• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #if V8_TARGET_ARCH_X64
6 
7 #include "src/api/api-arguments.h"
8 #include "src/base/bits-iterator.h"
9 #include "src/base/iterator.h"
10 #include "src/codegen/code-factory.h"
11 // For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop.
12 #include "src/codegen/macro-assembler-inl.h"
13 #include "src/codegen/register-configuration.h"
14 #include "src/codegen/x64/assembler-x64.h"
15 #include "src/deoptimizer/deoptimizer.h"
16 #include "src/execution/frame-constants.h"
17 #include "src/execution/frames.h"
18 #include "src/heap/heap-inl.h"
19 #include "src/logging/counters.h"
20 #include "src/objects/cell.h"
21 #include "src/objects/debug-objects.h"
22 #include "src/objects/foreign.h"
23 #include "src/objects/heap-number.h"
24 #include "src/objects/js-generator.h"
25 #include "src/objects/objects-inl.h"
26 #include "src/objects/smi.h"
27 #include "src/wasm/baseline/liftoff-assembler-defs.h"
28 #include "src/wasm/object-access.h"
29 #include "src/wasm/wasm-constants.h"
30 #include "src/wasm/wasm-linkage.h"
31 #include "src/wasm/wasm-objects.h"
32 
33 namespace v8 {
34 namespace internal {
35 
36 #define __ ACCESS_MASM(masm)
37 
Generate_Adaptor(MacroAssembler * masm,Address address)38 void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) {
39   __ LoadAddress(kJavaScriptCallExtraArg1Register,
40                  ExternalReference::Create(address));
41   __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame),
42           RelocInfo::CODE_TARGET);
43 }
44 
GenerateTailCallToReturnedCode(MacroAssembler * masm,Runtime::FunctionId function_id)45 static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
46                                            Runtime::FunctionId function_id) {
47   // ----------- S t a t e -------------
48   //  -- rax : actual argument count
49   //  -- rdx : new target (preserved for callee)
50   //  -- rdi : target function (preserved for callee)
51   // -----------------------------------
52   {
53     FrameScope scope(masm, StackFrame::INTERNAL);
54     // Push a copy of the target function, the new target and the actual
55     // argument count.
56     __ Push(kJavaScriptCallTargetRegister);
57     __ Push(kJavaScriptCallNewTargetRegister);
58     __ SmiTag(kJavaScriptCallArgCountRegister);
59     __ Push(kJavaScriptCallArgCountRegister);
60     // Function is also the parameter to the runtime call.
61     __ Push(kJavaScriptCallTargetRegister);
62 
63     __ CallRuntime(function_id, 1);
64     __ movq(rcx, rax);
65 
66     // Restore target function, new target and actual argument count.
67     __ Pop(kJavaScriptCallArgCountRegister);
68     __ SmiUntag(kJavaScriptCallArgCountRegister);
69     __ Pop(kJavaScriptCallNewTargetRegister);
70     __ Pop(kJavaScriptCallTargetRegister);
71   }
72   static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch");
73   __ JumpCodeObject(rcx);
74 }
75 
76 namespace {
77 
Generate_JSBuiltinsConstructStubHelper(MacroAssembler * masm)78 void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
79   // ----------- S t a t e -------------
80   //  -- rax: number of arguments
81   //  -- rdi: constructor function
82   //  -- rdx: new target
83   //  -- rsi: context
84   // -----------------------------------
85 
86   Label stack_overflow;
87   __ StackOverflowCheck(rax, rcx, &stack_overflow, Label::kFar);
88 
89   // Enter a construct frame.
90   {
91     FrameScope scope(masm, StackFrame::CONSTRUCT);
92 
93     // Preserve the incoming parameters on the stack.
94     __ SmiTag(rcx, rax);
95     __ Push(rsi);
96     __ Push(rcx);
97 
98     // TODO(victorgomes): When the arguments adaptor is completely removed, we
99     // should get the formal parameter count and copy the arguments in its
100     // correct position (including any undefined), instead of delaying this to
101     // InvokeFunction.
102 
103     // Set up pointer to first argument (skip receiver).
104     __ leaq(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset +
105                                   kSystemPointerSize));
106     // Copy arguments to the expression stack.
107     __ PushArray(rbx, rax, rcx);
108     // The receiver for the builtin/api call.
109     __ PushRoot(RootIndex::kTheHoleValue);
110 
111     // Call the function.
112     // rax: number of arguments (untagged)
113     // rdi: constructor function
114     // rdx: new target
115     __ InvokeFunction(rdi, rdx, rax, CALL_FUNCTION);
116 
117     // Restore smi-tagged arguments count from the frame.
118     __ movq(rbx, Operand(rbp, ConstructFrameConstants::kLengthOffset));
119 
120     // Leave construct frame.
121   }
122 
123   // Remove caller arguments from the stack and return.
124   __ PopReturnAddressTo(rcx);
125   SmiIndex index = masm->SmiToIndex(rbx, rbx, kSystemPointerSizeLog2);
126   __ leaq(rsp, Operand(rsp, index.reg, index.scale, 1 * kSystemPointerSize));
127   __ PushReturnAddressFrom(rcx);
128 
129   __ ret(0);
130 
131   __ bind(&stack_overflow);
132   {
133     FrameScope scope(masm, StackFrame::INTERNAL);
134     __ CallRuntime(Runtime::kThrowStackOverflow);
135     __ int3();  // This should be unreachable.
136   }
137 }
138 
139 }  // namespace
140 
141 // The construct stub for ES5 constructor functions and ES6 class constructors.
Generate_JSConstructStubGeneric(MacroAssembler * masm)142 void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
143   // ----------- S t a t e -------------
144   //  -- rax: number of arguments (untagged)
145   //  -- rdi: constructor function
146   //  -- rdx: new target
147   //  -- rsi: context
148   //  -- sp[...]: constructor arguments
149   // -----------------------------------
150 
151   FrameScope scope(masm, StackFrame::MANUAL);
152   // Enter a construct frame.
153   __ EnterFrame(StackFrame::CONSTRUCT);
154   Label post_instantiation_deopt_entry, not_create_implicit_receiver;
155 
156   // Preserve the incoming parameters on the stack.
157   __ SmiTag(rcx, rax);
158   __ Push(rsi);
159   __ Push(rcx);
160   __ Push(rdi);
161   __ PushRoot(RootIndex::kTheHoleValue);
162   __ Push(rdx);
163 
164   // ----------- S t a t e -------------
165   //  --         sp[0*kSystemPointerSize]: new target
166   //  --         sp[1*kSystemPointerSize]: padding
167   //  -- rdi and sp[2*kSystemPointerSize]: constructor function
168   //  --         sp[3*kSystemPointerSize]: argument count
169   //  --         sp[4*kSystemPointerSize]: context
170   // -----------------------------------
171 
172   __ LoadTaggedPointerField(
173       rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
174   __ movl(rbx, FieldOperand(rbx, SharedFunctionInfo::kFlagsOffset));
175   __ DecodeField<SharedFunctionInfo::FunctionKindBits>(rbx);
176   __ JumpIfIsInRange(rbx, kDefaultDerivedConstructor, kDerivedConstructor,
177                      &not_create_implicit_receiver, Label::kNear);
178 
179   // If not derived class constructor: Allocate the new receiver object.
180   __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1);
181   __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), RelocInfo::CODE_TARGET);
182   __ jmp(&post_instantiation_deopt_entry, Label::kNear);
183 
184   // Else: use TheHoleValue as receiver for constructor call
185   __ bind(&not_create_implicit_receiver);
186   __ LoadRoot(rax, RootIndex::kTheHoleValue);
187 
188   // ----------- S t a t e -------------
189   //  -- rax                          implicit receiver
190   //  -- Slot 4 / sp[0*kSystemPointerSize]  new target
191   //  -- Slot 3 / sp[1*kSystemPointerSize]  padding
192   //  -- Slot 2 / sp[2*kSystemPointerSize]  constructor function
193   //  -- Slot 1 / sp[3*kSystemPointerSize]  number of arguments (tagged)
194   //  -- Slot 0 / sp[4*kSystemPointerSize]  context
195   // -----------------------------------
196   // Deoptimizer enters here.
197   masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
198       masm->pc_offset());
199   __ bind(&post_instantiation_deopt_entry);
200 
201   // Restore new target.
202   __ Pop(rdx);
203 
204   // Push the allocated receiver to the stack.
205   __ Push(rax);
206 
207   // We need two copies because we may have to return the original one
208   // and the calling conventions dictate that the called function pops the
209   // receiver. The second copy is pushed after the arguments, we saved in r8
210   // since rax needs to store the number of arguments before
211   // InvokingFunction.
212   __ movq(r8, rax);
213 
214   // Set up pointer to first argument (skip receiver).
215   __ leaq(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset +
216                                 kSystemPointerSize));
217 
218   // Restore constructor function and argument count.
219   __ movq(rdi, Operand(rbp, ConstructFrameConstants::kConstructorOffset));
220   __ SmiUntag(rax, Operand(rbp, ConstructFrameConstants::kLengthOffset));
221 
222   // Check if we have enough stack space to push all arguments.
223   // Argument count in rax. Clobbers rcx.
224   Label stack_overflow;
225   __ StackOverflowCheck(rax, rcx, &stack_overflow);
226 
227   // TODO(victorgomes): When the arguments adaptor is completely removed, we
228   // should get the formal parameter count and copy the arguments in its
229   // correct position (including any undefined), instead of delaying this to
230   // InvokeFunction.
231 
232   // Copy arguments to the expression stack.
233   __ PushArray(rbx, rax, rcx);
234 
235   // Push implicit receiver.
236   __ Push(r8);
237 
238   // Call the function.
239   __ InvokeFunction(rdi, rdx, rax, CALL_FUNCTION);
240 
241   // ----------- S t a t e -------------
242   //  -- rax                 constructor result
243   //  -- sp[0*kSystemPointerSize]  implicit receiver
244   //  -- sp[1*kSystemPointerSize]  padding
245   //  -- sp[2*kSystemPointerSize]  constructor function
246   //  -- sp[3*kSystemPointerSize]  number of arguments
247   //  -- sp[4*kSystemPointerSize]  context
248   // -----------------------------------
249 
250   // Store offset of return address for deoptimizer.
251   masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
252       masm->pc_offset());
253 
254   // If the result is an object (in the ECMA sense), we should get rid
255   // of the receiver and use the result; see ECMA-262 section 13.2.2-7
256   // on page 74.
257   Label use_receiver, do_throw, leave_and_return, check_result;
258 
259   // If the result is undefined, we'll use the implicit receiver. Otherwise we
260   // do a smi check and fall through to check if the return value is a valid
261   // receiver.
262   __ JumpIfNotRoot(rax, RootIndex::kUndefinedValue, &check_result,
263                    Label::kNear);
264 
265   // Throw away the result of the constructor invocation and use the
266   // on-stack receiver as the result.
267   __ bind(&use_receiver);
268   __ movq(rax, Operand(rsp, 0 * kSystemPointerSize));
269   __ JumpIfRoot(rax, RootIndex::kTheHoleValue, &do_throw, Label::kNear);
270 
271   __ bind(&leave_and_return);
272   // Restore the arguments count.
273   __ movq(rbx, Operand(rbp, ConstructFrameConstants::kLengthOffset));
274   __ LeaveFrame(StackFrame::CONSTRUCT);
275   // Remove caller arguments from the stack and return.
276   __ PopReturnAddressTo(rcx);
277   SmiIndex index = masm->SmiToIndex(rbx, rbx, kSystemPointerSizeLog2);
278   __ leaq(rsp, Operand(rsp, index.reg, index.scale, 1 * kSystemPointerSize));
279   __ PushReturnAddressFrom(rcx);
280   __ ret(0);
281 
282   // If the result is a smi, it is *not* an object in the ECMA sense.
283   __ bind(&check_result);
284   __ JumpIfSmi(rax, &use_receiver, Label::kNear);
285 
286   // If the type of the result (stored in its map) is less than
287   // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
288   STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
289   __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rcx);
290   __ j(above_equal, &leave_and_return, Label::kNear);
291   __ jmp(&use_receiver);
292 
293   __ bind(&do_throw);
294   // Restore context from the frame.
295   __ movq(rsi, Operand(rbp, ConstructFrameConstants::kContextOffset));
296   __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
297   // We don't return here.
298   __ int3();
299 
300   __ bind(&stack_overflow);
301   // Restore the context from the frame.
302   __ movq(rsi, Operand(rbp, ConstructFrameConstants::kContextOffset));
303   __ CallRuntime(Runtime::kThrowStackOverflow);
304   // This should be unreachable.
305   __ int3();
306 }
307 
Generate_JSBuiltinsConstructStub(MacroAssembler * masm)308 void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
309   Generate_JSBuiltinsConstructStubHelper(masm);
310 }
311 
Generate_ConstructedNonConstructable(MacroAssembler * masm)312 void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
313   FrameScope scope(masm, StackFrame::INTERNAL);
314   __ Push(rdi);
315   __ CallRuntime(Runtime::kThrowConstructedNonConstructable);
316 }
317 
318 namespace {
319 
320 // Called with the native C calling convention. The corresponding function
321 // signature is either:
322 //   using JSEntryFunction = GeneratedCode<Address(
323 //       Address root_register_value, Address new_target, Address target,
324 //       Address receiver, intptr_t argc, Address** argv)>;
325 // or
326 //   using JSEntryFunction = GeneratedCode<Address(
327 //       Address root_register_value, MicrotaskQueue* microtask_queue)>;
Generate_JSEntryVariant(MacroAssembler * masm,StackFrame::Type type,Builtins::Name entry_trampoline)328 void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type,
329                              Builtins::Name entry_trampoline) {
330   Label invoke, handler_entry, exit;
331   Label not_outermost_js, not_outermost_js_2;
332 
333   {  // NOLINT. Scope block confuses linter.
334     NoRootArrayScope uninitialized_root_register(masm);
335     // Set up frame.
336     __ pushq(rbp);
337     __ movq(rbp, rsp);
338 
339     // Push the stack frame type.
340     __ Push(Immediate(StackFrame::TypeToMarker(type)));
341     // Reserve a slot for the context. It is filled after the root register has
342     // been set up.
343     __ AllocateStackSpace(kSystemPointerSize);
344     // Save callee-saved registers (X64/X32/Win64 calling conventions).
345     __ pushq(r12);
346     __ pushq(r13);
347     __ pushq(r14);
348     __ pushq(r15);
349 #ifdef V8_TARGET_OS_WIN
350     __ pushq(rdi);  // Only callee save in Win64 ABI, argument in AMD64 ABI.
351     __ pushq(rsi);  // Only callee save in Win64 ABI, argument in AMD64 ABI.
352 #endif
353     __ pushq(rbx);
354 
355 #ifdef V8_TARGET_OS_WIN
356     // On Win64 XMM6-XMM15 are callee-save.
357     __ AllocateStackSpace(EntryFrameConstants::kXMMRegistersBlockSize);
358     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0), xmm6);
359     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1), xmm7);
360     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2), xmm8);
361     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3), xmm9);
362     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4), xmm10);
363     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5), xmm11);
364     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6), xmm12);
365     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7), xmm13);
366     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8), xmm14);
367     __ movdqu(Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9), xmm15);
368     STATIC_ASSERT(EntryFrameConstants::kCalleeSaveXMMRegisters == 10);
369     STATIC_ASSERT(EntryFrameConstants::kXMMRegistersBlockSize ==
370                   EntryFrameConstants::kXMMRegisterSize *
371                       EntryFrameConstants::kCalleeSaveXMMRegisters);
372 #endif
373 
374     // Initialize the root register.
375     // C calling convention. The first argument is passed in arg_reg_1.
376     __ movq(kRootRegister, arg_reg_1);
377   }
378 
379   // Save copies of the top frame descriptor on the stack.
380   ExternalReference c_entry_fp = ExternalReference::Create(
381       IsolateAddressId::kCEntryFPAddress, masm->isolate());
382   {
383     Operand c_entry_fp_operand = masm->ExternalReferenceAsOperand(c_entry_fp);
384     __ Push(c_entry_fp_operand);
385   }
386 
387   // Store the context address in the previously-reserved slot.
388   ExternalReference context_address = ExternalReference::Create(
389       IsolateAddressId::kContextAddress, masm->isolate());
390   __ Load(kScratchRegister, context_address);
391   static constexpr int kOffsetToContextSlot = -2 * kSystemPointerSize;
392   __ movq(Operand(rbp, kOffsetToContextSlot), kScratchRegister);
393 
394   // If this is the outermost JS call, set js_entry_sp value.
395   ExternalReference js_entry_sp = ExternalReference::Create(
396       IsolateAddressId::kJSEntrySPAddress, masm->isolate());
397   __ Load(rax, js_entry_sp);
398   __ testq(rax, rax);
399   __ j(not_zero, &not_outermost_js);
400   __ Push(Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME));
401   __ movq(rax, rbp);
402   __ Store(js_entry_sp, rax);
403   Label cont;
404   __ jmp(&cont);
405   __ bind(&not_outermost_js);
406   __ Push(Immediate(StackFrame::INNER_JSENTRY_FRAME));
407   __ bind(&cont);
408 
409   // Jump to a faked try block that does the invoke, with a faked catch
410   // block that sets the pending exception.
411   __ jmp(&invoke);
412   __ bind(&handler_entry);
413 
414   // Store the current pc as the handler offset. It's used later to create the
415   // handler table.
416   masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos());
417 
418   // Caught exception: Store result (exception) in the pending exception
419   // field in the JSEnv and return a failure sentinel.
420   ExternalReference pending_exception = ExternalReference::Create(
421       IsolateAddressId::kPendingExceptionAddress, masm->isolate());
422   __ Store(pending_exception, rax);
423   __ LoadRoot(rax, RootIndex::kException);
424   __ jmp(&exit);
425 
426   // Invoke: Link this frame into the handler chain.
427   __ bind(&invoke);
428   __ PushStackHandler();
429 
430   // Invoke the function by calling through JS entry trampoline builtin and
431   // pop the faked function when we return.
432   Handle<Code> trampoline_code =
433       masm->isolate()->builtins()->builtin_handle(entry_trampoline);
434   __ Call(trampoline_code, RelocInfo::CODE_TARGET);
435 
436   // Unlink this frame from the handler chain.
437   __ PopStackHandler();
438 
439   __ bind(&exit);
440   // Check if the current stack frame is marked as the outermost JS frame.
441   __ Pop(rbx);
442   __ cmpq(rbx, Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME));
443   __ j(not_equal, &not_outermost_js_2);
444   __ Move(kScratchRegister, js_entry_sp);
445   __ movq(Operand(kScratchRegister, 0), Immediate(0));
446   __ bind(&not_outermost_js_2);
447 
448   // Restore the top frame descriptor from the stack.
449   {
450     Operand c_entry_fp_operand = masm->ExternalReferenceAsOperand(c_entry_fp);
451     __ Pop(c_entry_fp_operand);
452   }
453 
454   // Restore callee-saved registers (X64 conventions).
455 #ifdef V8_TARGET_OS_WIN
456   // On Win64 XMM6-XMM15 are callee-save
457   __ movdqu(xmm6, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 0));
458   __ movdqu(xmm7, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 1));
459   __ movdqu(xmm8, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 2));
460   __ movdqu(xmm9, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 3));
461   __ movdqu(xmm10, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 4));
462   __ movdqu(xmm11, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 5));
463   __ movdqu(xmm12, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 6));
464   __ movdqu(xmm13, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 7));
465   __ movdqu(xmm14, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 8));
466   __ movdqu(xmm15, Operand(rsp, EntryFrameConstants::kXMMRegisterSize * 9));
467   __ addq(rsp, Immediate(EntryFrameConstants::kXMMRegistersBlockSize));
468 #endif
469 
470   __ popq(rbx);
471 #ifdef V8_TARGET_OS_WIN
472   // Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI.
473   __ popq(rsi);
474   __ popq(rdi);
475 #endif
476   __ popq(r15);
477   __ popq(r14);
478   __ popq(r13);
479   __ popq(r12);
480   __ addq(rsp, Immediate(2 * kSystemPointerSize));  // remove markers
481 
482   // Restore frame pointer and return.
483   __ popq(rbp);
484   __ ret(0);
485 }
486 
487 }  // namespace
488 
Generate_JSEntry(MacroAssembler * masm)489 void Builtins::Generate_JSEntry(MacroAssembler* masm) {
490   Generate_JSEntryVariant(masm, StackFrame::ENTRY,
491                           Builtins::kJSEntryTrampoline);
492 }
493 
Generate_JSConstructEntry(MacroAssembler * masm)494 void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) {
495   Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY,
496                           Builtins::kJSConstructEntryTrampoline);
497 }
498 
Generate_JSRunMicrotasksEntry(MacroAssembler * masm)499 void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) {
500   Generate_JSEntryVariant(masm, StackFrame::ENTRY,
501                           Builtins::kRunMicrotasksTrampoline);
502 }
503 
Generate_JSEntryTrampolineHelper(MacroAssembler * masm,bool is_construct)504 static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
505                                              bool is_construct) {
506   // Expects six C++ function parameters.
507   // - Address root_register_value
508   // - Address new_target (tagged Object pointer)
509   // - Address function (tagged JSFunction pointer)
510   // - Address receiver (tagged Object pointer)
511   // - intptr_t argc
512   // - Address** argv (pointer to array of tagged Object pointers)
513   // (see Handle::Invoke in execution.cc).
514 
515   // Open a C++ scope for the FrameScope.
516   {
517     // Platform specific argument handling. After this, the stack contains
518     // an internal frame and the pushed function and receiver, and
519     // register rax and rbx holds the argument count and argument array,
520     // while rdi holds the function pointer, rsi the context, and rdx the
521     // new.target.
522 
523     // MSVC parameters in:
524     // rcx        : root_register_value
525     // rdx        : new_target
526     // r8         : function
527     // r9         : receiver
528     // [rsp+0x20] : argc
529     // [rsp+0x28] : argv
530     //
531     // GCC parameters in:
532     // rdi : root_register_value
533     // rsi : new_target
534     // rdx : function
535     // rcx : receiver
536     // r8  : argc
537     // r9  : argv
538 
539     __ movq(rdi, arg_reg_3);
540     __ Move(rdx, arg_reg_2);
541     // rdi : function
542     // rdx : new_target
543 
544     // Clear the context before we push it when entering the internal frame.
545     __ Set(rsi, 0);
546 
547     // Enter an internal frame.
548     FrameScope scope(masm, StackFrame::INTERNAL);
549 
550     // Setup the context (we need to use the caller context from the isolate).
551     ExternalReference context_address = ExternalReference::Create(
552         IsolateAddressId::kContextAddress, masm->isolate());
553     __ movq(rsi, masm->ExternalReferenceAsOperand(context_address));
554 
555     // Push the function onto the stack.
556     __ Push(rdi);
557 
558 #ifdef V8_TARGET_OS_WIN
559     // Load the previous frame pointer to access C arguments on stack
560     __ movq(kScratchRegister, Operand(rbp, 0));
561     // Load the number of arguments and setup pointer to the arguments.
562     __ movq(rax, Operand(kScratchRegister, EntryFrameConstants::kArgcOffset));
563     __ movq(rbx, Operand(kScratchRegister, EntryFrameConstants::kArgvOffset));
564 #else   // V8_TARGET_OS_WIN
565     // Load the number of arguments and setup pointer to the arguments.
566     __ movq(rax, r8);
567     __ movq(rbx, r9);
568     __ movq(r9, arg_reg_4);  // Temporarily saving the receiver.
569 #endif  // V8_TARGET_OS_WIN
570 
571     // Current stack contents:
572     // [rsp + kSystemPointerSize]     : Internal frame
573     // [rsp]                          : function
574     // Current register contents:
575     // rax : argc
576     // rbx : argv
577     // rsi : context
578     // rdi : function
579     // rdx : new.target
580     // r9  : receiver
581 
582     // Check if we have enough stack space to push all arguments.
