1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright 2017 NXP
4 *
5 * Peng Fan <peng.fan@nxp.com>
6 */
7
8 #include <common.h>
9 #include <asm/arch/clock.h>
10 #include <asm/arch/imx-regs.h>
11 #include <asm/io.h>
12 #include <asm/arch/sys_proto.h>
13 #include <errno.h>
14 #include <linux/iopoll.h>
15
16 static struct anamix_pll *ana_pll = (struct anamix_pll *)ANATOP_BASE_ADDR;
17
decode_frac_pll(enum clk_root_src frac_pll)18 static u32 decode_frac_pll(enum clk_root_src frac_pll)
19 {
20 u32 pll_cfg0, pll_cfg1, pllout;
21 u32 pll_refclk_sel, pll_refclk;
22 u32 divr_val, divq_val, divf_val, divff, divfi;
23 u32 pllout_div_shift, pllout_div_mask, pllout_div;
24
25 switch (frac_pll) {
26 case ARM_PLL_CLK:
27 pll_cfg0 = readl(&ana_pll->arm_pll_cfg0);
28 pll_cfg1 = readl(&ana_pll->arm_pll_cfg1);
29 pllout_div_shift = HW_FRAC_ARM_PLL_DIV_SHIFT;
30 pllout_div_mask = HW_FRAC_ARM_PLL_DIV_MASK;
31 break;
32 default:
33 printf("Frac PLL %d not supporte\n", frac_pll);
34 return 0;
35 }
36
37 pllout_div = readl(&ana_pll->frac_pllout_div_cfg);
38 pllout_div = (pllout_div & pllout_div_mask) >> pllout_div_shift;
39
40 /* Power down */
41 if (pll_cfg0 & FRAC_PLL_PD_MASK)
42 return 0;
43
44 /* output not enabled */
45 if ((pll_cfg0 & FRAC_PLL_CLKE_MASK) == 0)
46 return 0;
47
48 pll_refclk_sel = pll_cfg0 & FRAC_PLL_REFCLK_SEL_MASK;
49
50 if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_OSC_25M)
51 pll_refclk = 25000000u;
52 else if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_OSC_27M)
53 pll_refclk = 27000000u;
54 else if (pll_refclk_sel == FRAC_PLL_REFCLK_SEL_HDMI_PHY_27M)
55 pll_refclk = 27000000u;
56 else
57 pll_refclk = 0;
58
59 if (pll_cfg0 & FRAC_PLL_BYPASS_MASK)
60 return pll_refclk;
61
62 divr_val = (pll_cfg0 & FRAC_PLL_REFCLK_DIV_VAL_MASK) >>
63 FRAC_PLL_REFCLK_DIV_VAL_SHIFT;
64 divq_val = pll_cfg0 & FRAC_PLL_OUTPUT_DIV_VAL_MASK;
65
66 divff = (pll_cfg1 & FRAC_PLL_FRAC_DIV_CTL_MASK) >>
67 FRAC_PLL_FRAC_DIV_CTL_SHIFT;
68 divfi = pll_cfg1 & FRAC_PLL_INT_DIV_CTL_MASK;
69
70 divf_val = 1 + divfi + divff / (1 << 24);
71
72 pllout = pll_refclk / (divr_val + 1) * 8 * divf_val /
73 ((divq_val + 1) * 2);
74
75 return pllout / (pllout_div + 1);
76 }
77
decode_sscg_pll(enum clk_root_src sscg_pll)78 static u32 decode_sscg_pll(enum clk_root_src sscg_pll)
79 {
80 u32 pll_cfg0, pll_cfg1, pll_cfg2;
81 u32 pll_refclk_sel, pll_refclk;
82 u32 divr1, divr2, divf1, divf2, divq, div;
83 u32 sse;
84 u32 pll_clke;
85 u32 pllout_div_shift, pllout_div_mask, pllout_div;
86 u32 pllout;
87
88 switch (sscg_pll) {
89 case SYSTEM_PLL1_800M_CLK:
90 case SYSTEM_PLL1_400M_CLK:
91 case SYSTEM_PLL1_266M_CLK:
92 case SYSTEM_PLL1_200M_CLK:
93 case SYSTEM_PLL1_160M_CLK:
94 case SYSTEM_PLL1_133M_CLK:
95 case SYSTEM_PLL1_100M_CLK:
96 case SYSTEM_PLL1_80M_CLK:
97 case SYSTEM_PLL1_40M_CLK:
98 pll_cfg0 = readl(&ana_pll->sys_pll1_cfg0);
99 pll_cfg1 = readl(&ana_pll->sys_pll1_cfg1);
100 pll_cfg2 = readl(&ana_pll->sys_pll1_cfg2);
101 pllout_div_shift = HW_SSCG_SYSTEM_PLL1_DIV_SHIFT;
102 pllout_div_mask = HW_SSCG_SYSTEM_PLL1_DIV_MASK;
103 break;
104 case SYSTEM_PLL2_1000M_CLK:
105 case SYSTEM_PLL2_500M_CLK:
106 case SYSTEM_PLL2_333M_CLK:
107 case SYSTEM_PLL2_250M_CLK:
108 case SYSTEM_PLL2_200M_CLK:
109 case SYSTEM_PLL2_166M_CLK:
110 case SYSTEM_PLL2_125M_CLK:
111 case SYSTEM_PLL2_100M_CLK:
112 case SYSTEM_PLL2_50M_CLK:
113 pll_cfg0 = readl(&ana_pll->sys_pll2_cfg0);
