1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #if V8_TARGET_ARCH_IA32
6
7 #include "src/api/api-arguments.h"
8 #include "src/base/bits-iterator.h"
9 #include "src/base/iterator.h"
10 #include "src/codegen/code-factory.h"
11 // For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop.
12 #include "src/codegen/macro-assembler-inl.h"
13 #include "src/codegen/register-configuration.h"
14 #include "src/debug/debug.h"
15 #include "src/deoptimizer/deoptimizer.h"
16 #include "src/execution/frame-constants.h"
17 #include "src/execution/frames.h"
18 #include "src/heap/heap-inl.h"
19 #include "src/logging/counters.h"
20 #include "src/objects/cell.h"
21 #include "src/objects/foreign.h"
22 #include "src/objects/heap-number.h"
23 #include "src/objects/js-generator.h"
24 #include "src/objects/objects-inl.h"
25 #include "src/objects/smi.h"
26 #include "src/wasm/wasm-linkage.h"
27 #include "src/wasm/wasm-objects.h"
28
29 namespace v8 {
30 namespace internal {
31
32 #define __ ACCESS_MASM(masm)
33
Generate_Adaptor(MacroAssembler * masm,Address address)34 void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) {
35 __ Move(kJavaScriptCallExtraArg1Register,
36 Immediate(ExternalReference::Create(address)));
37 __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame),
38 RelocInfo::CODE_TARGET);
39 }
40
GenerateTailCallToReturnedCode(MacroAssembler * masm,Runtime::FunctionId function_id)41 static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
42 Runtime::FunctionId function_id) {
43 // ----------- S t a t e -------------
44 // -- eax : actual argument count
45 // -- edx : new target (preserved for callee)
46 // -- edi : target function (preserved for callee)
47 // -----------------------------------
48 {
49 FrameScope scope(masm, StackFrame::INTERNAL);
50 // Push a copy of the target function, the new target and the actual
51 // argument count.
52 __ push(kJavaScriptCallTargetRegister);
53 __ push(kJavaScriptCallNewTargetRegister);
54 __ SmiTag(kJavaScriptCallArgCountRegister);
55 __ push(kJavaScriptCallArgCountRegister);
56 // Function is also the parameter to the runtime call.
57 __ push(kJavaScriptCallTargetRegister);
58
59 __ CallRuntime(function_id, 1);
60 __ mov(ecx, eax);
61
62 // Restore target function, new target and actual argument count.
63 __ pop(kJavaScriptCallArgCountRegister);
64 __ SmiUntag(kJavaScriptCallArgCountRegister);
65 __ pop(kJavaScriptCallNewTargetRegister);
66 __ pop(kJavaScriptCallTargetRegister);
67 }
68
69 static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
70 __ JumpCodeObject(ecx);
71 }
72
73 namespace {
74
Generate_JSBuiltinsConstructStubHelper(MacroAssembler * masm)75 void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
76 // ----------- S t a t e -------------
77 // -- eax: number of arguments
78 // -- edi: constructor function
79 // -- edx: new target
80 // -- esi: context
81 // -----------------------------------
82
83 Label stack_overflow;
84
85 __ StackOverflowCheck(eax, ecx, &stack_overflow);
86
87 // Enter a construct frame.
88 {
89 FrameScope scope(masm, StackFrame::CONSTRUCT);
90
91 // Preserve the incoming parameters on the stack.
92 __ SmiTag(eax);
93 __ push(esi);
94 __ push(eax);
95 __ SmiUntag(eax);
96
97 // TODO(victorgomes): When the arguments adaptor is completely removed, we
98 // should get the formal parameter count and copy the arguments in its
99 // correct position (including any undefined), instead of delaying this to
100 // InvokeFunction.
101
102 // Set up pointer to first argument (skip receiver).
103 __ lea(esi, Operand(ebp, StandardFrameConstants::kCallerSPOffset +
104 kSystemPointerSize));
105 // Copy arguments to the expression stack.
106 __ PushArray(esi, eax, ecx);
107 // The receiver for the builtin/api call.
108 __ PushRoot(RootIndex::kTheHoleValue);
109
110 // Call the function.
111 // eax: number of arguments (untagged)
112 // edi: constructor function
113 // edx: new target
114 // Reload context from the frame.
115 __ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset));
116 __ InvokeFunction(edi, edx, eax, CALL_FUNCTION);
117
118 // Restore context from the frame.
119 __ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset));
120 // Restore smi-tagged arguments count from the frame.
121 __ mov(edx, Operand(ebp, ConstructFrameConstants::kLengthOffset));
122 // Leave construct frame.
123 }
124
125 // Remove caller arguments from the stack and return.
126 STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
127 __ PopReturnAddressTo(ecx);
128 __ lea(esp, Operand(esp, edx, times_half_system_pointer_size,
129 1 * kSystemPointerSize)); // 1 ~ receiver
130 __ PushReturnAddressFrom(ecx);
131 __ ret(0);
132
133 __ bind(&stack_overflow);
134 {
135 FrameScope scope(masm, StackFrame::INTERNAL);
136 __ CallRuntime(Runtime::kThrowStackOverflow);
137 __ int3(); // This should be unreachable.
138 }
139 }
140
141 } // namespace
142
143 // The construct stub for ES5 constructor functions and ES6 class constructors.
Generate_JSConstructStubGeneric(MacroAssembler * masm)144 void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
145 // ----------- S t a t e -------------
146 // -- eax: number of arguments (untagged)
147 // -- edi: constructor function
148 // -- edx: new target
149 // -- esi: context
150 // -- sp[...]: constructor arguments
151 // -----------------------------------
152
153 FrameScope scope(masm, StackFrame::MANUAL);
154 // Enter a construct frame.
155 __ EnterFrame(StackFrame::CONSTRUCT);
156
157 Label post_instantiation_deopt_entry, not_create_implicit_receiver;
158
159 // Preserve the incoming parameters on the stack.