583     // Argument count in rax. Clobbers rcx.
584     Label enough_stack_space, stack_overflow;
585     __ StackOverflowCheck(rax, rcx, &stack_overflow, Label::kNear);
586     __ jmp(&enough_stack_space, Label::kNear);
587 
588     __ bind(&stack_overflow);
589     __ CallRuntime(Runtime::kThrowStackOverflow);
590     // This should be unreachable.
591     __ int3();
592 
593     __ bind(&enough_stack_space);
594 
595     // Copy arguments to the stack in a loop.
596     // Register rbx points to array of pointers to handle locations.
597     // Push the values of these handles.
598     Label loop, entry;
599     __ movq(rcx, rax);
600     __ jmp(&entry, Label::kNear);
601     __ bind(&loop);
602     __ movq(kScratchRegister, Operand(rbx, rcx, times_system_pointer_size, 0));
603     __ Push(Operand(kScratchRegister, 0));  // dereference handle
604     __ bind(&entry);
605     __ decq(rcx);
606     __ j(greater_equal, &loop, Label::kNear);
607 
608     // Push the receiver.
609     __ Push(r9);
610 
611     // Invoke the builtin code.
612     Handle<Code> builtin = is_construct
613                                ? BUILTIN_CODE(masm->isolate(), Construct)
614                                : masm->isolate()->builtins()->Call();
615     __ Call(builtin, RelocInfo::CODE_TARGET);
616 
617     // Exit the internal frame. Notice that this also removes the empty
618     // context and the function left on the stack by the code
619     // invocation.
620   }
621 
622   __ ret(0);
623 }
624 
Generate_JSEntryTrampoline(MacroAssembler * masm)625 void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
626   Generate_JSEntryTrampolineHelper(masm, false);
627 }
628 
Generate_JSConstructEntryTrampoline(MacroAssembler * masm)629 void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
630   Generate_JSEntryTrampolineHelper(masm, true);
631 }
632 
Generate_RunMicrotasksTrampoline(MacroAssembler * masm)633 void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) {
634   // arg_reg_2: microtask_queue
635   __ movq(RunMicrotasksDescriptor::MicrotaskQueueRegister(), arg_reg_2);
636   __ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET);
637 }
638 
GetSharedFunctionInfoBytecode(MacroAssembler * masm,Register sfi_data,Register scratch1)639 static void GetSharedFunctionInfoBytecode(MacroAssembler* masm,
640                                           Register sfi_data,
641                                           Register scratch1) {
642   Label done;
643 
644   __ CmpObjectType(sfi_data, INTERPRETER_DATA_TYPE, scratch1);
645   __ j(not_equal, &done, Label::kNear);
646 
647   __ LoadTaggedPointerField(
648       sfi_data, FieldOperand(sfi_data, InterpreterData::kBytecodeArrayOffset));
649 
650   __ bind(&done);
651 }
652 
653 // static
Generate_ResumeGeneratorTrampoline(MacroAssembler * masm)654 void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
655   // ----------- S t a t e -------------
656   //  -- rax    : the value to pass to the generator
657   //  -- rdx    : the JSGeneratorObject to resume
658   //  -- rsp[0] : return address
659   // -----------------------------------
660   __ AssertGeneratorObject(rdx);
661 
662   // Store input value into generator object.
663   __ StoreTaggedField(
664       FieldOperand(rdx, JSGeneratorObject::kInputOrDebugPosOffset), rax);
665   __ RecordWriteField(rdx, JSGeneratorObject::kInputOrDebugPosOffset, rax, rcx,
666                       kDontSaveFPRegs);
667 
668   Register decompr_scratch1 = COMPRESS_POINTERS_BOOL ? r11 : no_reg;
669 
670   // Load suspended function and context.
671   __ LoadTaggedPointerField(
672       rdi, FieldOperand(rdx, JSGeneratorObject::kFunctionOffset));
673   __ LoadTaggedPointerField(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
674 
675   // Flood function if we are stepping.
676   Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
677   Label stepping_prepared;
678   ExternalReference debug_hook =
679       ExternalReference::debug_hook_on_function_call_address(masm->isolate());
680   Operand debug_hook_operand = masm->ExternalReferenceAsOperand(debug_hook);
681   __ cmpb(debug_hook_operand, Immediate(0));
682   __ j(not_equal, &prepare_step_in_if_stepping);
683 
684   // Flood function if we need to continue stepping in the suspended generator.
685   ExternalReference debug_suspended_generator =
686       ExternalReference::debug_suspended_generator_address(masm->isolate());
687   Operand debug_suspended_generator_operand =
688       masm->ExternalReferenceAsOperand(debug_suspended_generator);
689   __ cmpq(rdx, debug_suspended_generator_operand);
690   __ j(equal, &prepare_step_in_suspended_generator);
691   __ bind(&stepping_prepared);
692 
693   // Check the stack for overflow. We are not trying to catch interruptions
694   // (i.e. debug break and preemption) here, so check the "real stack limit".
695   Label stack_overflow;
696   __ cmpq(rsp, __ StackLimitAsOperand(StackLimitKind::kRealStackLimit));
697   __ j(below, &stack_overflow);
698 
699   // Pop return address.
700   __ PopReturnAddressTo(rax);
701 
702   // ----------- S t a t e -------------
703   //  -- rax    : return address
704   //  -- rdx    : the JSGeneratorObject to resume
705   //  -- rdi    : generator function
706   //  -- rsi    : generator context
707   // -----------------------------------
708 
709   // Copy the function arguments from the generator object's register file.
710   __ LoadTaggedPointerField(
711       rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
712   __ movzxwq(
713       rcx, FieldOperand(rcx, SharedFunctionInfo::kFormalParameterCountOffset));
714 
715   __ LoadTaggedPointerField(
716       rbx, FieldOperand(rdx, JSGeneratorObject::kParametersAndRegistersOffset));
717 
718   {
719     {
720       Label done_loop, loop;
721       __ movq(r9, rcx);
722 
723       __ bind(&loop);
724       __ decq(r9);
725       __ j(less, &done_loop, Label::kNear);
726       __ PushTaggedAnyField(
727           FieldOperand(rbx, r9, times_tagged_size, FixedArray::kHeaderSize),
728           decompr_scratch1);
729       __ jmp(&loop);
730 
731       __ bind(&done_loop);
732     }
733 
734     // Push the receiver.
735     __ PushTaggedPointerField(
736         FieldOperand(rdx, JSGeneratorObject::kReceiverOffset),
737         decompr_scratch1);
738   }
739 
740   // Underlying function needs to have bytecode available.
741   if (FLAG_debug_code) {
742     __ LoadTaggedPointerField(
743         rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
744     __ LoadTaggedPointerField(
745         rcx, FieldOperand(rcx, SharedFunctionInfo::kFunctionDataOffset));
746     GetSharedFunctionInfoBytecode(masm, rcx, kScratchRegister);
747     __ CmpObjectType(rcx, BYTECODE_ARRAY_TYPE, rcx);
748     __ Assert(equal, AbortReason::kMissingBytecodeArray);
749   }
750 
751   // Resume (Ignition/TurboFan) generator object.
752   {
753     __ PushReturnAddressFrom(rax);
754     __ LoadTaggedPointerField(
755         rax, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
756     __ movzxwq(rax, FieldOperand(
757                         rax, SharedFunctionInfo::kFormalParameterCountOffset));
758     // We abuse new.target both to indicate that this is a resume call and to
759     // pass in the generator object.  In ordinary calls, new.target is always
760     // undefined because generator functions are non-constructable.
761     static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch");
762     __ LoadTaggedPointerField(rcx, FieldOperand(rdi, JSFunction::kCodeOffset));
763     __ JumpCodeObject(rcx);
764   }
765 
766   __ bind(&prepare_step_in_if_stepping);
767   {
768     FrameScope scope(masm, StackFrame::INTERNAL);
769     __ Push(rdx);
770     __ Push(rdi);
771     // Push hole as receiver since we do not use it for stepping.
772     __ PushRoot(RootIndex::kTheHoleValue);
773     __ CallRuntime(Runtime::kDebugOnFunctionCall);
774     __ Pop(rdx);
775     __ LoadTaggedPointerField(
776         rdi, FieldOperand(rdx, JSGeneratorObject::kFunctionOffset));
777   }
778   __ jmp(&stepping_prepared);
779 
780   __ bind(&prepare_step_in_suspended_generator);
781   {
782     FrameScope scope(masm, StackFrame::INTERNAL);
783     __ Push(rdx);
784     __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
785     __ Pop(rdx);
786     __ LoadTaggedPointerField(
787         rdi, FieldOperand(rdx, JSGeneratorObject::kFunctionOffset));
788   }
789   __ jmp(&stepping_prepared);
790 
791   __ bind(&stack_overflow);
792   {
793     FrameScope scope(masm, StackFrame::INTERNAL);
794     __ CallRuntime(Runtime::kThrowStackOverflow);
795     __ int3();  // This should be unreachable.
796   }
797 }
798 
799 // TODO(juliana): if we remove the code below then we don't need all
800 // the parameters.
ReplaceClosureCodeWithOptimizedCode(MacroAssembler * masm,Register optimized_code,Register closure,Register scratch1,Register scratch2)801 static void ReplaceClosureCodeWithOptimizedCode(MacroAssembler* masm,
802                                                 Register optimized_code,
803                                                 Register closure,
804                                                 Register scratch1,
805                                                 Register scratch2) {
806   // Store the optimized code in the closure.
807   __ StoreTaggedField(FieldOperand(closure, JSFunction::kCodeOffset),
808                       optimized_code);
809   __ movq(scratch1, optimized_code);  // Write barrier clobbers scratch1 below.
810   __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2,
811                       kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
812 }
813 
LeaveInterpreterFrame(MacroAssembler * masm,Register scratch1,Register scratch2)814 static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1,
815                                   Register scratch2) {
816   Register params_size = scratch1;
817   // Get the size of the formal parameters + receiver (in bytes).
818   __ movq(params_size,
819           Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));
820   __ movl(params_size,
821           FieldOperand(params_size, BytecodeArray::kParameterSizeOffset));
822 
823 #ifdef V8_NO_ARGUMENTS_ADAPTOR
824   Register actual_params_size = scratch2;
825   // Compute the size of the actual parameters + receiver (in bytes).
826   __ movq(actual_params_size,
827           Operand(rbp, StandardFrameConstants::kArgCOffset));
828   __ leaq(actual_params_size,
829           Operand(actual_params_size, times_system_pointer_size,
830                   kSystemPointerSize));
831 
832   // If actual is bigger than formal, then we should use it to free up the stack
833   // arguments.
834   Label corrected_args_count;
835   __ cmpq(params_size, actual_params_size);
836   __ j(greater_equal, &corrected_args_count, Label::kNear);
837   __ movq(params_size, actual_params_size);
838   __ bind(&corrected_args_count);
839 #endif
840 
841   // Leave the frame (also dropping the register file).
842   __ leave();
843 
844   // Drop receiver + arguments.
845   Register return_pc = scratch2;
846   __ PopReturnAddressTo(return_pc);
847   __ addq(rsp, params_size);
848   __ PushReturnAddressFrom(return_pc);
849 }
850 
851 // Tail-call |function_id| if |actual_marker| == |expected_marker|
TailCallRuntimeIfMarkerEquals(MacroAssembler * masm,Register actual_marker,OptimizationMarker expected_marker,Runtime::FunctionId function_id)852 static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm,
853                                           Register actual_marker,
854                                           OptimizationMarker expected_marker,
855                                           Runtime::FunctionId function_id) {
856   Label no_match;
857   __ Cmp(actual_marker, expected_marker);
858   __ j(not_equal, &no_match);
859   GenerateTailCallToReturnedCode(masm, function_id);
860   __ bind(&no_match);
861 }
862 
MaybeOptimizeCode(MacroAssembler * masm,Register feedback_vector,Register optimization_marker)863 static void MaybeOptimizeCode(MacroAssembler* masm, Register feedback_vector,
864                               Register optimization_marker) {
865   // ----------- S t a t e -------------
866   //  -- rax : actual argument count
867   //  -- rdx : new target (preserved for callee if needed, and caller)
868   //  -- rdi : target function (preserved for callee if needed, and caller)
869   //  -- feedback vector (preserved for caller if needed)
870   //  -- optimization_marker : a Smi containing a non-zero optimization marker.
871   // -----------------------------------
872 
873   DCHECK(!AreAliased(feedback_vector, rdx, rdi, optimization_marker));
874 
875   // TODO(v8:8394): The logging of first execution will break if
876   // feedback vectors are not allocated. We need to find a different way of
877   // logging these events if required.
878   TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
879                                 OptimizationMarker::kLogFirstExecution,
880                                 Runtime::kFunctionFirstExecution);
881   TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
882                                 OptimizationMarker::kCompileOptimized,
883                                 Runtime::kCompileOptimized_NotConcurrent);
884   TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
885                                 OptimizationMarker::kCompileOptimizedConcurrent,
886                                 Runtime::kCompileOptimized_Concurrent);
887 
888   // Marker should be one of LogFirstExecution / CompileOptimized /
889   // CompileOptimizedConcurrent. InOptimizationQueue and None shouldn't reach
890   // here.
891   if (FLAG_debug_code) {
892     __ int3();
893   }
894 }
895 
TailCallOptimizedCodeSlot(MacroAssembler * masm,Register optimized_code_entry,Register scratch1,Register scratch2)896 static void TailCallOptimizedCodeSlot(MacroAssembler* masm,
897                                       Register optimized_code_entry,
898                                       Register scratch1, Register scratch2) {
899   // ----------- S t a t e -------------
900   //  -- rax : actual argument count
901   //  -- rdx : new target (preserved for callee if needed, and caller)
902   //  -- rdi : target function (preserved for callee if needed, and caller)
903   // -----------------------------------
904 
905   Register closure = rdi;
906 
907   Label heal_optimized_code_slot;
908 
909   // If the optimized code is cleared, go to runtime to update the optimization
910   // marker field.
911   __ LoadWeakValue(optimized_code_entry, &heal_optimized_code_slot);
912 
913   // Check if the optimized code is marked for deopt. If it is, call the
914   // runtime to clear it.
915   __ LoadTaggedPointerField(
916       scratch1,
917       FieldOperand(optimized_code_entry, Code::kCodeDataContainerOffset));
918   __ testl(FieldOperand(scratch1, CodeDataContainer::kKindSpecificFlagsOffset),
919            Immediate(1 << Code::kMarkedForDeoptimizationBit));
920   __ j(not_zero, &heal_optimized_code_slot);
921 
922   // Optimized code is good, get it into the closure and link the closure into
923   // the optimized functions list, then tail call the optimized code.
924   ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure,
925                                       scratch1, scratch2);
926   static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch");
927   __ Move(rcx, optimized_code_entry);
928   __ JumpCodeObject(rcx);
929 
930   // Optimized code slot contains deoptimized code or code is cleared and
931   // optimized code marker isn't updated. Evict the code, update the marker
932   // and re-enter the closure's code.
933   __ bind(&heal_optimized_code_slot);
934   GenerateTailCallToReturnedCode(masm, Runtime::kHealOptimizedCodeSlot);
935 }
936 
937 // Advance the current bytecode offset. This simulates what all bytecode
938 // handlers do upon completion of the underlying operation. Will bail out to a
939 // label if the bytecode (without prefix) is a return bytecode. Will not advance
940 // the bytecode offset if the current bytecode is a JumpLoop, instead just
941 // re-executing the JumpLoop to jump to the correct bytecode.
AdvanceBytecodeOffsetOrReturn(MacroAssembler * masm,Register bytecode_array,Register bytecode_offset,Register bytecode,Register scratch1,Register scratch2,Label * if_return)942 static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm,
943                                           Register bytecode_array,
944                                           Register bytecode_offset,
945                                           Register bytecode, Register scratch1,
946                                           Register scratch2, Label* if_return) {
947   Register bytecode_size_table = scratch1;
948 
949   // The bytecode offset value will be increased by one in wide and extra wide
950   // cases. In the case of having a wide or extra wide JumpLoop bytecode, we
951   // will restore the original bytecode. In order to simplify the code, we have
952   // a backup of it.
953   Register original_bytecode_offset = scratch2;
954   DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode,
955                      bytecode_size_table, original_bytecode_offset));
956 
957   __ movq(original_bytecode_offset, bytecode_offset);
958 
959   __ Move(bytecode_size_table,
960           ExternalReference::bytecode_size_table_address());
961 
962   // Check if the bytecode is a Wide or ExtraWide prefix bytecode.
963   Label process_bytecode, extra_wide;
964   STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide));
965   STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide));
966   STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide));
967   STATIC_ASSERT(3 ==
968                 static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide));
969   __ cmpb(bytecode, Immediate(0x3));
970   __ j(above, &process_bytecode, Label::kNear);
971   // The code to load the next bytecode is common to both wide and extra wide.
972   // We can hoist them up here. incl has to happen before testb since it
973   // modifies the ZF flag.
974   __ incl(bytecode_offset);
975   __ testb(bytecode, Immediate(0x1));
976   __ movzxbq(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0));
977   __ j(not_equal, &extra_wide, Label::kNear);
978 
979   // Update table to the wide scaled table.
980   __ addq(bytecode_size_table,
981           Immediate(kIntSize * interpreter::Bytecodes::kBytecodeCount));
982   __ jmp(&process_bytecode, Label::kNear);
983 
984   __ bind(&extra_wide);
985   // Update table to the extra wide scaled table.
986   __ addq(bytecode_size_table,
987           Immediate(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount));
988 
989   __ bind(&process_bytecode);
990 
991 // Bailout to the return label if this is a return bytecode.
992 #define JUMP_IF_EQUAL(NAME)                                             \
993   __ cmpb(bytecode,                                                     \
994           Immediate(static_cast<int>(interpreter::Bytecode::k##NAME))); \
995   __ j(equal, if_return, Label::kFar);
996   RETURN_BYTECODE_LIST(JUMP_IF_EQUAL)
997 #undef JUMP_IF_EQUAL
998 
999   // If this is a JumpLoop, re-execute it to perform the jump to the beginning
1000   // of the loop.
1001   Label end, not_jump_loop;
1002   __ cmpb(bytecode,
1003           Immediate(static_cast<int>(interpreter::Bytecode::kJumpLoop)));
1004   __ j(not_equal, &not_jump_loop, Label::kNear);
1005   // We need to restore the original bytecode_offset since we might have
1006   // increased it to skip the wide / extra-wide prefix bytecode.
1007   __ movq(bytecode_offset, original_bytecode_offset);
1008   __ jmp(&end, Label::kNear);
1009 
1010   __ bind(&not_jump_loop);
1011   // Otherwise, load the size of the current bytecode and advance the offset.
1012   __ addl(bytecode_offset,
1013           Operand(bytecode_size_table, bytecode, times_int_size, 0));
1014 
1015   __ bind(&end);
1016 }
1017 
1018 // Generate code for entering a JS function with the interpreter.
1019 // On entry to the function the receiver and arguments have been pushed on the
1020 // stack left to right.
1021 //
1022 // The live registers are:
1023 //   o rax: actual argument count (not including the receiver)
1024 //   o rdi: the JS function object being called
1025 //   o rdx: the incoming new target or generator object
1026 //   o rsi: our context
1027 //   o rbp: the caller's frame pointer
1028 //   o rsp: stack pointer (pointing to return address)
1029 //
1030 // The function builds an interpreter frame.  See InterpreterFrameConstants in
1031 // frames.h for its layout.
Generate_InterpreterEntryTrampoline(MacroAssembler * masm)1032 void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
1033   Register closure = rdi;
1034   Register feedback_vector = rbx;
1035 
1036   // Get the bytecode array from the function object and load it into
1037   // kInterpreterBytecodeArrayRegister.
1038   __ LoadTaggedPointerField(
1039       kScratchRegister,
1040       FieldOperand(closure, JSFunction::kSharedFunctionInfoOffset));
1041   __ LoadTaggedPointerField(
1042       kInterpreterBytecodeArrayRegister,
1043       FieldOperand(kScratchRegister, SharedFunctionInfo::kFunctionDataOffset));
1044   GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister,
1045                                 kScratchRegister);
1046 
1047   // The bytecode array could have been flushed from the shared function info,
1048   // if so, call into CompileLazy.
1049   Label compile_lazy;
1050   __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
1051                    kScratchRegister);
1052   __ j(not_equal, &compile_lazy);
1053 
1054   // Load the feedback vector from the closure.
1055   __ LoadTaggedPointerField(
1056       feedback_vector, FieldOperand(closure, JSFunction::kFeedbackCellOffset));
1057   __ LoadTaggedPointerField(feedback_vector,
1058                             FieldOperand(feedback_vector, Cell::kValueOffset));
1059 
1060   Label push_stack_frame;
1061   // Check if feedback vector is valid. If valid, check for optimized code
1062   // and update invocation count. Otherwise, setup the stack frame.
1063   __ LoadTaggedPointerField(
1064       rcx, FieldOperand(feedback_vector, HeapObject::kMapOffset));
1065   __ CmpInstanceType(rcx, FEEDBACK_VECTOR_TYPE);
1066   __ j(not_equal, &push_stack_frame);
1067 
1068   // Read off the optimization state in the feedback vector.
1069   Register optimization_state = rcx;
1070   __ movl(optimization_state,
1071           FieldOperand(feedback_vector, FeedbackVector::kFlagsOffset));
1072 
1073   // Check if there is optimized code or a optimization marker that needs to be
1074   // processed.
1075   Label has_optimized_code_or_marker;
1076   __ testl(
1077       optimization_state,
1078       Immediate(FeedbackVector::kHasOptimizedCodeOrCompileOptimizedMarkerMask));
1079   __ j(not_zero, &has_optimized_code_or_marker);
1080 
1081   Label not_optimized;
1082   __ bind(&not_optimized);
1083 
1084   // Increment invocation count for the function.
1085   __ incl(
1086       FieldOperand(feedback_vector, FeedbackVector::kInvocationCountOffset));
1087 
1088   // Open a frame scope to indicate that there is a frame on the stack.  The
1089   // MANUAL indicates that the scope shouldn't actually generate code to set up
1090   // the frame (that is done below).
1091   __ bind(&push_stack_frame);
1092   FrameScope frame_scope(masm, StackFrame::MANUAL);
1093   __ pushq(rbp);  // Caller's frame pointer.
1094   __ movq(rbp, rsp);
1095   __ Push(kContextRegister);                 // Callee's context.
1096   __ Push(kJavaScriptCallTargetRegister);    // Callee's JS function.
1097   __ Push(kJavaScriptCallArgCountRegister);  // Actual argument count.
1098 
1099   // Reset code age and the OSR arming. The OSR field and BytecodeAgeOffset are
1100   // 8-bit fields next to each other, so we could just optimize by writing a
1101   // 16-bit. These static asserts guard our assumption is valid.
1102   STATIC_ASSERT(BytecodeArray::kBytecodeAgeOffset ==
1103                 BytecodeArray::kOsrNestingLevelOffset + kCharSize);
1104   STATIC_ASSERT(BytecodeArray::kNoAgeBytecodeAge == 0);
1105   __ movw(FieldOperand(kInterpreterBytecodeArrayRegister,
1106                        BytecodeArray::kOsrNestingLevelOffset),
1107           Immediate(0));
1108 
1109   // Load initial bytecode offset.
1110   __ movq(kInterpreterBytecodeOffsetRegister,
1111           Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
1112 
1113   // Push bytecode array and Smi tagged bytecode offset.
