1 /*
2 * jdhuff.c
3 *
4 * This file was part of the Independent JPEG Group's software:
5 * Copyright (C) 1991-1997, Thomas G. Lane.
6 * libjpeg-turbo Modifications:
7 * Copyright (C) 2009-2011, 2016, 2018-2019, D. R. Commander.
8 * For conditions of distribution and use, see the accompanying README.ijg
9 * file.
10 *
11 * This file contains Huffman entropy decoding routines.
12 *
13 * Much of the complexity here has to do with supporting input suspension.
14 * If the data source module demands suspension, we want to be able to back
15 * up to the start of the current MCU. To do this, we copy state variables
16 * into local working storage, and update them back to the permanent
17 * storage only upon successful completion of an MCU.
18 *
19 * NOTE: All referenced figures are from
20 * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994.
21 */
22
23 #define JPEG_INTERNALS
24 #include "jinclude.h"
25 #include "jpeglib.h"
26 #include "jdhuff.h" /* Declarations shared with jdphuff.c */
27 #include "jpegcomp.h"
28 #include "jstdhuff.c"
29
30
31 /*
32 * Expanded entropy decoder object for Huffman decoding.
33 *
34 * The savable_state subrecord contains fields that change within an MCU,
35 * but must not be updated permanently until we complete the MCU.
36 */
37
38 typedef struct {
39 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
40 } savable_state;
41
42 /* This macro is to work around compilers with missing or broken
43 * structure assignment. You'll need to fix this code if you have
44 * such a compiler and you change MAX_COMPS_IN_SCAN.
45 */
46
47 #ifndef NO_STRUCT_ASSIGN
48 #define ASSIGN_STATE(dest, src) ((dest) = (src))
49 #else
50 #if MAX_COMPS_IN_SCAN == 4
51 #define ASSIGN_STATE(dest, src) \
52 ((dest).last_dc_val[0] = (src).last_dc_val[0], \
53 (dest).last_dc_val[1] = (src).last_dc_val[1], \
54 (dest).last_dc_val[2] = (src).last_dc_val[2], \
55 (dest).last_dc_val[3] = (src).last_dc_val[3])
56 #endif
57 #endif
58
59
60 typedef struct {
61 struct jpeg_entropy_decoder pub; /* public fields */
62
63 /* These fields are loaded into local variables at start of each MCU.
64 * In case of suspension, we exit WITHOUT updating them.
65 */
66 bitread_perm_state bitstate; /* Bit buffer at start of MCU */
67 savable_state saved; /* Other state at start of MCU */
68
69 /* These fields are NOT loaded into local working state. */
70 unsigned int restarts_to_go; /* MCUs left in this restart interval */
71
72 /* Pointers to derived tables (these workspaces have image lifespan) */
73 d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS];
74 d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS];
75
76 /* Precalculated info set up by start_pass for use in decode_mcu: */
77
78 /* Pointers to derived tables to be used for each block within an MCU */
79 d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU];
80 d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU];
81 /* Whether we care about the DC and AC coefficient values for each block */
82 boolean dc_needed[D_MAX_BLOCKS_IN_MCU];
83 boolean ac_needed[D_MAX_BLOCKS_IN_MCU];
84 } huff_entropy_decoder;
85
86 typedef huff_entropy_decoder *huff_entropy_ptr;
87
88
89 /*
90 * Initialize for a Huffman-compressed scan.
91 */
92
93 METHODDEF(void)
start_pass_huff_decoder(j_decompress_ptr cinfo)94 start_pass_huff_decoder(j_decompress_ptr cinfo)
95 {
96 huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
97 int ci, blkn, dctbl, actbl;
98 d_derived_tbl **pdtbl;
99 jpeg_component_info *compptr;
100
101 /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
102 * This ought to be an error condition, but we make it a warning because
103 * there are some baseline files out there with all zeroes in these bytes.