114 pll_cfg1 = readl(&ana_pll->sys_pll2_cfg1);
115 pll_cfg2 = readl(&ana_pll->sys_pll2_cfg2);
116 pllout_div_shift = HW_SSCG_SYSTEM_PLL2_DIV_SHIFT;
117 pllout_div_mask = HW_SSCG_SYSTEM_PLL2_DIV_MASK;
118 break;
119 case SYSTEM_PLL3_CLK:
120 pll_cfg0 = readl(&ana_pll->sys_pll3_cfg0);
121 pll_cfg1 = readl(&ana_pll->sys_pll3_cfg1);
122 pll_cfg2 = readl(&ana_pll->sys_pll3_cfg2);
123 pllout_div_shift = HW_SSCG_SYSTEM_PLL3_DIV_SHIFT;
124 pllout_div_mask = HW_SSCG_SYSTEM_PLL3_DIV_MASK;
125 break;
126 case DRAM_PLL1_CLK:
127 pll_cfg0 = readl(&ana_pll->dram_pll_cfg0);
128 pll_cfg1 = readl(&ana_pll->dram_pll_cfg1);
129 pll_cfg2 = readl(&ana_pll->dram_pll_cfg2);
130 pllout_div_shift = HW_SSCG_DRAM_PLL_DIV_SHIFT;
131 pllout_div_mask = HW_SSCG_DRAM_PLL_DIV_MASK;
132 break;
133 default:
134 printf("sscg pll %d not supporte\n", sscg_pll);
135 return 0;
136 }
137
138 switch (sscg_pll) {
139 case DRAM_PLL1_CLK:
140 pll_clke = SSCG_PLL_DRAM_PLL_CLKE_MASK;
141 div = 1;
142 break;
143 case SYSTEM_PLL3_CLK:
144 pll_clke = SSCG_PLL_PLL3_CLKE_MASK;
145 div = 1;
146 break;
147 case SYSTEM_PLL2_1000M_CLK:
148 case SYSTEM_PLL1_800M_CLK:
149 pll_clke = SSCG_PLL_CLKE_MASK;
150 div = 1;
151 break;
152 case SYSTEM_PLL2_500M_CLK:
153 case SYSTEM_PLL1_400M_CLK:
154 pll_clke = SSCG_PLL_DIV2_CLKE_MASK;
155 div = 2;
156 break;
157 case SYSTEM_PLL2_333M_CLK:
158 case SYSTEM_PLL1_266M_CLK:
159 pll_clke = SSCG_PLL_DIV3_CLKE_MASK;
160 div = 3;
161 break;
162 case SYSTEM_PLL2_250M_CLK:
163 case SYSTEM_PLL1_200M_CLK:
164 pll_clke = SSCG_PLL_DIV4_CLKE_MASK;
165 div = 4;
166 break;
167 case SYSTEM_PLL2_200M_CLK:
168 case SYSTEM_PLL1_160M_CLK:
169 pll_clke = SSCG_PLL_DIV5_CLKE_MASK;
170 div = 5;
171 break;
172 case SYSTEM_PLL2_166M_CLK:
173 case SYSTEM_PLL1_133M_CLK:
174 pll_clke = SSCG_PLL_DIV6_CLKE_MASK;
175 div = 6;
176 break;
177 case SYSTEM_PLL2_125M_CLK:
178 case SYSTEM_PLL1_100M_CLK:
179 pll_clke = SSCG_PLL_DIV8_CLKE_MASK;
180 div = 8;
181 break;
182 case SYSTEM_PLL2_100M_CLK:
183 case SYSTEM_PLL1_80M_CLK:
184 pll_clke = SSCG_PLL_DIV10_CLKE_MASK;
185 div = 10;
186 break;
187 case SYSTEM_PLL2_50M_CLK:
188 case SYSTEM_PLL1_40M_CLK:
189 pll_clke = SSCG_PLL_DIV20_CLKE_MASK;
190 div = 20;
191 break;
192 default:
193 printf("sscg pll %d not supporte\n", sscg_pll);
194 return 0;
195 }
196
197 /* Power down */
198 if (pll_cfg0 & SSCG_PLL_PD_MASK)
199 return 0;
200
201 /* output not enabled */
202 if ((pll_cfg0 & pll_clke) == 0)
203 return 0;
204
205 pllout_div = readl(&ana_pll->sscg_pllout_div_cfg);
206 pllout_div = (pllout_div & pllout_div_mask) >> pllout_div_shift;
207
208 pll_refclk_sel = pll_cfg0 & SSCG_PLL_REFCLK_SEL_MASK;
209
210 if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_OSC_25M)
211 pll_refclk = 25000000u;
212 else if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_OSC_27M)
213 pll_refclk = 27000000u;
214 else if (pll_refclk_sel == SSCG_PLL_REFCLK_SEL_HDMI_PHY_27M)
215 pll_refclk = 27000000u;
216 else
217 pll_refclk = 0;
218
219 /* We assume bypass1/2 are the same value */
220 if ((pll_cfg0 & SSCG_PLL_BYPASS1_MASK) ||
221 (pll_cfg0 & SSCG_PLL_BYPASS2_MASK))
222 return pll_refclk;
223
224 divr1 = (pll_cfg2 & SSCG_PLL_REF_DIVR1_MASK) >>
225 SSCG_PLL_REF_DIVR1_SHIFT;
226 divr2 = (pll_cfg2 & SSCG_PLL_REF_DIVR2_MASK) >>
227 SSCG_PLL_REF_DIVR2_SHIFT;
228 divf1 = (pll_cfg2 & SSCG_PLL_FEEDBACK_DIV_F1_MASK) >>
229 SSCG_PLL_FEEDBACK_DIV_F1_SHIFT;
