• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: LGPL-2.1+
2 /*
3  * This implementation is based on code from uClibc-0.9.30.3 but was
4  * modified and extended for use within U-Boot.
5  *
6  * Copyright (C) 2010-2013 Wolfgang Denk <wd@denx.de>
7  *
8  * Original license header:
9  *
10  * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc.
11  * This file is part of the GNU C Library.
12  * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993.
13  */
14 
15 #include <errno.h>
16 #include <malloc.h>
17 #include <sort.h>
18 
19 #ifdef USE_HOSTCC		/* HOST build */
20 # include <string.h>
21 # include <assert.h>
22 # include <ctype.h>
23 
24 # ifndef debug
25 #  ifdef DEBUG
26 #   define debug(fmt,args...)	printf(fmt ,##args)
27 #  else
28 #   define debug(fmt,args...)
29 #  endif
30 # endif
31 #else				/* U-Boot build */
32 # include <common.h>
33 # include <linux/string.h>
34 # include <linux/ctype.h>
35 #endif
36 
37 #ifndef	CONFIG_ENV_MIN_ENTRIES	/* minimum number of entries */
38 #define	CONFIG_ENV_MIN_ENTRIES 64
39 #endif
40 #ifndef	CONFIG_ENV_MAX_ENTRIES	/* maximum number of entries */
41 #define	CONFIG_ENV_MAX_ENTRIES 512
42 #endif
43 
44 #define USED_FREE 0
45 #define USED_DELETED -1
46 
47 #include <env_callback.h>
48 #include <env_flags.h>
49 #include <search.h>
50 #include <slre.h>
51 
52 /*
53  * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986
54  * [Knuth]	      The Art of Computer Programming, part 3 (6.4)
55  */
56 
57 /*
58  * The reentrant version has no static variables to maintain the state.
59  * Instead the interface of all functions is extended to take an argument
60  * which describes the current status.
61  */
62 
63 struct env_entry_node {
64 	int used;
65 	struct env_entry entry;
66 };
67 
68 
69 static void _hdelete(const char *key, struct hsearch_data *htab,
70 		     struct env_entry *ep, int idx);
71 
72 /*
73  * hcreate()
74  */
75 
76 /*
77  * For the used double hash method the table size has to be a prime. To
78  * correct the user given table size we need a prime test.  This trivial
79  * algorithm is adequate because
80  * a)  the code is (most probably) called a few times per program run and
81  * b)  the number is small because the table must fit in the core
82  * */
isprime(unsigned int number)83 static int isprime(unsigned int number)
84 {
85 	/* no even number will be passed */
86 	unsigned int div = 3;
87 
88 	while (div * div < number && number % div != 0)
89 		div += 2;
90 
91 	return number % div != 0;
92 }
93 
94 /*
95  * Before using the hash table we must allocate memory for it.
96  * Test for an existing table are done. We allocate one element
97  * more as the found prime number says. This is done for more effective
98  * indexing as explained in the comment for the hsearch function.
99  * The contents of the table is zeroed, especially the field used
100  * becomes zero.
101  */
102 
hcreate_r(size_t nel,struct hsearch_data * htab)103 int hcreate_r(size_t nel, struct hsearch_data *htab)
104 {
105 	/* Test for correct arguments.  */
106 	if (htab == NULL) {
107 		__set_errno(EINVAL);
108 		return 0;
109 	}
110 
111 	/* There is still another table active. Return with error. */
112 	if (htab->table != NULL)
113 		return 0;
114 
115 	/* Change nel to the first prime number not smaller as nel. */
116 	nel |= 1;		/* make odd */
117 	while (!isprime(nel))
118 		nel += 2;
119 
120 	htab->size = nel;
121 	htab->filled = 0;
122 
123 	/* allocate memory and zero out */
124 	htab->table = (struct env_entry_node *)calloc(htab->size + 1,
125 						sizeof(struct env_entry_node));
126 	if (htab->table == NULL)
127 		return 0;
128 
129 	/* everything went alright */
130 	return 1;
131 }
132 
133 
134 /*
135  * hdestroy()
136  */
137 
138 /*
139  * After using the hash table it has to be destroyed. The used memory can
140  * be freed and the local static variable can be marked as not used.