104 */
105 if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 ||
106 cinfo->Ah != 0 || cinfo->Al != 0)
107 WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
108
109 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
110 compptr = cinfo->cur_comp_info[ci];
111 dctbl = compptr->dc_tbl_no;
112 actbl = compptr->ac_tbl_no;
113 /* Compute derived values for Huffman tables */
114 /* We may do this more than once for a table, but it's not expensive */
115 pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl;
116 jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl);
117 pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl;
118 jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl);
119 /* Initialize DC predictions to 0 */
120 entropy->saved.last_dc_val[ci] = 0;
121 }
122
123 /* Precalculate decoding info for each block in an MCU of this scan */
124 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
125 ci = cinfo->MCU_membership[blkn];
126 compptr = cinfo->cur_comp_info[ci];
127 /* Precalculate which table to use for each block */
128 entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
129 entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
130 /* Decide whether we really care about the coefficient values */
131 if (compptr->component_needed) {
132 entropy->dc_needed[blkn] = TRUE;
133 /* we don't need the ACs if producing a 1/8th-size image */
134 entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1);
135 } else {
136 entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE;
137 }
138 }
139
140 /* Initialize bitread state variables */
141 entropy->bitstate.bits_left = 0;
142 entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
143 entropy->pub.insufficient_data = FALSE;
144
145 /* Initialize restart counter */
146 entropy->restarts_to_go = cinfo->restart_interval;
147 }
148
149
150 /*
151 * Compute the derived values for a Huffman table.
152 * This routine also performs some validation checks on the table.
153 *
154 * Note this is also used by jdphuff.c.
155 */
156
157 GLOBAL(void)
jpeg_make_d_derived_tbl(j_decompress_ptr cinfo,boolean isDC,int tblno,d_derived_tbl ** pdtbl)158 jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno,
159 d_derived_tbl **pdtbl)
160 {
161 JHUFF_TBL *htbl;
162 d_derived_tbl *dtbl;
163 int p, i, l, si, numsymbols;
164 int lookbits, ctr;
165 char huffsize[257];
166 unsigned int huffcode[257];
167 unsigned int code;
168
169 /* Note that huffsize[] and huffcode[] are filled in code-length order,
170 * paralleling the order of the symbols themselves in htbl->huffval[].
171 */
172
173 /* Find the input Huffman table */
174 if (tblno < 0 || tblno >= NUM_HUFF_TBLS)
175 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
176 htbl =
177 isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno];
178 if (htbl == NULL)
179 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno);
180
181 /* Allocate a workspace if we haven't already done so. */
182 if (*pdtbl == NULL)
183 *pdtbl = (d_derived_tbl *)
184 (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
185 sizeof(d_derived_tbl));
186 dtbl = *pdtbl;
187 dtbl->pub = htbl; /* fill in back link */
188
189 /* Figure C.1: make table of Huffman code length for each symbol */
190
191 p = 0;
192 for (l = 1; l <= 16; l++) {
193 i = (int)htbl->bits[l];
194 if (i < 0 || p + i > 256) /* protect against table overrun */
195 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
196 while (i--)
197 huffsize[p++] = (char)l;
198 }
199 huffsize[p] = 0;
200 numsymbols = p;
201
202 /* Figure C.2: generate the codes themselves */
203 /* We also validate that the counts represent a legal Huffman code tree. */
204
205 code = 0;
206 si = huffsize[0];
207 p = 0;
208 while (huffsize[p]) {
209 while (((int)huffsize[p]) == si) {
210 huffcode[p++] = code;
211 code++;
212 }
213 /* code is now 1 more than the last code used for codelength si; but
214 * it must still fit in si bits, since no code is allowed to be all ones.
215 */
216 if (((JLONG)code) >= (((JLONG)1) << si))
217 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
218 code <<= 1;
219 si++;
220 }
221
222 /* Figure F.15: generate decoding tables for bit-sequential decoding */
223
224 p = 0;
225 for (l = 1; l <= 16; l++) {
226 if (htbl->bits[l]) {
227 /* valoffset[l] = huffval[] index of 1st symbol of code length l,
228 * minus the minimum code of length l
229 */
230 dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p];
231 p += htbl->bits[l];
232 dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */
233 } else {
234 dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
235 }
236 }
237 dtbl->valoffset[17] = 0;
238 dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
239
240 /* Compute lookahead tables to speed up decoding.