1114   __ Push(kInterpreterBytecodeArrayRegister);
1115   __ SmiTag(rcx, kInterpreterBytecodeOffsetRegister);
1116   __ Push(rcx);
1117 
1118   // Allocate the local and temporary register file on the stack.
1119   Label stack_overflow;
1120   {
1121     // Load frame size from the BytecodeArray object.
1122     __ movl(rcx, FieldOperand(kInterpreterBytecodeArrayRegister,
1123                               BytecodeArray::kFrameSizeOffset));
1124 
1125     // Do a stack check to ensure we don't go over the limit.
1126     __ movq(rax, rsp);
1127     __ subq(rax, rcx);
1128     __ cmpq(rax, __ StackLimitAsOperand(StackLimitKind::kRealStackLimit));
1129     __ j(below, &stack_overflow);
1130 
1131     // If ok, push undefined as the initial value for all register file entries.
1132     Label loop_header;
1133     Label loop_check;
1134     __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
1135     __ j(always, &loop_check, Label::kNear);
1136     __ bind(&loop_header);
1137     // TODO(rmcilroy): Consider doing more than one push per loop iteration.
1138     __ Push(kInterpreterAccumulatorRegister);
1139     // Continue loop if not done.
1140     __ bind(&loop_check);
1141     __ subq(rcx, Immediate(kSystemPointerSize));
1142     __ j(greater_equal, &loop_header, Label::kNear);
1143   }
1144 
1145   // If the bytecode array has a valid incoming new target or generator object
1146   // register, initialize it with incoming value which was passed in rdx.
1147   Label no_incoming_new_target_or_generator_register;
1148   __ movsxlq(
1149       rcx,
1150       FieldOperand(kInterpreterBytecodeArrayRegister,
1151                    BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset));
1152   __ testl(rcx, rcx);
1153   __ j(zero, &no_incoming_new_target_or_generator_register, Label::kNear);
1154   __ movq(Operand(rbp, rcx, times_system_pointer_size, 0), rdx);
1155   __ bind(&no_incoming_new_target_or_generator_register);
1156 
1157   // Perform interrupt stack check.
1158   // TODO(solanes): Merge with the real stack limit check above.
1159   Label stack_check_interrupt, after_stack_check_interrupt;
1160   __ cmpq(rsp, __ StackLimitAsOperand(StackLimitKind::kInterruptStackLimit));
1161   __ j(below, &stack_check_interrupt);
1162   __ bind(&after_stack_check_interrupt);
1163 
1164   // The accumulator is already loaded with undefined.
1165 
1166   // Load the dispatch table into a register and dispatch to the bytecode
1167   // handler at the current bytecode offset.
1168   Label do_dispatch;
1169   __ bind(&do_dispatch);
1170   __ Move(
1171       kInterpreterDispatchTableRegister,
1172       ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
1173   __ movzxbq(r11, Operand(kInterpreterBytecodeArrayRegister,
1174                           kInterpreterBytecodeOffsetRegister, times_1, 0));
1175   __ movq(kJavaScriptCallCodeStartRegister,
1176           Operand(kInterpreterDispatchTableRegister, r11,
1177                   times_system_pointer_size, 0));
1178   __ call(kJavaScriptCallCodeStartRegister);
1179   masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
1180 
1181   // Any returns to the entry trampoline are either due to the return bytecode
1182   // or the interpreter tail calling a builtin and then a dispatch.
1183 
1184   // Get bytecode array and bytecode offset from the stack frame.
1185   __ movq(kInterpreterBytecodeArrayRegister,
1186           Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));
1187   __ SmiUntag(kInterpreterBytecodeOffsetRegister,
1188               Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1189 
1190   // Either return, or advance to the next bytecode and dispatch.
1191   Label do_return;
1192   __ movzxbq(rbx, Operand(kInterpreterBytecodeArrayRegister,
1193                           kInterpreterBytecodeOffsetRegister, times_1, 0));
1194   AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
1195                                 kInterpreterBytecodeOffsetRegister, rbx, rcx,
1196                                 r11, &do_return);
1197   __ jmp(&do_dispatch);
1198 
1199   __ bind(&do_return);
1200   // The return value is in rax.
1201   LeaveInterpreterFrame(masm, rbx, rcx);
1202   __ ret(0);
1203 
1204   __ bind(&stack_check_interrupt);
1205   // Modify the bytecode offset in the stack to be kFunctionEntryBytecodeOffset
1206   // for the call to the StackGuard.
1207   __ Move(Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp),
1208           Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag +
1209                        kFunctionEntryBytecodeOffset));
1210   __ CallRuntime(Runtime::kStackGuard);
1211 
1212   // After the call, restore the bytecode array, bytecode offset and accumulator
1213   // registers again. Also, restore the bytecode offset in the stack to its
1214   // previous value.
1215   __ movq(kInterpreterBytecodeArrayRegister,
1216           Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));
1217   __ movq(kInterpreterBytecodeOffsetRegister,
1218           Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
1219   __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
1220 
1221   __ SmiTag(rcx, kInterpreterBytecodeArrayRegister);
1222   __ movq(Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp), rcx);
1223 
1224   __ jmp(&after_stack_check_interrupt);
1225 
1226   __ bind(&compile_lazy);
1227   GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
1228   __ int3();  // Should not return.
1229 
1230   __ bind(&has_optimized_code_or_marker);
1231   Label maybe_has_optimized_code;
1232 
1233   __ testl(
1234       optimization_state,
1235       Immediate(FeedbackVector::kHasCompileOptimizedOrLogFirstExecutionMarker));
1236   __ j(zero, &maybe_has_optimized_code);
1237 
1238   Register optimization_marker = optimization_state;
1239   __ DecodeField<FeedbackVector::OptimizationMarkerBits>(optimization_marker);
1240   MaybeOptimizeCode(masm, feedback_vector, optimization_marker);
1241   // Fall through if there's no runnable optimized code.
1242   __ jmp(&not_optimized);
1243 
1244   __ bind(&maybe_has_optimized_code);
1245   Register optimized_code_entry = optimization_state;
1246   __ LoadAnyTaggedField(
1247       optimized_code_entry,
1248       FieldOperand(feedback_vector, FeedbackVector::kMaybeOptimizedCodeOffset));
1249   TailCallOptimizedCodeSlot(masm, optimized_code_entry, r11, r15);
1250 
1251   __ bind(&stack_overflow);
1252   __ CallRuntime(Runtime::kThrowStackOverflow);
1253   __ int3();  // Should not return.
1254 }
1255 
Generate_InterpreterPushArgs(MacroAssembler * masm,Register num_args,Register start_address,Register scratch)1256 static void Generate_InterpreterPushArgs(MacroAssembler* masm,
1257                                          Register num_args,
1258                                          Register start_address,
1259                                          Register scratch) {
1260   // Find the argument with lowest address.
1261   __ movq(scratch, num_args);
1262   __ negq(scratch);
1263   __ leaq(start_address,
1264           Operand(start_address, scratch, times_system_pointer_size,
1265                   kSystemPointerSize));
1266   // Push the arguments.
1267   __ PushArray(start_address, num_args, scratch,
1268                TurboAssembler::PushArrayOrder::kReverse);
1269 }
1270 
1271 // static
Generate_InterpreterPushArgsThenCallImpl(MacroAssembler * masm,ConvertReceiverMode receiver_mode,InterpreterPushArgsMode mode)1272 void Builtins::Generate_InterpreterPushArgsThenCallImpl(
1273     MacroAssembler* masm, ConvertReceiverMode receiver_mode,
1274     InterpreterPushArgsMode mode) {
1275   DCHECK(mode != InterpreterPushArgsMode::kArrayFunction);
1276   // ----------- S t a t e -------------
1277   //  -- rax : the number of arguments (not including the receiver)
1278   //  -- rbx : the address of the first argument to be pushed. Subsequent
1279   //           arguments should be consecutive above this, in the same order as
1280   //           they are to be pushed onto the stack.
1281   //  -- rdi : the target to call (can be any Object).
1282   // -----------------------------------
1283   Label stack_overflow;
1284 
1285   if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1286     // The spread argument should not be pushed.
1287     __ decl(rax);
1288   }
1289 
1290   __ leal(rcx, Operand(rax, 1));  // Add one for receiver.
1291 
1292   // Add a stack check before pushing arguments.
1293   __ StackOverflowCheck(rcx, rdx, &stack_overflow);
1294 
1295   // Pop return address to allow tail-call after pushing arguments.
1296   __ PopReturnAddressTo(kScratchRegister);
1297 
1298   if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
1299     // Don't copy receiver.
1300     __ decq(rcx);
1301   }
1302 
1303   // rbx and rdx will be modified.
1304   Generate_InterpreterPushArgs(masm, rcx, rbx, rdx);
1305 
1306   // Push "undefined" as the receiver arg if we need to.
1307   if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
1308     __ PushRoot(RootIndex::kUndefinedValue);
1309   }
1310 
1311   if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1312     // Pass the spread in the register rbx.
1313     // rbx already points to the penultime argument, the spread
1314     // is below that.
1315     __ movq(rbx, Operand(rbx, -kSystemPointerSize));
1316   }
1317 
1318   // Call the target.
1319   __ PushReturnAddressFrom(kScratchRegister);  // Re-push return address.
1320 
1321   if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1322     __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread),
1323             RelocInfo::CODE_TARGET);
1324   } else {
1325     __ Jump(masm->isolate()->builtins()->Call(receiver_mode),
1326             RelocInfo::CODE_TARGET);
1327   }
1328 
1329   // Throw stack overflow exception.
1330   __ bind(&stack_overflow);
1331   {
1332     __ TailCallRuntime(Runtime::kThrowStackOverflow);
1333     // This should be unreachable.
1334     __ int3();
1335   }
1336 }
1337 
1338 // static
Generate_InterpreterPushArgsThenConstructImpl(MacroAssembler * masm,InterpreterPushArgsMode mode)1339 void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
1340     MacroAssembler* masm, InterpreterPushArgsMode mode) {
1341   // ----------- S t a t e -------------
1342   //  -- rax : the number of arguments (not including the receiver)
1343   //  -- rdx : the new target (either the same as the constructor or
1344   //           the JSFunction on which new was invoked initially)
1345   //  -- rdi : the constructor to call (can be any Object)
1346   //  -- rbx : the allocation site feedback if available, undefined otherwise
1347   //  -- rcx : the address of the first argument to be pushed. Subsequent
1348   //           arguments should be consecutive above this, in the same order as
1349   //           they are to be pushed onto the stack.
1350   // -----------------------------------
1351   Label stack_overflow;
1352 
1353   // Add a stack check before pushing arguments.
1354   __ StackOverflowCheck(rax, r8, &stack_overflow);
1355 
1356   // Pop return address to allow tail-call after pushing arguments.
1357   __ PopReturnAddressTo(kScratchRegister);
1358 
1359   if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1360     // The spread argument should not be pushed.
1361     __ decl(rax);
1362   }
1363 
1364   // rcx and r8 will be modified.
1365   Generate_InterpreterPushArgs(masm, rax, rcx, r8);
1366 
1367   // Push slot for the receiver to be constructed.
1368   __ Push(Immediate(0));
1369 
1370   if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1371     // Pass the spread in the register rbx.
1372     __ movq(rbx, Operand(rcx, -kSystemPointerSize));
1373     // Push return address in preparation for the tail-call.
1374     __ PushReturnAddressFrom(kScratchRegister);
1375   } else {
1376     __ PushReturnAddressFrom(kScratchRegister);
1377     __ AssertUndefinedOrAllocationSite(rbx);
1378   }
1379 
1380   if (mode == InterpreterPushArgsMode::kArrayFunction) {
1381     // Tail call to the array construct stub (still in the caller
1382     // context at this point).
1383     __ AssertFunction(rdi);
1384     // Jump to the constructor function (rax, rbx, rdx passed on).
1385     Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl);
1386     __ Jump(code, RelocInfo::CODE_TARGET);
1387   } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1388     // Call the constructor (rax, rdx, rdi passed on).
1389     __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread),
1390             RelocInfo::CODE_TARGET);
1391   } else {
1392     DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
1393     // Call the constructor (rax, rdx, rdi passed on).
1394     __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
1395   }
1396 
1397   // Throw stack overflow exception.
1398   __ bind(&stack_overflow);
1399   {
1400     __ TailCallRuntime(Runtime::kThrowStackOverflow);
1401     // This should be unreachable.
1402     __ int3();
1403   }
1404 }
1405 
Generate_InterpreterEnterBytecode(MacroAssembler * masm)1406 static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
1407   // Set the return address to the correct point in the interpreter entry
1408   // trampoline.
1409   Label builtin_trampoline, trampoline_loaded;
1410   Smi interpreter_entry_return_pc_offset(
1411       masm->isolate()->heap()->interpreter_entry_return_pc_offset());
1412   DCHECK_NE(interpreter_entry_return_pc_offset, Smi::zero());
1413 
1414   // If the SFI function_data is an InterpreterData, the function will have a
1415   // custom copy of the interpreter entry trampoline for profiling. If so,
1416   // get the custom trampoline, otherwise grab the entry address of the global
1417   // trampoline.
1418   __ movq(rbx, Operand(rbp, StandardFrameConstants::kFunctionOffset));
1419   __ LoadTaggedPointerField(
1420       rbx, FieldOperand(rbx, JSFunction::kSharedFunctionInfoOffset));
1421   __ LoadTaggedPointerField(
1422       rbx, FieldOperand(rbx, SharedFunctionInfo::kFunctionDataOffset));
1423   __ CmpObjectType(rbx, INTERPRETER_DATA_TYPE, kScratchRegister);
1424   __ j(not_equal, &builtin_trampoline, Label::kNear);
1425 
1426   __ LoadTaggedPointerField(
1427       rbx, FieldOperand(rbx, InterpreterData::kInterpreterTrampolineOffset));
1428   __ addq(rbx, Immediate(Code::kHeaderSize - kHeapObjectTag));
1429   __ jmp(&trampoline_loaded, Label::kNear);
1430 
1431   __ bind(&builtin_trampoline);
1432   // TODO(jgruber): Replace this by a lookup in the builtin entry table.
1433   __ movq(rbx,
1434           __ ExternalReferenceAsOperand(
1435               ExternalReference::
1436                   address_of_interpreter_entry_trampoline_instruction_start(
1437                       masm->isolate()),
1438               kScratchRegister));
1439 
1440   __ bind(&trampoline_loaded);
1441   __ addq(rbx, Immediate(interpreter_entry_return_pc_offset.value()));
1442   __ Push(rbx);
1443 
1444   // Initialize dispatch table register.
1445   __ Move(
1446       kInterpreterDispatchTableRegister,
1447       ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
1448 
1449   // Get the bytecode array pointer from the frame.
1450   __ movq(kInterpreterBytecodeArrayRegister,
1451           Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));
1452 
1453   if (FLAG_debug_code) {
1454     // Check function data field is actually a BytecodeArray object.
1455     __ AssertNotSmi(kInterpreterBytecodeArrayRegister);
1456     __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
1457                      rbx);
1458     __ Assert(
1459         equal,
1460         AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
1461   }
1462 
1463   // Get the target bytecode offset from the frame.
1464   __ SmiUntag(kInterpreterBytecodeOffsetRegister,
1465               Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1466 
1467   if (FLAG_debug_code) {
1468     Label okay;
1469     __ cmpq(kInterpreterBytecodeOffsetRegister,
1470             Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
1471     __ j(greater_equal, &okay, Label::kNear);
1472     __ int3();
1473     __ bind(&okay);
1474   }
1475 
1476   // Dispatch to the target bytecode.
1477   __ movzxbq(r11, Operand(kInterpreterBytecodeArrayRegister,
1478                           kInterpreterBytecodeOffsetRegister, times_1, 0));
1479   __ movq(kJavaScriptCallCodeStartRegister,
1480           Operand(kInterpreterDispatchTableRegister, r11,
1481                   times_system_pointer_size, 0));
1482   __ jmp(kJavaScriptCallCodeStartRegister);
1483 }
1484 
Generate_InterpreterEnterBytecodeAdvance(MacroAssembler * masm)1485 void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
1486   // Get bytecode array and bytecode offset from the stack frame.
1487   __ movq(kInterpreterBytecodeArrayRegister,
1488           Operand(rbp, InterpreterFrameConstants::kBytecodeArrayFromFp));
1489   __ SmiUntag(kInterpreterBytecodeOffsetRegister,
1490               Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1491 
1492   Label enter_bytecode, function_entry_bytecode;
1493   __ cmpq(kInterpreterBytecodeOffsetRegister,
1494           Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag +
1495                     kFunctionEntryBytecodeOffset));
1496   __ j(equal, &function_entry_bytecode);
1497 
1498   // Load the current bytecode.
1499   __ movzxbq(rbx, Operand(kInterpreterBytecodeArrayRegister,
1500                           kInterpreterBytecodeOffsetRegister, times_1, 0));
1501 
1502   // Advance to the next bytecode.
1503   Label if_return;
1504   AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
1505                                 kInterpreterBytecodeOffsetRegister, rbx, rcx,
1506                                 r11, &if_return);
1507 
1508   __ bind(&enter_bytecode);
1509   // Convert new bytecode offset to a Smi and save in the stackframe.
1510   __ SmiTag(kInterpreterBytecodeOffsetRegister);
1511   __ movq(Operand(rbp, InterpreterFrameConstants::kBytecodeOffsetFromFp),
1512           kInterpreterBytecodeOffsetRegister);
1513 
1514   Generate_InterpreterEnterBytecode(masm);
1515 
1516   __ bind(&function_entry_bytecode);
1517   // If the code deoptimizes during the implicit function entry stack interrupt
1518   // check, it will have a bailout ID of kFunctionEntryBytecodeOffset, which is
1519   // not a valid bytecode offset. Detect this case and advance to the first
1520   // actual bytecode.
1521   __ movq(kInterpreterBytecodeOffsetRegister,
1522           Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
1523   __ jmp(&enter_bytecode);
1524 
1525   // We should never take the if_return path.
1526   __ bind(&if_return);
1527   __ Abort(AbortReason::kInvalidBytecodeAdvance);
1528 }
1529 
Generate_InterpreterEnterBytecodeDispatch(MacroAssembler * masm)1530 void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
1531   Generate_InterpreterEnterBytecode(masm);
1532 }
1533 
1534 namespace {
Generate_ContinueToBuiltinHelper(MacroAssembler * masm,bool java_script_builtin,bool with_result)1535 void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
1536                                       bool java_script_builtin,
1537                                       bool with_result) {
1538   const RegisterConfiguration* config(RegisterConfiguration::Default());
1539   int allocatable_register_count = config->num_allocatable_general_registers();
1540   if (with_result) {
1541     if (java_script_builtin) {
1542       // kScratchRegister is not included in the allocateable registers.
1543       __ movq(kScratchRegister, rax);
1544     } else {
1545       // Overwrite the hole inserted by the deoptimizer with the return value
1546       // from the LAZY deopt point.
1547       __ movq(
1548           Operand(rsp, config->num_allocatable_general_registers() *
1549                                kSystemPointerSize +
1550                            BuiltinContinuationFrameConstants::kFixedFrameSize),
1551           rax);
1552     }
1553   }
1554   for (int i = allocatable_register_count - 1; i >= 0; --i) {
1555     int code = config->GetAllocatableGeneralCode(i);
1556     __ popq(Register::from_code(code));
1557     if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) {
1558       __ SmiUntag(Register::from_code(code));
1559     }
1560   }
1561   if (with_result && java_script_builtin) {
1562     // Overwrite the hole inserted by the deoptimizer with the return value from
1563     // the LAZY deopt point. rax contains the arguments count, the return value
1564     // from LAZY is always the last argument.
1565     __ movq(Operand(rsp, rax, times_system_pointer_size,
1566                     BuiltinContinuationFrameConstants::kFixedFrameSize),
1567             kScratchRegister);
1568   }
1569   __ movq(
1570       rbp,
1571       Operand(rsp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
1572   const int offsetToPC =
1573       BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp -
1574       kSystemPointerSize;
1575   __ popq(Operand(rsp, offsetToPC));
1576   __ Drop(offsetToPC / kSystemPointerSize);
1577 
1578   // Replace the builtin index Smi on the stack with the instruction start
1579   // address of the builtin from the builtins table, and then Ret to this
1580   // address
1581   __ movq(kScratchRegister, Operand(rsp, 0));
1582   __ movq(kScratchRegister,
1583           __ EntryFromBuiltinIndexAsOperand(kScratchRegister));
1584   __ movq(Operand(rsp, 0), kScratchRegister);
1585 
1586   __ Ret();
1587 }
1588 }  // namespace
1589 
Generate_ContinueToCodeStubBuiltin(MacroAssembler * masm)1590 void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
1591   Generate_ContinueToBuiltinHelper(masm, false, false);
1592 }
1593 
Generate_ContinueToCodeStubBuiltinWithResult(MacroAssembler * masm)1594 void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
1595     MacroAssembler* masm) {
1596   Generate_ContinueToBuiltinHelper(masm, false, true);
1597 }
1598 
Generate_ContinueToJavaScriptBuiltin(MacroAssembler * masm)1599 void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
1600   Generate_ContinueToBuiltinHelper(masm, true, false);
1601 }
1602 
Generate_ContinueToJavaScriptBuiltinWithResult(MacroAssembler * masm)1603 void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
1604     MacroAssembler* masm) {
1605   Generate_ContinueToBuiltinHelper(masm, true, true);
1606 }
1607 
Generate_NotifyDeoptimized(MacroAssembler * masm)1608 void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
1609   // Enter an internal frame.
1610   {
1611     FrameScope scope(masm, StackFrame::INTERNAL);
1612     __ CallRuntime(Runtime::kNotifyDeoptimized);
1613     // Tear down internal frame.
1614   }
1615 
1616   DCHECK_EQ(kInterpreterAccumulatorRegister.code(), rax.code());
1617   __ movq(rax, Operand(rsp, kPCOnStackSize));
1618   __ ret(1 * kSystemPointerSize);  // Remove rax.
1619 }
1620 
1621 // static
Generate_FunctionPrototypeApply(MacroAssembler * masm)1622 void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
1623   // ----------- S t a t e -------------
1624   //  -- rax     : argc
1625   //  -- rsp[0]  : return address
1626   //  -- rsp[1]  : receiver
1627   //  -- rsp[2]  : thisArg
1628   //  -- rsp[3]  : argArray
1629   // -----------------------------------
1630 
1631   // 1. Load receiver into rdi, argArray into rbx (if present), remove all
1632   // arguments from the stack (including the receiver), and push thisArg (if
1633   // present) instead.
1634   {
1635     Label no_arg_array, no_this_arg;
1636     StackArgumentsAccessor args(rax);
1637     __ LoadRoot(rdx, RootIndex::kUndefinedValue);
1638     __ movq(rbx, rdx);
1639     __ movq(rdi, args[0]);
1640     __ testq(rax, rax);
1641     __ j(zero, &no_this_arg, Label::kNear);
1642     {
1643       __ movq(rdx, args[1]);
1644       __ cmpq(rax, Immediate(1));
1645       __ j(equal, &no_arg_array, Label::kNear);
1646       __ movq(rbx, args[2]);
1647       __ bind(&no_arg_array);
1648     }
1649     __ bind(&no_this_arg);
1650     __ PopReturnAddressTo(rcx);
1651     __ leaq(rsp,
1652             Operand(rsp, rax, times_system_pointer_size, kSystemPointerSize));
1653     __ Push(rdx);
1654     __ PushReturnAddressFrom(rcx);
1655   }
1656 
1657   // ----------- S t a t e -------------
1658   //  -- rbx     : argArray
1659   //  -- rdi     : receiver
1660   //  -- rsp[0]  : return address
1661   //  -- rsp[8]  : thisArg
1662   // -----------------------------------
1663 
1664   // 2. We don't need to check explicitly for callable receiver here,
1665   // since that's the first thing the Call/CallWithArrayLike builtins
1666   // will do.
