1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ART_RUNTIME_THREAD_INL_H_ 18 #define ART_RUNTIME_THREAD_INL_H_ 19 20 #include "thread.h" 21 22 #include "arch/instruction_set.h" 23 #include "base/aborting.h" 24 #include "base/casts.h" 25 #include "base/mutex-inl.h" 26 #include "base/time_utils.h" 27 #include "jni/jni_env_ext.h" 28 #include "managed_stack-inl.h" 29 #include "obj_ptr.h" 30 #include "suspend_reason.h" 31 #include "thread-current-inl.h" 32 #include "thread_pool.h" 33 34 namespace art { 35 36 // Quickly access the current thread from a JNIEnv. ThreadForEnv(JNIEnv * env)37 static inline Thread* ThreadForEnv(JNIEnv* env) { 38 JNIEnvExt* full_env(down_cast<JNIEnvExt*>(env)); 39 return full_env->GetSelf(); 40 } 41 AllowThreadSuspension()42 inline void Thread::AllowThreadSuspension() { 43 DCHECK_EQ(Thread::Current(), this); 44 if (UNLIKELY(TestAllFlags())) { 45 CheckSuspend(); 46 } 47 // Invalidate the current thread's object pointers (ObjPtr) to catch possible moving GC bugs due 48 // to missing handles. 49 PoisonObjectPointers(); 50 } 51 CheckSuspend()52 inline void Thread::CheckSuspend() { 53 DCHECK_EQ(Thread::Current(), this); 54 for (;;) { 55 if (ReadFlag(kCheckpointRequest)) { 56 RunCheckpointFunction(); 57 } else if (ReadFlag(kSuspendRequest)) { 58 FullSuspendCheck(); 59 } else if (ReadFlag(kEmptyCheckpointRequest)) { 60 RunEmptyCheckpoint(); 61 } else { 62 break; 63 } 64 } 65 } 66 CheckEmptyCheckpointFromWeakRefAccess(BaseMutex * cond_var_mutex)67 inline void Thread::CheckEmptyCheckpointFromWeakRefAccess(BaseMutex* cond_var_mutex) { 68 Thread* self = Thread::Current(); 69 DCHECK_EQ(self, this); 70 for (;;) { 71 if (ReadFlag(kEmptyCheckpointRequest)) { 72 RunEmptyCheckpoint(); 73 // Check we hold only an expected mutex when accessing weak ref. 74 if (kIsDebugBuild) { 75 for (int i = kLockLevelCount - 1; i >= 0; --i) { 76 BaseMutex* held_mutex = self->GetHeldMutex(static_cast<LockLevel>(i)); 77 if (held_mutex != nullptr && 78 held_mutex != Locks::mutator_lock_ && 79 held_mutex != cond_var_mutex) { 80 CHECK(Locks::IsExpectedOnWeakRefAccess(held_mutex)) 81 << "Holding unexpected mutex " << held_mutex->GetName() 82 << " when accessing weak ref"; 83 } 84 } 85 } 86 } else { 87 break; 88 } 89 } 90 } 91 CheckEmptyCheckpointFromMutex()92 inline void Thread::CheckEmptyCheckpointFromMutex() { 93 DCHECK_EQ(Thread::Current(), this); 94 for (;;) { 95 if (ReadFlag(kEmptyCheckpointRequest)) { 96 RunEmptyCheckpoint(); 97 } else { 98 break; 99 } 100 } 101 } 102 SetState(ThreadState new_state)103 inline ThreadState Thread::SetState(ThreadState new_state) { 104 // Should only be used to change between suspended states. 105 // Cannot use this code to change into or from Runnable as changing to Runnable should 106 // fail if old_state_and_flags.suspend_request is true and changing from Runnable might 107 // miss passing an active suspend barrier. 108 DCHECK_NE(new_state, kRunnable); 109 if (kIsDebugBuild && this != Thread::Current()) { 110 std::string name; 111 GetThreadName(name); 112 LOG(FATAL) << "Thread \"" << name << "\"(" << this << " != Thread::Current()=" 113 << Thread::Current() << ") changing state to " << new_state; 114 } 115 union StateAndFlags old_state_and_flags; 116 old_state_and_flags.as_int = tls32_.state_and_flags.as_int; 117 CHECK_NE(old_state_and_flags.as_struct.state, kRunnable) << new_state << " " << *this << " " 118 << *Thread::Current(); 119 tls32_.state_and_flags.as_struct.state = new_state; 120 return static_cast<ThreadState>(old_state_and_flags.as_struct.state); 121 } 122 IsThreadSuspensionAllowable()123 inline bool Thread::IsThreadSuspensionAllowable() const { 124 if (tls32_.no_thread_suspension != 0) { 125 return false; 126 } 127 for (int i = kLockLevelCount - 1; i >= 0; --i) { 128 if (i != kMutatorLock && 129 i != kUserCodeSuspensionLock && 130 GetHeldMutex(static_cast<LockLevel>(i)) != nullptr) { 131 return false; 132 } 133 } 134 // Thread autoanalysis isn't able to understand that the GetHeldMutex(...) or AssertHeld means we 135 // have the mutex meaning we need to do this hack. 136 auto is_suspending_for_user_code = [this]() NO_THREAD_SAFETY_ANALYSIS { 137 return tls32_.user_code_suspend_count != 0; 138 }; 139 if (GetHeldMutex(kUserCodeSuspensionLock) != nullptr && is_suspending_for_user_code()) { 140 return false; 141 } 142 return true; 143 } 144 AssertThreadSuspensionIsAllowable(bool check_locks)145 inline void Thread::AssertThreadSuspensionIsAllowable(bool check_locks) const { 146 if (kIsDebugBuild) { 147 if (gAborting == 0) { 148 CHECK_EQ(0u, tls32_.no_thread_suspension) << tlsPtr_.last_no_thread_suspension_cause; 149 } 150 if (check_locks) { 151 bool bad_mutexes_held = false; 152 for (int i = kLockLevelCount - 1; i >= 0; --i) { 153 // We expect no locks except the mutator_lock_. User code suspension lock is OK as long as 154 // we aren't going to be held suspended due to SuspendReason::kForUserCode. 155 if (i != kMutatorLock && i != kUserCodeSuspensionLock) { 156 BaseMutex* held_mutex = GetHeldMutex(static_cast<LockLevel>(i)); 157 if (held_mutex != nullptr) { 158 LOG(ERROR) << "holding \"" << held_mutex->GetName() 159 << "\" at point where thread suspension is expected"; 160 bad_mutexes_held = true; 161 } 162 } 163 } 164 // Make sure that if we hold the user_code_suspension_lock_ we aren't suspending due to 165 // user_code_suspend_count which would prevent the thread from ever waking up. Thread 166 // autoanalysis isn't able to understand that the GetHeldMutex(...) or AssertHeld means we 167 // have the mutex meaning we need to do this hack. 168 auto is_suspending_for_user_code = [this]() NO_THREAD_SAFETY_ANALYSIS { 169 return tls32_.user_code_suspend_count != 0; 170 }; 171 if (GetHeldMutex(kUserCodeSuspensionLock) != nullptr && is_suspending_for_user_code()) { 172 LOG(ERROR) << "suspending due to user-code while holding \"" 173 << Locks::user_code_suspension_lock_->GetName() << "\"! Thread would never " 174 << "wake up."; 175 bad_mutexes_held = true; 176 } 177 if (gAborting == 0) { 178 CHECK(!bad_mutexes_held); 179 } 180 } 181 } 182 } 183 TransitionToSuspendedAndRunCheckpoints(ThreadState new_state)184 inline void Thread::TransitionToSuspendedAndRunCheckpoints(ThreadState new_state) { 185 DCHECK_NE(new_state, kRunnable); 186 DCHECK_EQ(GetState(), kRunnable); 187 union StateAndFlags old_state_and_flags; 188 union StateAndFlags new_state_and_flags; 189 while (true) { 190 old_state_and_flags.as_int = tls32_.state_and_flags.as_int; 191 if (UNLIKELY((old_state_and_flags.as_struct.flags & kCheckpointRequest) != 0)) { 192 RunCheckpointFunction(); 193 continue; 194 } 195 if (UNLIKELY((old_state_and_flags.as_struct.flags & kEmptyCheckpointRequest) != 0)) { 196 RunEmptyCheckpoint(); 197 continue; 198 } 199 // Change the state but keep the current flags (kCheckpointRequest is clear). 