141  */
142 
hdestroy_r(struct hsearch_data * htab)143 void hdestroy_r(struct hsearch_data *htab)
144 {
145 	int i;
146 
147 	/* Test for correct arguments.  */
148 	if (htab == NULL) {
149 		__set_errno(EINVAL);
150 		return;
151 	}
152 
153 	/* free used memory */
154 	for (i = 1; i <= htab->size; ++i) {
155 		if (htab->table[i].used > 0) {
156 			struct env_entry *ep = &htab->table[i].entry;
157 
158 			free((void *)ep->key);
159 			free(ep->data);
160 		}
161 	}
162 	free(htab->table);
163 
164 	/* the sign for an existing table is an value != NULL in htable */
165 	htab->table = NULL;
166 }
167 
168 /*
169  * hsearch()
170  */
171 
172 /*
173  * This is the search function. It uses double hashing with open addressing.
174  * The argument item.key has to be a pointer to an zero terminated, most
175  * probably strings of chars. The function for generating a number of the
176  * strings is simple but fast. It can be replaced by a more complex function
177  * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown.
178  *
179  * We use an trick to speed up the lookup. The table is created by hcreate
180  * with one more element available. This enables us to use the index zero
181  * special. This index will never be used because we store the first hash
182  * index in the field used where zero means not used. Every other value
183  * means used. The used field can be used as a first fast comparison for
184  * equality of the stored and the parameter value. This helps to prevent
185  * unnecessary expensive calls of strcmp.
186  *
187  * This implementation differs from the standard library version of
188  * this function in a number of ways:
189  *
190  * - While the standard version does not make any assumptions about
191  *   the type of the stored data objects at all, this implementation
192  *   works with NUL terminated strings only.
193  * - Instead of storing just pointers to the original objects, we
194  *   create local copies so the caller does not need to care about the
195  *   data any more.
196  * - The standard implementation does not provide a way to update an
197  *   existing entry.  This version will create a new entry or update an
198  *   existing one when both "action == ENV_ENTER" and "item.data != NULL".
199  * - Instead of returning 1 on success, we return the index into the
200  *   internal hash table, which is also guaranteed to be positive.
201  *   This allows us direct access to the found hash table slot for
202  *   example for functions like hdelete().
203  */
204 
hmatch_r(const char * match,int last_idx,struct env_entry ** retval,struct hsearch_data * htab)205 int hmatch_r(const char *match, int last_idx, struct env_entry **retval,
206 	     struct hsearch_data *htab)
207 {
208 	unsigned int idx;
209 	size_t key_len = strlen(match);
210 
211 	for (idx = last_idx + 1; idx < htab->size; ++idx) {
212 		if (htab->table[idx].used <= 0)
213 			continue;
214 		if (!strncmp(match, htab->table[idx].entry.key, key_len)) {
215 			*retval = &htab->table[idx].entry;
216 			return idx;
217 		}
218 	}
219 
220 	__set_errno(ESRCH);
221 	*retval = NULL;
222 	return 0;
223 }
224 
225 /*
226  * Compare an existing entry with the desired key, and overwrite if the action
227  * is ENV_ENTER.  This is simply a helper function for hsearch_r().