160 __ mov(ecx, eax);
161 __ SmiTag(ecx);
162 __ Push(esi);
163 __ Push(ecx);
164 __ Push(edi);
165 __ PushRoot(RootIndex::kTheHoleValue);
166 __ Push(edx);
167
168 // ----------- S t a t e -------------
169 // -- sp[0*kSystemPointerSize]: new target
170 // -- sp[1*kSystemPointerSize]: padding
171 // -- edi and sp[2*kSystemPointerSize]: constructor function
172 // -- sp[3*kSystemPointerSize]: argument count
173 // -- sp[4*kSystemPointerSize]: context
174 // -----------------------------------
175
176 __ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
177 __ mov(eax, FieldOperand(eax, SharedFunctionInfo::kFlagsOffset));
178 __ DecodeField<SharedFunctionInfo::FunctionKindBits>(eax);
179 __ JumpIfIsInRange(eax, kDefaultDerivedConstructor, kDerivedConstructor, ecx,
180 ¬_create_implicit_receiver, Label::kNear);
181
182 // If not derived class constructor: Allocate the new receiver object.
183 __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1,
184 eax);
185 __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), RelocInfo::CODE_TARGET);
186 __ jmp(&post_instantiation_deopt_entry, Label::kNear);
187
188 // Else: use TheHoleValue as receiver for constructor call
189 __ bind(¬_create_implicit_receiver);
190 __ LoadRoot(eax, RootIndex::kTheHoleValue);
191
192 // ----------- S t a t e -------------
193 // -- eax: implicit receiver
194 // -- Slot 4 / sp[0*kSystemPointerSize]: new target
195 // -- Slot 3 / sp[1*kSystemPointerSize]: padding
196 // -- Slot 2 / sp[2*kSystemPointerSize]: constructor function
197 // -- Slot 1 / sp[3*kSystemPointerSize]: number of arguments (tagged)
198 // -- Slot 0 / sp[4*kSystemPointerSize]: context
199 // -----------------------------------
200 // Deoptimizer enters here.
201 masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
202 masm->pc_offset());
203 __ bind(&post_instantiation_deopt_entry);
204
205 // Restore new target.
206 __ Pop(edx);
207
208 // Push the allocated receiver to the stack.
209 __ Push(eax);
210
211 // We need two copies because we may have to return the original one
212 // and the calling conventions dictate that the called function pops the
213 // receiver. The second copy is pushed after the arguments, we saved in r8
214 // since rax needs to store the number of arguments before
215 // InvokingFunction.
216 __ movd(xmm0, eax);
217
218 // Set up pointer to first argument (skip receiver).
219 __ lea(edi, Operand(ebp, StandardFrameConstants::kCallerSPOffset +
220 kSystemPointerSize));
221
222 // Restore argument count.
223 __ mov(eax, Operand(ebp, ConstructFrameConstants::kLengthOffset));
224 __ SmiUntag(eax);
225
226 // Check if we have enough stack space to push all arguments.
227 // Argument count in eax. Clobbers ecx.
228 Label stack_overflow;
229 __ StackOverflowCheck(eax, ecx, &stack_overflow);
230
231 // TODO(victorgomes): When the arguments adaptor is completely removed, we
232 // should get the formal parameter count and copy the arguments in its
233 // correct position (including any undefined), instead of delaying this to
234 // InvokeFunction.
235
236 // Copy arguments to the expression stack.
237 __ PushArray(edi, eax, ecx);
238
239 // Push implicit receiver.
240 __ movd(ecx, xmm0);
241 __ Push(ecx);
242
243 // Restore and and call the constructor function.
244 __ mov(edi, Operand(ebp, ConstructFrameConstants::kConstructorOffset));
245 __ InvokeFunction(edi, edx, eax, CALL_FUNCTION);
246
247 // ----------- S t a t e -------------
248 // -- eax: constructor result
249 // -- sp[0*kSystemPointerSize]: implicit receiver
250 // -- sp[1*kSystemPointerSize]: padding
251 // -- sp[2*kSystemPointerSize]: constructor function
252 // -- sp[3*kSystemPointerSize]: number of arguments
253 // -- sp[4*kSystemPointerSize]: context
254 // -----------------------------------
255
256 // Store offset of return address for deoptimizer.
257 masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
258 masm->pc_offset());
259
260 // If the result is an object (in the ECMA sense), we should get rid
261 // of the receiver and use the result; see ECMA-262 section 13.2.2-7
262 // on page 74.
263
264 Label check_result, use_receiver, do_throw, leave_and_return;
265 // If the result is undefined, we jump out to using the implicit receiver.
266 __ JumpIfNotRoot(eax, RootIndex::kUndefinedValue, &check_result,
267 Label::kNear);
268
269 // Throw away the result of the constructor invocation and use the
270 // on-stack receiver as the result.
271 __ bind(&use_receiver);
272 __ mov(eax, Operand(esp, 0 * kSystemPointerSize));
273 __ JumpIfRoot(eax, RootIndex::kTheHoleValue, &do_throw);
274
275 __ bind(&leave_and_return);
276 // Restore smi-tagged arguments count from the frame.
277 __ mov(edx, Operand(ebp, ConstructFrameConstants::kLengthOffset));
278 __ LeaveFrame(StackFrame::CONSTRUCT);
279
280 // Remove caller arguments from the stack and return.
281 STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
282 __ pop(ecx);
283 __ lea(esp, Operand(esp, edx, times_half_system_pointer_size,
284 1 * kSystemPointerSize)); // 1 ~ receiver
285 __ push(ecx);
286 __ ret(0);
287
288 // Otherwise we do a smi check and fall through to check if the return value
289 // is a valid receiver.