1667 
1668   // 3. Tail call with no arguments if argArray is null or undefined.
1669   Label no_arguments;
1670   __ JumpIfRoot(rbx, RootIndex::kNullValue, &no_arguments, Label::kNear);
1671   __ JumpIfRoot(rbx, RootIndex::kUndefinedValue, &no_arguments, Label::kNear);
1672 
1673   // 4a. Apply the receiver to the given argArray.
1674   __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
1675           RelocInfo::CODE_TARGET);
1676 
1677   // 4b. The argArray is either null or undefined, so we tail call without any
1678   // arguments to the receiver. Since we did not create a frame for
1679   // Function.prototype.apply() yet, we use a normal Call builtin here.
1680   __ bind(&no_arguments);
1681   {
1682     __ Set(rax, 0);
1683     __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
1684   }
1685 }
1686 
1687 // static
Generate_FunctionPrototypeCall(MacroAssembler * masm)1688 void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
1689   // Stack Layout:
1690   // rsp[0]           : Return address
1691   // rsp[8]           : Argument 0 (receiver: callable to call)
1692   // rsp[16]          : Argument 1
1693   //  ...
1694   // rsp[8 * n]       : Argument n-1
1695   // rsp[8 * (n + 1)] : Argument n
1696   // rax contains the number of arguments, n, not counting the receiver.
1697 
1698   // 1. Get the callable to call (passed as receiver) from the stack.
1699   {
1700     StackArgumentsAccessor args(rax);
1701     __ movq(rdi, args.GetReceiverOperand());
1702   }
1703 
1704   // 2. Save the return address and drop the callable.
1705   __ PopReturnAddressTo(rbx);
1706   __ Pop(kScratchRegister);
1707 
1708   // 3. Make sure we have at least one argument.
1709   {
1710     Label done;
1711     __ testq(rax, rax);
1712     __ j(not_zero, &done, Label::kNear);
1713     __ PushRoot(RootIndex::kUndefinedValue);
1714     __ incq(rax);
1715     __ bind(&done);
1716   }
1717 
1718   // 4. Push back the return address one slot down on the stack (overwriting the
1719   // original callable), making the original first argument the new receiver.
1720   __ PushReturnAddressFrom(rbx);
1721   __ decq(rax);  // One fewer argument (first argument is new receiver).
1722 
1723   // 5. Call the callable.
1724   // Since we did not create a frame for Function.prototype.call() yet,
1725   // we use a normal Call builtin here.
1726   __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
1727 }
1728 
Generate_ReflectApply(MacroAssembler * masm)1729 void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
1730   // ----------- S t a t e -------------
1731   //  -- rax     : argc
1732   //  -- rsp[0]  : return address
1733   //  -- rsp[8]  : receiver
1734   //  -- rsp[16] : target         (if argc >= 1)
1735   //  -- rsp[24] : thisArgument   (if argc >= 2)
1736   //  -- rsp[32] : argumentsList  (if argc == 3)
1737   // -----------------------------------
1738 
1739   // 1. Load target into rdi (if present), argumentsList into rbx (if present),
1740   // remove all arguments from the stack (including the receiver), and push
1741   // thisArgument (if present) instead.
1742   {
1743     Label done;
1744     StackArgumentsAccessor args(rax);
1745     __ LoadRoot(rdi, RootIndex::kUndefinedValue);
1746     __ movq(rdx, rdi);
1747     __ movq(rbx, rdi);
1748     __ cmpq(rax, Immediate(1));
1749     __ j(below, &done, Label::kNear);
1750     __ movq(rdi, args[1]);  // target
1751     __ j(equal, &done, Label::kNear);
1752     __ movq(rdx, args[2]);  // thisArgument
1753     __ cmpq(rax, Immediate(3));
1754     __ j(below, &done, Label::kNear);
1755     __ movq(rbx, args[3]);  // argumentsList
1756     __ bind(&done);
1757     __ PopReturnAddressTo(rcx);
1758     __ leaq(rsp,
1759             Operand(rsp, rax, times_system_pointer_size, kSystemPointerSize));
1760     __ Push(rdx);
1761     __ PushReturnAddressFrom(rcx);
1762   }
1763 
1764   // ----------- S t a t e -------------
1765   //  -- rbx     : argumentsList
1766   //  -- rdi     : target
1767   //  -- rsp[0]  : return address
1768   //  -- rsp[8]  : thisArgument
1769   // -----------------------------------
1770 
1771   // 2. We don't need to check explicitly for callable target here,
1772   // since that's the first thing the Call/CallWithArrayLike builtins
1773   // will do.
1774 
1775   // 3. Apply the target to the given argumentsList.
1776   __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
1777           RelocInfo::CODE_TARGET);
1778 }
1779 
Generate_ReflectConstruct(MacroAssembler * masm)1780 void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
1781   // ----------- S t a t e -------------
1782   //  -- rax     : argc
1783   //  -- rsp[0]  : return address
1784   //  -- rsp[8]  : receiver
1785   //  -- rsp[16] : target
1786   //  -- rsp[24] : argumentsList
1787   //  -- rsp[32] : new.target (optional)
1788   // -----------------------------------
1789 
1790   // 1. Load target into rdi (if present), argumentsList into rbx (if present),
1791   // new.target into rdx (if present, otherwise use target), remove all
1792   // arguments from the stack (including the receiver), and push thisArgument
1793   // (if present) instead.
1794   {
1795     Label done;
1796     StackArgumentsAccessor args(rax);
1797     __ LoadRoot(rdi, RootIndex::kUndefinedValue);
1798     __ movq(rdx, rdi);
1799     __ movq(rbx, rdi);
1800     __ cmpq(rax, Immediate(1));
1801     __ j(below, &done, Label::kNear);
1802     __ movq(rdi, args[1]);                     // target
1803     __ movq(rdx, rdi);                         // new.target defaults to target
1804     __ j(equal, &done, Label::kNear);
1805     __ movq(rbx, args[2]);  // argumentsList
1806     __ cmpq(rax, Immediate(3));
1807     __ j(below, &done, Label::kNear);
1808     __ movq(rdx, args[3]);  // new.target
1809     __ bind(&done);
1810     __ PopReturnAddressTo(rcx);
1811     __ leaq(rsp,
1812             Operand(rsp, rax, times_system_pointer_size, kSystemPointerSize));
1813     __ PushRoot(RootIndex::kUndefinedValue);
1814     __ PushReturnAddressFrom(rcx);
1815   }
1816 
1817   // ----------- S t a t e -------------
1818   //  -- rbx     : argumentsList
1819   //  -- rdx     : new.target
1820   //  -- rdi     : target
1821   //  -- rsp[0]  : return address
1822   //  -- rsp[8]  : receiver (undefined)
1823   // -----------------------------------
1824 
1825   // 2. We don't need to check explicitly for constructor target here,
1826   // since that's the first thing the Construct/ConstructWithArrayLike
1827   // builtins will do.
1828 
1829   // 3. We don't need to check explicitly for constructor new.target here,
1830   // since that's the second thing the Construct/ConstructWithArrayLike
1831   // builtins will do.
1832 
1833   // 4. Construct the target with the given new.target and argumentsList.
1834   __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike),
1835           RelocInfo::CODE_TARGET);
1836 }
1837 
EnterArgumentsAdaptorFrame(MacroAssembler * masm)1838 static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
1839   __ pushq(rbp);
1840   __ movq(rbp, rsp);
1841 
1842   // Store the arguments adaptor context sentinel.
1843   __ Push(Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
1844 
1845   // Push the function on the stack.
1846   __ Push(rdi);
1847 
1848   // Preserve the number of arguments on the stack. Must preserve rax,
1849   // rbx and rcx because these registers are used when copying the
1850   // arguments and the receiver.
1851   __ SmiTag(r8, rax);
1852   __ Push(r8);
1853 
1854   __ Push(Immediate(0));  // Padding.
1855 }
1856 
LeaveArgumentsAdaptorFrame(MacroAssembler * masm)1857 static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
1858   // Retrieve the number of arguments from the stack. Number is a Smi.
1859   __ movq(rbx, Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset));
1860 
1861   // Leave the frame.
1862   __ movq(rsp, rbp);
1863   __ popq(rbp);
1864 
1865   // Remove caller arguments from the stack.
1866   __ PopReturnAddressTo(rcx);
1867   SmiIndex index = masm->SmiToIndex(rbx, rbx, kSystemPointerSizeLog2);
1868   __ leaq(rsp, Operand(rsp, index.reg, index.scale, 1 * kSystemPointerSize));
1869   __ PushReturnAddressFrom(rcx);
1870 }
1871 
Generate_ArgumentsAdaptorTrampoline(MacroAssembler * masm)1872 void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
1873   // ----------- S t a t e -------------
1874   //  -- rax : actual number of arguments
1875   //  -- rbx : expected number of arguments
1876   //  -- rdx : new target (passed through to callee)
1877   //  -- rdi : function (passed through to callee)
1878   // -----------------------------------
1879 
1880   Label dont_adapt_arguments, stack_overflow;
1881   __ cmpq(rbx, Immediate(kDontAdaptArgumentsSentinel));
1882   __ j(equal, &dont_adapt_arguments);
1883   __ LoadTaggedPointerField(
1884       rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
1885 
1886   // -------------------------------------------
1887   // Adapt arguments.
1888   // -------------------------------------------
1889   {
1890     EnterArgumentsAdaptorFrame(masm);
1891     __ StackOverflowCheck(rbx, rcx, &stack_overflow);
1892 
1893     Label under_application, over_application, invoke;
1894     __ cmpq(rax, rbx);
1895     __ j(less, &under_application, Label::kNear);
1896 
1897     // Enough parameters: Actual >= expected.
1898     __ bind(&over_application);
1899     {
1900       // Copy receiver and all expected arguments.
1901       const int offset = StandardFrameConstants::kCallerSPOffset;
1902       __ leaq(r8, Operand(rbp, rbx, times_system_pointer_size, offset));
1903       __ Set(rax, -1);  // account for receiver
1904 
1905       Label copy;
1906       __ bind(&copy);
1907       __ incq(rax);
1908       __ Push(Operand(r8, 0));
1909       __ subq(r8, Immediate(kSystemPointerSize));
1910       __ cmpq(rax, rbx);
1911       __ j(less, &copy);
1912       __ jmp(&invoke, Label::kNear);
1913     }
1914 
1915     // Too few parameters: Actual < expected.
1916     __ bind(&under_application);
1917     {
1918       // Fill remaining expected arguments with undefined values.
1919       Label fill;
1920       __ LoadRoot(kScratchRegister, RootIndex::kUndefinedValue);
1921       __ movq(r8, rbx);
1922       __ subq(r8, rax);
1923       __ bind(&fill);
1924       __ Push(kScratchRegister);
1925       __ decq(r8);
1926       __ j(greater, &fill);
1927 
1928       // Copy receiver and all actual arguments.
1929       const int offset = StandardFrameConstants::kCallerSPOffset;
1930       __ leaq(r9, Operand(rbp, rax, times_system_pointer_size, offset));
1931       __ Set(r8, -1);  // account for receiver
1932 
1933       Label copy;
1934       __ bind(&copy);
1935       __ incq(r8);
1936       __ Push(Operand(r9, 0));
1937       __ subq(r9, Immediate(kSystemPointerSize));
1938       __ cmpq(r8, rax);
1939       __ j(less, &copy);
1940 
1941       // Update actual number of arguments.
1942       __ movq(rax, rbx);
1943     }
1944 
1945     // Call the entry point.
1946     __ bind(&invoke);
1947     // rax : expected number of arguments
1948     // rdx : new target (passed through to callee)
1949     // rdi : function (passed through to callee)
1950     static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch");
1951     __ LoadTaggedPointerField(rcx, FieldOperand(rdi, JSFunction::kCodeOffset));
1952     __ CallCodeObject(rcx);
1953 
1954     // Store offset of return address for deoptimizer.
1955     masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(
1956         masm->pc_offset());
1957 
1958     // Leave frame and return.
1959     LeaveArgumentsAdaptorFrame(masm);
1960     __ ret(0);
1961   }
1962 
1963   // -------------------------------------------
1964   // Don't adapt arguments.
1965   // -------------------------------------------
1966   __ bind(&dont_adapt_arguments);
1967   static_assert(kJavaScriptCallCodeStartRegister == rcx, "ABI mismatch");
1968   __ LoadTaggedPointerField(rcx, FieldOperand(rdi, JSFunction::kCodeOffset));
1969   __ JumpCodeObject(rcx);
1970 
1971   __ bind(&stack_overflow);
1972   {
1973     FrameScope frame(masm, StackFrame::MANUAL);
1974     __ CallRuntime(Runtime::kThrowStackOverflow);
1975     __ int3();
1976   }
1977 }
1978 
1979 // static
Generate_CallOrConstructVarargs(MacroAssembler * masm,Handle<Code> code)1980 void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
1981                                                Handle<Code> code) {
1982   // ----------- S t a t e -------------
1983   //  -- rdi    : target
1984   //  -- rax    : number of parameters on the stack (not including the receiver)
1985   //  -- rbx    : arguments list (a FixedArray)
1986   //  -- rcx    : len (number of elements to push from args)
1987   //  -- rdx    : new.target (for [[Construct]])
1988   //  -- rsp[0] : return address
1989   // -----------------------------------
1990   Register scratch = r11;
1991 
1992   if (masm->emit_debug_code()) {
1993     // Allow rbx to be a FixedArray, or a FixedDoubleArray if rcx == 0.
1994     Label ok, fail;
1995     __ AssertNotSmi(rbx);
1996     Register map = r9;
1997     __ LoadTaggedPointerField(map, FieldOperand(rbx, HeapObject::kMapOffset));
1998     __ CmpInstanceType(map, FIXED_ARRAY_TYPE);
1999     __ j(equal, &ok);
2000     __ CmpInstanceType(map, FIXED_DOUBLE_ARRAY_TYPE);
2001     __ j(not_equal, &fail);
2002     __ Cmp(rcx, 0);
2003     __ j(equal, &ok);
2004     // Fall through.
2005     __ bind(&fail);
2006     __ Abort(AbortReason::kOperandIsNotAFixedArray);
2007 
2008     __ bind(&ok);
2009   }
2010 
2011   Label stack_overflow;
2012   __ StackOverflowCheck(rcx, r8, &stack_overflow, Label::kNear);
2013 
2014   // Push additional arguments onto the stack.
2015   // Move the arguments already in the stack,
2016   // including the receiver and the return address.
2017   {
2018     Label copy, check;
2019     Register src = r8, dest = rsp, num = r9, current = r11;
2020     __ movq(src, rsp);
2021     __ leaq(kScratchRegister, Operand(rcx, times_system_pointer_size, 0));
2022     __ AllocateStackSpace(kScratchRegister);
2023     __ leaq(num, Operand(rax, 2));  // Number of words to copy.
2024                                     // +2 for receiver and return address.
2025     __ Set(current, 0);
2026     __ jmp(&check);
2027     __ bind(&copy);
2028     __ movq(kScratchRegister,
2029             Operand(src, current, times_system_pointer_size, 0));
2030     __ movq(Operand(dest, current, times_system_pointer_size, 0),
2031             kScratchRegister);
2032     __ incq(current);
2033     __ bind(&check);
2034     __ cmpq(current, num);
2035     __ j(less, &copy);
2036     __ leaq(r8, Operand(rsp, num, times_system_pointer_size, 0));
2037   }
2038 
2039   // Copy the additional arguments onto the stack.
2040   {
2041     Register value = scratch;
2042     Register src = rbx, dest = r8, num = rcx, current = r9;
2043     __ Set(current, 0);
2044     Label done, push, loop;
2045     __ bind(&loop);
2046     __ cmpl(current, num);
2047     __ j(equal, &done, Label::kNear);
2048     // Turn the hole into undefined as we go.
2049     __ LoadAnyTaggedField(value, FieldOperand(src, current, times_tagged_size,
2050                                               FixedArray::kHeaderSize));
2051     __ CompareRoot(value, RootIndex::kTheHoleValue);
2052     __ j(not_equal, &push, Label::kNear);
2053     __ LoadRoot(value, RootIndex::kUndefinedValue);
2054     __ bind(&push);
2055     __ movq(Operand(dest, current, times_system_pointer_size, 0), value);
2056     __ incl(current);
2057     __ jmp(&loop);
2058     __ bind(&done);
2059     __ addq(rax, current);
2060   }
2061 
2062   // Tail-call to the actual Call or Construct builtin.
2063   __ Jump(code, RelocInfo::CODE_TARGET);
2064 
2065   __ bind(&stack_overflow);
2066   __ TailCallRuntime(Runtime::kThrowStackOverflow);
2067 }
2068 
2069 // static
Generate_CallOrConstructForwardVarargs(MacroAssembler * masm,CallOrConstructMode mode,Handle<Code> code)2070 void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
2071                                                       CallOrConstructMode mode,
2072                                                       Handle<Code> code) {
2073   // ----------- S t a t e -------------
2074   //  -- rax : the number of arguments (not including the receiver)
2075   //  -- rdx : the new target (for [[Construct]] calls)
2076   //  -- rdi : the target to call (can be any Object)
2077   //  -- rcx : start index (to support rest parameters)
2078   // -----------------------------------
2079 
2080   // Check if new.target has a [[Construct]] internal method.
2081   if (mode == CallOrConstructMode::kConstruct) {
2082     Label new_target_constructor, new_target_not_constructor;
2083     __ JumpIfSmi(rdx, &new_target_not_constructor, Label::kNear);
2084     __ LoadTaggedPointerField(rbx, FieldOperand(rdx, HeapObject::kMapOffset));
2085     __ testb(FieldOperand(rbx, Map::kBitFieldOffset),
2086              Immediate(Map::Bits1::IsConstructorBit::kMask));
2087     __ j(not_zero, &new_target_constructor, Label::kNear);
2088     __ bind(&new_target_not_constructor);
2089     {
2090       FrameScope scope(masm, StackFrame::MANUAL);
2091       __ EnterFrame(StackFrame::INTERNAL);
2092       __ Push(rdx);
2093       __ CallRuntime(Runtime::kThrowNotConstructor);
2094     }
2095     __ bind(&new_target_constructor);
2096   }
2097 
2098 #ifdef V8_NO_ARGUMENTS_ADAPTOR
2099   // TODO(victorgomes): Remove this copy when all the arguments adaptor frame
2100   // code is erased.
2101   __ movq(rbx, rbp);
2102   __ movq(r8, Operand(rbp, StandardFrameConstants::kArgCOffset));
2103 #else
2104   // Check if we have an arguments adaptor frame below the function frame.
2105   Label arguments_adaptor, arguments_done;
2106   __ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
2107   __ cmpq(Operand(rbx, CommonFrameConstants::kContextOrFrameTypeOffset),
2108           Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
2109   __ j(equal, &arguments_adaptor, Label::kNear);
2110   {
2111     __ movq(r8, Operand(rbp, StandardFrameConstants::kFunctionOffset));
2112     __ LoadTaggedPointerField(
2113         r8, FieldOperand(r8, JSFunction::kSharedFunctionInfoOffset));
2114     __ movzxwq(
2115         r8, FieldOperand(r8, SharedFunctionInfo::kFormalParameterCountOffset));
2116     __ movq(rbx, rbp);
2117   }
2118   __ jmp(&arguments_done, Label::kNear);
2119   __ bind(&arguments_adaptor);
2120   {
2121     __ SmiUntag(r8,
2122                 Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
2123   }
2124   __ bind(&arguments_done);
2125 #endif
2126 
2127   Label stack_done, stack_overflow;
2128   __ subl(r8, rcx);
2129   __ j(less_equal, &stack_done);
2130   {
2131     // ----------- S t a t e -------------
2132     //  -- rax : the number of arguments already in the stack (not including the
2133     //  receiver)
2134     //  -- rbx : point to the caller stack frame
2135     //  -- rcx : start index (to support rest parameters)
2136     //  -- rdx : the new target (for [[Construct]] calls)
2137     //  -- rdi : the target to call (can be any Object)
2138     //  -- r8  : number of arguments to copy, i.e. arguments count - start index
2139     // -----------------------------------
2140 
2141     // Check for stack overflow.
2142     __ StackOverflowCheck(r8, r12, &stack_overflow, Label::kNear);
2143 
2144     // Forward the arguments from the caller frame.
2145     // Move the arguments already in the stack,
2146     // including the receiver and the return address.
2147     {
2148       Label copy, check;
2149       Register src = r9, dest = rsp, num = r12, current = r11;
2150       __ movq(src, rsp);
2151       __ leaq(kScratchRegister, Operand(r8, times_system_pointer_size, 0));
2152       __ AllocateStackSpace(kScratchRegister);
2153       __ leaq(num, Operand(rax, 2));  // Number of words to copy.
2154                                       // +2 for receiver and return address.
2155       __ Set(current, 0);
2156       __ jmp(&check);
2157       __ bind(&copy);
2158       __ movq(kScratchRegister,
2159               Operand(src, current, times_system_pointer_size, 0));
2160       __ movq(Operand(dest, current, times_system_pointer_size, 0),
2161               kScratchRegister);
2162       __ incq(current);
2163       __ bind(&check);
2164       __ cmpq(current, num);
2165       __ j(less, &copy);
2166       __ leaq(r9, Operand(rsp, num, times_system_pointer_size, 0));
2167     }
2168 
2169     __ addl(rax, r8);  // Update total number of arguments.
2170 
2171     // Point to the first argument to copy (skipping receiver).
2172     __ leaq(rcx, Operand(rcx, times_system_pointer_size,
2173                          CommonFrameConstants::kFixedFrameSizeAboveFp +
2174                              kSystemPointerSize));
2175     __ addq(rbx, rcx);
2176 
2177     // Copy the additional caller arguments onto the stack.
2178     // TODO(victorgomes): Consider using forward order as potentially more cache
2179     // friendly.
2180     {
2181       Register src = rbx, dest = r9, num = r8;
2182       Label loop;
2183       __ bind(&loop);
2184       __ decq(num);
2185       __ movq(kScratchRegister,
2186               Operand(src, num, times_system_pointer_size, 0));
2187       __ movq(Operand(dest, num, times_system_pointer_size, 0),
2188               kScratchRegister);
2189       __ j(not_zero, &loop);
2190     }
2191   }
2192   __ jmp(&stack_done, Label::kNear);
2193   __ bind(&stack_overflow);
2194   __ TailCallRuntime(Runtime::kThrowStackOverflow);
2195   __ bind(&stack_done);
2196 
2197   // Tail-call to the {code} handler.
2198   __ Jump(code, RelocInfo::CODE_TARGET);
2199 }
2200 
2201 // static
Generate_CallFunction(MacroAssembler * masm,ConvertReceiverMode mode)2202 void Builtins::Generate_CallFunction(MacroAssembler* masm,
2203                                      ConvertReceiverMode mode) {
2204   // ----------- S t a t e -------------
2205   //  -- rax : the number of arguments (not including the receiver)
2206   //  -- rdi : the function to call (checked to be a JSFunction)
2207   // -----------------------------------
2208 
2209   StackArgumentsAccessor args(rax);
2210   __ AssertFunction(rdi);
2211 
2212   // ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
2213   // Check that the function is not a "classConstructor".
2214   Label class_constructor;
2215   __ LoadTaggedPointerField(
2216       rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
2217   __ testl(FieldOperand(rdx, SharedFunctionInfo::kFlagsOffset),
2218            Immediate(SharedFunctionInfo::IsClassConstructorBit::kMask));
2219   __ j(not_zero, &class_constructor);
2220 
2221   // ----------- S t a t e -------------
2222   //  -- rax : the number of arguments (not including the receiver)
2223   //  -- rdx : the shared function info.