230 divf2 = (pll_cfg2 & SSCG_PLL_FEEDBACK_DIV_F2_MASK) >>
231 SSCG_PLL_FEEDBACK_DIV_F2_SHIFT;
232 divq = (pll_cfg2 & SSCG_PLL_OUTPUT_DIV_VAL_MASK) >>
233 SSCG_PLL_OUTPUT_DIV_VAL_SHIFT;
234 sse = pll_cfg1 & SSCG_PLL_SSE_MASK;
235
236 if (sse)
237 sse = 8;
238 else
239 sse = 2;
240
241 pllout = pll_refclk / (divr1 + 1) * sse * (divf1 + 1) /
242 (divr2 + 1) * (divf2 + 1) / (divq + 1);
243
244 return pllout / (pllout_div + 1) / div;
245 }
246
get_root_src_clk(enum clk_root_src root_src)247 static u32 get_root_src_clk(enum clk_root_src root_src)
248 {
249 switch (root_src) {
250 case OSC_25M_CLK:
251 return 25000000;
252 case OSC_27M_CLK:
253 return 27000000;
254 case OSC_32K_CLK:
255 return 32768;
256 case ARM_PLL_CLK:
257 return decode_frac_pll(root_src);
258 case SYSTEM_PLL1_800M_CLK:
259 case SYSTEM_PLL1_400M_CLK:
260 case SYSTEM_PLL1_266M_CLK:
261 case SYSTEM_PLL1_200M_CLK:
262 case SYSTEM_PLL1_160M_CLK:
263 case SYSTEM_PLL1_133M_CLK:
264 case SYSTEM_PLL1_100M_CLK:
265 case SYSTEM_PLL1_80M_CLK:
266 case SYSTEM_PLL1_40M_CLK:
267 case SYSTEM_PLL2_1000M_CLK:
268 case SYSTEM_PLL2_500M_CLK:
269 case SYSTEM_PLL2_333M_CLK:
270 case SYSTEM_PLL2_250M_CLK:
271 case SYSTEM_PLL2_200M_CLK:
272 case SYSTEM_PLL2_166M_CLK:
273 case SYSTEM_PLL2_125M_CLK:
274 case SYSTEM_PLL2_100M_CLK:
275 case SYSTEM_PLL2_50M_CLK:
276 case SYSTEM_PLL3_CLK:
277 return decode_sscg_pll(root_src);
278 default:
279 return 0;
280 }
281
282 return 0;
283 }
284
get_root_clk(enum clk_root_index clock_id)285 static u32 get_root_clk(enum clk_root_index clock_id)
286 {
287 enum clk_root_src root_src;
288 u32 post_podf, pre_podf, root_src_clk;
289
290 if (clock_root_enabled(clock_id) <= 0)
291 return 0;
292
293 if (clock_get_prediv(clock_id, &pre_podf) < 0)
294 return 0;
295
296 if (clock_get_postdiv(clock_id, &post_podf) < 0)
297 return 0;
298
299 if (clock_get_src(clock_id, &root_src) < 0)
300 return 0;
301
302 root_src_clk = get_root_src_clk(root_src);
303
304 return root_src_clk / (post_podf + 1) / (pre_podf + 1);
305 }
306
307 #ifdef CONFIG_MXC_OCOTP
enable_ocotp_clk(unsigned char enable)308 void enable_ocotp_clk(unsigned char enable)
309 {
310 clock_enable(CCGR_OCOTP, !!enable);
311 }
312 #endif
313
enable_i2c_clk(unsigned char enable,unsigned int i2c_num)314 int enable_i2c_clk(unsigned char enable, unsigned int i2c_num)
315 {
316 /* 0 - 3 is valid i2c num */
317 if (i2c_num > 3)
318 return -EINVAL;
319
320 clock_enable(CCGR_I2C1 + i2c_num, !!enable);
321
322 return 0;
323 }
324
mxc_get_clock(enum mxc_clock clk)325 unsigned int mxc_get_clock(enum mxc_clock clk)
326 {
327 u32 val;
328
329 if (clk == MXC_ARM_CLK)
330 return get_root_clk(ARM_A53_CLK_ROOT);
331
332 if (clk == MXC_IPG_CLK) {
333 clock_get_target_val(IPG_CLK_ROOT, &val);
334 val = val & 0x3;
335 return get_root_clk(AHB_CLK_ROOT) / (val + 1);
336 }
337
338 return get_root_clk(clk);
339 }
340
imx_get_uartclk(void)341 u32 imx_get_uartclk(void)
342 {
343 return mxc_get_clock(UART1_CLK_ROOT);
344 }
345
mxs_set_lcdclk(u32 base_addr,u32 freq)346 void mxs_set_lcdclk(u32 base_addr, u32 freq)
347 {
348 /*
349 * LCDIF_PIXEL_CLK: select 800MHz root clock,
350 * select pre divider 8, output is 100 MHz
351 */
352 clock_set_target_val(LCDIF_PIXEL_CLK_ROOT, CLK_ROOT_ON |
353 CLK_ROOT_SOURCE_SEL(4) |
354 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV8));
355 }
356
init_wdog_clk(void)357 void init_wdog_clk(void)
358 {
359 clock_enable(CCGR_WDOG1, 0);