241 * First we set all the table entries to 0, indicating "too long";
242 * then we iterate through the Huffman codes that are short enough and
243 * fill in all the entries that correspond to bit sequences starting
244 * with that code.
245 */
246
247 for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++)
248 dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD;
249
250 p = 0;
251 for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
252 for (i = 1; i <= (int)htbl->bits[l]; i++, p++) {
253 /* l = current code's length, p = its index in huffcode[] & huffval[]. */
254 /* Generate left-justified code followed by all possible bit sequences */
255 lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l);
256 for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) {
257 dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p];
258 lookbits++;
259 }
260 }
261 }
262
263 /* Validate symbols as being reasonable.
264 * For AC tables, we make no check, but accept all byte values 0..255.
265 * For DC tables, we require the symbols to be in range 0..15.
266 * (Tighter bounds could be applied depending on the data depth and mode,
267 * but this is sufficient to ensure safe decoding.)
268 */
269 if (isDC) {
270 for (i = 0; i < numsymbols; i++) {
271 int sym = htbl->huffval[i];
272 if (sym < 0 || sym > 15)
273 ERREXIT(cinfo, JERR_BAD_HUFF_TABLE);
274 }
275 }
276 }
277
278
279 /*
280 * Out-of-line code for bit fetching (shared with jdphuff.c).
281 * See jdhuff.h for info about usage.
282 * Note: current values of get_buffer and bits_left are passed as parameters,
283 * but are returned in the corresponding fields of the state struct.
284 *
285 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
286 * of get_buffer to be used. (On machines with wider words, an even larger
287 * buffer could be used.) However, on some machines 32-bit shifts are
288 * quite slow and take time proportional to the number of places shifted.
289 * (This is true with most PC compilers, for instance.) In this case it may
290 * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
291 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
292 */
293
294 #ifdef SLOW_SHIFT_32
295 #define MIN_GET_BITS 15 /* minimum allowable value */
296 #else
297 #define MIN_GET_BITS (BIT_BUF_SIZE - 7)
298 #endif
299
300
301 GLOBAL(boolean)
jpeg_fill_bit_buffer(bitread_working_state * state,register bit_buf_type get_buffer,register int bits_left,int nbits)302 jpeg_fill_bit_buffer(bitread_working_state *state,
303 register bit_buf_type get_buffer, register int bits_left,
304 int nbits)
305 /* Load up the bit buffer to a depth of at least nbits */
306 {
307 /* Copy heavily used state fields into locals (hopefully registers) */
308 register const JOCTET *next_input_byte = state->next_input_byte;
309 register size_t bytes_in_buffer = state->bytes_in_buffer;
310 j_decompress_ptr cinfo = state->cinfo;
311
312 /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
313 /* (It is assumed that no request will be for more than that many bits.) */
314 /* We fail to do so only if we hit a marker or are forced to suspend. */
315
316 if (cinfo->unread_marker == 0) { /* cannot advance past a marker */
317 while (bits_left < MIN_GET_BITS) {
318 register int c;
319
320 /* Attempt to read a byte */
321 if (bytes_in_buffer == 0) {
322 if (!(*cinfo->src->fill_input_buffer) (cinfo))
323 return FALSE;
324 next_input_byte = cinfo->src->next_input_byte;
325 bytes_in_buffer = cinfo->src->bytes_in_buffer;
326 }
327 bytes_in_buffer--;
328 c = GETJOCTET(*next_input_byte++);
329
330 /* If it's 0xFF, check and discard stuffed zero byte */
331 if (c == 0xFF) {
332 /* Loop here to discard any padding FF's on terminating marker,
333 * so that we can save a valid unread_marker value. NOTE: we will
334 * accept multiple FF's followed by a 0 as meaning a single FF data
335 * byte. This data pattern is not valid according to the standard.