228  */
_compare_and_overwrite_entry(struct env_entry item,enum env_action action,struct env_entry ** retval,struct hsearch_data * htab,int flag,unsigned int hval,unsigned int idx)229 static inline int _compare_and_overwrite_entry(struct env_entry item,
230 		enum env_action action, struct env_entry **retval,
231 		struct hsearch_data *htab, int flag, unsigned int hval,
232 		unsigned int idx)
233 {
234 	if (htab->table[idx].used == hval
235 	    && strcmp(item.key, htab->table[idx].entry.key) == 0) {
236 		/* Overwrite existing value? */
237 		if (action == ENV_ENTER && item.data) {
238 			/* check for permission */
239 			if (htab->change_ok != NULL && htab->change_ok(
240 			    &htab->table[idx].entry, item.data,
241 			    env_op_overwrite, flag)) {
242 				debug("change_ok() rejected setting variable "
243 					"%s, skipping it!\n", item.key);
244 				__set_errno(EPERM);
245 				*retval = NULL;
246 				return 0;
247 			}
248 
249 			/* If there is a callback, call it */
250 			if (htab->table[idx].entry.callback &&
251 			    htab->table[idx].entry.callback(item.key,
252 			    item.data, env_op_overwrite, flag)) {
253 				debug("callback() rejected setting variable "
254 					"%s, skipping it!\n", item.key);
255 				__set_errno(EINVAL);
256 				*retval = NULL;
257 				return 0;
258 			}
259 
260 			free(htab->table[idx].entry.data);
261 			htab->table[idx].entry.data = strdup(item.data);
262 			if (!htab->table[idx].entry.data) {
263 				__set_errno(ENOMEM);
264 				*retval = NULL;
265 				return 0;
266 			}
267 		}
268 		/* return found entry */
269 		*retval = &htab->table[idx].entry;
270 		return idx;
271 	}
272 	/* keep searching */
273 	return -1;
274 }
275 
hsearch_r(struct env_entry item,enum env_action action,struct env_entry ** retval,struct hsearch_data * htab,int flag)276 int hsearch_r(struct env_entry item, enum env_action action,
277 	      struct env_entry **retval, struct hsearch_data *htab, int flag)
278 {
279 	unsigned int hval;
280 	unsigned int count;
281 	unsigned int len = strlen(item.key);
282 	unsigned int idx;
283 	unsigned int first_deleted = 0;
284 	int ret;
285 
286 	/* Compute an value for the given string. Perhaps use a better method. */
287 	hval = len;
288 	count = len;
289 	while (count-- > 0) {
290 		hval <<= 4;
291 		hval += item.key[count];
292 	}
293 
294 	/*
295 	 * First hash function:
296 	 * simply take the modul but prevent zero.
297 	 */
298 	hval %= htab->size;
299 	if (hval == 0)
300 		++hval;
301 
302 	/* The first index tried. */
303 	idx = hval;
304 
305 	if (htab->table[idx].used) {
306 		/*
307 		 * Further action might be required according to the
308 		 * action value.
309 		 */
310 		unsigned hval2;
311 
312 		if (htab->table[idx].used == USED_DELETED
313 		    && !first_deleted)
314 			first_deleted = idx;
315 
316 		ret = _compare_and_overwrite_entry(item, action, retval, htab,
317 			flag, hval, idx);
318 		if (ret != -1)
319 			return ret;
320 
321 		/*
322 		 * Second hash function:
323 		 * as suggested in [Knuth]
324 		 */
325 		hval2 = 1 + hval % (htab->size - 2);
326 
327 		do {
328 			/*
329 			 * Because SIZE is prime this guarantees to
330 			 * step through all available indices.
331 			 */
332 			if (idx <= hval2)
333 				idx = htab->size + idx - hval2;
334 			else
335 				idx -= hval2;
336 
337 			/*
338 			 * If we visited all entries leave the loop
339 			 * unsuccessfully.
340 			 */
341 			if (idx == hval)
342 				break;
343 
344 			if (htab->table[idx].used == USED_DELETED
345 			    && !first_deleted)
346 				first_deleted = idx;
347 
348 			/* If entry is found use it. */
349 			ret = _compare_and_overwrite_entry(item, action, retval,
350 				htab, flag, hval, idx);
351 			if (ret != -1)
352 				return ret;
353 		}
354 		while (htab->table[idx].used != USED_FREE);
355 	}
356 
357 	/* An empty bucket has been found. */
358 	if (action == ENV_ENTER) {
359 		/*
360 		 * If table is full and another entry should be
361 		 * entered return with error.