360 clock_enable(CCGR_WDOG2, 0);
361 clock_enable(CCGR_WDOG3, 0);
362 clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON |
363 CLK_ROOT_SOURCE_SEL(0));
364 clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON |
365 CLK_ROOT_SOURCE_SEL(0));
366 clock_set_target_val(WDOG_CLK_ROOT, CLK_ROOT_ON |
367 CLK_ROOT_SOURCE_SEL(0));
368 clock_enable(CCGR_WDOG1, 1);
369 clock_enable(CCGR_WDOG2, 1);
370 clock_enable(CCGR_WDOG3, 1);
371 }
372
init_usb_clk(void)373 void init_usb_clk(void)
374 {
375 if (!is_usb_boot()) {
376 clock_enable(CCGR_USB_CTRL1, 0);
377 clock_enable(CCGR_USB_CTRL2, 0);
378 clock_enable(CCGR_USB_PHY1, 0);
379 clock_enable(CCGR_USB_PHY2, 0);
380 /* 500MHz */
381 clock_set_target_val(USB_BUS_CLK_ROOT, CLK_ROOT_ON |
382 CLK_ROOT_SOURCE_SEL(1));
383 /* 100MHz */
384 clock_set_target_val(USB_CORE_REF_CLK_ROOT, CLK_ROOT_ON |
385 CLK_ROOT_SOURCE_SEL(1));
386 /* 100MHz */
387 clock_set_target_val(USB_PHY_REF_CLK_ROOT, CLK_ROOT_ON |
388 CLK_ROOT_SOURCE_SEL(1));
389 clock_enable(CCGR_USB_CTRL1, 1);
390 clock_enable(CCGR_USB_CTRL2, 1);
391 clock_enable(CCGR_USB_PHY1, 1);
392 clock_enable(CCGR_USB_PHY2, 1);
393 }
394 }
395
init_nand_clk(void)396 void init_nand_clk(void)
397 {
398 clock_enable(CCGR_RAWNAND, 0);
399 clock_set_target_val(NAND_CLK_ROOT,
400 CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(3) |
401 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4));
402 clock_enable(CCGR_RAWNAND, 1);
403 }
404
init_uart_clk(u32 index)405 void init_uart_clk(u32 index)
406 {
407 /* Set uart clock root 25M OSC */
408 switch (index) {
409 case 0:
410 clock_enable(CCGR_UART1, 0);
411 clock_set_target_val(UART1_CLK_ROOT, CLK_ROOT_ON |
412 CLK_ROOT_SOURCE_SEL(0));
413 clock_enable(CCGR_UART1, 1);
414 return;
415 case 1:
416 clock_enable(CCGR_UART2, 0);
417 clock_set_target_val(UART2_CLK_ROOT, CLK_ROOT_ON |
418 CLK_ROOT_SOURCE_SEL(0));
419 clock_enable(CCGR_UART2, 1);
420 return;
421 case 2:
422 clock_enable(CCGR_UART3, 0);
423 clock_set_target_val(UART3_CLK_ROOT, CLK_ROOT_ON |
424 CLK_ROOT_SOURCE_SEL(0));
425 clock_enable(CCGR_UART3, 1);
426 return;
427 case 3:
428 clock_enable(CCGR_UART4, 0);
429 clock_set_target_val(UART4_CLK_ROOT, CLK_ROOT_ON |
430 CLK_ROOT_SOURCE_SEL(0));
431 clock_enable(CCGR_UART4, 1);
432 return;
433 default:
434 printf("Invalid uart index\n");
435 return;
436 }
437 }
438
init_clk_usdhc(u32 index)439 void init_clk_usdhc(u32 index)
440 {
441 /*
442 * set usdhc clock root
443 * sys pll1 400M
444 */
445 switch (index) {
446 case 0:
447 clock_enable(CCGR_USDHC1, 0);
448 clock_set_target_val(USDHC1_CLK_ROOT, CLK_ROOT_ON |
449 CLK_ROOT_SOURCE_SEL(1) |
450 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2));
451 clock_enable(CCGR_USDHC1, 1);
452 return;
453 case 1:
454 clock_enable(CCGR_USDHC2, 0);
455 clock_set_target_val(USDHC2_CLK_ROOT, CLK_ROOT_ON |
456 CLK_ROOT_SOURCE_SEL(1) |
457 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2));
458 clock_enable(CCGR_USDHC2, 1);
459 return;
460 default:
461 printf("Invalid usdhc index\n");
462 return;
463 }
464 }
465
set_clk_qspi(void)466 int set_clk_qspi(void)
467 {
468 /*
469 * set qspi root
470 * sys pll1 100M
471 */
472 clock_enable(CCGR_QSPI, 0);
473 clock_set_target_val(QSPI_CLK_ROOT, CLK_ROOT_ON |
474 CLK_ROOT_SOURCE_SEL(7));
475 clock_enable(CCGR_QSPI, 1);
476
477 return 0;
478 }
479
480 #ifdef CONFIG_FEC_MXC