336 */
337 do {
338 if (bytes_in_buffer == 0) {
339 if (!(*cinfo->src->fill_input_buffer) (cinfo))
340 return FALSE;
341 next_input_byte = cinfo->src->next_input_byte;
342 bytes_in_buffer = cinfo->src->bytes_in_buffer;
343 }
344 bytes_in_buffer--;
345 c = GETJOCTET(*next_input_byte++);
346 } while (c == 0xFF);
347
348 if (c == 0) {
349 /* Found FF/00, which represents an FF data byte */
350 c = 0xFF;
351 } else {
352 /* Oops, it's actually a marker indicating end of compressed data.
353 * Save the marker code for later use.
354 * Fine point: it might appear that we should save the marker into
355 * bitread working state, not straight into permanent state. But
356 * once we have hit a marker, we cannot need to suspend within the
357 * current MCU, because we will read no more bytes from the data
358 * source. So it is OK to update permanent state right away.
359 */
360 cinfo->unread_marker = c;
361 /* See if we need to insert some fake zero bits. */
362 goto no_more_bytes;
363 }
364 }
365
366 /* OK, load c into get_buffer */
367 get_buffer = (get_buffer << 8) | c;
368 bits_left += 8;
369 } /* end while */
370 } else {
371 no_more_bytes:
372 /* We get here if we've read the marker that terminates the compressed
373 * data segment. There should be enough bits in the buffer register
374 * to satisfy the request; if so, no problem.
375 */
376 if (nbits > bits_left) {
377 /* Uh-oh. Report corrupted data to user and stuff zeroes into
378 * the data stream, so that we can produce some kind of image.
379 * We use a nonvolatile flag to ensure that only one warning message
380 * appears per data segment.
381 */
382 if (!cinfo->entropy->insufficient_data) {
383 WARNMS(cinfo, JWRN_HIT_MARKER);
384 cinfo->entropy->insufficient_data = TRUE;
385 }
386 /* Fill the buffer with zero bits */
387 get_buffer <<= MIN_GET_BITS - bits_left;
388 bits_left = MIN_GET_BITS;
389 }
390 }
391
392 /* Unload the local registers */
393 state->next_input_byte = next_input_byte;
394 state->bytes_in_buffer = bytes_in_buffer;
395 state->get_buffer = get_buffer;
396 state->bits_left = bits_left;
397
398 return TRUE;
399 }
400
401
402 /* Macro version of the above, which performs much better but does not
403 handle markers. We have to hand off any blocks with markers to the
404 slower routines. */
405
406 #define GET_BYTE { \
407 register int c0, c1; \
408 c0 = GETJOCTET(*buffer++); \
409 c1 = GETJOCTET(*buffer); \
410 /* Pre-execute most common case */ \
411 get_buffer = (get_buffer << 8) | c0; \
412 bits_left += 8; \
413 if (c0 == 0xFF) { \
414 /* Pre-execute case of FF/00, which represents an FF data byte */ \
415 buffer++; \
416 if (c1 != 0) { \
417 /* Oops, it's actually a marker indicating end of compressed data. */ \
418 cinfo->unread_marker = c1; \
419 /* Back out pre-execution and fill the buffer with zero bits */ \
420 buffer -= 2; \
421 get_buffer &= ~0xFF; \
422 } \
423 } \
424 }
425
426 #if SIZEOF_SIZE_T == 8 || defined(_WIN64)
427
428 /* Pre-fetch 48 bytes, because the holding register is 64-bit */
429 #define FILL_BIT_BUFFER_FAST \
430 if (bits_left <= 16) { \
431 GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \
432 }
433
434 #else
435
436 /* Pre-fetch 16 bytes, because the holding register is 32-bit */
437 #define FILL_BIT_BUFFER_FAST \
438 if (bits_left <= 16) { \
439 GET_BYTE GET_BYTE \
440 }
441
442 #endif
443
444
445 /*
446 * Out-of-line code for Huffman code decoding.