362 		 */
363 		if (htab->filled == htab->size) {
364 			__set_errno(ENOMEM);
365 			*retval = NULL;
366 			return 0;
367 		}
368 
369 		/*
370 		 * Create new entry;
371 		 * create copies of item.key and item.data
372 		 */
373 		if (first_deleted)
374 			idx = first_deleted;
375 
376 		htab->table[idx].used = hval;
377 		htab->table[idx].entry.key = strdup(item.key);
378 		htab->table[idx].entry.data = strdup(item.data);
379 		if (!htab->table[idx].entry.key ||
380 		    !htab->table[idx].entry.data) {
381 			__set_errno(ENOMEM);
382 			*retval = NULL;
383 			return 0;
384 		}
385 
386 		++htab->filled;
387 
388 		/* This is a new entry, so look up a possible callback */
389 		env_callback_init(&htab->table[idx].entry);
390 		/* Also look for flags */
391 		env_flags_init(&htab->table[idx].entry);
392 
393 		/* check for permission */
394 		if (htab->change_ok != NULL && htab->change_ok(
395 		    &htab->table[idx].entry, item.data, env_op_create, flag)) {
396 			debug("change_ok() rejected setting variable "
397 				"%s, skipping it!\n", item.key);
398 			_hdelete(item.key, htab, &htab->table[idx].entry, idx);
399 			__set_errno(EPERM);
400 			*retval = NULL;
401 			return 0;
402 		}
403 
404 		/* If there is a callback, call it */
405 		if (htab->table[idx].entry.callback &&
406 		    htab->table[idx].entry.callback(item.key, item.data,
407 		    env_op_create, flag)) {
408 			debug("callback() rejected setting variable "
409 				"%s, skipping it!\n", item.key);
410 			_hdelete(item.key, htab, &htab->table[idx].entry, idx);
411 			__set_errno(EINVAL);
412 			*retval = NULL;
413 			return 0;
414 		}
415 
416 		/* return new entry */
417 		*retval = &htab->table[idx].entry;
418 		return 1;
419 	}
420 
421 	__set_errno(ESRCH);
422 	*retval = NULL;
423 	return 0;
424 }
425 
426 
427 /*
428  * hdelete()
429  */
430 
431 /*
432  * The standard implementation of hsearch(3) does not provide any way
433  * to delete any entries from the hash table.  We extend the code to
434  * do that.
435  */
436 
_hdelete(const char * key,struct hsearch_data * htab,struct env_entry * ep,int idx)437 static void _hdelete(const char *key, struct hsearch_data *htab,
438 		     struct env_entry *ep, int idx)
439 {
440 	/* free used entry */
441 	debug("hdelete: DELETING key \"%s\"\n", key);
442 	free((void *)ep->key);
443 	free(ep->data);
444 	ep->callback = NULL;
445 	ep->flags = 0;
446 	htab->table[idx].used = USED_DELETED;
447 
448 	--htab->filled;
449 }
450 
hdelete_r(const char * key,struct hsearch_data * htab,int flag)451 int hdelete_r(const char *key, struct hsearch_data *htab, int flag)
452 {
453 	struct env_entry e, *ep;
454 	int idx;
455 
456 	debug("hdelete: DELETE key \"%s\"\n", key);
457 
458 	e.key = (char *)key;
459 
460 	idx = hsearch_r(e, ENV_FIND, &ep, htab, 0);
461 	if (idx == 0) {
462 		__set_errno(ESRCH);
463 		return 0;	/* not found */
464 	}
465 
466 	/* Check for permission */
467 	if (htab->change_ok != NULL &&
468 	    htab->change_ok(ep, NULL, env_op_delete, flag)) {
469 		debug("change_ok() rejected deleting variable "
470 			"%s, skipping it!\n", key);
471 		__set_errno(EPERM);
472 		return 0;
473 	}
474 
475 	/* If there is a callback, call it */
476 	if (htab->table[idx].entry.callback &&
477 	    htab->table[idx].entry.callback(key, NULL, env_op_delete, flag)) {
478 		debug("callback() rejected deleting variable "
479 			"%s, skipping it!\n", key);
480 		__set_errno(EINVAL);
481 		return 0;
482 	}
483 
484 	_hdelete(key, htab, ep, idx);
485 
486 	return 1;
487 }
488 
489 #if !(defined(CONFIG_SPL_BUILD) && !defined(CONFIG_SPL_SAVEENV))
490 /*
491  * hexport()
492  */
493 
494 /*
495  * Export the data stored in the hash table in linearized form.
496  *
497  * Entries are exported as "name=value" strings, separated by an
498  * arbitrary (non-NUL, of course) separator character. This allows to
499  * use this function both when formatting the U-Boot environment for
500  * external storage (using '\0' as separator), but also when using it
501  * for the "printenv" command to print all variables, simply by using
502  * as '\n" as separator. This can also be used for new features like
503  * exporting the environment data as text file, including the option
504  * for later re-import.
505  *
506  * The entries in the result list will be sorted by ascending key
507  * values.