set_clk_enet(enum enet_freq type)481 int set_clk_enet(enum enet_freq type)
482 {
483 u32 target;
484 u32 enet1_ref;
485
486 switch (type) {
487 case ENET_125MHZ:
488 enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_125M_CLK;
489 break;
490 case ENET_50MHZ:
491 enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_50M_CLK;
492 break;
493 case ENET_25MHZ:
494 enet1_ref = ENET1_REF_CLK_ROOT_FROM_PLL_ENET_MAIN_25M_CLK;
495 break;
496 default:
497 return -EINVAL;
498 }
499
500 /* disable the clock first */
501 clock_enable(CCGR_ENET1, 0);
502 clock_enable(CCGR_SIM_ENET, 0);
503
504 /* set enet axi clock 266Mhz */
505 target = CLK_ROOT_ON | ENET_AXI_CLK_ROOT_FROM_SYS1_PLL_266M |
506 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
507 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
508 clock_set_target_val(ENET_AXI_CLK_ROOT, target);
509
510 target = CLK_ROOT_ON | enet1_ref |
511 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
512 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1);
513 clock_set_target_val(ENET_REF_CLK_ROOT, target);
514
515 target = CLK_ROOT_ON |
516 ENET1_TIME_CLK_ROOT_FROM_PLL_ENET_MAIN_100M_CLK |
517 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV1) |
518 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV4);
519 clock_set_target_val(ENET_TIMER_CLK_ROOT, target);
520
521 /* enable clock */
522 clock_enable(CCGR_SIM_ENET, 1);
523 clock_enable(CCGR_ENET1, 1);
524
525 return 0;
526 }
527 #endif
528
imx_get_fecclk(void)529 u32 imx_get_fecclk(void)
530 {
531 return get_root_clk(ENET_AXI_CLK_ROOT);
532 }
533
534 static struct dram_bypass_clk_setting imx8mq_dram_bypass_tbl[] = {
535 DRAM_BYPASS_ROOT_CONFIG(MHZ(100), 2, CLK_ROOT_PRE_DIV1, 2,
536 CLK_ROOT_PRE_DIV2),
537 DRAM_BYPASS_ROOT_CONFIG(MHZ(250), 3, CLK_ROOT_PRE_DIV2, 2,
538 CLK_ROOT_PRE_DIV2),
539 DRAM_BYPASS_ROOT_CONFIG(MHZ(400), 1, CLK_ROOT_PRE_DIV2, 3,
540 CLK_ROOT_PRE_DIV2),
541 };
542
dram_enable_bypass(ulong clk_val)543 void dram_enable_bypass(ulong clk_val)
544 {
545 int i;
546 struct dram_bypass_clk_setting *config;
547
548 for (i = 0; i < ARRAY_SIZE(imx8mq_dram_bypass_tbl); i++) {
549 if (clk_val == imx8mq_dram_bypass_tbl[i].clk)
550 break;
551 }
552
553 if (i == ARRAY_SIZE(imx8mq_dram_bypass_tbl)) {
554 printf("No matched freq table %lu\n", clk_val);
555 return;
556 }
557
558 config = &imx8mq_dram_bypass_tbl[i];
559
560 clock_set_target_val(DRAM_ALT_CLK_ROOT, CLK_ROOT_ON |
561 CLK_ROOT_SOURCE_SEL(config->alt_root_sel) |
562 CLK_ROOT_PRE_DIV(config->alt_pre_div));
563 clock_set_target_val(DRAM_APB_CLK_ROOT, CLK_ROOT_ON |
564 CLK_ROOT_SOURCE_SEL(config->apb_root_sel) |
565 CLK_ROOT_PRE_DIV(config->apb_pre_div));
566 clock_set_target_val(DRAM_SEL_CFG, CLK_ROOT_ON |
567 CLK_ROOT_SOURCE_SEL(1));
568 }
569
dram_disable_bypass(void)570 void dram_disable_bypass(void)
571 {
572 clock_set_target_val(DRAM_SEL_CFG, CLK_ROOT_ON |
573 CLK_ROOT_SOURCE_SEL(0));
574 clock_set_target_val(DRAM_APB_CLK_ROOT, CLK_ROOT_ON |
575 CLK_ROOT_SOURCE_SEL(4) |
576 CLK_ROOT_PRE_DIV(CLK_ROOT_PRE_DIV5));
577 }
578
579 #ifdef CONFIG_SPL_BUILD
dram_pll_init(ulong pll_val)580 void dram_pll_init(ulong pll_val)
581 {
582 u32 val;
583 void __iomem *pll_control_reg = &ana_pll->dram_pll_cfg0;
584 void __iomem *pll_cfg_reg2 = &ana_pll->dram_pll_cfg2;
585
586 /* Bypass */
587 setbits_le32(pll_control_reg, SSCG_PLL_BYPASS1_MASK);
588 setbits_le32(pll_control_reg, SSCG_PLL_BYPASS2_MASK);
589