200 DCHECK_EQ((old_state_and_flags.as_struct.flags & kCheckpointRequest), 0); 201 DCHECK_EQ((old_state_and_flags.as_struct.flags & kEmptyCheckpointRequest), 0); 202 new_state_and_flags.as_struct.flags = old_state_and_flags.as_struct.flags; 203 new_state_and_flags.as_struct.state = new_state; 204 205 // CAS the value with a memory ordering. 206 bool done = 207 tls32_.state_and_flags.as_atomic_int.CompareAndSetWeakRelease(old_state_and_flags.as_int, 208 new_state_and_flags.as_int); 209 if (LIKELY(done)) { 210 break; 211 } 212 } 213 } 214 PassActiveSuspendBarriers()215 inline void Thread::PassActiveSuspendBarriers() { 216 while (true) { 217 uint16_t current_flags = tls32_.state_and_flags.as_struct.flags; 218 if (LIKELY((current_flags & 219 (kCheckpointRequest | kEmptyCheckpointRequest | kActiveSuspendBarrier)) == 0)) { 220 break; 221 } else if ((current_flags & kActiveSuspendBarrier) != 0) { 222 PassActiveSuspendBarriers(this); 223 } else { 224 // Impossible 225 LOG(FATAL) << "Fatal, thread transitioned into suspended without running the checkpoint"; 226 } 227 } 228 } 229 TransitionFromRunnableToSuspended(ThreadState new_state)230 inline void Thread::TransitionFromRunnableToSuspended(ThreadState new_state) { 231 AssertThreadSuspensionIsAllowable(); 232 PoisonObjectPointersIfDebug(); 233 DCHECK_EQ(this, Thread::Current()); 234 // Change to non-runnable state, thereby appearing suspended to the system. 235 TransitionToSuspendedAndRunCheckpoints(new_state); 236 // Mark the release of the share of the mutator_lock_. 237 Locks::mutator_lock_->TransitionFromRunnableToSuspended(this); 238 // Once suspended - check the active suspend barrier flag 239 PassActiveSuspendBarriers(); 240 } 241 TransitionFromSuspendedToRunnable()242 inline ThreadState Thread::TransitionFromSuspendedToRunnable() { 243 union StateAndFlags old_state_and_flags; 244 old_state_and_flags.as_int = tls32_.state_and_flags.as_int; 245 int16_t old_state = old_state_and_flags.as_struct.state; 246 DCHECK_NE(static_cast<ThreadState>(old_state), kRunnable); 247 do { 248 Locks::mutator_lock_->AssertNotHeld(this); // Otherwise we starve GC.. 249 old_state_and_flags.as_int = tls32_.state_and_flags.as_int; 250 DCHECK_EQ(old_state_and_flags.as_struct.state, old_state); 251 if (LIKELY(old_state_and_flags.as_struct.flags == 0)) { 252 // Optimize for the return from native code case - this is the fast path. 253 // Atomically change from suspended to runnable if no suspend request pending. 254 union StateAndFlags new_state_and_flags; 255 new_state_and_flags.as_int = old_state_and_flags.as_int; 256 new_state_and_flags.as_struct.state = kRunnable; 257 258 // CAS the value with a memory barrier. 259 if (LIKELY(tls32_.state_and_flags.as_atomic_int.CompareAndSetWeakAcquire( 260 old_state_and_flags.as_int, 261 new_state_and_flags.as_int))) { 262 // Mark the acquisition of a share of the mutator_lock_. 263 Locks::mutator_lock_->TransitionFromSuspendedToRunnable(this); 264 break; 265 } 266 } else if ((old_state_and_flags.as_struct.flags & kActiveSuspendBarrier) != 0) { 267 PassActiveSuspendBarriers(this); 268 } else if ((old_state_and_flags.as_struct.flags & 269 (kCheckpointRequest | kEmptyCheckpointRequest)) != 0) { 270 // Impossible 271 LOG(FATAL) << "Transitioning to runnable with checkpoint flag, " 272 << " flags=" << old_state_and_flags.as_struct.flags 273 << " state=" << old_state_and_flags.as_struct.state; 274 } else if ((old_state_and_flags.as_struct.flags & kSuspendRequest) != 0) { 275 // Wait while our suspend count is non-zero. 276 277 // We pass null to the MutexLock as we may be in a situation where the 278 // runtime is shutting down. Guarding ourselves from that situation 279 // requires to take the shutdown lock, which is undesirable here. 280 Thread* thread_to_pass = nullptr; 281 if (kIsDebugBuild && !IsDaemon()) { 282 // We know we can make our debug locking checks on non-daemon threads, 283 // so re-enable them on debug builds. 