290 __ bind(&check_result);
291
292 // If the result is a smi, it is *not* an object in the ECMA sense.
293 __ JumpIfSmi(eax, &use_receiver, Label::kNear);
294
295 // If the type of the result (stored in its map) is less than
296 // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
297 STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
298 __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx);
299 __ j(above_equal, &leave_and_return, Label::kNear);
300 __ jmp(&use_receiver, Label::kNear);
301
302 __ bind(&do_throw);
303 // Restore context from the frame.
304 __ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset));
305 __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
306 // This should be unreachable.
307 __ int3();
308
309 __ bind(&stack_overflow);
310 // Restore context from the frame.
311 __ mov(esi, Operand(ebp, ConstructFrameConstants::kContextOffset));
312 __ CallRuntime(Runtime::kThrowStackOverflow);
313 // This should be unreachable.
314 __ int3();
315 }
316
Generate_JSBuiltinsConstructStub(MacroAssembler * masm)317 void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
318 Generate_JSBuiltinsConstructStubHelper(masm);
319 }
320
Generate_ConstructedNonConstructable(MacroAssembler * masm)321 void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
322 FrameScope scope(masm, StackFrame::INTERNAL);
323 __ push(edi);
324 __ CallRuntime(Runtime::kThrowConstructedNonConstructable);
325 }
326
327 namespace {
328
329 // Called with the native C calling convention. The corresponding function
330 // signature is either:
331 //
332 // using JSEntryFunction = GeneratedCode<Address(
333 // Address root_register_value, Address new_target, Address target,
334 // Address receiver, intptr_t argc, Address** argv)>;
335 // or
336 // using JSEntryFunction = GeneratedCode<Address(
337 // Address root_register_value, MicrotaskQueue* microtask_queue)>;
Generate_JSEntryVariant(MacroAssembler * masm,StackFrame::Type type,Builtins::Name entry_trampoline)338 void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type,
339 Builtins::Name entry_trampoline) {
340 Label invoke, handler_entry, exit;
341 Label not_outermost_js, not_outermost_js_2;
342
343 { // NOLINT. Scope block confuses linter.
344 NoRootArrayScope uninitialized_root_register(masm);
345
346 // Set up frame.
347 __ push(ebp);
348 __ mov(ebp, esp);
349
350 // Push marker in two places.
351 __ push(Immediate(StackFrame::TypeToMarker(type)));
352 // Reserve a slot for the context. It is filled after the root register has
353 // been set up.
354 __ AllocateStackSpace(kSystemPointerSize);
355 // Save callee-saved registers (C calling conventions).
356 __ push(edi);
357 __ push(esi);
358 __ push(ebx);
359
360 // Initialize the root register based on the given Isolate* argument.
361 // C calling convention. The first argument is passed on the stack.
362 __ mov(kRootRegister,
363 Operand(ebp, EntryFrameConstants::kRootRegisterValueOffset));
364 }
365
366 // Save copies of the top frame descriptor on the stack.
367 ExternalReference c_entry_fp = ExternalReference::Create(
368 IsolateAddressId::kCEntryFPAddress, masm->isolate());
369 __ push(__ ExternalReferenceAsOperand(c_entry_fp, edi));
370
371 // Store the context address in the previously-reserved slot.
372 ExternalReference context_address = ExternalReference::Create(
373 IsolateAddressId::kContextAddress, masm->isolate());
374 __ mov(edi, __ ExternalReferenceAsOperand(context_address, edi));
375 static constexpr int kOffsetToContextSlot = -2 * kSystemPointerSize;
376 __ mov(Operand(ebp, kOffsetToContextSlot), edi);
377
378 // If this is the outermost JS call, set js_entry_sp value.
379 ExternalReference js_entry_sp = ExternalReference::Create(
380 IsolateAddressId::kJSEntrySPAddress, masm->isolate());
381 __ cmp(__ ExternalReferenceAsOperand(js_entry_sp, edi), Immediate(0));
382 __ j(not_equal, ¬_outermost_js, Label::kNear);
383 __ mov(__ ExternalReferenceAsOperand(js_entry_sp, edi), ebp);
384 __ push(Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME));
385 __ jmp(&invoke, Label::kNear);
386 __ bind(¬_outermost_js);
387 __ push(Immediate(StackFrame::INNER_JSENTRY_FRAME));
388
389 // Jump to a faked try block that does the invoke, with a faked catch
390 // block that sets the pending exception.
391 __ jmp(&invoke);
392 __ bind(&handler_entry);
393
394 // Store the current pc as the handler offset. It's used later to create the
395 // handler table.
396 masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos());
397
398 // Caught exception: Store result (exception) in the pending exception
399 // field in the JSEnv and return a failure sentinel.
400 ExternalReference pending_exception = ExternalReference::Create(
401 IsolateAddressId::kPendingExceptionAddress, masm->isolate());
402 __ mov(__ ExternalReferenceAsOperand(pending_exception, edi), eax);
403 __ Move(eax, masm->isolate()->factory()->exception());
404 __ jmp(&exit);
405
406 // Invoke: Link this frame into the handler chain.
407 __ bind(&invoke);
408 __ PushStackHandler(edi);
409
410 // Invoke the function by calling through JS entry trampoline builtin and
411 // pop the faked function when we return.
412 Handle<Code> trampoline_code =
413 masm->isolate()->builtins()->builtin_handle(entry_trampoline);
414 __ Call(trampoline_code, RelocInfo::CODE_TARGET);
415
416 // Unlink this frame from the handler chain.
417 __ PopStackHandler(edi);
418
419 __ bind(&exit);
420
421 // Check if the current stack frame is marked as the outermost JS frame.
422 __ pop(edi);
423 __ cmp(edi, Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME));
424 __ j(not_equal, ¬_outermost_js_2);
425 __ mov(__ ExternalReferenceAsOperand(js_entry_sp, edi), Immediate(0));
426 __ bind(¬_outermost_js_2);
427
428 // Restore the top frame descriptor from the stack.