590 switch (pll_val) {
591 case MHZ(800):
592 val = readl(pll_cfg_reg2);
593 val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
594 SSCG_PLL_FEEDBACK_DIV_F2_MASK |
595 SSCG_PLL_FEEDBACK_DIV_F1_MASK |
596 SSCG_PLL_REF_DIVR2_MASK);
597 val |= SSCG_PLL_OUTPUT_DIV_VAL(0);
598 val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(11);
599 val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(39);
600 val |= SSCG_PLL_REF_DIVR2_VAL(29);
601 writel(val, pll_cfg_reg2);
602 break;
603 case MHZ(600):
604 val = readl(pll_cfg_reg2);
605 val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
606 SSCG_PLL_FEEDBACK_DIV_F2_MASK |
607 SSCG_PLL_FEEDBACK_DIV_F1_MASK |
608 SSCG_PLL_REF_DIVR2_MASK);
609 val |= SSCG_PLL_OUTPUT_DIV_VAL(1);
610 val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(17);
611 val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(39);
612 val |= SSCG_PLL_REF_DIVR2_VAL(29);
613 writel(val, pll_cfg_reg2);
614 break;
615 case MHZ(400):
616 val = readl(pll_cfg_reg2);
617 val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
618 SSCG_PLL_FEEDBACK_DIV_F2_MASK |
619 SSCG_PLL_FEEDBACK_DIV_F1_MASK |
620 SSCG_PLL_REF_DIVR2_MASK);
621 val |= SSCG_PLL_OUTPUT_DIV_VAL(1);
622 val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(11);
623 val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(39);
624 val |= SSCG_PLL_REF_DIVR2_VAL(29);
625 writel(val, pll_cfg_reg2);
626 break;
627 case MHZ(167):
628 val = readl(pll_cfg_reg2);
629 val &= ~(SSCG_PLL_OUTPUT_DIV_VAL_MASK |
630 SSCG_PLL_FEEDBACK_DIV_F2_MASK |
631 SSCG_PLL_FEEDBACK_DIV_F1_MASK |
632 SSCG_PLL_REF_DIVR2_MASK);
633 val |= SSCG_PLL_OUTPUT_DIV_VAL(3);
634 val |= SSCG_PLL_FEEDBACK_DIV_F2_VAL(8);
635 val |= SSCG_PLL_FEEDBACK_DIV_F1_VAL(45);
636 val |= SSCG_PLL_REF_DIVR2_VAL(30);
637 writel(val, pll_cfg_reg2);
638 break;
639 default:
640 break;
641 }
642
643 /* Clear power down bit */
644 clrbits_le32(pll_control_reg, SSCG_PLL_PD_MASK);
645 /* Eanble ARM_PLL/SYS_PLL */
646 setbits_le32(pll_control_reg, SSCG_PLL_DRAM_PLL_CLKE_MASK);
647
648 /* Clear bypass */
649 clrbits_le32(pll_control_reg, SSCG_PLL_BYPASS1_MASK);
650 __udelay(100);
651 clrbits_le32(pll_control_reg, SSCG_PLL_BYPASS2_MASK);
652 /* Wait lock */
653 while (!(readl(pll_control_reg) & SSCG_PLL_LOCK_MASK))
654 ;
655 }
656
frac_pll_init(u32 pll,enum frac_pll_out_val val)657 int frac_pll_init(u32 pll, enum frac_pll_out_val val)
658 {
659 void __iomem *pll_cfg0, __iomem *pll_cfg1;
660 u32 val_cfg0, val_cfg1;
661 int ret;
662
663 switch (pll) {
664 case ANATOP_ARM_PLL:
665 pll_cfg0 = &ana_pll->arm_pll_cfg0;
666 pll_cfg1 = &ana_pll->arm_pll_cfg1;
667
668 if (val == FRAC_PLL_OUT_1000M)
669 val_cfg1 = FRAC_PLL_INT_DIV_CTL_VAL(49);
670 else
671 val_cfg1 = FRAC_PLL_INT_DIV_CTL_VAL(79);
672 val_cfg0 = FRAC_PLL_CLKE_MASK | FRAC_PLL_REFCLK_SEL_OSC_25M |
673 FRAC_PLL_LOCK_SEL_MASK | FRAC_PLL_NEWDIV_VAL_MASK |
674 FRAC_PLL_REFCLK_DIV_VAL(4) |
675 FRAC_PLL_OUTPUT_DIV_VAL(0);
676 break;
677 default:
678 return -EINVAL;
679 }
680
681 /* bypass the clock */
682 setbits_le32(pll_cfg0, FRAC_PLL_BYPASS_MASK);
683 /* Set the value */
684 writel(val_cfg1, pll_cfg1);
685 writel(val_cfg0 | FRAC_PLL_BYPASS_MASK, pll_cfg0);
686 val_cfg0 = readl(pll_cfg0);
687 /* unbypass the clock */
688 clrbits_le32(pll_cfg0, FRAC_PLL_BYPASS_MASK);
689 ret = readl_poll_timeout(pll_cfg0, val_cfg0,
690 val_cfg0 & FRAC_PLL_LOCK_MASK, 1);
691 if (ret)