508  *
509  * If the separator character is different from NUL, then any
510  * separator characters and backslash characters in the values will
511  * be escaped by a preceding backslash in output. This is needed for
512  * example to enable multi-line values, especially when the output
513  * shall later be parsed (for example, for re-import).
514  *
515  * There are several options how the result buffer is handled:
516  *
517  * *resp  size
518  * -----------
519  *  NULL    0	A string of sufficient length will be allocated.
520  *  NULL   >0	A string of the size given will be
521  *		allocated. An error will be returned if the size is
522  *		not sufficient.  Any unused bytes in the string will
523  *		be '\0'-padded.
524  * !NULL    0	The user-supplied buffer will be used. No length
525  *		checking will be performed, i. e. it is assumed that
526  *		the buffer size will always be big enough. DANGEROUS.
527  * !NULL   >0	The user-supplied buffer will be used. An error will
528  *		be returned if the size is not sufficient.  Any unused
529  *		bytes in the string will be '\0'-padded.
530  */
531 
cmpkey(const void * p1,const void * p2)532 static int cmpkey(const void *p1, const void *p2)
533 {
534 	struct env_entry *e1 = *(struct env_entry **)p1;
535 	struct env_entry *e2 = *(struct env_entry **)p2;
536 
537 	return (strcmp(e1->key, e2->key));
538 }
539 
match_string(int flag,const char * str,const char * pat,void * priv)540 static int match_string(int flag, const char *str, const char *pat, void *priv)
541 {
542 	switch (flag & H_MATCH_METHOD) {
543 	case H_MATCH_IDENT:
544 		if (strcmp(str, pat) == 0)
545 			return 1;
546 		break;
547 	case H_MATCH_SUBSTR:
548 		if (strstr(str, pat))
549 			return 1;
550 		break;
551 #ifdef CONFIG_REGEX
552 	case H_MATCH_REGEX:
553 		{
554 			struct slre *slrep = (struct slre *)priv;
555 
556 			if (slre_match(slrep, str, strlen(str), NULL))
557 				return 1;
558 		}
559 		break;
560 #endif
561 	default:
562 		printf("## ERROR: unsupported match method: 0x%02x\n",
563 			flag & H_MATCH_METHOD);
564 		break;
565 	}
566 	return 0;
567 }
568 
match_entry(struct env_entry * ep,int flag,int argc,char * const argv[])569 static int match_entry(struct env_entry *ep, int flag, int argc,
570 		       char *const argv[])
571 {
572 	int arg;
573 	void *priv = NULL;
574 
575 	for (arg = 0; arg < argc; ++arg) {
576 #ifdef CONFIG_REGEX
577 		struct slre slre;
578 
579 		if (slre_compile(&slre, argv[arg]) == 0) {
580 			printf("Error compiling regex: %s\n", slre.err_str);
581 			return 0;
582 		}
583 
584 		priv = (void *)&slre;
585 #endif
586 		if (flag & H_MATCH_KEY) {
587 			if (match_string(flag, ep->key, argv[arg], priv))
588 				return 1;
589 		}
590 		if (flag & H_MATCH_DATA) {
591 			if (match_string(flag, ep->data, argv[arg], priv))
592 				return 1;
593 		}
594 	}
595 	return 0;
596 }
597 
hexport_r(struct hsearch_data * htab,const char sep,int flag,char ** resp,size_t size,int argc,char * const argv[])598 ssize_t hexport_r(struct hsearch_data *htab, const char sep, int flag,
599 		 char **resp, size_t size,
600 		 int argc, char * const argv[])
601 {
602 	struct env_entry *list[htab->size];
603 	char *res, *p;
604 	size_t totlen;
605 	int i, n;
606 
607 	/* Test for correct arguments.  */
608 	if ((resp == NULL) || (htab == NULL)) {
609 		__set_errno(EINVAL);
610 		return (-1);
611 	}
612 
613 	debug("EXPORT  table = %p, htab.size = %d, htab.filled = %d, size = %lu\n",
614 	      htab, htab->size, htab->filled, (ulong)size);
615 	/*
616 	 * Pass 1:
617 	 * search used entries,
618 	 * save addresses and compute total length
619 	 */
620 	for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) {
621 
622 		if (htab->table[i].used > 0) {
623 			struct env_entry *ep = &htab->table[i].entry;
624 			int found = match_entry(ep, flag, argc, argv);
625 
626 			if ((argc > 0) && (found == 0))
627 				continue;
628 
629 			if ((flag & H_HIDE_DOT) && ep->key[0] == '.')