2224   //  -- rdi : the function to call (checked to be a JSFunction)
2225   // -----------------------------------
2226 
2227   // Enter the context of the function; ToObject has to run in the function
2228   // context, and we also need to take the global proxy from the function
2229   // context in case of conversion.
2230   __ LoadTaggedPointerField(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
2231   // We need to convert the receiver for non-native sloppy mode functions.
2232   Label done_convert;
2233   __ testl(FieldOperand(rdx, SharedFunctionInfo::kFlagsOffset),
2234            Immediate(SharedFunctionInfo::IsNativeBit::kMask |
2235                      SharedFunctionInfo::IsStrictBit::kMask));
2236   __ j(not_zero, &done_convert);
2237   {
2238     // ----------- S t a t e -------------
2239     //  -- rax : the number of arguments (not including the receiver)
2240     //  -- rdx : the shared function info.
2241     //  -- rdi : the function to call (checked to be a JSFunction)
2242     //  -- rsi : the function context.
2243     // -----------------------------------
2244 
2245     if (mode == ConvertReceiverMode::kNullOrUndefined) {
2246       // Patch receiver to global proxy.
2247       __ LoadGlobalProxy(rcx);
2248     } else {
2249       Label convert_to_object, convert_receiver;
2250       __ movq(rcx, args.GetReceiverOperand());
2251       __ JumpIfSmi(rcx, &convert_to_object, Label::kNear);
2252       STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
2253       __ CmpObjectType(rcx, FIRST_JS_RECEIVER_TYPE, rbx);
2254       __ j(above_equal, &done_convert);
2255       if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
2256         Label convert_global_proxy;
2257         __ JumpIfRoot(rcx, RootIndex::kUndefinedValue, &convert_global_proxy,
2258                       Label::kNear);
2259         __ JumpIfNotRoot(rcx, RootIndex::kNullValue, &convert_to_object,
2260                          Label::kNear);
2261         __ bind(&convert_global_proxy);
2262         {
2263           // Patch receiver to global proxy.
2264           __ LoadGlobalProxy(rcx);
2265         }
2266         __ jmp(&convert_receiver);
2267       }
2268       __ bind(&convert_to_object);
2269       {
2270         // Convert receiver using ToObject.
2271         // TODO(bmeurer): Inline the allocation here to avoid building the frame
2272         // in the fast case? (fall back to AllocateInNewSpace?)
2273         FrameScope scope(masm, StackFrame::INTERNAL);
2274         __ SmiTag(rax);
2275         __ Push(rax);
2276         __ Push(rdi);
2277         __ movq(rax, rcx);
2278         __ Push(rsi);
2279         __ Call(BUILTIN_CODE(masm->isolate(), ToObject),
2280                 RelocInfo::CODE_TARGET);
2281         __ Pop(rsi);
2282         __ movq(rcx, rax);
2283         __ Pop(rdi);
2284         __ Pop(rax);
2285         __ SmiUntag(rax);
2286       }
2287       __ LoadTaggedPointerField(
2288           rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
2289       __ bind(&convert_receiver);
2290     }
2291     __ movq(args.GetReceiverOperand(), rcx);
2292   }
2293   __ bind(&done_convert);
2294 
2295   // ----------- S t a t e -------------
2296   //  -- rax : the number of arguments (not including the receiver)
2297   //  -- rdx : the shared function info.
2298   //  -- rdi : the function to call (checked to be a JSFunction)
2299   //  -- rsi : the function context.
2300   // -----------------------------------
2301 
2302   __ movzxwq(
2303       rbx, FieldOperand(rdx, SharedFunctionInfo::kFormalParameterCountOffset));
2304 
2305   __ InvokeFunctionCode(rdi, no_reg, rbx, rax, JUMP_FUNCTION);
2306 
2307   // The function is a "classConstructor", need to raise an exception.
2308   __ bind(&class_constructor);
2309   {
2310     FrameScope frame(masm, StackFrame::INTERNAL);
2311     __ Push(rdi);
2312     __ CallRuntime(Runtime::kThrowConstructorNonCallableError);
2313   }
2314 }
2315 
2316 namespace {
2317 
Generate_PushBoundArguments(MacroAssembler * masm)2318 void Generate_PushBoundArguments(MacroAssembler* masm) {
2319   // ----------- S t a t e -------------
2320   //  -- rax : the number of arguments (not including the receiver)
2321   //  -- rdx : new.target (only in case of [[Construct]])
2322   //  -- rdi : target (checked to be a JSBoundFunction)
2323   // -----------------------------------
2324 
2325   // Load [[BoundArguments]] into rcx and length of that into rbx.
2326   Label no_bound_arguments;
2327   __ LoadTaggedPointerField(
2328       rcx, FieldOperand(rdi, JSBoundFunction::kBoundArgumentsOffset));
2329   __ SmiUntagField(rbx, FieldOperand(rcx, FixedArray::kLengthOffset));
2330   __ testl(rbx, rbx);
2331   __ j(zero, &no_bound_arguments);
2332   {
2333     // ----------- S t a t e -------------
2334     //  -- rax : the number of arguments (not including the receiver)
2335     //  -- rdx : new.target (only in case of [[Construct]])
2336     //  -- rdi : target (checked to be a JSBoundFunction)
2337     //  -- rcx : the [[BoundArguments]] (implemented as FixedArray)
2338     //  -- rbx : the number of [[BoundArguments]] (checked to be non-zero)
2339     // -----------------------------------
2340 
2341     // TODO(victor): Use Generate_StackOverflowCheck here.
2342     // Check the stack for overflow.
2343     {
2344       Label done;
2345       __ shlq(rbx, Immediate(kSystemPointerSizeLog2));
2346       __ movq(kScratchRegister, rsp);
2347       __ subq(kScratchRegister, rbx);
2348 
2349       // We are not trying to catch interruptions (i.e. debug break and
2350       // preemption) here, so check the "real stack limit".
2351       __ cmpq(kScratchRegister,
2352               __ StackLimitAsOperand(StackLimitKind::kRealStackLimit));
2353       __ j(above_equal, &done, Label::kNear);
2354       {
2355         FrameScope scope(masm, StackFrame::MANUAL);
2356         __ EnterFrame(StackFrame::INTERNAL);
2357         __ CallRuntime(Runtime::kThrowStackOverflow);
2358       }
2359       __ bind(&done);
2360     }
2361 
2362     // Save Return Address and Receiver into registers.
2363     __ Pop(r8);
2364     __ Pop(r10);
2365 
2366     // Push [[BoundArguments]] to the stack.
2367     {
2368       Label loop;
2369       __ LoadTaggedPointerField(
2370           rcx, FieldOperand(rdi, JSBoundFunction::kBoundArgumentsOffset));
2371       __ SmiUntagField(rbx, FieldOperand(rcx, FixedArray::kLengthOffset));
2372       __ addq(rax, rbx);  // Adjust effective number of arguments.
2373       __ bind(&loop);
2374       // Instead of doing decl(rbx) here subtract kTaggedSize from the header
2375       // offset in order to be able to move decl(rbx) right before the loop
2376       // condition. This is necessary in order to avoid flags corruption by
2377       // pointer decompression code.
2378       __ LoadAnyTaggedField(
2379           r12, FieldOperand(rcx, rbx, times_tagged_size,
2380                             FixedArray::kHeaderSize - kTaggedSize));
2381       __ Push(r12);
2382       __ decl(rbx);
2383       __ j(greater, &loop);
2384     }
2385 
2386     // Recover Receiver and Return Address.
2387     __ Push(r10);
2388     __ Push(r8);
2389   }
2390   __ bind(&no_bound_arguments);
2391 }
2392 
2393 }  // namespace
2394 
2395 // static
Generate_CallBoundFunctionImpl(MacroAssembler * masm)2396 void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
2397   // ----------- S t a t e -------------
2398   //  -- rax : the number of arguments (not including the receiver)
2399   //  -- rdi : the function to call (checked to be a JSBoundFunction)
2400   // -----------------------------------
2401   __ AssertBoundFunction(rdi);
2402 
2403   // Patch the receiver to [[BoundThis]].
2404   StackArgumentsAccessor args(rax);
2405   __ LoadAnyTaggedField(rbx,
2406                         FieldOperand(rdi, JSBoundFunction::kBoundThisOffset));
2407   __ movq(args.GetReceiverOperand(), rbx);
2408 
2409   // Push the [[BoundArguments]] onto the stack.
2410   Generate_PushBoundArguments(masm);
2411 
2412   // Call the [[BoundTargetFunction]] via the Call builtin.
2413   __ LoadTaggedPointerField(
2414       rdi, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset));
2415   __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny),
2416           RelocInfo::CODE_TARGET);
2417 }
2418 
2419 // static
Generate_Call(MacroAssembler * masm,ConvertReceiverMode mode)2420 void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
2421   // ----------- S t a t e -------------
2422   //  -- rax : the number of arguments (not including the receiver)
2423   //  -- rdi : the target to call (can be any Object)
2424   // -----------------------------------
2425   StackArgumentsAccessor args(rax);
2426 
2427   Label non_callable;
2428   __ JumpIfSmi(rdi, &non_callable);
2429   __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
2430   __ Jump(masm->isolate()->builtins()->CallFunction(mode),
2431           RelocInfo::CODE_TARGET, equal);
2432 
2433   __ CmpInstanceType(rcx, JS_BOUND_FUNCTION_TYPE);
2434   __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction),
2435           RelocInfo::CODE_TARGET, equal);
2436 
2437   // Check if target has a [[Call]] internal method.
2438   __ testb(FieldOperand(rcx, Map::kBitFieldOffset),
2439            Immediate(Map::Bits1::IsCallableBit::kMask));
2440   __ j(zero, &non_callable, Label::kNear);
2441 
2442   // Check if target is a proxy and call CallProxy external builtin
2443   __ CmpInstanceType(rcx, JS_PROXY_TYPE);
2444   __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET,
2445           equal);
2446 
2447   // 2. Call to something else, which might have a [[Call]] internal method (if
2448   // not we raise an exception).
2449 
2450   // Overwrite the original receiver with the (original) target.
2451   __ movq(args.GetReceiverOperand(), rdi);
2452   // Let the "call_as_function_delegate" take care of the rest.
2453   __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, rdi);
2454   __ Jump(masm->isolate()->builtins()->CallFunction(
2455               ConvertReceiverMode::kNotNullOrUndefined),
2456           RelocInfo::CODE_TARGET);
2457 
2458   // 3. Call to something that is not callable.
2459   __ bind(&non_callable);
2460   {
2461     FrameScope scope(masm, StackFrame::INTERNAL);
2462     __ Push(rdi);
2463     __ CallRuntime(Runtime::kThrowCalledNonCallable);
2464   }
2465 }
2466 
2467 // static
Generate_ConstructFunction(MacroAssembler * masm)2468 void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
2469   // ----------- S t a t e -------------
2470   //  -- rax : the number of arguments (not including the receiver)
2471   //  -- rdx : the new target (checked to be a constructor)
2472   //  -- rdi : the constructor to call (checked to be a JSFunction)
2473   // -----------------------------------
2474   __ AssertConstructor(rdi);
2475   __ AssertFunction(rdi);
2476 
2477   // Calling convention for function specific ConstructStubs require
2478   // rbx to contain either an AllocationSite or undefined.
2479   __ LoadRoot(rbx, RootIndex::kUndefinedValue);
2480 
2481   // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric.
2482   __ LoadTaggedPointerField(
2483       rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset));
2484   __ testl(FieldOperand(rcx, SharedFunctionInfo::kFlagsOffset),
2485            Immediate(SharedFunctionInfo::ConstructAsBuiltinBit::kMask));
2486   __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub),
2487           RelocInfo::CODE_TARGET, not_zero);
2488 
2489   __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric),
2490           RelocInfo::CODE_TARGET);
2491 }
2492 
2493 // static
Generate_ConstructBoundFunction(MacroAssembler * masm)2494 void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
2495   // ----------- S t a t e -------------
2496   //  -- rax : the number of arguments (not including the receiver)
2497   //  -- rdx : the new target (checked to be a constructor)
2498   //  -- rdi : the constructor to call (checked to be a JSBoundFunction)
2499   // -----------------------------------
2500   __ AssertConstructor(rdi);
2501   __ AssertBoundFunction(rdi);
2502 
2503   // Push the [[BoundArguments]] onto the stack.
2504   Generate_PushBoundArguments(masm);
2505 
2506   // Patch new.target to [[BoundTargetFunction]] if new.target equals target.
2507   {
2508     Label done;
2509     __ cmpq(rdi, rdx);
2510     __ j(not_equal, &done, Label::kNear);
2511     __ LoadTaggedPointerField(
2512         rdx, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset));
2513     __ bind(&done);
2514   }
2515 
2516   // Construct the [[BoundTargetFunction]] via the Construct builtin.
2517   __ LoadTaggedPointerField(
2518       rdi, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset));
2519   __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
2520 }
2521 
2522 // static
Generate_Construct(MacroAssembler * masm)2523 void Builtins::Generate_Construct(MacroAssembler* masm) {
2524   // ----------- S t a t e -------------
2525   //  -- rax : the number of arguments (not including the receiver)
2526   //  -- rdx : the new target (either the same as the constructor or
2527   //           the JSFunction on which new was invoked initially)
2528   //  -- rdi : the constructor to call (can be any Object)
2529   // -----------------------------------
2530   StackArgumentsAccessor args(rax);
2531 
2532   // Check if target is a Smi.
2533   Label non_constructor;
2534   __ JumpIfSmi(rdi, &non_constructor);
2535 
2536   // Check if target has a [[Construct]] internal method.
2537   __ LoadTaggedPointerField(rcx, FieldOperand(rdi, HeapObject::kMapOffset));
2538   __ testb(FieldOperand(rcx, Map::kBitFieldOffset),
2539            Immediate(Map::Bits1::IsConstructorBit::kMask));
2540   __ j(zero, &non_constructor);
2541 
2542   // Dispatch based on instance type.
2543   __ CmpInstanceType(rcx, JS_FUNCTION_TYPE);
2544   __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction),
2545           RelocInfo::CODE_TARGET, equal);
2546 
2547   // Only dispatch to bound functions after checking whether they are
2548   // constructors.
2549   __ CmpInstanceType(rcx, JS_BOUND_FUNCTION_TYPE);
2550   __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction),
2551           RelocInfo::CODE_TARGET, equal);
2552 
2553   // Only dispatch to proxies after checking whether they are constructors.
2554   __ CmpInstanceType(rcx, JS_PROXY_TYPE);
2555   __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy), RelocInfo::CODE_TARGET,
2556           equal);
2557 
2558   // Called Construct on an exotic Object with a [[Construct]] internal method.
2559   {
2560     // Overwrite the original receiver with the (original) target.
2561     __ movq(args.GetReceiverOperand(), rdi);
2562     // Let the "call_as_constructor_delegate" take care of the rest.
2563     __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, rdi);
2564     __ Jump(masm->isolate()->builtins()->CallFunction(),
2565             RelocInfo::CODE_TARGET);
2566   }
2567 
2568   // Called Construct on an Object that doesn't have a [[Construct]] internal
2569   // method.
2570   __ bind(&non_constructor);
2571   __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
2572           RelocInfo::CODE_TARGET);
2573 }
2574 
Generate_InterpreterOnStackReplacement(MacroAssembler * masm)2575 void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
2576   {
2577     FrameScope scope(masm, StackFrame::INTERNAL);
2578     __ CallRuntime(Runtime::kCompileForOnStackReplacement);
2579   }
2580 
2581   Label skip;
2582   // If the code object is null, just return to the caller.
2583   __ testq(rax, rax);
2584   __ j(not_equal, &skip, Label::kNear);
2585   __ ret(0);
2586 
2587   __ bind(&skip);
2588 
2589   // Drop the handler frame that is be sitting on top of the actual
2590   // JavaScript frame. This is the case then OSR is triggered from bytecode.
2591   __ leave();
2592 
2593   // Load deoptimization data from the code object.
2594   __ LoadTaggedPointerField(rbx,
2595                             FieldOperand(rax, Code::kDeoptimizationDataOffset));
2596 
2597   // Load the OSR entrypoint offset from the deoptimization data.
2598   __ SmiUntagField(
2599       rbx, FieldOperand(rbx, FixedArray::OffsetOfElementAt(
2600                                  DeoptimizationData::kOsrPcOffsetIndex)));
2601 
2602   // Compute the target address = code_obj + header_size + osr_offset
2603   __ leaq(rax, FieldOperand(rax, rbx, times_1, Code::kHeaderSize));
2604 
2605   // Overwrite the return address on the stack.
2606   __ movq(StackOperandForReturnAddress(0), rax);
2607 
2608   // And "return" to the OSR entry point of the function.
2609   __ ret(0);
2610 }
2611 
Generate_WasmCompileLazy(MacroAssembler * masm)2612 void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
2613   // The function index was pushed to the stack by the caller as int32.
2614   __ Pop(r11);
2615   // Convert to Smi for the runtime call.
2616   __ SmiTag(r11);
2617   {
2618     HardAbortScope hard_abort(masm);  // Avoid calls to Abort.
2619     FrameScope scope(masm, StackFrame::WASM_COMPILE_LAZY);
2620 
2621     // Save all parameter registers (see wasm-linkage.cc). They might be
2622     // overwritten in the runtime call below. We don't have any callee-saved
2623     // registers in wasm, so no need to store anything else.
2624     static_assert(WasmCompileLazyFrameConstants::kNumberOfSavedGpParamRegs ==
2625                       arraysize(wasm::kGpParamRegisters),
2626                   "frame size mismatch");
2627     for (Register reg : wasm::kGpParamRegisters) {
2628       __ Push(reg);
2629     }
2630     static_assert(WasmCompileLazyFrameConstants::kNumberOfSavedFpParamRegs ==
2631                       arraysize(wasm::kFpParamRegisters),
2632                   "frame size mismatch");
2633     __ AllocateStackSpace(kSimd128Size * arraysize(wasm::kFpParamRegisters));
2634     int offset = 0;
2635     for (DoubleRegister reg : wasm::kFpParamRegisters) {
2636       __ movdqu(Operand(rsp, offset), reg);
2637       offset += kSimd128Size;
2638     }
2639 
2640     // Push the Wasm instance as an explicit argument to WasmCompileLazy.
2641     __ Push(kWasmInstanceRegister);
2642     // Push the function index as second argument.
2643     __ Push(r11);
2644     // Initialize the JavaScript context with 0. CEntry will use it to
2645     // set the current context on the isolate.
2646     __ Move(kContextRegister, Smi::zero());
2647     __ CallRuntime(Runtime::kWasmCompileLazy, 2);
2648     // The entrypoint address is the return value.
2649     __ movq(r11, kReturnRegister0);
2650 
2651     // Restore registers.
2652     for (DoubleRegister reg : base::Reversed(wasm::kFpParamRegisters)) {
2653       offset -= kSimd128Size;
2654       __ movdqu(reg, Operand(rsp, offset));
2655     }
2656     DCHECK_EQ(0, offset);
2657     __ addq(rsp, Immediate(kSimd128Size * arraysize(wasm::kFpParamRegisters)));
2658     for (Register reg : base::Reversed(wasm::kGpParamRegisters)) {
2659       __ Pop(reg);
2660     }
2661   }
2662   // Finally, jump to the entrypoint.
2663   __ jmp(r11);
2664 }
2665 
Generate_WasmDebugBreak(MacroAssembler * masm)2666 void Builtins::Generate_WasmDebugBreak(MacroAssembler* masm) {
2667   HardAbortScope hard_abort(masm);  // Avoid calls to Abort.
2668   {
2669     FrameScope scope(masm, StackFrame::WASM_DEBUG_BREAK);
2670 
2671     // Save all parameter registers. They might hold live values, we restore
2672     // them after the runtime call.
2673     for (int reg_code : base::bits::IterateBitsBackwards(
2674              WasmDebugBreakFrameConstants::kPushedGpRegs)) {
2675       __ Push(Register::from_code(reg_code));
2676     }
2677 
2678     constexpr int kFpStackSize =
2679         kSimd128Size * WasmDebugBreakFrameConstants::kNumPushedFpRegisters;
2680     __ AllocateStackSpace(kFpStackSize);
2681     int offset = kFpStackSize;
2682     for (int reg_code : base::bits::IterateBitsBackwards(
2683              WasmDebugBreakFrameConstants::kPushedFpRegs)) {
2684       offset -= kSimd128Size;
2685       __ movdqu(Operand(rsp, offset), DoubleRegister::from_code(reg_code));
2686     }
2687 
2688     // Initialize the JavaScript context with 0. CEntry will use it to
2689     // set the current context on the isolate.
2690     __ Move(kContextRegister, Smi::zero());
2691     __ CallRuntime(Runtime::kWasmDebugBreak, 0);
2692 
2693     // Restore registers.
2694     for (int reg_code :
2695          base::bits::IterateBits(WasmDebugBreakFrameConstants::kPushedFpRegs)) {
2696       __ movdqu(DoubleRegister::from_code(reg_code), Operand(rsp, offset));
2697       offset += kSimd128Size;
2698     }
2699     __ addq(rsp, Immediate(kFpStackSize));
2700     for (int reg_code :
2701          base::bits::IterateBits(WasmDebugBreakFrameConstants::kPushedGpRegs)) {
2702       __ Pop(Register::from_code(reg_code));
2703     }
2704   }
2705 
2706   __ ret(0);
2707 }
2708 
Generate_CEntry(MacroAssembler * masm,int result_size,SaveFPRegsMode save_doubles,ArgvMode argv_mode,bool builtin_exit_frame)2709 void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size,
2710                                SaveFPRegsMode save_doubles, ArgvMode argv_mode,
2711                                bool builtin_exit_frame) {
2712   // rax: number of arguments including receiver
2713   // rbx: pointer to C function  (C callee-saved)
2714   // rbp: frame pointer of calling JS frame (restored after C call)
2715   // rsp: stack pointer  (restored after C call)
2716   // rsi: current context (restored)
2717   //
2718   // If argv_mode == kArgvInRegister:
2719   // r15: pointer to the first argument
2720 
2721 #ifdef V8_TARGET_OS_WIN
2722   // Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9. It requires the
2723   // stack to be aligned to 16 bytes. It only allows a single-word to be
2724   // returned in register rax. Larger return sizes must be written to an address
2725   // passed as a hidden first argument.
2726   const Register kCCallArg0 = rcx;
2727   const Register kCCallArg1 = rdx;
2728   const Register kCCallArg2 = r8;
2729   const Register kCCallArg3 = r9;
2730   const int kArgExtraStackSpace = 2;
2731   const int kMaxRegisterResultSize = 1;
2732 #else
2733   // GCC / Clang passes arguments in rdi, rsi, rdx, rcx, r8, r9. Simple results
2734   // are returned in rax, and a struct of two pointers are returned in rax+rdx.
2735   // Larger return sizes must be written to an address passed as a hidden first
2736   // argument.
2737   const Register kCCallArg0 = rdi;
2738   const Register kCCallArg1 = rsi;
2739   const Register kCCallArg2 = rdx;
2740   const Register kCCallArg3 = rcx;
2741   const int kArgExtraStackSpace = 0;
2742   const int kMaxRegisterResultSize = 2;
2743 #endif  // V8_TARGET_OS_WIN
2744 
2745   // Enter the exit frame that transitions from JavaScript to C++.
2746   int arg_stack_space =
2747       kArgExtraStackSpace +
2748       (result_size <= kMaxRegisterResultSize ? 0 : result_size);
2749   if (argv_mode == kArgvInRegister) {
2750     DCHECK(save_doubles == kDontSaveFPRegs);
2751     DCHECK(!builtin_exit_frame);
2752     __ EnterApiExitFrame(arg_stack_space);
2753     // Move argc into r14 (argv is already in r15).