429 __ pop(__ ExternalReferenceAsOperand(c_entry_fp, edi));
430
431 // Restore callee-saved registers (C calling conventions).
432 __ pop(ebx);
433 __ pop(esi);
434 __ pop(edi);
435 __ add(esp, Immediate(2 * kSystemPointerSize)); // remove markers
436
437 // Restore frame pointer and return.
438 __ pop(ebp);
439 __ ret(0);
440 }
441
442 } // namespace
443
Generate_JSEntry(MacroAssembler * masm)444 void Builtins::Generate_JSEntry(MacroAssembler* masm) {
445 Generate_JSEntryVariant(masm, StackFrame::ENTRY,
446 Builtins::kJSEntryTrampoline);
447 }
448
Generate_JSConstructEntry(MacroAssembler * masm)449 void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) {
450 Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY,
451 Builtins::kJSConstructEntryTrampoline);
452 }
453
Generate_JSRunMicrotasksEntry(MacroAssembler * masm)454 void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) {
455 Generate_JSEntryVariant(masm, StackFrame::ENTRY,
456 Builtins::kRunMicrotasksTrampoline);
457 }
458
Generate_JSEntryTrampolineHelper(MacroAssembler * masm,bool is_construct)459 static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
460 bool is_construct) {
461 {
462 FrameScope scope(masm, StackFrame::INTERNAL);
463
464 const Register scratch1 = edx;
465 const Register scratch2 = edi;
466
467 // Setup the context (we need to use the caller context from the isolate).
468 ExternalReference context_address = ExternalReference::Create(
469 IsolateAddressId::kContextAddress, masm->isolate());
470 __ mov(esi, __ ExternalReferenceAsOperand(context_address, scratch1));
471
472 // Load the previous frame pointer (edx) to access C arguments
473 __ mov(scratch1, Operand(ebp, 0));
474
475 // Push the function.
476 __ push(Operand(scratch1, EntryFrameConstants::kFunctionArgOffset));
477
478 // Load the number of arguments and setup pointer to the arguments.
479 __ mov(eax, Operand(scratch1, EntryFrameConstants::kArgcOffset));
480 __ mov(scratch1, Operand(scratch1, EntryFrameConstants::kArgvOffset));
481
482 // Check if we have enough stack space to push all arguments.
483 // Argument count in eax. Clobbers ecx.
484 Label enough_stack_space, stack_overflow;
485 __ StackOverflowCheck(eax, ecx, &stack_overflow);
486 __ jmp(&enough_stack_space);
487
488 __ bind(&stack_overflow);
489 __ CallRuntime(Runtime::kThrowStackOverflow);
490 // This should be unreachable.
491 __ int3();
492
493 __ bind(&enough_stack_space);
494
495 // Copy arguments to the stack in a loop.
496 Label loop, entry;
497 __ Move(ecx, eax);
498 __ jmp(&entry, Label::kNear);
499 __ bind(&loop);
500 // Push the parameter from argv.
501 __ mov(scratch2, Operand(scratch1, ecx, times_system_pointer_size, 0));
502 __ push(Operand(scratch2, 0)); // dereference handle
503 __ bind(&entry);
504 __ dec(ecx);
505 __ j(greater_equal, &loop);
506
507 // Load the previous frame pointer to access C arguments
508 __ mov(scratch2, Operand(ebp, 0));
509
510 // Push the receiver onto the stack.
511 __ push(Operand(scratch2, EntryFrameConstants::kReceiverArgOffset));
512
513 // Get the new.target and function from the frame.
514 __ mov(edx, Operand(scratch2, EntryFrameConstants::kNewTargetArgOffset));
515 __ mov(edi, Operand(scratch2, EntryFrameConstants::kFunctionArgOffset));
516
517 // Invoke the code.
518 Handle<Code> builtin = is_construct
519 ? BUILTIN_CODE(masm->isolate(), Construct)
520 : masm->isolate()->builtins()->Call();
521 __ Call(builtin, RelocInfo::CODE_TARGET);
522
523 // Exit the internal frame. Notice that this also removes the empty.
524 // context and the function left on the stack by the code
525 // invocation.
526 }
527 __ ret(0);
528 }
529
Generate_JSEntryTrampoline(MacroAssembler * masm)530 void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
531 Generate_JSEntryTrampolineHelper(masm, false);
532 }
533
Generate_JSConstructEntryTrampoline(MacroAssembler * masm)534 void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
535 Generate_JSEntryTrampolineHelper(masm, true);
536 }
537
Generate_RunMicrotasksTrampoline(MacroAssembler * masm)538 void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) {
539 // This expects two C++ function parameters passed by Invoke() in
540 // execution.cc.
541 // r1: microtask_queue
542 __ mov(RunMicrotasksDescriptor::MicrotaskQueueRegister(),
543 Operand(ebp, EntryFrameConstants::kMicrotaskQueueArgOffset));
544 __ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET);
545 }
546
GetSharedFunctionInfoBytecode(MacroAssembler * masm,Register sfi_data,Register scratch1)547 static void GetSharedFunctionInfoBytecode(MacroAssembler* masm,
548 Register sfi_data,
549 Register scratch1) {
550 Label done;
551
552 __ CmpObjectType(sfi_data, INTERPRETER_DATA_TYPE, scratch1);
553 __ j(not_equal, &done, Label::kNear);
554 __ mov(sfi_data,
555 FieldOperand(sfi_data, InterpreterData::kBytecodeArrayOffset));
556
557 __ bind(&done);
558 }
559
560 // static
Generate_ResumeGeneratorTrampoline(MacroAssembler * masm)561 void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
562 // ----------- S t a t e -------------
563 // -- eax : the value to pass to the generator
564 // -- edx : the JSGeneratorObject to resume
565 // -- esp[0] : return address
566 // -----------------------------------
567 __ AssertGeneratorObject(edx);
568
569 // Store input value into generator object.