630 				continue;
631 
632 			list[n++] = ep;
633 
634 			totlen += strlen(ep->key);
635 
636 			if (sep == '\0') {
637 				totlen += strlen(ep->data);
638 			} else {	/* check if escapes are needed */
639 				char *s = ep->data;
640 
641 				while (*s) {
642 					++totlen;
643 					/* add room for needed escape chars */
644 					if ((*s == sep) || (*s == '\\'))
645 						++totlen;
646 					++s;
647 				}
648 			}
649 			totlen += 2;	/* for '=' and 'sep' char */
650 		}
651 	}
652 
653 #ifdef DEBUG
654 	/* Pass 1a: print unsorted list */
655 	printf("Unsorted: n=%d\n", n);
656 	for (i = 0; i < n; ++i) {
657 		printf("\t%3d: %p ==> %-10s => %s\n",
658 		       i, list[i], list[i]->key, list[i]->data);
659 	}
660 #endif
661 
662 	/* Sort list by keys */
663 	qsort(list, n, sizeof(struct env_entry *), cmpkey);
664 
665 	/* Check if the user supplied buffer size is sufficient */
666 	if (size) {
667 		if (size < totlen + 1) {	/* provided buffer too small */
668 			printf("Env export buffer too small: %lu, but need %lu\n",
669 			       (ulong)size, (ulong)totlen + 1);
670 			__set_errno(ENOMEM);
671 			return (-1);
672 		}
673 	} else {
674 		size = totlen + 1;
675 	}
676 
677 	/* Check if the user provided a buffer */
678 	if (*resp) {
679 		/* yes; clear it */
680 		res = *resp;
681 		memset(res, '\0', size);
682 	} else {
683 		/* no, allocate and clear one */
684 		*resp = res = calloc(1, size);
685 		if (res == NULL) {
686 			__set_errno(ENOMEM);
687 			return (-1);
688 		}
689 	}
690 	/*
691 	 * Pass 2:
692 	 * export sorted list of result data
693 	 */
694 	for (i = 0, p = res; i < n; ++i) {
695 		const char *s;
696 
697 		s = list[i]->key;
698 		while (*s)
699 			*p++ = *s++;
700 		*p++ = '=';
701 
702 		s = list[i]->data;
703 
704 		while (*s) {
705 			if ((*s == sep) || (*s == '\\'))
706 				*p++ = '\\';	/* escape */
707 			*p++ = *s++;
708 		}
709 		*p++ = sep;
710 	}
711 	*p = '\0';		/* terminate result */
712 
713 	return size;
714 }
715 #endif
716 
717 
718 /*
719  * himport()
720  */
721 
722 /*
723  * Check whether variable 'name' is amongst vars[],
724  * and remove all instances by setting the pointer to NULL
725  */
drop_var_from_set(const char * name,int nvars,char * vars[])726 static int drop_var_from_set(const char *name, int nvars, char * vars[])
727 {
728 	int i = 0;
729 	int res = 0;
730 
731 	/* No variables specified means process all of them */
732 	if (nvars == 0)
733 		return 1;
734 
735 	for (i = 0; i < nvars; i++) {
736 		if (vars[i] == NULL)
737 			continue;
738 		/* If we found it, delete all of them */
739 		if (!strcmp(name, vars[i])) {
740 			vars[i] = NULL;
741 			res = 1;
742 		}
743 	}
744 	if (!res)
745 		debug("Skipping non-listed variable %s\n", name);
746 
747 	return res;
748 }
749 
750 /*
751  * Import linearized data into hash table.
752  *
753  * This is the inverse function to hexport(): it takes a linear list
754  * of "name=value" pairs and creates hash table entries from it.
755  *
756  * Entries without "value", i. e. consisting of only "name" or
757  * "name=", will cause this entry to be deleted from the hash table.
758  *
759  * The "flag" argument can be used to control the behaviour: when the
760  * H_NOCLEAR bit is set, then an existing hash table will kept, i. e.
761  * new data will be added to an existing hash table; otherwise, if no
762  * vars are passed, old data will be discarded and a new hash table
763  * will be created. If vars are passed, passed vars that are not in
764  * the linear list of "name=value" pairs will be removed from the
765  * current hash table.