2754     __ movq(r14, rax);
2755   } else {
2756     __ EnterExitFrame(
2757         arg_stack_space, save_doubles == kSaveFPRegs,
2758         builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);
2759   }
2760 
2761   // rbx: pointer to builtin function  (C callee-saved).
2762   // rbp: frame pointer of exit frame  (restored after C call).
2763   // rsp: stack pointer (restored after C call).
2764   // r14: number of arguments including receiver (C callee-saved).
2765   // r15: argv pointer (C callee-saved).
2766 
2767   // Check stack alignment.
2768   if (FLAG_debug_code) {
2769     __ CheckStackAlignment();
2770   }
2771 
2772   // Call C function. The arguments object will be created by stubs declared by
2773   // DECLARE_RUNTIME_FUNCTION().
2774   if (result_size <= kMaxRegisterResultSize) {
2775     // Pass a pointer to the Arguments object as the first argument.
2776     // Return result in single register (rax), or a register pair (rax, rdx).
2777     __ movq(kCCallArg0, r14);  // argc.
2778     __ movq(kCCallArg1, r15);  // argv.
2779     __ Move(kCCallArg2, ExternalReference::isolate_address(masm->isolate()));
2780   } else {
2781     DCHECK_LE(result_size, 2);
2782     // Pass a pointer to the result location as the first argument.
2783     __ leaq(kCCallArg0, StackSpaceOperand(kArgExtraStackSpace));
2784     // Pass a pointer to the Arguments object as the second argument.
2785     __ movq(kCCallArg1, r14);  // argc.
2786     __ movq(kCCallArg2, r15);  // argv.
2787     __ Move(kCCallArg3, ExternalReference::isolate_address(masm->isolate()));
2788   }
2789   __ call(rbx);
2790 
2791   if (result_size > kMaxRegisterResultSize) {
2792     // Read result values stored on stack. Result is stored
2793     // above the the two Arguments object slots on Win64.
2794     DCHECK_LE(result_size, 2);
2795     __ movq(kReturnRegister0, StackSpaceOperand(kArgExtraStackSpace + 0));
2796     __ movq(kReturnRegister1, StackSpaceOperand(kArgExtraStackSpace + 1));
2797   }
2798   // Result is in rax or rdx:rax - do not destroy these registers!
2799 
2800   // Check result for exception sentinel.
2801   Label exception_returned;
2802   __ CompareRoot(rax, RootIndex::kException);
2803   __ j(equal, &exception_returned);
2804 
2805   // Check that there is no pending exception, otherwise we
2806   // should have returned the exception sentinel.
2807   if (FLAG_debug_code) {
2808     Label okay;
2809     __ LoadRoot(r14, RootIndex::kTheHoleValue);
2810     ExternalReference pending_exception_address = ExternalReference::Create(
2811         IsolateAddressId::kPendingExceptionAddress, masm->isolate());
2812     Operand pending_exception_operand =
2813         masm->ExternalReferenceAsOperand(pending_exception_address);
2814     __ cmp_tagged(r14, pending_exception_operand);
2815     __ j(equal, &okay, Label::kNear);
2816     __ int3();
2817     __ bind(&okay);
2818   }
2819 
2820   // Exit the JavaScript to C++ exit frame.
2821   __ LeaveExitFrame(save_doubles == kSaveFPRegs, argv_mode == kArgvOnStack);
2822   __ ret(0);
2823 
2824   // Handling of exception.
2825   __ bind(&exception_returned);
2826 
2827   ExternalReference pending_handler_context_address = ExternalReference::Create(
2828       IsolateAddressId::kPendingHandlerContextAddress, masm->isolate());
2829   ExternalReference pending_handler_entrypoint_address =
2830       ExternalReference::Create(
2831           IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate());
2832   ExternalReference pending_handler_fp_address = ExternalReference::Create(
2833       IsolateAddressId::kPendingHandlerFPAddress, masm->isolate());
2834   ExternalReference pending_handler_sp_address = ExternalReference::Create(
2835       IsolateAddressId::kPendingHandlerSPAddress, masm->isolate());
2836 
2837   // Ask the runtime for help to determine the handler. This will set rax to
2838   // contain the current pending exception, don't clobber it.
2839   ExternalReference find_handler =
2840       ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler);
2841   {
2842     FrameScope scope(masm, StackFrame::MANUAL);
2843     __ movq(arg_reg_1, Immediate(0));  // argc.
2844     __ movq(arg_reg_2, Immediate(0));  // argv.
2845     __ Move(arg_reg_3, ExternalReference::isolate_address(masm->isolate()));
2846     __ PrepareCallCFunction(3);
2847     __ CallCFunction(find_handler, 3);
2848   }
2849   // Retrieve the handler context, SP and FP.
2850   __ movq(rsi,
2851           masm->ExternalReferenceAsOperand(pending_handler_context_address));
2852   __ movq(rsp, masm->ExternalReferenceAsOperand(pending_handler_sp_address));
2853   __ movq(rbp, masm->ExternalReferenceAsOperand(pending_handler_fp_address));
2854 
2855   // If the handler is a JS frame, restore the context to the frame. Note that
2856   // the context will be set to (rsi == 0) for non-JS frames.
2857   Label skip;
2858   __ testq(rsi, rsi);
2859   __ j(zero, &skip, Label::kNear);
2860   __ movq(Operand(rbp, StandardFrameConstants::kContextOffset), rsi);
2861   __ bind(&skip);
2862 
2863   // Reset the masking register. This is done independent of the underlying
2864   // feature flag {FLAG_untrusted_code_mitigations} to make the snapshot work
2865   // with both configurations. It is safe to always do this, because the
2866   // underlying register is caller-saved and can be arbitrarily clobbered.
2867   __ ResetSpeculationPoisonRegister();
2868 
2869   // Compute the handler entry address and jump to it.
2870   __ movq(rdi,
2871           masm->ExternalReferenceAsOperand(pending_handler_entrypoint_address));
2872   __ jmp(rdi);
2873 }
2874 
Generate_DoubleToI(MacroAssembler * masm)2875 void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
2876   Label check_negative, process_64_bits, done;
2877 
2878   // Account for return address and saved regs.
2879   const int kArgumentOffset = 4 * kSystemPointerSize;
2880 
2881   MemOperand mantissa_operand(MemOperand(rsp, kArgumentOffset));
2882   MemOperand exponent_operand(
2883       MemOperand(rsp, kArgumentOffset + kDoubleSize / 2));
2884 
2885   // The result is returned on the stack.
2886   MemOperand return_operand = mantissa_operand;
2887 
2888   Register scratch1 = rbx;
2889 
2890   // Since we must use rcx for shifts below, use some other register (rax)
2891   // to calculate the result if ecx is the requested return register.
2892   Register result_reg = rax;
2893   // Save ecx if it isn't the return register and therefore volatile, or if it
2894   // is the return register, then save the temp register we use in its stead
2895   // for the result.
2896   Register save_reg = rax;
2897   __ pushq(rcx);
2898   __ pushq(scratch1);
2899   __ pushq(save_reg);
2900 
2901   __ movl(scratch1, mantissa_operand);
2902   __ Movsd(kScratchDoubleReg, mantissa_operand);
2903   __ movl(rcx, exponent_operand);
2904 
2905   __ andl(rcx, Immediate(HeapNumber::kExponentMask));
2906   __ shrl(rcx, Immediate(HeapNumber::kExponentShift));
2907   __ leal(result_reg, MemOperand(rcx, -HeapNumber::kExponentBias));
2908   __ cmpl(result_reg, Immediate(HeapNumber::kMantissaBits));
2909   __ j(below, &process_64_bits, Label::kNear);
2910 
2911   // Result is entirely in lower 32-bits of mantissa
2912   int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
2913   __ subl(rcx, Immediate(delta));
2914   __ xorl(result_reg, result_reg);
2915   __ cmpl(rcx, Immediate(31));
2916   __ j(above, &done, Label::kNear);
2917   __ shll_cl(scratch1);
2918   __ jmp(&check_negative, Label::kNear);
2919 
2920   __ bind(&process_64_bits);
2921   __ Cvttsd2siq(result_reg, kScratchDoubleReg);
2922   __ jmp(&done, Label::kNear);
2923 
2924   // If the double was negative, negate the integer result.
2925   __ bind(&check_negative);
2926   __ movl(result_reg, scratch1);
2927   __ negl(result_reg);
2928   __ cmpl(exponent_operand, Immediate(0));
2929   __ cmovl(greater, result_reg, scratch1);
2930 
2931   // Restore registers
2932   __ bind(&done);
2933   __ movl(return_operand, result_reg);
2934   __ popq(save_reg);
2935   __ popq(scratch1);
2936   __ popq(rcx);
2937   __ ret(0);
2938 }
2939 
2940 namespace {
2941 // Helper functions for the GenericJSToWasmWrapper.
PrepareForBuiltinCall(MacroAssembler * masm,MemOperand GCScanSlotPlace,const int GCScanSlotCount,Register current_param,Register param_limit,Register current_int_param_slot,Register current_float_param_slot,Register valuetypes_array_ptr,Register wasm_instance,Register function_data)2942 void PrepareForBuiltinCall(MacroAssembler* masm, MemOperand GCScanSlotPlace,
2943                            const int GCScanSlotCount, Register current_param,
2944                            Register param_limit,
2945                            Register current_int_param_slot,
2946                            Register current_float_param_slot,
2947                            Register valuetypes_array_ptr,
2948                            Register wasm_instance, Register function_data) {
2949   // Pushes and puts the values in order onto the stack before builtin calls for
2950   // the GenericJSToWasmWrapper.
2951   __ movq(GCScanSlotPlace, Immediate(GCScanSlotCount));
2952   __ pushq(current_param);
2953   __ pushq(param_limit);
2954   __ pushq(current_int_param_slot);
2955   __ pushq(current_float_param_slot);
2956   __ pushq(valuetypes_array_ptr);
2957   __ pushq(wasm_instance);
2958   __ pushq(function_data);
2959   // We had to prepare the parameters for the Call: we have to put the context
2960   // into rsi.
2961   __ LoadAnyTaggedField(
2962       rsi,
2963       MemOperand(wasm_instance, wasm::ObjectAccess::ToTagged(
2964                                     WasmInstanceObject::kNativeContextOffset)));
2965 }
2966 
RestoreAfterBuiltinCall(MacroAssembler * masm,Register function_data,Register wasm_instance,Register valuetypes_array_ptr,Register current_float_param_slot,Register current_int_param_slot,Register param_limit,Register current_param)2967 void RestoreAfterBuiltinCall(MacroAssembler* masm, Register function_data,
2968                              Register wasm_instance,
2969                              Register valuetypes_array_ptr,
2970                              Register current_float_param_slot,
2971                              Register current_int_param_slot,
2972                              Register param_limit, Register current_param) {
2973   // Pop and load values from the stack in order into the registers after
2974   // builtin calls for the GenericJSToWasmWrapper.
2975   __ popq(function_data);
2976   __ popq(wasm_instance);
2977   __ popq(valuetypes_array_ptr);
2978   __ popq(current_float_param_slot);
2979   __ popq(current_int_param_slot);
2980   __ popq(param_limit);
2981   __ popq(current_param);
2982 }
2983 }  // namespace
2984 
Generate_GenericJSToWasmWrapper(MacroAssembler * masm)2985 void Builtins::Generate_GenericJSToWasmWrapper(MacroAssembler* masm) {
2986   // Set up the stackframe.
2987   __ EnterFrame(StackFrame::JS_TO_WASM);
2988 
2989   // -------------------------------------------
2990   // Compute offsets and prepare for GC.
2991   // -------------------------------------------
2992   // We will have to save a value indicating the GC the number
2993   // of values on the top of the stack that have to be scanned before calling
2994   // the Wasm function.
2995   constexpr int kFrameMarkerOffset = -kSystemPointerSize;
2996   constexpr int kGCScanSlotCountOffset =
2997       kFrameMarkerOffset - kSystemPointerSize;
2998   constexpr int kParamCountOffset = kGCScanSlotCountOffset - kSystemPointerSize;
2999   constexpr int kReturnCountOffset = kParamCountOffset - kSystemPointerSize;
3000   constexpr int kValueTypesArrayStartOffset =
3001       kReturnCountOffset - kSystemPointerSize;
3002   // We set and use this slot only when moving parameters into the parameter
3003   // registers (so no GC scan is needed).
3004   constexpr int kFunctionDataOffset =
3005       kValueTypesArrayStartOffset - kSystemPointerSize;
3006   constexpr int kLastSpillOffset = kFunctionDataOffset;
3007   constexpr int kNumSpillSlots = 5;
3008   __ subq(rsp, Immediate(kNumSpillSlots * kSystemPointerSize));
3009 
3010   // -------------------------------------------
3011   // Load the Wasm exported function data and the Wasm instance.
3012   // -------------------------------------------
3013   Register closure = rdi;
3014   Register shared_function_info = closure;
3015   __ LoadAnyTaggedField(
3016       shared_function_info,
3017       MemOperand(
3018           closure,
3019           wasm::ObjectAccess::SharedFunctionInfoOffsetInTaggedJSFunction()));
3020   closure = no_reg;
3021   Register function_data = shared_function_info;
3022   __ LoadAnyTaggedField(
3023       function_data,
3024       MemOperand(shared_function_info,
3025                  SharedFunctionInfo::kFunctionDataOffset - kHeapObjectTag));
3026   shared_function_info = no_reg;
3027 
3028   Register wasm_instance = rsi;
3029   __ LoadAnyTaggedField(
3030       wasm_instance,
3031       MemOperand(function_data,
3032                  WasmExportedFunctionData::kInstanceOffset - kHeapObjectTag));
3033 
3034   // -------------------------------------------
3035   // Increment the call count in function data.
3036   // -------------------------------------------
3037   __ SmiAddConstant(
3038       MemOperand(function_data,
3039                  WasmExportedFunctionData::kCallCountOffset - kHeapObjectTag),
3040       Smi::FromInt(1));
3041 
3042   // -------------------------------------------
3043   // Check if the call count reached the threshold.
3044   // -------------------------------------------
3045   Label compile_wrapper, compile_wrapper_done;
3046   __ SmiCompare(
3047       MemOperand(function_data,
3048                  WasmExportedFunctionData::kCallCountOffset - kHeapObjectTag),
3049       Smi::FromInt(wasm::kGenericWrapperThreshold));
3050   __ j(greater_equal, &compile_wrapper);
3051   __ bind(&compile_wrapper_done);
3052 
3053   // -------------------------------------------
3054   // Load values from the signature.
3055   // -------------------------------------------
3056   Register foreign_signature = r11;
3057   __ LoadAnyTaggedField(
3058       foreign_signature,
3059       MemOperand(function_data,
3060                  WasmExportedFunctionData::kSignatureOffset - kHeapObjectTag));
3061   Register signature = foreign_signature;
3062   __ LoadExternalPointerField(
3063       signature,
3064       FieldOperand(foreign_signature, Foreign::kForeignAddressOffset),
3065       kForeignForeignAddressTag);
3066   foreign_signature = no_reg;
3067   Register return_count = r8;
3068   __ movq(return_count,
3069           MemOperand(signature, wasm::FunctionSig::kReturnCountOffset));
3070   Register param_count = rcx;
3071   __ movq(param_count,
3072           MemOperand(signature, wasm::FunctionSig::kParameterCountOffset));
3073   Register valuetypes_array_ptr = signature;
3074   __ movq(valuetypes_array_ptr,
3075           MemOperand(signature, wasm::FunctionSig::kRepsOffset));
3076   signature = no_reg;
3077 
3078   // -------------------------------------------
3079   // Store signature-related values to the stack.
3080   // -------------------------------------------
3081   // We store values on the stack to restore them after function calls.
3082   // We cannot push values onto the stack right before the wasm call. The wasm
3083   // function expects the parameters, that didn't fit into the registers, on the
3084   // top of the stack.
3085   __ movq(MemOperand(rbp, kParamCountOffset), param_count);
3086   __ movq(MemOperand(rbp, kReturnCountOffset), return_count);
3087   __ movq(MemOperand(rbp, kValueTypesArrayStartOffset), valuetypes_array_ptr);
3088 
3089   // -------------------------------------------
3090   // Parameter handling.
3091   // -------------------------------------------
3092   Label prepare_for_wasm_call;
3093   __ Cmp(param_count, 0);
3094 
3095   // IF we have 0 params: jump through parameter handling.
3096   __ j(equal, &prepare_for_wasm_call);
3097 
3098   // -------------------------------------------
3099   // Create 2 sections for integer and float params.
3100   // -------------------------------------------
3101   // We will create 2 sections on the stack for the evaluated parameters:
3102   // Integer and Float section, both with parameter count size. We will place
3103   // the parameters into these sections depending on their valuetype. This way
3104   // we can easily fill the general purpose and floating point parameter
3105   // registers and place the remaining parameters onto the stack in proper order
3106   // for the Wasm function. These remaining params are the final stack
3107   // parameters for the call to WebAssembly. Example of the stack layout after
3108   // processing 2 int and 1 float parameters when param_count is 4.
3109   //   +-----------------+
3110   //   |      rbp        |
3111   //   |-----------------|-------------------------------
3112   //   |                 |   Slots we defined
3113   //   |   Saved values  |    when setting up
3114   //   |                 |     the stack
3115   //   |                 |
3116   //   +-Integer section-+--- <--- start_int_section ----
3117   //   |  1st int param  |
3118   //   |- - - - - - - - -|
3119   //   |  2nd int param  |
3120   //   |- - - - - - - - -|  <----- current_int_param_slot
3121   //   |                 |       (points to the stackslot
3122   //   |- - - - - - - - -|  where the next int param should be placed)
3123   //   |                 |
3124   //   +--Float section--+--- <--- start_float_section --
3125   //   | 1st float param |
3126   //   |- - - - - - - - -|  <----  current_float_param_slot
3127   //   |                 |       (points to the stackslot
3128   //   |- - - - - - - - -|  where the next float param should be placed)
3129   //   |                 |
3130   //   |- - - - - - - - -|
3131   //   |                 |
3132   //   +---Final stack---+------------------------------
3133   //   +-parameters for--+------------------------------
3134   //   +-the Wasm call---+------------------------------
3135   //   |      . . .      |
3136 
3137   constexpr int kIntegerSectionStartOffset =
3138       kLastSpillOffset - kSystemPointerSize;
3139   // For Integer section.
3140   // Set the current_int_param_slot to point to the start of the section.
3141   Register current_int_param_slot = r14;
3142   __ leaq(current_int_param_slot, MemOperand(rsp, -kSystemPointerSize));
3143   Register params_size = param_count;
3144   param_count = no_reg;
3145   __ shlq(params_size, Immediate(kSystemPointerSizeLog2));
3146   __ subq(rsp, params_size);
3147 
3148   // For Float section.
3149   // Set the current_float_param_slot to point to the start of the section.
3150   Register current_float_param_slot = r15;
3151   __ leaq(current_float_param_slot, MemOperand(rsp, -kSystemPointerSize));
3152   __ subq(rsp, params_size);
3153   params_size = no_reg;
3154   param_count = rcx;
3155   __ movq(param_count, MemOperand(rbp, kParamCountOffset));
3156 
3157   // -------------------------------------------
3158   // Set up for the param evaluation loop.
3159   // -------------------------------------------
3160   // We will loop through the params starting with the 1st param.
3161   // The order of processing the params is important. We have to evaluate them
3162   // in an increasing order.
3163   //      Not reversed                Reversed
3164   //   +-----------------+------+-----------------+---------------
3165   //   |    receiver     |      |     param n     |
3166   //   |- - - - - - - - -|      |- - - - - - - - -|
3167   //   |      param 1    |      |    param n-1    |   Caller
3168   //   |       ...       |      |       ...       | frame slots
3169   //   |    param n-1    |      |     param 1     |
3170   //   |- - - - - - - - -|      |- - - - - - - - -|
3171   //   |     param n     |      |    receiver     |
3172   //  -+-----------------+------+-----------------+---------------
3173   //   |  return addr    |      |  return addr    |
3174   //   |- - - - - - - - -|<-FP->|- - - - - - - - -|
3175   //   |      rbp        |      |      rbp        |   Spill slots
3176   //   |- - - - - - - - -|      |- - - - - - - - -|
3177   //
3178   // [rbp + current_param] gives us the parameter we are processing.
3179   // We iterate through half-open interval <1st param, [rbp + param_limit]).
3180 
3181   Register current_param = rbx;
3182   Register param_limit = rdx;
3183   constexpr int kReceiverOnStackSize = kSystemPointerSize;
3184   __ movq(current_param,
3185           Immediate(kFPOnStackSize + kPCOnStackSize + kReceiverOnStackSize));
3186   __ movq(param_limit, param_count);
3187   __ shlq(param_limit, Immediate(kSystemPointerSizeLog2));
3188   __ addq(param_limit,
3189           Immediate(kFPOnStackSize + kPCOnStackSize + kReceiverOnStackSize));
3190   const int increment = kSystemPointerSize;
3191   Register param = rax;
3192   // We have to check the types of the params. The ValueType array contains
3193   // first the return then the param types.
3194   constexpr int kValueTypeSize = sizeof(wasm::ValueType);
3195   STATIC_ASSERT(kValueTypeSize == 4);
3196   const int32_t kValueTypeSizeLog2 = log2(kValueTypeSize);
3197   // Set the ValueType array pointer to point to the first parameter.
3198   Register returns_size = return_count;
3199   return_count = no_reg;
3200   __ shlq(returns_size, Immediate(kValueTypeSizeLog2));
3201   __ addq(valuetypes_array_ptr, returns_size);
3202   returns_size = no_reg;
3203   Register valuetype = r12;
3204 
3205   // -------------------------------------------
3206   // Param evaluation loop.
3207   // -------------------------------------------
3208   Label loop_through_params;
3209   __ bind(&loop_through_params);
3210 
3211   __ movq(param, MemOperand(rbp, current_param, times_1, 0));
3212   __ movl(valuetype,
3213           Operand(valuetypes_array_ptr, wasm::ValueType::bit_field_offset()));
3214 
3215   // -------------------------------------------
3216   // Param conversion.
3217   // -------------------------------------------
3218   // If param is a Smi we can easily convert it. Otherwise we'll call a builtin
3219   // for conversion.
3220   Label convert_param;
3221   __ cmpq(valuetype, Immediate(wasm::kWasmI32.raw_bit_field()));
3222   __ j(not_equal, &convert_param);
3223   __ JumpIfNotSmi(param, &convert_param);
3224   // Change the paramfrom Smi to int32.
3225   __ SmiUntag(param);
3226   // Zero extend.
3227   __ movl(param, param);
3228   // Place the param into the proper slot in Integer section.
3229   __ movq(MemOperand(current_int_param_slot, 0), param);
3230   __ subq(current_int_param_slot, Immediate(kSystemPointerSize));
3231 
3232   // -------------------------------------------
3233   // Param conversion done.
3234   // -------------------------------------------
3235   Label param_conversion_done;
3236   __ bind(&param_conversion_done);
3237 
3238   __ addq(current_param, Immediate(increment));
3239   __ addq(valuetypes_array_ptr, Immediate(kValueTypeSize));
3240 
3241   __ cmpq(current_param, param_limit);
3242   __ j(not_equal, &loop_through_params);
3243 
3244   // -------------------------------------------
3245   // Move the parameters into the proper param registers.
3246   // -------------------------------------------
3247   // The Wasm function expects that the params can be popped from the top of the
3248   // stack in an increasing order.
3249   // We can always move the values on the beginning of the sections into the GP
3250   // or FP parameter registers. If the parameter count is less than the number
3251   // of parameter registers, we may move values into the registers that are not
3252   // in the section.