284 thread_to_pass = this; 285 } 286 MutexLock mu(thread_to_pass, *Locks::thread_suspend_count_lock_); 287 ScopedTransitioningToRunnable scoped_transitioning_to_runnable(this); 288 old_state_and_flags.as_int = tls32_.state_and_flags.as_int; 289 DCHECK_EQ(old_state_and_flags.as_struct.state, old_state); 290 while ((old_state_and_flags.as_struct.flags & kSuspendRequest) != 0) { 291 // Re-check when Thread::resume_cond_ is notified. 292 Thread::resume_cond_->Wait(thread_to_pass); 293 old_state_and_flags.as_int = tls32_.state_and_flags.as_int; 294 DCHECK_EQ(old_state_and_flags.as_struct.state, old_state); 295 } 296 DCHECK_EQ(GetSuspendCount(), 0); 297 } 298 } while (true); 299 // Run the flip function, if set. 300 Closure* flip_func = GetFlipFunction(); 301 if (flip_func != nullptr) { 302 flip_func->Run(this); 303 } 304 return static_cast<ThreadState>(old_state); 305 } 306 AllocTlab(size_t bytes)307 inline mirror::Object* Thread::AllocTlab(size_t bytes) { 308 DCHECK_GE(TlabSize(), bytes); 309 ++tlsPtr_.thread_local_objects; 310 mirror::Object* ret = reinterpret_cast<mirror::Object*>(tlsPtr_.thread_local_pos); 311 tlsPtr_.thread_local_pos += bytes; 312 return ret; 313 } 314 PushOnThreadLocalAllocationStack(mirror::Object * obj)315 inline bool Thread::PushOnThreadLocalAllocationStack(mirror::Object* obj) { 316 DCHECK_LE(tlsPtr_.thread_local_alloc_stack_top, tlsPtr_.thread_local_alloc_stack_end); 317 if (tlsPtr_.thread_local_alloc_stack_top < tlsPtr_.thread_local_alloc_stack_end) { 318 // There's room. 319 DCHECK_LE(reinterpret_cast<uint8_t*>(tlsPtr_.thread_local_alloc_stack_top) + 320 sizeof(StackReference<mirror::Object>), 321 reinterpret_cast<uint8_t*>(tlsPtr_.thread_local_alloc_stack_end)); 322 DCHECK(tlsPtr_.thread_local_alloc_stack_top->AsMirrorPtr() == nullptr); 323 tlsPtr_.thread_local_alloc_stack_top->Assign(obj); 324 ++tlsPtr_.thread_local_alloc_stack_top; 325 return true; 326 } 327 return false; 328 } 329 SetThreadLocalAllocationStack(StackReference<mirror::Object> * start,StackReference<mirror::Object> * end)330 inline void Thread::SetThreadLocalAllocationStack(StackReference<mirror::Object>* start, 331 StackReference<mirror::Object>* end) { 332 DCHECK(Thread::Current() == this) << "Should be called by self"; 333 DCHECK(start != nullptr); 334 DCHECK(end != nullptr); 335 DCHECK_ALIGNED(start, sizeof(StackReference<mirror::Object>)); 336 DCHECK_ALIGNED(end, sizeof(StackReference<mirror::Object>)); 337 DCHECK_LT(start, end); 338 tlsPtr_.thread_local_alloc_stack_end = end; 339 tlsPtr_.thread_local_alloc_stack_top = start; 340 } 341 RevokeThreadLocalAllocationStack()342 inline void Thread::RevokeThreadLocalAllocationStack() { 343 if (kIsDebugBuild) { 344 // Note: self is not necessarily equal to this thread since thread may be suspended. 