447 * See jdhuff.h for info about usage.
448 */
449
450 GLOBAL(int)
jpeg_huff_decode(bitread_working_state * state,register bit_buf_type get_buffer,register int bits_left,d_derived_tbl * htbl,int min_bits)451 jpeg_huff_decode(bitread_working_state *state,
452 register bit_buf_type get_buffer, register int bits_left,
453 d_derived_tbl *htbl, int min_bits)
454 {
455 register int l = min_bits;
456 register JLONG code;
457
458 /* HUFF_DECODE has determined that the code is at least min_bits */
459 /* bits long, so fetch that many bits in one swoop. */
460
461 CHECK_BIT_BUFFER(*state, l, return -1);
462 code = GET_BITS(l);
463
464 /* Collect the rest of the Huffman code one bit at a time. */
465 /* This is per Figure F.16. */
466
467 while (code > htbl->maxcode[l]) {
468 code <<= 1;
469 CHECK_BIT_BUFFER(*state, 1, return -1);
470 code |= GET_BITS(1);
471 l++;
472 }
473
474 /* Unload the local registers */
475 state->get_buffer = get_buffer;
476 state->bits_left = bits_left;
477
478 /* With garbage input we may reach the sentinel value l = 17. */
479
480 if (l > 16) {
481 WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
482 return 0; /* fake a zero as the safest result */
483 }
484
485 return htbl->pub->huffval[(int)(code + htbl->valoffset[l])];
486 }
487
488
489 /*
490 * Figure F.12: extend sign bit.
491 * On some machines, a shift and add will be faster than a table lookup.
492 */
493
494 #define AVOID_TABLES
495 #ifdef AVOID_TABLES
496
497 #define NEG_1 ((unsigned int)-1)
498 #define HUFF_EXTEND(x, s) \
499 ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1)))
500
501 #else
502
503 #define HUFF_EXTEND(x, s) \
504 ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
505
506 static const int extend_test[16] = { /* entry n is 2**(n-1) */
507 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
508 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000
509 };
510
511 static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */
512 0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1,
513 ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1,
514 ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1,
515 ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1
516 };
517
518 #endif /* AVOID_TABLES */
519
520
521 /*
522 * Check for a restart marker & resynchronize decoder.
523 * Returns FALSE if must suspend.
524 */
525
526 LOCAL(boolean)
process_restart(j_decompress_ptr cinfo)527 process_restart(j_decompress_ptr cinfo)
528 {
529 huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
530 int ci;
531
532 /* Throw away any unused bits remaining in bit buffer; */
533 /* include any full bytes in next_marker's count of discarded bytes */
534 cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
535 entropy->bitstate.bits_left = 0;
536
537 /* Advance past the RSTn marker */
538 if (!(*cinfo->marker->read_restart_marker) (cinfo))
539 return FALSE;
540
541 /* Re-initialize DC predictions to 0 */
542 for (ci = 0; ci < cinfo->comps_in_scan; ci++)
543 entropy->saved.last_dc_val[ci] = 0;
544
545 /* Reset restart counter */
546 entropy->restarts_to_go = cinfo->restart_interval;
547
548 /* Reset out-of-data flag, unless read_restart_marker left us smack up
549 * against a marker. In that case we will end up treating the next data
550 * segment as empty, and we can avoid producing bogus output pixels by
551 * leaving the flag set.
