partitions,int parts,gpt_header * gpt_head,gpt_entry ** gpt_pte)694 int gpt_verify_partitions(struct blk_desc *dev_desc,
695 disk_partition_t *partitions, int parts,
696 gpt_header *gpt_head, gpt_entry **gpt_pte)
697 {
698 char efi_str[PARTNAME_SZ + 1];
699 u64 gpt_part_size;
700 gpt_entry *gpt_e;
701 int ret, i;
702
703 ret = gpt_verify_headers(dev_desc, gpt_head, gpt_pte);
704 if (ret)
705 return ret;
706
707 gpt_e = *gpt_pte;
708
709 for (i = 0; i < parts; i++) {
710 if (i == gpt_head->num_partition_entries) {
711 pr_err("More partitions than allowed!\n");
712 return -1;
713 }
714
715 /* Check if GPT and ENV partition names match */
716 gpt_convert_efi_name_to_char(efi_str, gpt_e[i].partition_name,
717 PARTNAME_SZ + 1);
718
719 debug("%s: part: %2d name - GPT: %16s, ENV: %16s ",
720 __func__, i, efi_str, partitions[i].name);
721
722 if (strncmp(efi_str, (char *)partitions[i].name,
723 sizeof(partitions->name))) {
724 pr_err("Partition name: %s does not match %s!\n",
725 efi_str, (char *)partitions[i].name);
726 return -1;
727 }
728
729 /* Check if GPT and ENV sizes match */
730 gpt_part_size = le64_to_cpu(gpt_e[i].ending_lba) -
731 le64_to_cpu(gpt_e[i].starting_lba) + 1;
732 debug("size(LBA) - GPT: %8llu, ENV: %8llu ",
733 (unsigned long long)gpt_part_size,
734 (unsigned long long)partitions[i].size);
735
736 if (le64_to_cpu(gpt_part_size) != partitions[i].size) {
737 /* We do not check the extend partition size */
738 if ((i == parts - 1) && (partitions[i].size == 0))
739 continue;
740
741 pr_err("Partition %s size: %llu does not match %llu!\n",
742 efi_str, (unsigned long long)gpt_part_size,
743 (unsigned long long)partitions[i].size);
744 return -1;
745 }
746
747 /*
748 * Start address is optional - check only if provided
749 * in '$partition' variable
750 */
751 if (!partitions[i].start) {
752 debug("\n");
753 continue;
754 }
755
756 /* Check if GPT and ENV start LBAs match */
757 debug("start LBA - GPT: %8llu, ENV: %8llu\n",
758 le64_to_cpu(gpt_e[i].starting_lba),
759 (unsigned long long)partitions[i].start);
760
761 if (le64_to_cpu(gpt_e[i].starting_lba) != partitions[i].start) {
762 pr_err("Partition %s start: %llu does not match %llu!\n",
763 efi_str, le64_to_cpu(gpt_e[i].starting_lba),
764 (unsigned long long)partitions[i].start);
765 return -1;
766 }
767 }
768
769 return 0;
770 }
771
is_valid_gpt_buf(struct blk_desc * dev_desc,void * buf)772 int is_valid_gpt_buf(struct blk_desc *dev_desc, void *buf)
773 {
774 gpt_header *gpt_h;
775 gpt_entry *gpt_e;
776
777 /* determine start of GPT Header in the buffer */
778 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
779 dev_desc->blksz);
780 if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA,
781 dev_desc->lba))
782 return -1;
783
784 /* determine start of GPT Entries in the buffer */
785 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
786 dev_desc->blksz);
787 if (validate_gpt_entries(gpt_h, gpt_e))
788 return -1;
789
790 return 0;
791 }
792
write_mbr_and_gpt_partitions(struct blk_desc * dev_desc,void * buf)793 int write_mbr_and_gpt_partitions(struct blk_desc *dev_desc, void *buf)
794 {
795 gpt_header *gpt_h;
796 gpt_entry *gpt_e;
797 int gpt_e_blk_cnt;
798 lbaint_t lba;
799 int cnt;
800
801 if (is_valid_gpt_buf(dev_desc, buf))
802 return -1;
803
804 /* determine start of GPT Header in the buffer */
805 gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
806 dev_desc->blksz);
807
808 /* determine start of GPT Entries in the buffer */
809 gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
810 dev_desc->blksz);
811 gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) *
812 le32_to_cpu(gpt_h->sizeof_partition_entry)),
813 dev_desc);
814
815 /* write MBR */
816 lba = 0; /* MBR is always at 0 */
817 cnt = 1; /* MBR (1 block) */
818 if (blk_dwrite(dev_desc, lba, cnt, buf) != cnt) {
819 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
820 __func__, "MBR", cnt, lba);
821 return 1;
822 }
823
824 /* write Primary GPT */
825 lba = GPT_PRIMARY_PARTITION_TABLE_LBA;
826 cnt = 1; /* GPT Header (1 block) */
827 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) {
828 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
829 __func__, "Primary GPT Header", cnt, lba);
830 return 1;
831 }
832
833 lba = le64_to_cpu(gpt_h->partition_entry_lba);
834 cnt = gpt_e_blk_cnt;
835 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) {
836 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
837 __func__, "Primary GPT Entries", cnt, lba);
838 return 1;
839 }
840
841 prepare_backup_gpt_header(gpt_h);
842
843 /* write Backup GPT */
844 lba = le64_to_cpu(gpt_h->partition_entry_lba);
845 cnt = gpt_e_blk_cnt;
846 if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) {
847 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
848 __func__, "Backup GPT Entries", cnt, lba);
849 return 1;
850 }
851
852 lba = le64_to_cpu(gpt_h->my_lba);
853 cnt = 1; /* GPT Header (1 block) */
854 if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) {
855 printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
856 __func__, "Backup GPT Header", cnt, lba);
857 return 1;
858 }
859
860 return 0;
861 }
862 #endif
863
864 /*
865 * Private functions
866 */
867 /*
868 * pmbr_part_valid(): Check for EFI partition signature
869 *
870 * Returns: 1 if EFI GPT partition type is found.