766  *
767  * The separator character for the "name=value" pairs can be selected,
768  * so we both support importing from externally stored environment
769  * data (separated by NUL characters) and from plain text files
770  * (entries separated by newline characters).
771  *
772  * To allow for nicely formatted text input, leading white space
773  * (sequences of SPACE and TAB chars) is ignored, and entries starting
774  * (after removal of any leading white space) with a '#' character are
775  * considered comments and ignored.
776  *
777  * [NOTE: this means that a variable name cannot start with a '#'
778  * character.]
779  *
780  * When using a non-NUL separator character, backslash is used as
781  * escape character in the value part, allowing for example for
782  * multi-line values.
783  *
784  * In theory, arbitrary separator characters can be used, but only
785  * '\0' and '\n' have really been tested.
786  */
787 
himport_r(struct hsearch_data * htab,const char * env,size_t size,const char sep,int flag,int crlf_is_lf,int nvars,char * const vars[])788 int himport_r(struct hsearch_data *htab,
789 		const char *env, size_t size, const char sep, int flag,
790 		int crlf_is_lf, int nvars, char * const vars[])
791 {
792 	char *data, *sp, *dp, *name, *value;
793 	char *localvars[nvars];
794 	int i;
795 
796 	/* Test for correct arguments.  */
797 	if (htab == NULL) {
798 		__set_errno(EINVAL);
799 		return 0;
800 	}
801 
802 	/* we allocate new space to make sure we can write to the array */
803 	if ((data = malloc(size + 1)) == NULL) {
804 		debug("himport_r: can't malloc %lu bytes\n", (ulong)size + 1);
805 		__set_errno(ENOMEM);
806 		return 0;
807 	}
808 	memcpy(data, env, size);
809 	data[size] = '\0';
810 	dp = data;
811 
812 	/* make a local copy of the list of variables */
813 	if (nvars)
814 		memcpy(localvars, vars, sizeof(vars[0]) * nvars);
815 
816 	if ((flag & H_NOCLEAR) == 0 && !nvars) {
817 		/* Destroy old hash table if one exists */
818 		debug("Destroy Hash Table: %p table = %p\n", htab,
819 		       htab->table);
820 		if (htab->table)
821 			hdestroy_r(htab);
822 	}
823 
824 	/*
825 	 * Create new hash table (if needed).  The computation of the hash
826 	 * table size is based on heuristics: in a sample of some 70+
827 	 * existing systems we found an average size of 39+ bytes per entry
828 	 * in the environment (for the whole key=value pair). Assuming a
829 	 * size of 8 per entry (= safety factor of ~5) should provide enough
830 	 * safety margin for any existing environment definitions and still
831 	 * allow for more than enough dynamic additions. Note that the
832 	 * "size" argument is supposed to give the maximum environment size
833 	 * (CONFIG_ENV_SIZE).  This heuristics will result in
834 	 * unreasonably large numbers (and thus memory footprint) for
835 	 * big flash environments (>8,000 entries for 64 KB
836 	 * environment size), so we clip it to a reasonable value.
837 	 * On the other hand we need to add some more entries for free
838 	 * space when importing very small buffers. Both boundaries can
839 	 * be overwritten in the board config file if needed.