692 printf("%s timeout\n", __func__);
693 clrbits_le32(pll_cfg0, FRAC_PLL_NEWDIV_VAL_MASK);
694
695 return 0;
696 }
697
sscg_pll_init(u32 pll)698 int sscg_pll_init(u32 pll)
699 {
700 void __iomem *pll_cfg0, __iomem *pll_cfg1, __iomem *pll_cfg2;
701 u32 val_cfg0, val_cfg1, val_cfg2, val;
702 u32 bypass1_mask = 0x20, bypass2_mask = 0x10;
703 int ret;
704
705 switch (pll) {
706 case ANATOP_SYSTEM_PLL1:
707 pll_cfg0 = &ana_pll->sys_pll1_cfg0;
708 pll_cfg1 = &ana_pll->sys_pll1_cfg1;
709 pll_cfg2 = &ana_pll->sys_pll1_cfg2;
710 /* 800MHz */
711 val_cfg2 = SSCG_PLL_FEEDBACK_DIV_F1_VAL(3) |
712 SSCG_PLL_FEEDBACK_DIV_F2_VAL(3);
713 val_cfg1 = 0;
714 val_cfg0 = SSCG_PLL_CLKE_MASK | SSCG_PLL_DIV2_CLKE_MASK |
715 SSCG_PLL_DIV3_CLKE_MASK | SSCG_PLL_DIV4_CLKE_MASK |
716 SSCG_PLL_DIV5_CLKE_MASK | SSCG_PLL_DIV6_CLKE_MASK |
717 SSCG_PLL_DIV8_CLKE_MASK | SSCG_PLL_DIV10_CLKE_MASK |
718 SSCG_PLL_DIV20_CLKE_MASK | SSCG_PLL_LOCK_SEL_MASK |
719 SSCG_PLL_REFCLK_SEL_OSC_25M;
720 break;
721 case ANATOP_SYSTEM_PLL2:
722 pll_cfg0 = &ana_pll->sys_pll2_cfg0;
723 pll_cfg1 = &ana_pll->sys_pll2_cfg1;
724 pll_cfg2 = &ana_pll->sys_pll2_cfg2;
725 /* 1000MHz */
726 val_cfg2 = SSCG_PLL_FEEDBACK_DIV_F1_VAL(3) |
727 SSCG_PLL_FEEDBACK_DIV_F2_VAL(4);
728 val_cfg1 = 0;
729 val_cfg0 = SSCG_PLL_CLKE_MASK | SSCG_PLL_DIV2_CLKE_MASK |
730 SSCG_PLL_DIV3_CLKE_MASK | SSCG_PLL_DIV4_CLKE_MASK |
731 SSCG_PLL_DIV5_CLKE_MASK | SSCG_PLL_DIV6_CLKE_MASK |
732 SSCG_PLL_DIV8_CLKE_MASK | SSCG_PLL_DIV10_CLKE_MASK |
733 SSCG_PLL_DIV20_CLKE_MASK | SSCG_PLL_LOCK_SEL_MASK |
734 SSCG_PLL_REFCLK_SEL_OSC_25M;
735 break;
736 case ANATOP_SYSTEM_PLL3:
737 pll_cfg0 = &ana_pll->sys_pll3_cfg0;
738 pll_cfg1 = &ana_pll->sys_pll3_cfg1;
739 pll_cfg2 = &ana_pll->sys_pll3_cfg2;
740 /* 800MHz */
741 val_cfg2 = SSCG_PLL_FEEDBACK_DIV_F1_VAL(3) |
742 SSCG_PLL_FEEDBACK_DIV_F2_VAL(3);
743 val_cfg1 = 0;
744 val_cfg0 = SSCG_PLL_PLL3_CLKE_MASK | SSCG_PLL_LOCK_SEL_MASK |
745 SSCG_PLL_REFCLK_SEL_OSC_25M;
746 break;
747 default:
748 return -EINVAL;
749 }
750
751 /*bypass*/
752 setbits_le32(pll_cfg0, bypass1_mask | bypass2_mask);
753 /* set value */
754 writel(val_cfg2, pll_cfg2);
755 writel(val_cfg1, pll_cfg1);
756 /*unbypass1 and wait 70us */
757 writel(val_cfg0 | bypass2_mask, pll_cfg1);
758
759 __udelay(70);
760
761 /* unbypass2 and wait lock */
762 writel(val_cfg0, pll_cfg1);
763 ret = readl_poll_timeout(pll_cfg0, val, val & SSCG_PLL_LOCK_MASK, 1);
764 if (ret)
765 printf("%s timeout\n", __func__);
766
767 return ret;
768 }
769
clock_init(void)770 int clock_init(void)
771 {
772 u32 grade;
773
774 clock_set_target_val(ARM_A53_CLK_ROOT, CLK_ROOT_ON |
775 CLK_ROOT_SOURCE_SEL(0));
776
777 /*
778 * 8MQ only supports two grades: consumer and industrial.
779 * We set ARM clock to 1Ghz for consumer, 800Mhz for industrial
780 */
781 grade = get_cpu_temp_grade(NULL, NULL);
782 if (!grade) {
783 frac_pll_init(ANATOP_ARM_PLL, FRAC_PLL_OUT_1000M);
784 clock_set_target_val(ARM_A53_CLK_ROOT, CLK_ROOT_ON |
785 CLK_ROOT_SOURCE_SEL(1) |
786 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV1));
787 } else {
788 frac_pll_init(ANATOP_ARM_PLL, FRAC_PLL_OUT_1600M);
789 clock_set_target_val(ARM_A53_CLK_ROOT, CLK_ROOT_ON |
790 CLK_ROOT_SOURCE_SEL(1) |
791 CLK_ROOT_POST_DIV(CLK_ROOT_POST_DIV2));
792 }
793 /*
794 * According to ANAMIX SPEC
795 * sys pll1 fixed at 800MHz
796 * sys pll2 fixed at 1GHz
797 * Here we only enable the outputs.