871 */
pmbr_part_valid(struct partition * part)872 static int pmbr_part_valid(struct partition *part)
873 {
874 if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
875 get_unaligned_le32(&part->start_sect) == 1UL) {
876 return 1;
877 }
878
879 return 0;
880 }
881
882 /*
883 * is_pmbr_valid(): test Protective MBR for validity
884 *
885 * Returns: 1 if PMBR is valid, 0 otherwise.
886 * Validity depends on two things:
887 * 1) MSDOS signature is in the last two bytes of the MBR
888 * 2) One partition of type 0xEE is found, checked by pmbr_part_valid()
889 */
is_pmbr_valid(legacy_mbr * mbr)890 static int is_pmbr_valid(legacy_mbr * mbr)
891 {
892 int i = 0;
893
894 if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
895 return 0;
896
897 for (i = 0; i < 4; i++) {
898 if (pmbr_part_valid(&mbr->partition_record[i])) {
899 return 1;
900 }
901 }
902 return 0;
903 }
904
905 /**
906 * is_gpt_valid() - tests one GPT header and PTEs for validity
907 *
908 * lba is the logical block address of the GPT header to test
909 * gpt is a GPT header ptr, filled on return.
910 * ptes is a PTEs ptr, filled on return.
911 *
912 * Description: returns 1 if valid, 0 on error, 2 if ignored header
913 * If valid, returns pointers to PTEs.
914 */
is_gpt_valid(struct blk_desc * dev_desc,u64 lba,gpt_header * pgpt_head,gpt_entry ** pgpt_pte)915 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba,
916 gpt_header *pgpt_head, gpt_entry **pgpt_pte)
917 {
918 /* Confirm valid arguments prior to allocation. */
919 if (!dev_desc || !pgpt_head) {
920 printf("%s: Invalid Argument(s)\n", __func__);
921 return 0;
922 }
923
924 ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, mbr, 1, dev_desc->blksz);
925
926 /* Read MBR Header from device */
927 if (blk_dread(dev_desc, 0, 1, (ulong *)mbr) != 1) {
928 printf("*** ERROR: Can't read MBR header ***\n");
929 return 0;
930 }
931
932 /* Read GPT Header from device */
933 if (blk_dread(dev_desc, (lbaint_t)lba, 1, pgpt_head) != 1) {
934 printf("*** ERROR: Can't read GPT header ***\n");
935 return 0;
936 }
937
938 /* Invalid but nothing to yell about. */
939 if (le64_to_cpu(pgpt_head->signature) == GPT_HEADER_CHROMEOS_IGNORE) {
940 debug("ChromeOS 'IGNOREME' GPT header found and ignored\n");
941 return 2;
942 }
943
944 if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->lba))
945 return 0;
946
947 if (dev_desc->sig_type == SIG_TYPE_NONE) {
948 efi_guid_t empty = {};
949 if (memcmp(&pgpt_head->disk_guid, &empty, sizeof(empty))) {
950 dev_desc->sig_type = SIG_TYPE_GUID;
951 memcpy(&dev_desc->guid_sig, &pgpt_head->disk_guid,
952 sizeof(empty));
953 } else if (mbr->unique_mbr_signature != 0) {
954 dev_desc->sig_type = SIG_TYPE_MBR;
955 dev_desc->mbr_sig = mbr->unique_mbr_signature;
956 }
957 }
958
959 /* Read and allocate Partition Table Entries */
960 *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head);
961 if (*pgpt_pte == NULL) {
962 printf("GPT: Failed to allocate memory for PTE\n");
963 return 0;
964 }
965
966 if (validate_gpt_entries(pgpt_head, *pgpt_pte)) {
967 free(*pgpt_pte);
968 return 0;
969 }
970
971 /* We're done, all's well */
972 return 1;
973 }
974
975 /**
976 * find_valid_gpt() - finds a valid GPT header and PTEs
977 *
978 * gpt is a GPT header ptr, filled on return.