3253   // ----------- S t a t e -------------
3254   //  -- r8  : start_int_section
3255   //  -- rdi : start_float_section
3256   //  -- r14 : current_int_param_slot
3257   //  -- r15 : current_float_param_slot
3258   //  -- r11 : valuetypes_array_ptr
3259   //  -- r12 : valuetype
3260   //  -- rsi : wasm_instance
3261   //  -- GpParamRegisters = rax, rdx, rcx, rbx, r9
3262   // -----------------------------------
3263 
3264   Register temp_params_size = rax;
3265   __ movq(temp_params_size, MemOperand(rbp, kParamCountOffset));
3266   __ shlq(temp_params_size, Immediate(kSystemPointerSizeLog2));
3267   // We want to use the register of the function_data = rdi.
3268   __ movq(MemOperand(rbp, kFunctionDataOffset), function_data);
3269   Register start_float_section = function_data;
3270   function_data = no_reg;
3271   __ movq(start_float_section, rbp);
3272   __ addq(start_float_section, Immediate(kIntegerSectionStartOffset));
3273   __ subq(start_float_section, temp_params_size);
3274   temp_params_size = no_reg;
3275   // Fill the FP param registers.
3276   __ Movsd(xmm1, MemOperand(start_float_section, 0));
3277   __ Movsd(xmm2, MemOperand(start_float_section, -kSystemPointerSize));
3278   __ Movsd(xmm3, MemOperand(start_float_section, -2 * kSystemPointerSize));
3279   __ Movsd(xmm4, MemOperand(start_float_section, -3 * kSystemPointerSize));
3280   __ Movsd(xmm5, MemOperand(start_float_section, -4 * kSystemPointerSize));
3281   __ Movsd(xmm6, MemOperand(start_float_section, -5 * kSystemPointerSize));
3282   // We want the start to point to the last properly placed param.
3283   __ subq(start_float_section, Immediate(5 * kSystemPointerSize));
3284 
3285   Register start_int_section = r8;
3286   __ movq(start_int_section, rbp);
3287   __ addq(start_int_section, Immediate(kIntegerSectionStartOffset));
3288   // Fill the GP param registers.
3289   __ movq(rax, MemOperand(start_int_section, 0));
3290   __ movq(rdx, MemOperand(start_int_section, -kSystemPointerSize));
3291   __ movq(rcx, MemOperand(start_int_section, -2 * kSystemPointerSize));
3292   __ movq(rbx, MemOperand(start_int_section, -3 * kSystemPointerSize));
3293   __ movq(r9, MemOperand(start_int_section, -4 * kSystemPointerSize));
3294   // We want the start to point to the last properly placed param.
3295   __ subq(start_int_section, Immediate(4 * kSystemPointerSize));
3296 
3297   // -------------------------------------------
3298   // Place the final stack parameters to the proper place.
3299   // -------------------------------------------
3300   // We want the current_param_slot (insertion) pointers to point at the last
3301   // param of the section instead of the next free slot.
3302   __ addq(current_int_param_slot, Immediate(kSystemPointerSize));
3303   __ addq(current_float_param_slot, Immediate(kSystemPointerSize));
3304 
3305   // -------------------------------------------
3306   // Final stack parameters loop.
3307   // -------------------------------------------
3308   // The parameters that didn't fit into the registers should be placed on the
3309   // top of the stack contiguously. The interval of parameters between the
3310   // start_section and the current_param_slot pointers define the remaining
3311   // parameters of the section.
3312   // We can iterate through the valuetypes array to decide from which section we
3313   // need to push the parameter onto the top of the stack. By iterating in a
3314   // reversed order we can easily pick the last parameter of the proper section.
3315   // The parameter of the section is pushed on the top of the stack only if the
3316   // interval of remaining params is not empty. This way we ensure that only
3317   // params that didn't fit into param registers are pushed again.
3318 
3319   Label loop_through_valuetypes;
3320   __ bind(&loop_through_valuetypes);
3321 
3322   // We iterated through the valuetypes array, we are one field over the end in
3323   // the beginning. Also, we have to decrement it in each iteration.
3324   __ subq(valuetypes_array_ptr, Immediate(kValueTypeSize));
3325 
3326   // Check if there are still remaining integer params.
3327   Label continue_loop;
3328   __ cmpq(start_int_section, current_int_param_slot);
3329   // If there are remaining integer params.
3330   __ j(greater, &continue_loop);
3331 
3332   // Check if there are still remaining float params.
3333   __ cmpq(start_float_section, current_float_param_slot);
3334   // If there aren't any params remaining.
3335   Label params_done;
3336   __ j(less_equal, &params_done);
3337 
3338   __ bind(&continue_loop);
3339   __ movl(valuetype,
3340           Operand(valuetypes_array_ptr, wasm::ValueType::bit_field_offset()));
3341   Label place_integer_param;
3342   Label place_float_param;
3343   __ cmpq(valuetype, Immediate(wasm::kWasmI32.raw_bit_field()));
3344   __ j(equal, &place_integer_param);
3345 
3346   __ cmpq(valuetype, Immediate(wasm::kWasmI64.raw_bit_field()));
3347   __ j(equal, &place_integer_param);
3348 
3349   __ cmpq(valuetype, Immediate(wasm::kWasmF32.raw_bit_field()));
3350   __ j(equal, &place_float_param);
3351 
3352   __ cmpq(valuetype, Immediate(wasm::kWasmF64.raw_bit_field()));
3353   __ j(equal, &place_float_param);
3354 
3355   __ int3();
3356 
3357   __ bind(&place_integer_param);
3358   __ cmpq(start_int_section, current_int_param_slot);
3359   // If there aren't any integer params remaining, just floats, then go to the
3360   // next valuetype.
3361   __ j(less_equal, &loop_through_valuetypes);
3362 
3363   // Copy the param from the integer section to the actual parameter area.
3364   __ pushq(MemOperand(current_int_param_slot, 0));
3365   __ addq(current_int_param_slot, Immediate(kSystemPointerSize));
3366   __ jmp(&loop_through_valuetypes);
3367 
3368   __ bind(&place_float_param);
3369   __ cmpq(start_float_section, current_float_param_slot);
3370   // If there aren't any float params remaining, just integers, then go to the
3371   // next valuetype.
3372   __ j(less_equal, &loop_through_valuetypes);
3373 
3374   // Copy the param from the float section to the actual parameter area.
3375   __ pushq(MemOperand(current_float_param_slot, 0));
3376   __ addq(current_float_param_slot, Immediate(kSystemPointerSize));
3377   __ jmp(&loop_through_valuetypes);
3378 
3379   __ bind(&params_done);
3380   // Restore function_data after we are done with parameter placement.
3381   function_data = rdi;
3382   __ movq(function_data, MemOperand(rbp, kFunctionDataOffset));
3383 
3384   __ bind(&prepare_for_wasm_call);
3385   // -------------------------------------------
3386   // Prepare for the Wasm call.
3387   // -------------------------------------------
3388   // Set thread_in_wasm_flag.
3389   Register thread_in_wasm_flag_addr = r12;
3390   __ movq(
3391       thread_in_wasm_flag_addr,
3392       MemOperand(kRootRegister, Isolate::thread_in_wasm_flag_address_offset()));
3393   __ movl(MemOperand(thread_in_wasm_flag_addr, 0), Immediate(1));
3394 
3395   Register jump_table_start = thread_in_wasm_flag_addr;
3396   __ movq(jump_table_start,
3397           MemOperand(wasm_instance,
3398                      wasm::ObjectAccess::ToTagged(
3399                          WasmInstanceObject::kJumpTableStartOffset)));
3400   thread_in_wasm_flag_addr = no_reg;
3401 
3402   Register jump_table_offset = function_data;
3403   __ LoadAnyTaggedField(
3404       jump_table_offset,
3405       MemOperand(
3406           function_data,
3407           WasmExportedFunctionData::kJumpTableOffsetOffset - kHeapObjectTag));
3408 
3409   // Change from smi to integer.
3410   __ SmiUntag(jump_table_offset);
3411 
3412   Register function_entry = jump_table_offset;
3413   __ addq(function_entry, jump_table_start);
3414   jump_table_offset = no_reg;
3415   jump_table_start = no_reg;
3416 
3417   // We set the indicating value for the GC to the proper one for Wasm call.
3418   constexpr int kWasmCallGCScanSlotCount = 0;
3419   __ movq(MemOperand(rbp, kGCScanSlotCountOffset),
3420           Immediate(kWasmCallGCScanSlotCount));
3421 
3422   // -------------------------------------------
3423   // Call the Wasm function.
3424   // -------------------------------------------
3425   __ call(function_entry);
3426   function_entry = no_reg;
3427 
3428   // -------------------------------------------
3429   // Resetting after the Wasm call.
3430   // -------------------------------------------
3431   // Restore rsp to free the reserved stack slots for the sections.
3432   __ leaq(rsp, MemOperand(rbp, kLastSpillOffset));
3433 
3434   // Unset thread_in_wasm_flag.
3435   thread_in_wasm_flag_addr = r8;
3436   __ movq(
3437       thread_in_wasm_flag_addr,
3438       MemOperand(kRootRegister, Isolate::thread_in_wasm_flag_address_offset()));
3439   __ movl(MemOperand(thread_in_wasm_flag_addr, 0), Immediate(0));
3440   thread_in_wasm_flag_addr = no_reg;
3441 
3442   // -------------------------------------------
3443   // Return handling.
3444   // -------------------------------------------
3445   return_count = r8;
3446   __ movq(return_count, MemOperand(rbp, kReturnCountOffset));
3447   Register return_reg = rax;
3448 
3449   // If we have 1 return value, then jump to conversion.
3450   __ cmpl(return_count, Immediate(1));
3451   Label convert_return;
3452   __ j(equal, &convert_return);
3453 
3454   // Otherwise load undefined.
3455   __ LoadRoot(return_reg, RootIndex::kUndefinedValue);
3456 
3457   Label return_done;
3458   __ bind(&return_done);
3459   __ movq(param_count, MemOperand(rbp, kParamCountOffset));
3460 
3461   // -------------------------------------------
3462   // Deconstrunct the stack frame.
3463   // -------------------------------------------
3464   __ LeaveFrame(StackFrame::JS_TO_WASM);
3465 
3466   // We have to remove the caller frame slots:
3467   //  - JS arguments
3468   //  - the receiver
3469   // and transfer the control to the return address (the return address is
3470   // expected to be on the top of the stack).
3471   // We cannot use just the ret instruction for this, because we cannot pass the
3472   // number of slots to remove in a Register as an argument.
3473   Register return_addr = rbx;
3474   __ popq(return_addr);
3475   Register caller_frame_slots_count = param_count;
3476   __ addq(caller_frame_slots_count, Immediate(1));
3477   __ shlq(caller_frame_slots_count, Immediate(kSystemPointerSizeLog2));
3478   __ addq(rsp, caller_frame_slots_count);
3479   __ pushq(return_addr);
3480   __ ret(0);
3481 
3482   // --------------------------------------------------------------------------
3483   //                          Deferred code.
3484   // --------------------------------------------------------------------------
3485 
3486   // -------------------------------------------
3487   // Param conversion builtins.
3488   // -------------------------------------------
3489   __ bind(&convert_param);
3490   // The order of pushes is important. We want the heap objects, that should be
3491   // scanned by GC, to be on the top of the stack.
3492   // We have to set the indicating value for the GC to the number of values on
3493   // the top of the stack that have to be scanned before calling the builtin
3494   // function.
3495   // The builtin expects the parameter to be in register param = rax.
3496 
3497   constexpr int kBuiltinCallGCScanSlotCount = 2;
3498   PrepareForBuiltinCall(masm, MemOperand(rbp, kGCScanSlotCountOffset),
3499                         kBuiltinCallGCScanSlotCount, current_param, param_limit,
3500                         current_int_param_slot, current_float_param_slot,
3501                         valuetypes_array_ptr, wasm_instance, function_data);
3502 
3503   Label param_kWasmI32_not_smi;
3504   Label param_kWasmI64;
3505   Label param_kWasmF32;
3506   Label param_kWasmF64;
3507 
3508   __ cmpq(valuetype, Immediate(wasm::kWasmI32.raw_bit_field()));
3509   __ j(equal, &param_kWasmI32_not_smi);
3510 
3511   __ cmpq(valuetype, Immediate(wasm::kWasmI64.raw_bit_field()));
3512   __ j(equal, &param_kWasmI64);
3513 
3514   __ cmpq(valuetype, Immediate(wasm::kWasmF32.raw_bit_field()));
3515   __ j(equal, &param_kWasmF32);
3516 
3517   __ cmpq(valuetype, Immediate(wasm::kWasmF64.raw_bit_field()));
3518   __ j(equal, &param_kWasmF64);
3519 
3520   __ int3();
3521 
3522   __ bind(&param_kWasmI32_not_smi);
3523   __ Call(BUILTIN_CODE(masm->isolate(), WasmTaggedNonSmiToInt32),
3524           RelocInfo::CODE_TARGET);
3525   // Param is the result of the builtin.
3526   __ AssertZeroExtended(param);
3527   RestoreAfterBuiltinCall(masm, function_data, wasm_instance,
3528                           valuetypes_array_ptr, current_float_param_slot,
3529                           current_int_param_slot, param_limit, current_param);
3530   __ movq(MemOperand(current_int_param_slot, 0), param);
3531   __ subq(current_int_param_slot, Immediate(kSystemPointerSize));
3532   __ jmp(&param_conversion_done);
3533 
3534   __ bind(&param_kWasmI64);
3535   __ Call(BUILTIN_CODE(masm->isolate(), BigIntToI64), RelocInfo::CODE_TARGET);
3536   RestoreAfterBuiltinCall(masm, function_data, wasm_instance,
3537                           valuetypes_array_ptr, current_float_param_slot,
3538                           current_int_param_slot, param_limit, current_param);
3539   __ movq(MemOperand(current_int_param_slot, 0), param);
3540   __ subq(current_int_param_slot, Immediate(kSystemPointerSize));
3541   __ jmp(&param_conversion_done);
3542 
3543   __ bind(&param_kWasmF32);
3544   __ Call(BUILTIN_CODE(masm->isolate(), WasmTaggedToFloat64),
3545           RelocInfo::CODE_TARGET);
3546   RestoreAfterBuiltinCall(masm, function_data, wasm_instance,
3547                           valuetypes_array_ptr, current_float_param_slot,
3548                           current_int_param_slot, param_limit, current_param);
3549   // Clear higher bits.
3550   __ Xorpd(xmm1, xmm1);
3551   // Truncate float64 to float32.
3552   __ Cvtsd2ss(xmm1, xmm0);
3553   __ Movsd(MemOperand(current_float_param_slot, 0), xmm1);
3554   __ subq(current_float_param_slot, Immediate(kSystemPointerSize));
3555   __ jmp(&param_conversion_done);
3556 
3557   __ bind(&param_kWasmF64);
3558   __ Call(BUILTIN_CODE(masm->isolate(), WasmTaggedToFloat64),
3559           RelocInfo::CODE_TARGET);
3560   RestoreAfterBuiltinCall(masm, function_data, wasm_instance,
3561                           valuetypes_array_ptr, current_float_param_slot,
3562                           current_int_param_slot, param_limit, current_param);
3563   __ Movsd(MemOperand(current_float_param_slot, 0), xmm0);
3564   __ subq(current_float_param_slot, Immediate(kSystemPointerSize));
3565   __ jmp(&param_conversion_done);
3566 
3567   // -------------------------------------------
3568   // Return conversions.
3569   // -------------------------------------------
3570   __ bind(&convert_return);
3571   // We have to make sure that the kGCScanSlotCount is set correctly when we
3572   // call the builtins for conversion. For these builtins it's the same as for
3573   // the Wasm call, that is, kGCScanSlotCount = 0, so we don't have to reset it.
3574   // We don't need the JS context for these builtin calls.
3575 
3576   __ movq(valuetypes_array_ptr, MemOperand(rbp, kValueTypesArrayStartOffset));
3577   // The first valuetype of the array is the return's valuetype.
3578   __ movl(valuetype,
3579           Operand(valuetypes_array_ptr, wasm::ValueType::bit_field_offset()));
3580 
3581   Label return_kWasmI32;
3582   Label return_kWasmI64;
3583   Label return_kWasmF32;
3584   Label return_kWasmF64;
3585 
3586   __ cmpq(valuetype, Immediate(wasm::kWasmI32.raw_bit_field()));
3587   __ j(equal, &return_kWasmI32);
3588 
3589   __ cmpq(valuetype, Immediate(wasm::kWasmI64.raw_bit_field()));
3590   __ j(equal, &return_kWasmI64);
3591 
3592   __ cmpq(valuetype, Immediate(wasm::kWasmF32.raw_bit_field()));
3593   __ j(equal, &return_kWasmF32);
3594 
3595   __ cmpq(valuetype, Immediate(wasm::kWasmF64.raw_bit_field()));
3596   __ j(equal, &return_kWasmF64);
3597 
3598   __ int3();
3599 
3600   __ bind(&return_kWasmI32);
3601   Label to_heapnumber;
3602   // If pointer compression is disabled, we can convert the return to a smi.
3603   if (SmiValuesAre32Bits()) {
3604     __ SmiTag(return_reg);
3605   } else {
3606     Register temp = rbx;
3607     __ movq(temp, return_reg);
3608     // Double the return value to test if it can be a Smi.
3609     __ addl(temp, return_reg);
3610     temp = no_reg;
3611     // If there was overflow, convert the return value to a HeapNumber.
3612     __ j(overflow, &to_heapnumber);
3613     // If there was no overflow, we can convert to Smi.
3614     __ SmiTag(return_reg);
3615   }
3616   __ jmp(&return_done);
3617 
3618   // Handle the conversion of the I32 return value to HeapNumber when it cannot
3619   // be a smi.
3620   __ bind(&to_heapnumber);
3621   __ Call(BUILTIN_CODE(masm->isolate(), WasmInt32ToHeapNumber),
3622           RelocInfo::CODE_TARGET);
3623   __ jmp(&return_done);
3624 
3625   __ bind(&return_kWasmI64);
3626   __ Call(BUILTIN_CODE(masm->isolate(), I64ToBigInt), RelocInfo::CODE_TARGET);
3627   __ jmp(&return_done);
3628 
3629   __ bind(&return_kWasmF32);
3630   // The builtin expects the value to be in xmm0.
3631   __ Movss(xmm0, xmm1);
3632   __ Call(BUILTIN_CODE(masm->isolate(), WasmFloat32ToNumber),
3633           RelocInfo::CODE_TARGET);
3634   __ jmp(&return_done);
3635 
3636   __ bind(&return_kWasmF64);
3637   // The builtin expects the value to be in xmm0.
3638   __ Movsd(xmm0, xmm1);
3639   __ Call(BUILTIN_CODE(masm->isolate(), WasmFloat64ToNumber),
3640           RelocInfo::CODE_TARGET);
3641   __ jmp(&return_done);
3642 
3643   // -------------------------------------------
3644   // Kick off compilation.
3645   // -------------------------------------------
3646   __ bind(&compile_wrapper);
3647   // Enable GC.
3648   MemOperand GCScanSlotPlace = MemOperand(rbp, kGCScanSlotCountOffset);
3649   __ movq(GCScanSlotPlace, Immediate(4));
3650   // Save registers to the stack.
3651   __ pushq(wasm_instance);
3652   __ pushq(function_data);
3653   // Push the arguments for the runtime call.
3654   __ Push(wasm_instance);  // first argument
3655   __ Push(function_data);  // second argument
3656   // Set up context.
3657   __ Move(kContextRegister, Smi::zero());
3658   // Call the runtime function that kicks off compilation.
3659   __ CallRuntime(Runtime::kWasmCompileWrapper, 2);
3660   // Pop the result.
3661   __ movq(r9, kReturnRegister0);
3662   // Restore registers from the stack.
3663   __ popq(function_data);
3664   __ popq(wasm_instance);
3665   __ jmp(&compile_wrapper_done);
3666 }
3667 
3668 namespace {
3669 
Offset(ExternalReference ref0,ExternalReference ref1)3670 int Offset(ExternalReference ref0, ExternalReference ref1) {
3671   int64_t offset = (ref0.address() - ref1.address());
3672   // Check that fits into int.
3673   DCHECK(static_cast<int>(offset) == offset);
3674   return static_cast<int>(offset);
3675 }
3676 
3677 // Calls an API function.  Allocates HandleScope, extracts returned value
3678 // from handle and propagates exceptions.  Clobbers r14, r15, rbx and
3679 // caller-save registers.  Restores context.  On return removes
3680 // stack_space * kSystemPointerSize (GCed).
CallApiFunctionAndReturn(MacroAssembler * masm,Register function_address,ExternalReference thunk_ref,Register thunk_last_arg,int stack_space,Operand * stack_space_operand,Operand return_value_operand)3681 void CallApiFunctionAndReturn(MacroAssembler* masm, Register function_address,
3682                               ExternalReference thunk_ref,
3683                               Register thunk_last_arg, int stack_space,
3684                               Operand* stack_space_operand,
3685                               Operand return_value_operand) {
3686   Label prologue;
3687   Label promote_scheduled_exception;
3688   Label delete_allocated_handles;
3689   Label leave_exit_frame;
3690 
3691   Isolate* isolate = masm->isolate();
3692   Factory* factory = isolate->factory();
3693   ExternalReference next_address =
3694       ExternalReference::handle_scope_next_address(isolate);
3695   const int kNextOffset = 0;
3696   const int kLimitOffset = Offset(
3697       ExternalReference::handle_scope_limit_address(isolate), next_address);
3698   const int kLevelOffset = Offset(
3699       ExternalReference::handle_scope_level_address(isolate), next_address);
3700   ExternalReference scheduled_exception_address =
3701       ExternalReference::scheduled_exception_address(isolate);
3702 
3703   DCHECK(rdx == function_address || r8 == function_address);
3704   // Allocate HandleScope in callee-save registers.
3705   Register prev_next_address_reg = r14;
3706   Register prev_limit_reg = rbx;
3707   Register base_reg = r15;
3708   __ Move(base_reg, next_address);
3709   __ movq(prev_next_address_reg, Operand(base_reg, kNextOffset));
3710   __ movq(prev_limit_reg, Operand(base_reg, kLimitOffset));
3711   __ addl(Operand(base_reg, kLevelOffset), Immediate(1));
3712 
3713   Label profiler_enabled, end_profiler_check;
3714   __ Move(rax, ExternalReference::is_profiling_address(isolate));
3715   __ cmpb(Operand(rax, 0), Immediate(0));
3716   __ j(not_zero, &profiler_enabled);
3717   __ Move(rax, ExternalReference::address_of_runtime_stats_flag());
3718   __ cmpl(Operand(rax, 0), Immediate(0));
3719   __ j(not_zero, &profiler_enabled);
3720   {
3721     // Call the api function directly.
3722     __ Move(rax, function_address);
3723     __ jmp(&end_profiler_check);
3724   }
3725   __ bind(&profiler_enabled);
3726   {
3727     // Third parameter is the address of the actual getter function.
3728     __ Move(thunk_last_arg, function_address);
3729     __ Move(rax, thunk_ref);
3730   }
3731   __ bind(&end_profiler_check);
3732 
3733   // Call the api function!
3734   __ call(rax);
3735 
3736   // Load the value from ReturnValue
3737   __ movq(rax, return_value_operand);
3738   __ bind(&prologue);
3739 
3740   // No more valid handles (the result handle was the last one). Restore
3741   // previous handle scope.
3742   __ subl(Operand(base_reg, kLevelOffset), Immediate(1));
3743   __ movq(Operand(base_reg, kNextOffset), prev_next_address_reg);
3744   __ cmpq(prev_limit_reg, Operand(base_reg, kLimitOffset));
3745   __ j(not_equal, &delete_allocated_handles);
3746 
3747   // Leave the API exit frame.