552 */
553 if (cinfo->unread_marker == 0)
554 entropy->pub.insufficient_data = FALSE;
555
556 return TRUE;
557 }
558
559
560 LOCAL(boolean)
decode_mcu_slow(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)561 decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
562 {
563 huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
564 BITREAD_STATE_VARS;
565 int blkn;
566 savable_state state;
567 /* Outer loop handles each block in the MCU */
568
569 /* Load up working state */
570 BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
571 ASSIGN_STATE(state, entropy->saved);
572
573 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
574 JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
575 d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
576 d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
577 register int s, k, r;
578
579 /* Decode a single block's worth of coefficients */
580
581 /* Section F.2.2.1: decode the DC coefficient difference */
582 HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
583 if (s) {
584 CHECK_BIT_BUFFER(br_state, s, return FALSE);
585 r = GET_BITS(s);
586 s = HUFF_EXTEND(r, s);
587 }
588
589 if (entropy->dc_needed[blkn]) {
590 /* Convert DC difference to actual value, update last_dc_val */
591 int ci = cinfo->MCU_membership[blkn];
592 /* This is really just
593 * s += state.last_dc_val[ci];
594 * It is written this way in order to shut up UBSan.
595 */
596 s = (int)((unsigned int)s + (unsigned int)state.last_dc_val[ci]);
597 state.last_dc_val[ci] = s;
598 if (block) {
599 /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
600 (*block)[0] = (JCOEF)s;
601 }
602 }
603
604 if (entropy->ac_needed[blkn] && block) {
605
606 /* Section F.2.2.2: decode the AC coefficients */
607 /* Since zeroes are skipped, output area must be cleared beforehand */
608 for (k = 1; k < DCTSIZE2; k++) {
609 HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
610
611 r = s >> 4;
612 s &= 15;
613
614 if (s) {
615 k += r;
616 CHECK_BIT_BUFFER(br_state, s, return FALSE);
617 r = GET_BITS(s);
618 s = HUFF_EXTEND(r, s);
619 /* Output coefficient in natural (dezigzagged) order.
620 * Note: the extra entries in jpeg_natural_order[] will save us
621 * if k >= DCTSIZE2, which could happen if the data is corrupted.
622 */
623 (*block)[jpeg_natural_order[k]] = (JCOEF)s;
624 } else {
625 if (r != 15)
626 break;
627 k += 15;
628 }
629 }
630
631 } else {
632
633 /* Section F.2.2.2: decode the AC coefficients */
634 /* In this path we just discard the values */
635 for (k = 1; k < DCTSIZE2; k++) {
636 HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
637
638 r = s >> 4;
639 s &= 15;
640
641 if (s) {
642 k += r;
643 CHECK_BIT_BUFFER(br_state, s, return FALSE);
644 DROP_BITS(s);
645 } else {
646 if (r != 15)
647 break;
648 k += 15;
649 }
650 }
651 }
652 }
653
654 /* Completed MCU, so update state */
655 BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
656 ASSIGN_STATE(entropy->saved, state);
657 return TRUE;
658 }
659
660
661 LOCAL(boolean)
decode_mcu_fast(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)662 decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
663 {
664 huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
665 BITREAD_STATE_VARS;
666 JOCTET *buffer;
667 int blkn;
668 savable_state state;
669 /* Outer loop handles each block in the MCU */
670
671 /* Load up working state */
672 BITREAD_LOAD_STATE(cinfo, entropy->bitstate);
673 buffer = (JOCTET *)br_state.next_input_byte;
674 ASSIGN_STATE(state, entropy->saved);
675
676 for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
677 JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL;
678 d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn];
679 d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn];
680 register int s, k, r, l;
681
682 HUFF_DECODE_FAST(s, l, dctbl);
683 if (s) {
684 FILL_BIT_BUFFER_FAST
685 r = GET_BITS(s);
686 s = HUFF_EXTEND(r, s);
687 }
688
689 if (entropy->dc_needed[blkn]) {