345 Thread* self = Thread::Current(); 346 DCHECK(this == self || IsSuspended() || GetState() == kWaitingPerformingGc) 347 << GetState() << " thread " << this << " self " << self; 348 } 349 tlsPtr_.thread_local_alloc_stack_end = nullptr; 350 tlsPtr_.thread_local_alloc_stack_top = nullptr; 351 } 352 PoisonObjectPointersIfDebug()353 inline void Thread::PoisonObjectPointersIfDebug() { 354 if (kObjPtrPoisoning) { 355 Thread::Current()->PoisonObjectPointers(); 356 } 357 } 358 ModifySuspendCount(Thread * self,int delta,AtomicInteger * suspend_barrier,SuspendReason reason)359 inline bool Thread::ModifySuspendCount(Thread* self, 360 int delta, 361 AtomicInteger* suspend_barrier, 362 SuspendReason reason) { 363 if (delta > 0 && ((kUseReadBarrier && this != self) || suspend_barrier != nullptr)) { 364 // When delta > 0 (requesting a suspend), ModifySuspendCountInternal() may fail either if 365 // active_suspend_barriers is full or we are in the middle of a thread flip. Retry in a loop. 366 while (true) { 367 if (LIKELY(ModifySuspendCountInternal(self, delta, suspend_barrier, reason))) { 368 return true; 369 } else { 370 // Failure means the list of active_suspend_barriers is full or we are in the middle of a 371 // thread flip, we should release the thread_suspend_count_lock_ (to avoid deadlock) and 372 // wait till the target thread has executed or Thread::PassActiveSuspendBarriers() or the 373 // flip function. Note that we could not simply wait for the thread to change to a suspended 374 // state, because it might need to run checkpoint function before the state change or 375 // resumes from the resume_cond_, which also needs thread_suspend_count_lock_. 376 // 377 // The list of active_suspend_barriers is very unlikely to be full since more than 378 // kMaxSuspendBarriers threads need to execute SuspendAllInternal() simultaneously, and 379 // target thread stays in kRunnable in the mean time. 380 Locks::thread_suspend_count_lock_->ExclusiveUnlock(self); 381 NanoSleep(100000); 382 Locks::thread_suspend_count_lock_->ExclusiveLock(self); 383 } 384 } 385 } else { 386 return ModifySuspendCountInternal(self, delta, suspend_barrier, reason); 387 } 388 } 389 PushShadowFrame(ShadowFrame * new_top_frame)390 inline ShadowFrame* Thread::PushShadowFrame(ShadowFrame* new_top_frame) { 391 new_top_frame->CheckConsistentVRegs(); 392 return tlsPtr_.managed_stack.PushShadowFrame(new_top_frame); 393 } 394 PopShadowFrame()395 inline ShadowFrame* Thread::PopShadowFrame() { 396 return tlsPtr_.managed_stack.PopShadowFrame(); 397 } 398 GetStackEndForInterpreter(bool implicit_overflow_check)399 inline uint8_t* Thread::GetStackEndForInterpreter(bool implicit_overflow_check) const { 400 uint8_t* end = tlsPtr_.stack_end + (implicit_overflow_check 401 ? GetStackOverflowReservedBytes(kRuntimeISA) 402 : 0); 403 if (kIsDebugBuild) { 404 // In a debuggable build, but especially under ASAN, the access-checks interpreter has a 405 // potentially humongous stack size. We don't want to take too much of the stack regularly, 406 // so do not increase the regular reserved size (for compiled code etc) and only report the 407 // virtually smaller stack to the interpreter here. 408 end += GetStackOverflowReservedBytes(kRuntimeISA); 409 } 410 return end; 411 } 412 ResetDefaultStackEnd()413 inline void Thread::ResetDefaultStackEnd() { 414 // Our stacks grow down, so we want stack_end_ to be near there, but reserving enough room 415 // to throw a StackOverflowError. 416 tlsPtr_.stack_end = tlsPtr_.stack_begin + GetStackOverflowReservedBytes(kRuntimeISA); 417 } 418 419 } // namespace art 420 421 #endif // ART_RUNTIME_THREAD_INL_H_ 422