570 __ mov(FieldOperand(edx, JSGeneratorObject::kInputOrDebugPosOffset), eax);
571 __ RecordWriteField(edx, JSGeneratorObject::kInputOrDebugPosOffset, eax, ecx,
572 kDontSaveFPRegs);
573
574 // Load suspended function and context.
575 __ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset));
576 __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
577
578 // Flood function if we are stepping.
579 Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
580 Label stepping_prepared;
581 ExternalReference debug_hook =
582 ExternalReference::debug_hook_on_function_call_address(masm->isolate());
583 __ cmpb(__ ExternalReferenceAsOperand(debug_hook, ecx), Immediate(0));
584 __ j(not_equal, &prepare_step_in_if_stepping);
585
586 // Flood function if we need to continue stepping in the suspended generator.
587 ExternalReference debug_suspended_generator =
588 ExternalReference::debug_suspended_generator_address(masm->isolate());
589 __ cmp(edx, __ ExternalReferenceAsOperand(debug_suspended_generator, ecx));
590 __ j(equal, &prepare_step_in_suspended_generator);
591 __ bind(&stepping_prepared);
592
593 // Check the stack for overflow. We are not trying to catch interruptions
594 // (i.e. debug break and preemption) here, so check the "real stack limit".
595 Label stack_overflow;
596 __ CompareStackLimit(esp, StackLimitKind::kRealStackLimit);
597 __ j(below, &stack_overflow);
598
599 // Pop return address.
600 __ PopReturnAddressTo(eax);
601
602 // ----------- S t a t e -------------
603 // -- eax : return address
604 // -- edx : the JSGeneratorObject to resume
605 // -- edi : generator function
606 // -- esi : generator context
607 // -----------------------------------
608
609 {
610 __ movd(xmm0, ebx);
611
612 // Copy the function arguments from the generator object's register file.
613 __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
614 __ movzx_w(ecx, FieldOperand(
615 ecx, SharedFunctionInfo::kFormalParameterCountOffset));
616 __ mov(ebx,
617 FieldOperand(edx, JSGeneratorObject::kParametersAndRegistersOffset));
618 {
619 Label done_loop, loop;
620 __ mov(edi, ecx);
621
622 __ bind(&loop);
623 __ dec(edi);
624 __ j(less, &done_loop);
625 __ Push(
626 FieldOperand(ebx, edi, times_tagged_size, FixedArray::kHeaderSize));
627 __ jmp(&loop);
628
629 __ bind(&done_loop);
630 }
631
632 // Push receiver.
633 __ Push(FieldOperand(edx, JSGeneratorObject::kReceiverOffset));
634
635 // Restore registers.
636 __ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset));
637 __ movd(ebx, xmm0);
638 }
639
640 // Underlying function needs to have bytecode available.
641 if (FLAG_debug_code) {
642 __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
643 __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kFunctionDataOffset));
644 __ Push(eax);
645 GetSharedFunctionInfoBytecode(masm, ecx, eax);
646 __ Pop(eax);
647 __ CmpObjectType(ecx, BYTECODE_ARRAY_TYPE, ecx);
648 __ Assert(equal, AbortReason::kMissingBytecodeArray);
649 }
650
651 // Resume (Ignition/TurboFan) generator object.
652 {
653 __ PushReturnAddressFrom(eax);
654 __ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
655 __ movzx_w(eax, FieldOperand(
656 eax, SharedFunctionInfo::kFormalParameterCountOffset));
657 // We abuse new.target both to indicate that this is a resume call and to
658 // pass in the generator object. In ordinary calls, new.target is always
659 // undefined because generator functions are non-constructable.
660 static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
661 __ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset));
662 __ JumpCodeObject(ecx);
663 }
664
665 __ bind(&prepare_step_in_if_stepping);
666 {
667 FrameScope scope(masm, StackFrame::INTERNAL);
668 __ Push(edx);
669 __ Push(edi);
670 // Push hole as receiver since we do not use it for stepping.
671 __ PushRoot(RootIndex::kTheHoleValue);
672 __ CallRuntime(Runtime::kDebugOnFunctionCall);
673 __ Pop(edx);
674 __ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset));
675 }
676 __ jmp(&stepping_prepared);
677
678 __ bind(&prepare_step_in_suspended_generator);
679 {
680 FrameScope scope(masm, StackFrame::INTERNAL);
681 __ Push(edx);
682 __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
683 __ Pop(edx);
684 __ mov(edi, FieldOperand(edx, JSGeneratorObject::kFunctionOffset));
685 }
686 __ jmp(&stepping_prepared);
687
688 __ bind(&stack_overflow);
689 {
690 FrameScope scope(masm, StackFrame::INTERNAL);
691 __ CallRuntime(Runtime::kThrowStackOverflow);
692 __ int3(); // This should be unreachable.
693 }
694 }
695
ReplaceClosureCodeWithOptimizedCode(MacroAssembler * masm,Register optimized_code,Register closure,Register scratch1,Register scratch2)696 static void ReplaceClosureCodeWithOptimizedCode(MacroAssembler* masm,
697 Register optimized_code,
698 Register closure,
699 Register scratch1,
700 Register scratch2) {
701 // Store the optimized code in the closure.
702 __ mov(FieldOperand(closure, JSFunction::kCodeOffset), optimized_code);
703 __ mov(scratch1, optimized_code); // Write barrier clobbers scratch1 below.
704 __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2,
705 kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
706 }
707
LeaveInterpreterFrame(MacroAssembler * masm,Register scratch1,Register scratch2)708 static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1,
709 Register scratch2) {
710 Register params_size = scratch1;
711 // Get the size of the formal parameters + receiver (in bytes).