690 int ci = cinfo->MCU_membership[blkn];
691 s = (int)((unsigned int)s + (unsigned int)state.last_dc_val[ci]);
692 state.last_dc_val[ci] = s;
693 if (block)
694 (*block)[0] = (JCOEF)s;
695 }
696
697 if (entropy->ac_needed[blkn] && block) {
698
699 for (k = 1; k < DCTSIZE2; k++) {
700 HUFF_DECODE_FAST(s, l, actbl);
701 r = s >> 4;
702 s &= 15;
703
704 if (s) {
705 k += r;
706 FILL_BIT_BUFFER_FAST
707 r = GET_BITS(s);
708 s = HUFF_EXTEND(r, s);
709 (*block)[jpeg_natural_order[k]] = (JCOEF)s;
710 } else {
711 if (r != 15) break;
712 k += 15;
713 }
714 }
715
716 } else {
717
718 for (k = 1; k < DCTSIZE2; k++) {
719 HUFF_DECODE_FAST(s, l, actbl);
720 r = s >> 4;
721 s &= 15;
722
723 if (s) {
724 k += r;
725 FILL_BIT_BUFFER_FAST
726 DROP_BITS(s);
727 } else {
728 if (r != 15) break;
729 k += 15;
730 }
731 }
732 }
733 }
734
735 if (cinfo->unread_marker != 0) {
736 cinfo->unread_marker = 0;
737 return FALSE;
738 }
739
740 br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte);
741 br_state.next_input_byte = buffer;
742 BITREAD_SAVE_STATE(cinfo, entropy->bitstate);
743 ASSIGN_STATE(entropy->saved, state);
744 return TRUE;
745 }
746
747
748 /*
749 * Decode and return one MCU's worth of Huffman-compressed coefficients.
750 * The coefficients are reordered from zigzag order into natural array order,
751 * but are not dequantized.
752 *
753 * The i'th block of the MCU is stored into the block pointed to by
754 * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
755 * (Wholesale zeroing is usually a little faster than retail...)
756 *
757 * Returns FALSE if data source requested suspension. In that case no
758 * changes have been made to permanent state. (Exception: some output
759 * coefficients may already have been assigned. This is harmless for
760 * this module, since we'll just re-assign them on the next call.)
761 */
762
763 #define BUFSIZE (DCTSIZE2 * 8)
764
765 METHODDEF(boolean)
decode_mcu(j_decompress_ptr cinfo,JBLOCKROW * MCU_data)766 decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
767 {
768 huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy;
769 int usefast = 1;
770
771 /* Process restart marker if needed; may have to suspend */
772 if (cinfo->restart_interval) {
773 if (entropy->restarts_to_go == 0)
774 if (!process_restart(cinfo))
775 return FALSE;
776 usefast = 0;
777 }
778
779 if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU ||
780 cinfo->unread_marker != 0)
781 usefast = 0;
782
783 /* If we've run out of data, just leave the MCU set to zeroes.
784 * This way, we return uniform gray for the remainder of the segment.
785 */
786 if (!entropy->pub.insufficient_data) {
787
788 if (usefast) {
789 if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow;
790 } else {
791 use_slow:
792 if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE;
793 }
794
795 }
796
797 /* Account for restart interval (no-op if not using restarts) */
798 entropy->restarts_to_go--;
799
800 return TRUE;
801 }
802
803
804 /*
805 * Module initialization routine for Huffman entropy decoding.
806 */
807
808 GLOBAL(void)
jinit_huff_decoder(j_decompress_ptr cinfo)809 jinit_huff_decoder(j_decompress_ptr cinfo)
810 {
811 huff_entropy_ptr entropy;
812 int i;
813
814 /* Motion JPEG frames typically do not include the Huffman tables if they
815 are the default tables. Thus, if the tables are not set by the time
816 the Huffman decoder is initialized (usually within the body of
817 jpeg_start_decompress()), we set them to default values. */
818 std_huff_tables((j_common_ptr)cinfo);
819
820 entropy = (huff_entropy_ptr)
821 (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
822 sizeof(huff_entropy_decoder));
823 cinfo->entropy = (struct jpeg_entropy_decoder *)entropy;
824 entropy->pub.start_pass = start_pass_huff_decoder;
825 entropy->pub.decode_mcu = decode_mcu;
826
827 /* Mark tables unallocated */
828 for (i = 0; i < NUM_HUFF_TBLS; i++) {
829 entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
830 }
831 }
832