798 */
799 setbits_le32(&ana_pll->sys_pll1_cfg0, SSCG_PLL_CLKE_MASK |
800 SSCG_PLL_DIV2_CLKE_MASK | SSCG_PLL_DIV3_CLKE_MASK |
801 SSCG_PLL_DIV4_CLKE_MASK | SSCG_PLL_DIV5_CLKE_MASK |
802 SSCG_PLL_DIV6_CLKE_MASK | SSCG_PLL_DIV8_CLKE_MASK |
803 SSCG_PLL_DIV10_CLKE_MASK | SSCG_PLL_DIV20_CLKE_MASK);
804
805 setbits_le32(&ana_pll->sys_pll2_cfg0, SSCG_PLL_CLKE_MASK |
806 SSCG_PLL_DIV2_CLKE_MASK | SSCG_PLL_DIV3_CLKE_MASK |
807 SSCG_PLL_DIV4_CLKE_MASK | SSCG_PLL_DIV5_CLKE_MASK |
808 SSCG_PLL_DIV6_CLKE_MASK | SSCG_PLL_DIV8_CLKE_MASK |
809 SSCG_PLL_DIV10_CLKE_MASK | SSCG_PLL_DIV20_CLKE_MASK);
810
811 clock_set_target_val(NAND_USDHC_BUS_CLK_ROOT, CLK_ROOT_ON |
812 CLK_ROOT_SOURCE_SEL(1));
813
814 init_wdog_clk();
815 clock_enable(CCGR_TSENSOR, 1);
816 clock_enable(CCGR_OCOTP, 1);
817
818 /* config GIC ROOT to sys_pll2_200m */
819 clock_enable(CCGR_GIC, 0);
820 clock_set_target_val(GIC_CLK_ROOT,
821 CLK_ROOT_ON | CLK_ROOT_SOURCE_SEL(1));
822 clock_enable(CCGR_GIC, 1);
823
824 return 0;
825 }
826 #endif
827
828 /*
829 * Dump some clockes.
830 */
831 #ifndef CONFIG_SPL_BUILD
do_imx8m_showclocks(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])832 int do_imx8m_showclocks(cmd_tbl_t *cmdtp, int flag, int argc,
833 char * const argv[])
834 {
835 u32 freq;
836
837 freq = decode_frac_pll(ARM_PLL_CLK);
838 printf("ARM_PLL %8d MHz\n", freq / 1000000);
839 freq = decode_sscg_pll(SYSTEM_PLL1_800M_CLK);
840 printf("SYS_PLL1_800 %8d MHz\n", freq / 1000000);
841 freq = decode_sscg_pll(SYSTEM_PLL1_400M_CLK);
842 printf("SYS_PLL1_400 %8d MHz\n", freq / 1000000);
843 freq = decode_sscg_pll(SYSTEM_PLL1_266M_CLK);
844 printf("SYS_PLL1_266 %8d MHz\n", freq / 1000000);
845 freq = decode_sscg_pll(SYSTEM_PLL1_200M_CLK);
846 printf("SYS_PLL1_200 %8d MHz\n", freq / 1000000);
847 freq = decode_sscg_pll(SYSTEM_PLL1_160M_CLK);
848 printf("SYS_PLL1_160 %8d MHz\n", freq / 1000000);
849 freq = decode_sscg_pll(SYSTEM_PLL1_133M_CLK);
850 printf("SYS_PLL1_133 %8d MHz\n", freq / 1000000);
851 freq = decode_sscg_pll(SYSTEM_PLL1_100M_CLK);
852 printf("SYS_PLL1_100 %8d MHz\n", freq / 1000000);
853 freq = decode_sscg_pll(SYSTEM_PLL1_80M_CLK);
854 printf("SYS_PLL1_80 %8d MHz\n", freq / 1000000);
855 freq = decode_sscg_pll(SYSTEM_PLL1_40M_CLK);
856 printf("SYS_PLL1_40 %8d MHz\n", freq / 1000000);
857 freq = decode_sscg_pll(SYSTEM_PLL2_1000M_CLK);
858 printf("SYS_PLL2_1000 %8d MHz\n", freq / 1000000);
859 freq = decode_sscg_pll(SYSTEM_PLL2_500M_CLK);
860 printf("SYS_PLL2_500 %8d MHz\n", freq / 1000000);
861 freq = decode_sscg_pll(SYSTEM_PLL2_333M_CLK);
862 printf("SYS_PLL2_333 %8d MHz\n", freq / 1000000);
863 freq = decode_sscg_pll(SYSTEM_PLL2_250M_CLK);
864 printf("SYS_PLL2_250 %8d MHz\n", freq / 1000000);
865 freq = decode_sscg_pll(SYSTEM_PLL2_200M_CLK);
866 printf("SYS_PLL2_200 %8d MHz\n", freq / 1000000);
867 freq = decode_sscg_pll(SYSTEM_PLL2_166M_CLK);
868 printf("SYS_PLL2_166 %8d MHz\n", freq / 1000000);
869 freq = decode_sscg_pll(SYSTEM_PLL2_125M_CLK);
870 printf("SYS_PLL2_125 %8d MHz\n", freq / 1000000);
871 freq = decode_sscg_pll(SYSTEM_PLL2_100M_CLK);
872 printf("SYS_PLL2_100 %8d MHz\n", freq / 1000000);
873 freq = decode_sscg_pll(SYSTEM_PLL2_50M_CLK);
874 printf("SYS_PLL2_50 %8d MHz\n", freq / 1000000);
875 freq = decode_sscg_pll(SYSTEM_PLL3_CLK);
876 printf("SYS_PLL3 %8d MHz\n", freq / 1000000);
877 freq = mxc_get_clock(UART1_CLK_ROOT);
878 printf("UART1 %8d MHz\n", freq / 1000000);
879 freq = mxc_get_clock(USDHC1_CLK_ROOT);
880 printf("USDHC1 %8d MHz\n", freq / 1000000);
881 freq = mxc_get_clock(QSPI_CLK_ROOT);
882 printf("QSPI %8d MHz\n", freq / 1000000);
883 return 0;
884 }
885
886 U_BOOT_CMD(
887 clocks, CONFIG_SYS_MAXARGS, 1, do_imx8m_showclocks,
888 "display clocks",
889 ""
890 );
891 #endif
892