712 __ mov(params_size,
713 Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
714 __ mov(params_size,
715 FieldOperand(params_size, BytecodeArray::kParameterSizeOffset));
716
717 #ifdef V8_NO_ARGUMENTS_ADAPTOR
718 Register actual_params_size = scratch2;
719 // Compute the size of the actual parameters + receiver (in bytes).
720 __ mov(actual_params_size, Operand(ebp, StandardFrameConstants::kArgCOffset));
721 __ lea(actual_params_size,
722 Operand(actual_params_size, times_system_pointer_size,
723 kSystemPointerSize));
724
725 // If actual is bigger than formal, then we should use it to free up the stack
726 // arguments.
727 Label corrected_args_count;
728 __ cmp(params_size, actual_params_size);
729 __ j(greater_equal, &corrected_args_count, Label::kNear);
730 __ mov(params_size, actual_params_size);
731 __ bind(&corrected_args_count);
732 #endif
733
734 // Leave the frame (also dropping the register file).
735 __ leave();
736
737 // Drop receiver + arguments.
738 Register return_pc = scratch2;
739 __ PopReturnAddressTo(return_pc);
740 __ add(esp, params_size);
741 __ PushReturnAddressFrom(return_pc);
742 }
743
744 // Tail-call |function_id| if |actual_marker| == |expected_marker|
TailCallRuntimeIfMarkerEquals(MacroAssembler * masm,Register actual_marker,OptimizationMarker expected_marker,Runtime::FunctionId function_id)745 static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm,
746 Register actual_marker,
747 OptimizationMarker expected_marker,
748 Runtime::FunctionId function_id) {
749 Label no_match;
750 __ cmp(actual_marker, expected_marker);
751 __ j(not_equal, &no_match, Label::kNear);
752 GenerateTailCallToReturnedCode(masm, function_id);
753 __ bind(&no_match);
754 }
755
TailCallOptimizedCodeSlot(MacroAssembler * masm,Register optimized_code_entry)756 static void TailCallOptimizedCodeSlot(MacroAssembler* masm,
757 Register optimized_code_entry) {
758 // ----------- S t a t e -------------
759 // -- eax : actual argument count
760 // -- edx : new target (preserved for callee if needed, and caller)
761 // -- edi : target function (preserved for callee if needed, and caller)
762 // -----------------------------------
763 DCHECK(!AreAliased(edx, edi, optimized_code_entry));
764
765 Register closure = edi;
766 __ movd(xmm0, eax);
767 __ movd(xmm1, edx);
768
769 Label heal_optimized_code_slot;
770
771 // If the optimized code is cleared, go to runtime to update the optimization
772 // marker field.
773 __ LoadWeakValue(optimized_code_entry, &heal_optimized_code_slot);
774
775 // Check if the optimized code is marked for deopt. If it is, bailout to a
776 // given label.
777 __ mov(eax,
778 FieldOperand(optimized_code_entry, Code::kCodeDataContainerOffset));
779 __ test(FieldOperand(eax, CodeDataContainer::kKindSpecificFlagsOffset),
780 Immediate(1 << Code::kMarkedForDeoptimizationBit));
781 __ j(not_zero, &heal_optimized_code_slot);
782
783 // Optimized code is good, get it into the closure and link the closure
784 // into the optimized functions list, then tail call the optimized code.
785 ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure, edx,
786 eax);
787 static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
788 __ LoadCodeObjectEntry(ecx, optimized_code_entry);
789 __ movd(edx, xmm1);
790 __ movd(eax, xmm0);
791 __ jmp(ecx);
792
793 // Optimized code slot contains deoptimized code or code is cleared and
794 // optimized code marker isn't updated. Evict the code, update the marker
795 // and re-enter the closure's code.
796 __ bind(&heal_optimized_code_slot);
797 __ movd(edx, xmm1);
798 __ movd(eax, xmm0);
799 GenerateTailCallToReturnedCode(masm, Runtime::kHealOptimizedCodeSlot);
800 }
801
MaybeOptimizeCode(MacroAssembler * masm,Register optimization_marker)802 static void MaybeOptimizeCode(MacroAssembler* masm,
803 Register optimization_marker) {
804 // ----------- S t a t e -------------
805 // -- eax : actual argument count
806 // -- edx : new target (preserved for callee if needed, and caller)
807 // -- edi : target function (preserved for callee if needed, and caller)
808 // -- optimization_marker : a Smi containing a non-zero optimization marker.
809 // -----------------------------------
810 DCHECK(!AreAliased(edx, edi, optimization_marker));
811
812 // TODO(v8:8394): The logging of first execution will break if
813 // feedback vectors are not allocated. We need to find a different way of
814 // logging these events if required.
815 TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
816 OptimizationMarker::kLogFirstExecution,
817 Runtime::kFunctionFirstExecution);
818 TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
819 OptimizationMarker::kCompileOptimized,
820 Runtime::kCompileOptimized_NotConcurrent);
821 TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
822 OptimizationMarker::kCompileOptimizedConcurrent,
823 Runtime::kCompileOptimized_Concurrent);
824
825 // Marker should be one of LogFirstExecution / CompileOptimized /
826 // CompileOptimizedConcurrent. InOptimizationQueue and None shouldn't reach
827 // here.
828 if (FLAG_debug_code) {
829 __ int3();
830 }
831 }
832
833 // Advance the current bytecode offset. This simulates what all bytecode
834 // handlers do upon completion of the underlying operation. Will bail out to a
835 // label if the bytecode (without prefix) is a return bytecode. Will not advance
836 // the bytecode offset if the current bytecode is a JumpLoop, instead just
837 // re-executing the JumpLoop to jump to the correct bytecode.