979 * ptes is a PTEs ptr, filled on return.
980 *
981 * Description: returns 1 if found a valid gpt, 0 on error.
982 * If valid, returns pointers to PTEs.
983 */
find_valid_gpt(struct blk_desc * dev_desc,gpt_header * gpt_head,gpt_entry ** pgpt_pte)984 static int find_valid_gpt(struct blk_desc *dev_desc, gpt_header *gpt_head,
985 gpt_entry **pgpt_pte)
986 {
987 int r;
988
989 r = is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, gpt_head,
990 pgpt_pte);
991
992 if (r != 1) {
993 if (r != 2)
994 printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
995
996 if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), gpt_head,
997 pgpt_pte) != 1) {
998 printf("%s: *** ERROR: Invalid Backup GPT ***\n",
999 __func__);
1000 return 0;
1001 }
1002 if (r != 2)
1003 printf("%s: *** Using Backup GPT ***\n",
1004 __func__);
1005 }
1006 return 1;
1007 }
1008
1009 /**
1010 * alloc_read_gpt_entries(): reads partition entries from disk
1011 * @dev_desc
1012 * @gpt - GPT header
1013 *
1014 * Description: Returns ptes on success, NULL on error.
1015 * Allocates space for PTEs based on information found in @gpt.
1016 * Notes: remember to free pte when you're done!
1017 */
alloc_read_gpt_entries(struct blk_desc * dev_desc,gpt_header * pgpt_head)1018 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc,
1019 gpt_header *pgpt_head)
1020 {
1021 size_t count = 0, blk_cnt;
1022 lbaint_t blk;
1023 gpt_entry *pte = NULL;
1024
1025 if (!dev_desc || !pgpt_head) {
1026 printf("%s: Invalid Argument(s)\n", __func__);
1027 return NULL;
1028 }
1029
1030 count = le32_to_cpu(pgpt_head->num_partition_entries) *
1031 le32_to_cpu(pgpt_head->sizeof_partition_entry);
1032
1033 debug("%s: count = %u * %u = %lu\n", __func__,
1034 (u32) le32_to_cpu(pgpt_head->num_partition_entries),
1035 (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry),
1036 (ulong)count);
1037
1038 /* Allocate memory for PTE, remember to FREE */
1039 if (count != 0) {
1040 pte = memalign(ARCH_DMA_MINALIGN,
1041 PAD_TO_BLOCKSIZE(count, dev_desc));
1042 }
1043
1044 if (count == 0 || pte == NULL) {
1045 printf("%s: ERROR: Can't allocate %#lX bytes for GPT Entries\n",
1046 __func__, (ulong)count);
1047 return NULL;
1048 }
1049
1050 /* Read GPT Entries from device */
1051 blk = le64_to_cpu(pgpt_head->partition_entry_lba);
1052 blk_cnt = BLOCK_CNT(count, dev_desc);
1053 if (blk_dread(dev_desc, blk, (lbaint_t)blk_cnt, pte) != blk_cnt) {
1054 printf("*** ERROR: Can't read GPT Entries ***\n");
1055 free(pte);
1056 return NULL;
1057 }
1058 return pte;
1059 }
1060
1061 /**
1062 * is_pte_valid(): validates a single Partition Table Entry
1063 * @gpt_entry - Pointer to a single Partition Table Entry
1064 *
1065 * Description: returns 1 if valid, 0 on error.
1066 */
is_pte_valid(gpt_entry * pte)1067 static int is_pte_valid(gpt_entry * pte)
1068 {
1069 efi_guid_t unused_guid;
1070
1071 if (!pte) {
1072 printf("%s: Invalid Argument(s)\n", __func__);
1073 return 0;
1074 }
1075
1076 /* Only one validation for now:
1077 * The GUID Partition Type != Unused Entry (ALL-ZERO)
1078 */
1079 memset(unused_guid.b, 0, sizeof(unused_guid.b));
1080
1081 if (memcmp(pte->partition_type_guid.b, unused_guid.b,
1082 sizeof(unused_guid.b)) == 0) {
1083
1084 debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__,
1085 (unsigned int)(uintptr_t)pte);
1086
1087 return 0;
1088 } else {
1089 return 1;
1090 }
1091 }
1092
1093 /*
1094 * Add an 'a_' prefix so it comes before 'dos' in the linker list. We need to
1095 * check EFI first, since a DOS partition is often used as a 'protective MBR'
1096 * with EFI.
1097 */
1098 U_BOOT_PART_TYPE(a_efi) = {
1099 .name = "EFI",
1100 .part_type = PART_TYPE_EFI,
1101 .max_entries = GPT_ENTRY_NUMBERS,
1102 .get_info = part_get_info_ptr(part_get_info_efi),
1103 .print = part_print_ptr(part_print_efi),
1104 .test = part_test_efi,
1105 };
1106 #endif
1107