840 	 */
841 
842 	if (!htab->table) {
843 		int nent = CONFIG_ENV_MIN_ENTRIES + size / 8;
844 
845 		if (nent > CONFIG_ENV_MAX_ENTRIES)
846 			nent = CONFIG_ENV_MAX_ENTRIES;
847 
848 		debug("Create Hash Table: N=%d\n", nent);
849 
850 		if (hcreate_r(nent, htab) == 0) {
851 			free(data);
852 			return 0;
853 		}
854 	}
855 
856 	if (!size) {
857 		free(data);
858 		return 1;		/* everything OK */
859 	}
860 	if(crlf_is_lf) {
861 		/* Remove Carriage Returns in front of Line Feeds */
862 		unsigned ignored_crs = 0;
863 		for(;dp < data + size && *dp; ++dp) {
864 			if(*dp == '\r' &&
865 			   dp < data + size - 1 && *(dp+1) == '\n')
866 				++ignored_crs;
867 			else
868 				*(dp-ignored_crs) = *dp;
869 		}
870 		size -= ignored_crs;
871 		dp = data;
872 	}
873 	/* Parse environment; allow for '\0' and 'sep' as separators */
874 	do {
875 		struct env_entry e, *rv;
876 
877 		/* skip leading white space */
878 		while (isblank(*dp))
879 			++dp;
880 
881 		/* skip comment lines */
882 		if (*dp == '#') {
883 			while (*dp && (*dp != sep))
884 				++dp;
885 			++dp;
886 			continue;
887 		}
888 
889 		/* parse name */
890 		for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp)
891 			;
892 
893 		/* deal with "name" and "name=" entries (delete var) */
894 		if (*dp == '\0' || *(dp + 1) == '\0' ||
895 		    *dp == sep || *(dp + 1) == sep) {
896 			if (*dp == '=')
897 				*dp++ = '\0';
898 			*dp++ = '\0';	/* terminate name */
899 
900 			debug("DELETE CANDIDATE: \"%s\"\n", name);
901 			if (!drop_var_from_set(name, nvars, localvars))
902 				continue;
903 
904 			if (hdelete_r(name, htab, flag) == 0)
905 				debug("DELETE ERROR ##############################\n");
906 
907 			continue;
908 		}
909 		*dp++ = '\0';	/* terminate name */
910 
911 		/* parse value; deal with escapes */
912 		for (value = sp = dp; *dp && (*dp != sep); ++dp) {
913 			if ((*dp == '\\') && *(dp + 1))
914 				++dp;
915 			*sp++ = *dp;
916 		}
917 		*sp++ = '\0';	/* terminate value */
918 		++dp;
919 
920 		if (*name == 0) {
921 			debug("INSERT: unable to use an empty key\n");
922 			__set_errno(EINVAL);
923 			free(data);
924 			return 0;
925 		}
926 
927 		/* Skip variables which are not supposed to be processed */
928 		if (!drop_var_from_set(name, nvars, localvars))
929 			continue;
930 
931 		/* enter into hash table */
932 		e.key = name;
933 		e.data = value;
934 
935 		hsearch_r(e, ENV_ENTER, &rv, htab, flag);
936 		if (rv == NULL)
937 			printf("himport_r: can't insert \"%s=%s\" into hash table\n",
938 				name, value);
939 
940 		debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n",
941 			htab, htab->filled, htab->size,
942 			rv, name, value);
943 	} while ((dp < data + size) && *dp);	/* size check needed for text */
944 						/* without '\0' termination */
945 	debug("INSERT: free(data = %p)\n", data);
946 	free(data);
947 
948 	if (flag & H_NOCLEAR)
949 		goto end;
950 
951 	/* process variables which were not considered */
952 	for (i = 0; i < nvars; i++) {
953 		if (localvars[i] == NULL)
954 			continue;
955 		/*
956 		 * All variables which were not deleted from the variable list
957 		 * were not present in the imported env
958 		 * This could mean two things:
959 		 * a) if the variable was present in current env, we delete it
960 		 * b) if the variable was not present in current env, we notify
961 		 *    it might be a typo
962 		 */
963 		if (hdelete_r(localvars[i], htab, flag) == 0)
964 			printf("WARNING: '%s' neither in running nor in imported env!\n", localvars[i]);
965 		else
966 			printf("WARNING: '%s' not in imported env, deleting it!\n", localvars[i]);
967 	}
968 
969 end:
970 	debug("INSERT: done\n");
971 	return 1;		/* everything OK */
972 }
973 
974 /*
975  * hwalk_r()
976  */
977 
978 /*
979  * Walk all of the entries in the hash, calling the callback for each one.
980  * this allows some generic operation to be performed on each element.
981  */
hwalk_r(struct hsearch_data * htab,int (* callback)(struct env_entry * entry))982 int hwalk_r(struct hsearch_data *htab, int (*callback)(struct env_entry *entry))
983 {
984 	int i;
985 	int retval;
986 
987 	for (i = 1; i <= htab->size; ++i) {
988 		if (htab->table[i].used > 0) {
989 			retval = callback(&htab->table[i].entry);
990 			if (retval)
991 				return retval;
992 		}
993 	}
994 
995 	return 0;
996 }
997