AdvanceBytecodeOffsetOrReturn(MacroAssembler * masm,Register bytecode_array,Register bytecode_offset,Register scratch1,Register scratch2,Register scratch3,Label * if_return)838 static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm,
839 Register bytecode_array,
840 Register bytecode_offset,
841 Register scratch1, Register scratch2,
842 Register scratch3, Label* if_return) {
843 Register bytecode_size_table = scratch1;
844 Register bytecode = scratch2;
845
846 // The bytecode offset value will be increased by one in wide and extra wide
847 // cases. In the case of having a wide or extra wide JumpLoop bytecode, we
848 // will restore the original bytecode. In order to simplify the code, we have
849 // a backup of it.
850 Register original_bytecode_offset = scratch3;
851 DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table,
852 bytecode, original_bytecode_offset));
853 __ Move(bytecode_size_table,
854 Immediate(ExternalReference::bytecode_size_table_address()));
855
856 // Load the current bytecode.
857 __ movzx_b(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0));
858 __ Move(original_bytecode_offset, bytecode_offset);
859
860 // Check if the bytecode is a Wide or ExtraWide prefix bytecode.
861 Label process_bytecode, extra_wide;
862 STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide));
863 STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide));
864 STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide));
865 STATIC_ASSERT(3 ==
866 static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide));
867 __ cmp(bytecode, Immediate(0x3));
868 __ j(above, &process_bytecode, Label::kNear);
869 // The code to load the next bytecode is common to both wide and extra wide.
870 // We can hoist them up here. inc has to happen before test since it
871 // modifies the ZF flag.
872 __ inc(bytecode_offset);
873 __ test(bytecode, Immediate(0x1));
874 __ movzx_b(bytecode, Operand(bytecode_array, bytecode_offset, times_1, 0));
875 __ j(not_equal, &extra_wide, Label::kNear);
876
877 // Load the next bytecode and update table to the wide scaled table.
878 __ add(bytecode_size_table,
879 Immediate(kIntSize * interpreter::Bytecodes::kBytecodeCount));
880 __ jmp(&process_bytecode, Label::kNear);
881
882 __ bind(&extra_wide);
883 // Update table to the extra wide scaled table.
884 __ add(bytecode_size_table,
885 Immediate(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount));
886
887 __ bind(&process_bytecode);
888
889 // Bailout to the return label if this is a return bytecode.
890 #define JUMP_IF_EQUAL(NAME) \
891 __ cmp(bytecode, \
892 Immediate(static_cast<int>(interpreter::Bytecode::k##NAME))); \
893 __ j(equal, if_return);
894 RETURN_BYTECODE_LIST(JUMP_IF_EQUAL)
895 #undef JUMP_IF_EQUAL
896
897 // If this is a JumpLoop, re-execute it to perform the jump to the beginning
898 // of the loop.
899 Label end, not_jump_loop;
900 __ cmp(bytecode,
901 Immediate(static_cast<int>(interpreter::Bytecode::kJumpLoop)));
902 __ j(not_equal, ¬_jump_loop, Label::kNear);
903 // If this is a wide or extra wide JumpLoop, we need to restore the original
904 // bytecode_offset since we might have increased it to skip the wide /
905 // extra-wide prefix bytecode.
906 __ Move(bytecode_offset, original_bytecode_offset);
907 __ jmp(&end, Label::kNear);
908
909 __ bind(¬_jump_loop);
910 // Otherwise, load the size of the current bytecode and advance the offset.
911 __ add(bytecode_offset,
912 Operand(bytecode_size_table, bytecode, times_int_size, 0));
913
914 __ bind(&end);
915 }
916
917 // Generate code for entering a JS function with the interpreter.
918 // On entry to the function the receiver and arguments have been pushed on the
919 // stack left to right.
920 //
921 // The live registers are:
922 // o eax: actual argument count (not including the receiver)
923 // o edi: the JS function object being called
924 // o edx: the incoming new target or generator object
925 // o esi: our context
926 // o ebp: the caller's frame pointer
927 // o esp: stack pointer (pointing to return address)
928 //
929 // The function builds an interpreter frame. See InterpreterFrameConstants in
930 // frames.h for its layout.
Generate_InterpreterEntryTrampoline(MacroAssembler * masm)931 void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
932 Register closure = edi;
933
934 __ movd(xmm0, eax); // Spill actual argument count.
935
936 // The bytecode array could have been flushed from the shared function info,
937 // if so, call into CompileLazy.
938 Label compile_lazy;
939 __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
940 __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kFunctionDataOffset));
941 GetSharedFunctionInfoBytecode(masm, ecx, eax);
942 __ CmpObjectType(ecx, BYTECODE_ARRAY_TYPE, eax);
943 __ j(not_equal, &compile_lazy);
944
945 Register feedback_vector = ecx;
946 Label push_stack_frame;
947 // Load feedback vector and check if it is valid. If valid, check for
948 // optimized code and update invocation count. Otherwise, setup the stack
949 // frame.
950 __ mov(feedback_vector,
951 FieldOperand(closure, JSFunction::kFeedbackCellOffset));
952 __ mov(feedback_vector, FieldOperand(feedback_vector, Cell::kValueOffset));
953 __ mov(eax, FieldOperand(feedback_vector, HeapObject::kMapOffset));
954 __ CmpInstanceType(eax, FEEDBACK_VECTOR_TYPE);
955 __ j(not_equal, &push_stack_frame);
956
957 // Load the optimization state from the feedback vector and re-use the
958 // register.
959 Register optimization_state = ecx;
960 // Store feedback_vector. We may need it if we need to load the optimze code
961 // slot entry.
962 __ movd(xmm1, feedback_vector);
963 __ mov(optimization_state,
964 FieldOperand(feedback_vector, FeedbackVector::kFlagsOffset));
965
966 // Check if there is optimized code or a optimization marker that needes to be
967 // processed.