3748   __ bind(&leave_exit_frame);
3749   if (stack_space_operand != nullptr) {
3750     DCHECK_EQ(stack_space, 0);
3751     __ movq(rbx, *stack_space_operand);
3752   }
3753   __ LeaveApiExitFrame();
3754 
3755   // Check if the function scheduled an exception.
3756   __ Move(rdi, scheduled_exception_address);
3757   __ Cmp(Operand(rdi, 0), factory->the_hole_value());
3758   __ j(not_equal, &promote_scheduled_exception);
3759 
3760 #if DEBUG
3761   // Check if the function returned a valid JavaScript value.
3762   Label ok;
3763   Register return_value = rax;
3764   Register map = rcx;
3765 
3766   __ JumpIfSmi(return_value, &ok, Label::kNear);
3767   __ LoadTaggedPointerField(map,
3768                             FieldOperand(return_value, HeapObject::kMapOffset));
3769 
3770   __ CmpInstanceType(map, LAST_NAME_TYPE);
3771   __ j(below_equal, &ok, Label::kNear);
3772 
3773   __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
3774   __ j(above_equal, &ok, Label::kNear);
3775 
3776   __ CompareRoot(map, RootIndex::kHeapNumberMap);
3777   __ j(equal, &ok, Label::kNear);
3778 
3779   __ CompareRoot(map, RootIndex::kBigIntMap);
3780   __ j(equal, &ok, Label::kNear);
3781 
3782   __ CompareRoot(return_value, RootIndex::kUndefinedValue);
3783   __ j(equal, &ok, Label::kNear);
3784 
3785   __ CompareRoot(return_value, RootIndex::kTrueValue);
3786   __ j(equal, &ok, Label::kNear);
3787 
3788   __ CompareRoot(return_value, RootIndex::kFalseValue);
3789   __ j(equal, &ok, Label::kNear);
3790 
3791   __ CompareRoot(return_value, RootIndex::kNullValue);
3792   __ j(equal, &ok, Label::kNear);
3793 
3794   __ Abort(AbortReason::kAPICallReturnedInvalidObject);
3795 
3796   __ bind(&ok);
3797 #endif
3798 
3799   if (stack_space_operand == nullptr) {
3800     DCHECK_NE(stack_space, 0);
3801     __ ret(stack_space * kSystemPointerSize);
3802   } else {
3803     DCHECK_EQ(stack_space, 0);
3804     __ PopReturnAddressTo(rcx);
3805     __ addq(rsp, rbx);
3806     __ jmp(rcx);
3807   }
3808 
3809   // Re-throw by promoting a scheduled exception.
3810   __ bind(&promote_scheduled_exception);
3811   __ TailCallRuntime(Runtime::kPromoteScheduledException);
3812 
3813   // HandleScope limit has changed. Delete allocated extensions.
3814   __ bind(&delete_allocated_handles);
3815   __ movq(Operand(base_reg, kLimitOffset), prev_limit_reg);
3816   __ movq(prev_limit_reg, rax);
3817   __ LoadAddress(arg_reg_1, ExternalReference::isolate_address(isolate));
3818   __ LoadAddress(rax, ExternalReference::delete_handle_scope_extensions());
3819   __ call(rax);
3820   __ movq(rax, prev_limit_reg);
3821   __ jmp(&leave_exit_frame);
3822 }
3823 
3824 }  // namespace
3825 
3826 // TODO(jgruber): Instead of explicitly setting up implicit_args_ on the stack
3827 // in CallApiCallback, we could use the calling convention to set up the stack
3828 // correctly in the first place.
3829 //
3830 // TODO(jgruber): I suspect that most of CallApiCallback could be implemented
3831 // as a C++ trampoline, vastly simplifying the assembly implementation.
3832 
Generate_CallApiCallback(MacroAssembler * masm)3833 void Builtins::Generate_CallApiCallback(MacroAssembler* masm) {
3834   // ----------- S t a t e -------------
3835   //  -- rsi                 : context
3836   //  -- rdx                 : api function address
3837   //  -- rcx                 : arguments count (not including the receiver)
3838   //  -- rbx                 : call data
3839   //  -- rdi                 : holder
3840   //  -- rsp[0]              : return address
3841   //  -- rsp[8]              : argument 0 (receiver)
3842   //  -- rsp[16]             : argument 1
3843   //  -- ...
3844   //  -- rsp[argc * 8]       : argument (argc - 1)
3845   //  -- rsp[(argc + 1) * 8] : argument argc
3846   // -----------------------------------
3847 
3848   Register api_function_address = rdx;
3849   Register argc = rcx;
3850   Register call_data = rbx;
3851   Register holder = rdi;
3852 
3853   DCHECK(!AreAliased(api_function_address, argc, holder, call_data,
3854                      kScratchRegister));
3855 
3856   using FCA = FunctionCallbackArguments;
3857 
3858   STATIC_ASSERT(FCA::kArgsLength == 6);
3859   STATIC_ASSERT(FCA::kNewTargetIndex == 5);
3860   STATIC_ASSERT(FCA::kDataIndex == 4);
3861   STATIC_ASSERT(FCA::kReturnValueOffset == 3);
3862   STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
3863   STATIC_ASSERT(FCA::kIsolateIndex == 1);
3864   STATIC_ASSERT(FCA::kHolderIndex == 0);
3865 
3866   // Set up FunctionCallbackInfo's implicit_args on the stack as follows:
3867   //
3868   // Current state:
3869   //   rsp[0]: return address
3870   //
3871   // Target state:
3872   //   rsp[0 * kSystemPointerSize]: return address
3873   //   rsp[1 * kSystemPointerSize]: kHolder
3874   //   rsp[2 * kSystemPointerSize]: kIsolate
3875   //   rsp[3 * kSystemPointerSize]: undefined (kReturnValueDefaultValue)
3876   //   rsp[4 * kSystemPointerSize]: undefined (kReturnValue)
3877   //   rsp[5 * kSystemPointerSize]: kData
3878   //   rsp[6 * kSystemPointerSize]: undefined (kNewTarget)
3879 
3880   __ PopReturnAddressTo(rax);
3881   __ LoadRoot(kScratchRegister, RootIndex::kUndefinedValue);
3882   __ Push(kScratchRegister);
3883   __ Push(call_data);
3884   __ Push(kScratchRegister);
3885   __ Push(kScratchRegister);
3886   __ PushAddress(ExternalReference::isolate_address(masm->isolate()));
3887   __ Push(holder);
3888   __ PushReturnAddressFrom(rax);
3889 
3890   // Keep a pointer to kHolder (= implicit_args) in a scratch register.
3891   // We use it below to set up the FunctionCallbackInfo object.
3892   Register scratch = rbx;
3893   __ leaq(scratch, Operand(rsp, 1 * kSystemPointerSize));
3894 
3895   // Allocate the v8::Arguments structure in the arguments' space since
3896   // it's not controlled by GC.
3897   static constexpr int kApiStackSpace = 4;
3898   __ EnterApiExitFrame(kApiStackSpace);
3899 
3900   // FunctionCallbackInfo::implicit_args_ (points at kHolder as set up above).
3901   __ movq(StackSpaceOperand(0), scratch);
3902 
3903   // FunctionCallbackInfo::values_ (points at the first varargs argument passed
3904   // on the stack).
3905   __ leaq(scratch,
3906           Operand(scratch, (FCA::kArgsLength + 1) * kSystemPointerSize));
3907   __ movq(StackSpaceOperand(1), scratch);
3908 
3909   // FunctionCallbackInfo::length_.
3910   __ movq(StackSpaceOperand(2), argc);
3911 
3912   // We also store the number of bytes to drop from the stack after returning
3913   // from the API function here.
3914   __ leaq(kScratchRegister,
3915           Operand(argc, times_system_pointer_size,
3916                   (FCA::kArgsLength + 1 /* receiver */) * kSystemPointerSize));
3917   __ movq(StackSpaceOperand(3), kScratchRegister);
3918 
3919   Register arguments_arg = arg_reg_1;
3920   Register callback_arg = arg_reg_2;
3921 
3922   // It's okay if api_function_address == callback_arg
3923   // but not arguments_arg
3924   DCHECK(api_function_address != arguments_arg);
3925 
3926   // v8::InvocationCallback's argument.
3927   __ leaq(arguments_arg, StackSpaceOperand(0));
3928 
3929   ExternalReference thunk_ref = ExternalReference::invoke_function_callback();
3930 
3931   // There are two stack slots above the arguments we constructed on the stack:
3932   // the stored ebp (pushed by EnterApiExitFrame), and the return address.
3933   static constexpr int kStackSlotsAboveFCA = 2;
3934   Operand return_value_operand(
3935       rbp,
3936       (kStackSlotsAboveFCA + FCA::kReturnValueOffset) * kSystemPointerSize);
3937 
3938   static constexpr int kUseStackSpaceOperand = 0;
3939   Operand stack_space_operand = StackSpaceOperand(3);
3940   CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, callback_arg,
3941                            kUseStackSpaceOperand, &stack_space_operand,
3942                            return_value_operand);
3943 }
3944 
Generate_CallApiGetter(MacroAssembler * masm)3945 void Builtins::Generate_CallApiGetter(MacroAssembler* masm) {
3946   Register name_arg = arg_reg_1;
3947   Register accessor_info_arg = arg_reg_2;
3948   Register getter_arg = arg_reg_3;
3949   Register api_function_address = r8;
3950   Register receiver = ApiGetterDescriptor::ReceiverRegister();
3951   Register holder = ApiGetterDescriptor::HolderRegister();
3952   Register callback = ApiGetterDescriptor::CallbackRegister();
3953   Register scratch = rax;
3954   Register decompr_scratch1 = COMPRESS_POINTERS_BOOL ? r11 : no_reg;
3955 
3956   DCHECK(!AreAliased(receiver, holder, callback, scratch, decompr_scratch1));
3957 
3958   // Build v8::PropertyCallbackInfo::args_ array on the stack and push property
3959   // name below the exit frame to make GC aware of them.
3960   STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
3961   STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
3962   STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
3963   STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
3964   STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
3965   STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
3966   STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
3967   STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
3968 
3969   // Insert additional parameters into the stack frame above return address.
3970   __ PopReturnAddressTo(scratch);
3971   __ Push(receiver);
3972   __ PushTaggedAnyField(FieldOperand(callback, AccessorInfo::kDataOffset),
3973                         decompr_scratch1);
3974   __ LoadRoot(kScratchRegister, RootIndex::kUndefinedValue);
3975   __ Push(kScratchRegister);  // return value
3976   __ Push(kScratchRegister);  // return value default
3977   __ PushAddress(ExternalReference::isolate_address(masm->isolate()));
3978   __ Push(holder);
3979   __ Push(Smi::zero());  // should_throw_on_error -> false
3980   __ PushTaggedPointerField(FieldOperand(callback, AccessorInfo::kNameOffset),
3981                             decompr_scratch1);
3982   __ PushReturnAddressFrom(scratch);
3983 
3984   // v8::PropertyCallbackInfo::args_ array and name handle.
3985   const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
3986 
3987   // Allocate v8::PropertyCallbackInfo in non-GCed stack space.
3988   const int kArgStackSpace = 1;
3989 
3990   // Load address of v8::PropertyAccessorInfo::args_ array.
3991   __ leaq(scratch, Operand(rsp, 2 * kSystemPointerSize));
3992 
3993   __ EnterApiExitFrame(kArgStackSpace);
3994 
3995   // Create v8::PropertyCallbackInfo object on the stack and initialize
3996   // it's args_ field.
3997   Operand info_object = StackSpaceOperand(0);
3998   __ movq(info_object, scratch);
3999 
4000   __ leaq(name_arg, Operand(scratch, -kSystemPointerSize));
4001   // The context register (rsi) has been saved in EnterApiExitFrame and
4002   // could be used to pass arguments.
4003   __ leaq(accessor_info_arg, info_object);
4004 
4005   ExternalReference thunk_ref =
4006       ExternalReference::invoke_accessor_getter_callback();
4007 
4008   // It's okay if api_function_address == getter_arg
4009   // but not accessor_info_arg or name_arg
4010   DCHECK(api_function_address != accessor_info_arg);
4011   DCHECK(api_function_address != name_arg);
4012   __ LoadTaggedPointerField(
4013       scratch, FieldOperand(callback, AccessorInfo::kJsGetterOffset));
4014   __ LoadExternalPointerField(
4015       api_function_address,
4016       FieldOperand(scratch, Foreign::kForeignAddressOffset),
4017       kForeignForeignAddressTag);
4018 
4019   // +3 is to skip prolog, return address and name handle.
4020   Operand return_value_operand(
4021       rbp,
4022       (PropertyCallbackArguments::kReturnValueOffset + 3) * kSystemPointerSize);
4023   Operand* const kUseStackSpaceConstant = nullptr;
4024   CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, getter_arg,
4025                            kStackUnwindSpace, kUseStackSpaceConstant,
4026                            return_value_operand);
4027 }
4028 
Generate_DirectCEntry(MacroAssembler * masm)4029 void Builtins::Generate_DirectCEntry(MacroAssembler* masm) {
4030   __ int3();  // Unused on this architecture.
4031 }
4032 
4033 namespace {
4034 
Generate_DeoptimizationEntry(MacroAssembler * masm,DeoptimizeKind deopt_kind)4035 void Generate_DeoptimizationEntry(MacroAssembler* masm,
4036                                   DeoptimizeKind deopt_kind) {
4037   Isolate* isolate = masm->isolate();
4038 
4039   // Save all double registers, they will later be copied to the deoptimizer's
4040   // FrameDescription.
4041   static constexpr int kDoubleRegsSize =
4042       kDoubleSize * XMMRegister::kNumRegisters;
4043   __ AllocateStackSpace(kDoubleRegsSize);
4044 
4045   const RegisterConfiguration* config = RegisterConfiguration::Default();
4046   for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
4047     int code = config->GetAllocatableDoubleCode(i);
4048     XMMRegister xmm_reg = XMMRegister::from_code(code);
4049     int offset = code * kDoubleSize;
4050     __ Movsd(Operand(rsp, offset), xmm_reg);
4051   }
4052 
4053   // Save all general purpose registers, they will later be copied to the
4054   // deoptimizer's FrameDescription.
4055   static constexpr int kNumberOfRegisters = Register::kNumRegisters;
4056   for (int i = 0; i < kNumberOfRegisters; i++) {
4057     __ pushq(Register::from_code(i));
4058   }
4059 
4060   static constexpr int kSavedRegistersAreaSize =
4061       kNumberOfRegisters * kSystemPointerSize + kDoubleRegsSize;
4062   static constexpr int kCurrentOffsetToReturnAddress = kSavedRegistersAreaSize;
4063   static constexpr int kCurrentOffsetToParentSP =
4064       kCurrentOffsetToReturnAddress + kPCOnStackSize;
4065 
4066   __ Store(
4067       ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate),
4068       rbp);
4069 
4070   // We use this to keep the value of the fifth argument temporarily.
4071   // Unfortunately we can't store it directly in r8 (used for passing
4072   // this on linux), since it is another parameter passing register on windows.
4073   Register arg5 = r11;
4074 
4075   __ movq(arg_reg_3, Immediate(Deoptimizer::kFixedExitSizeMarker));
4076   // Get the address of the location in the code object
4077   // and compute the fp-to-sp delta in register arg5.
4078   __ movq(arg_reg_4, Operand(rsp, kCurrentOffsetToReturnAddress));
4079   // Load the fp-to-sp-delta.
4080   __ leaq(arg5, Operand(rsp, kCurrentOffsetToParentSP));
4081   __ subq(arg5, rbp);
4082   __ negq(arg5);
4083 
4084   // Allocate a new deoptimizer object.
4085   __ PrepareCallCFunction(6);
4086   __ movq(rax, Immediate(0));
4087   Label context_check;
4088   __ movq(rdi, Operand(rbp, CommonFrameConstants::kContextOrFrameTypeOffset));
4089   __ JumpIfSmi(rdi, &context_check);
4090   __ movq(rax, Operand(rbp, StandardFrameConstants::kFunctionOffset));
4091   __ bind(&context_check);
4092   __ movq(arg_reg_1, rax);
4093   __ Set(arg_reg_2, static_cast<int>(deopt_kind));
4094   // Args 3 and 4 are already in the right registers.
4095 
4096   // On windows put the arguments on the stack (PrepareCallCFunction
4097   // has created space for this). On linux pass the arguments in r8 and r9.
4098 #ifdef V8_TARGET_OS_WIN
4099   __ movq(Operand(rsp, 4 * kSystemPointerSize), arg5);
4100   __ LoadAddress(arg5, ExternalReference::isolate_address(isolate));
4101   __ movq(Operand(rsp, 5 * kSystemPointerSize), arg5);
4102 #else
4103   __ movq(r8, arg5);
4104   __ LoadAddress(r9, ExternalReference::isolate_address(isolate));
4105 #endif
4106 
4107   {
4108     AllowExternalCallThatCantCauseGC scope(masm);
4109     __ CallCFunction(ExternalReference::new_deoptimizer_function(), 6);
4110   }
4111   // Preserve deoptimizer object in register rax and get the input
4112   // frame descriptor pointer.
4113   __ movq(rbx, Operand(rax, Deoptimizer::input_offset()));
4114 
4115   // Fill in the input registers.
4116   for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
4117     int offset =
4118         (i * kSystemPointerSize) + FrameDescription::registers_offset();
4119     __ PopQuad(Operand(rbx, offset));
4120   }
4121 
4122   // Fill in the double input registers.
4123   int double_regs_offset = FrameDescription::double_registers_offset();
4124   for (int i = 0; i < XMMRegister::kNumRegisters; i++) {
4125     int dst_offset = i * kDoubleSize + double_regs_offset;
4126     __ popq(Operand(rbx, dst_offset));
4127   }
4128 
4129   // Mark the stack as not iterable for the CPU profiler which won't be able to
4130   // walk the stack without the return address.
4131   __ movb(__ ExternalReferenceAsOperand(
4132               ExternalReference::stack_is_iterable_address(isolate)),
4133           Immediate(0));
4134 
4135   // Remove the return address from the stack.
4136   __ addq(rsp, Immediate(kPCOnStackSize));
4137 
4138   // Compute a pointer to the unwinding limit in register rcx; that is
4139   // the first stack slot not part of the input frame.
4140   __ movq(rcx, Operand(rbx, FrameDescription::frame_size_offset()));
4141   __ addq(rcx, rsp);
4142 
4143   // Unwind the stack down to - but not including - the unwinding
4144   // limit and copy the contents of the activation frame to the input
4145   // frame description.
4146   __ leaq(rdx, Operand(rbx, FrameDescription::frame_content_offset()));
4147   Label pop_loop_header;
4148   __ jmp(&pop_loop_header);
4149   Label pop_loop;
4150   __ bind(&pop_loop);
4151   __ Pop(Operand(rdx, 0));
4152   __ addq(rdx, Immediate(sizeof(intptr_t)));
4153   __ bind(&pop_loop_header);
4154   __ cmpq(rcx, rsp);
4155   __ j(not_equal, &pop_loop);
4156 
4157   // Compute the output frame in the deoptimizer.
4158   __ pushq(rax);
4159   __ PrepareCallCFunction(2);
4160   __ movq(arg_reg_1, rax);
4161   __ LoadAddress(arg_reg_2, ExternalReference::isolate_address(isolate));
4162   {
4163     AllowExternalCallThatCantCauseGC scope(masm);
4164     __ CallCFunction(ExternalReference::compute_output_frames_function(), 2);
4165   }
4166   __ popq(rax);
4167 
4168   __ movq(rsp, Operand(rax, Deoptimizer::caller_frame_top_offset()));
4169 
4170   // Replace the current (input) frame with the output frames.
4171   Label outer_push_loop, inner_push_loop, outer_loop_header, inner_loop_header;
4172   // Outer loop state: rax = current FrameDescription**, rdx = one past the
4173   // last FrameDescription**.
4174   __ movl(rdx, Operand(rax, Deoptimizer::output_count_offset()));
4175   __ movq(rax, Operand(rax, Deoptimizer::output_offset()));
4176   __ leaq(rdx, Operand(rax, rdx, times_system_pointer_size, 0));
4177   __ jmp(&outer_loop_header);
4178   __ bind(&outer_push_loop);
4179   // Inner loop state: rbx = current FrameDescription*, rcx = loop index.
4180   __ movq(rbx, Operand(rax, 0));
4181   __ movq(rcx, Operand(rbx, FrameDescription::frame_size_offset()));
4182   __ jmp(&inner_loop_header);
4183   __ bind(&inner_push_loop);
4184   __ subq(rcx, Immediate(sizeof(intptr_t)));
4185   __ Push(Operand(rbx, rcx, times_1, FrameDescription::frame_content_offset()));
4186   __ bind(&inner_loop_header);
4187   __ testq(rcx, rcx);
4188   __ j(not_zero, &inner_push_loop);
4189   __ addq(rax, Immediate(kSystemPointerSize));
4190   __ bind(&outer_loop_header);
4191   __ cmpq(rax, rdx);
4192   __ j(below, &outer_push_loop);
4193 
4194   for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
4195     int code = config->GetAllocatableDoubleCode(i);
4196     XMMRegister xmm_reg = XMMRegister::from_code(code);
4197     int src_offset = code * kDoubleSize + double_regs_offset;
4198     __ Movsd(xmm_reg, Operand(rbx, src_offset));
4199   }
4200 
4201   // Push pc and continuation from the last output frame.
4202   __ PushQuad(Operand(rbx, FrameDescription::pc_offset()));
4203   __ PushQuad(Operand(rbx, FrameDescription::continuation_offset()));
4204 
4205   // Push the registers from the last output frame.
4206   for (int i = 0; i < kNumberOfRegisters; i++) {
4207     int offset =
4208         (i * kSystemPointerSize) + FrameDescription::registers_offset();
4209     __ PushQuad(Operand(rbx, offset));
4210   }
4211 
4212   // Restore the registers from the stack.
4213   for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
4214     Register r = Register::from_code(i);
4215     // Do not restore rsp, simply pop the value into the next register
4216     // and overwrite this afterwards.
4217     if (r == rsp) {
4218       DCHECK_GT(i, 0);
4219       r = Register::from_code(i - 1);
4220     }
4221     __ popq(r);
4222   }
4223 
4224   __ movb(__ ExternalReferenceAsOperand(
4225               ExternalReference::stack_is_iterable_address(isolate)),
4226           Immediate(1));
4227 
4228   // Return to the continuation point.
4229   __ ret(0);
4230 }
4231 
4232 }  // namespace
4233 
Generate_DeoptimizationEntry_Eager(MacroAssembler * masm)4234 void Builtins::Generate_DeoptimizationEntry_Eager(MacroAssembler* masm) {
4235   Generate_DeoptimizationEntry(masm, DeoptimizeKind::kEager);
4236 }
4237 
Generate_DeoptimizationEntry_Soft(MacroAssembler * masm)4238 void Builtins::Generate_DeoptimizationEntry_Soft(MacroAssembler* masm) {
4239   Generate_DeoptimizationEntry(masm, DeoptimizeKind::kSoft);
4240 }
4241 
Generate_DeoptimizationEntry_Bailout(MacroAssembler * masm)4242 void Builtins::Generate_DeoptimizationEntry_Bailout(MacroAssembler* masm) {
4243   Generate_DeoptimizationEntry(masm, DeoptimizeKind::kBailout);
4244 }
4245 
Generate_DeoptimizationEntry_Lazy(MacroAssembler * masm)4246 void Builtins::Generate_DeoptimizationEntry_Lazy(MacroAssembler* masm) {
4247   Generate_DeoptimizationEntry(masm, DeoptimizeKind::kLazy);
4248 }
4249 
4250 #undef __
4251 
4252 }  // namespace internal
4253 }  // namespace v8
4254 
4255 #endif  // V8_TARGET_ARCH_X64
4256