968 Label has_optimized_code_or_marker;
969 __ test(
970 optimization_state,
971 Immediate(FeedbackVector::kHasOptimizedCodeOrCompileOptimizedMarkerMask));
972 __ j(not_zero, &has_optimized_code_or_marker);
973
974 Label not_optimized;
975 __ bind(¬_optimized);
976
977 // Load the feedback vector and increment the invocation count.
978 __ mov(feedback_vector,
979 FieldOperand(closure, JSFunction::kFeedbackCellOffset));
980 __ mov(feedback_vector, FieldOperand(feedback_vector, Cell::kValueOffset));
981 __ inc(FieldOperand(feedback_vector, FeedbackVector::kInvocationCountOffset));
982
983 // Open a frame scope to indicate that there is a frame on the stack. The
984 // MANUAL indicates that the scope shouldn't actually generate code to set
985 // up the frame (that is done below).
986 __ bind(&push_stack_frame);
987 FrameScope frame_scope(masm, StackFrame::MANUAL);
988 __ push(ebp); // Caller's frame pointer.
989 __ mov(ebp, esp);
990 __ push(kContextRegister); // Callee's context.
991 __ push(kJavaScriptCallTargetRegister); // Callee's JS function.
992 __ movd(kJavaScriptCallArgCountRegister, xmm0);
993 __ push(kJavaScriptCallArgCountRegister); // Actual argument count.
994
995 // Get the bytecode array from the function object and load it into
996 // kInterpreterBytecodeArrayRegister.
997 __ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
998 __ mov(kInterpreterBytecodeArrayRegister,
999 FieldOperand(eax, SharedFunctionInfo::kFunctionDataOffset));
1000 GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, eax);
1001
1002 // Check function data field is actually a BytecodeArray object.
1003 if (FLAG_debug_code) {
1004 __ AssertNotSmi(kInterpreterBytecodeArrayRegister);
1005 __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
1006 eax);
1007 __ Assert(
1008 equal,
1009 AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
1010 }
1011
1012 // Reset code age and the OSR arming. The OSR field and BytecodeAgeOffset are
1013 // 8-bit fields next to each other, so we could just optimize by writing a
1014 // 16-bit. These static asserts guard our assumption is valid.
1015 STATIC_ASSERT(BytecodeArray::kBytecodeAgeOffset ==
1016 BytecodeArray::kOsrNestingLevelOffset + kCharSize);
1017 STATIC_ASSERT(BytecodeArray::kNoAgeBytecodeAge == 0);
1018 __ mov_w(FieldOperand(kInterpreterBytecodeArrayRegister,
1019 BytecodeArray::kOsrNestingLevelOffset),
1020 Immediate(0));
1021
1022 // Push bytecode array.
1023 __ push(kInterpreterBytecodeArrayRegister);
1024 // Push Smi tagged initial bytecode array offset.
1025 __ push(Immediate(Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag)));
1026
1027 // Allocate the local and temporary register file on the stack.
1028 Label stack_overflow;
1029 {
1030 // Load frame size from the BytecodeArray object.
1031 Register frame_size = ecx;
1032 __ mov(frame_size, FieldOperand(kInterpreterBytecodeArrayRegister,
1033 BytecodeArray::kFrameSizeOffset));
1034
1035 // Do a stack check to ensure we don't go over the limit.
1036 __ mov(eax, esp);
1037 __ sub(eax, frame_size);
1038 __ CompareStackLimit(eax, StackLimitKind::kRealStackLimit);
1039 __ j(below, &stack_overflow);
1040
1041 // If ok, push undefined as the initial value for all register file entries.
1042 Label loop_header;
1043 Label loop_check;
1044 __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
1045 __ jmp(&loop_check);
1046 __ bind(&loop_header);
1047 // TODO(rmcilroy): Consider doing more than one push per loop iteration.
1048 __ push(kInterpreterAccumulatorRegister);
1049 // Continue loop if not done.
1050 __ bind(&loop_check);
1051 __ sub(frame_size, Immediate(kSystemPointerSize));
1052 __ j(greater_equal, &loop_header);
1053 }
1054
1055 // If the bytecode array has a valid incoming new target or generator object
1056 // register, initialize it with incoming value which was passed in edx.
1057 Label no_incoming_new_target_or_generator_register;
1058 __ mov(ecx, FieldOperand(
1059 kInterpreterBytecodeArrayRegister,
1060 BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset));
1061 __ test(ecx, ecx);
1062 __ j(zero, &no_incoming_new_target_or_generator_register);
1063 __ mov(Operand(ebp, ecx, times_system_pointer_size, 0), edx);
1064 __ bind(&no_incoming_new_target_or_generator_register);
1065
1066 // Perform interrupt stack check.
1067 // TODO(solanes): Merge with the real stack limit check above.
1068 Label stack_check_interrupt, after_stack_check_interrupt;
1069 __ CompareStackLimit(esp, StackLimitKind::kInterruptStackLimit);
1070 __ j(below, &stack_check_interrupt);
1071 __ bind(&after_stack_check_interrupt);
1072
1073 // The accumulator is already loaded with undefined.
1074
1075 __ mov(kInterpreterBytecodeOffsetRegister,
1076 Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
1077
1078 // Load the dispatch table into a register and dispatch to the bytecode
1079 // handler at the current bytecode offset.
1080 Label do_dispatch;
1081 __ bind(&do_dispatch);
1082 __ Move(kInterpreterDispatchTableRegister,
1083 Immediate(ExternalReference::interpreter_dispatch_table_address(
1084 masm->isolate())));
1085 __ movzx_b(ecx, Operand(kInterpreterBytecodeArrayRegister,
1086 kInterpreterBytecodeOffsetRegister, times_1, 0));
1087 __ mov(kJavaScriptCallCodeStartRegister,
1088 Operand(kInterpreterDispatchTableRegister, ecx,
1089 times_system_pointer_size, 0));
1090 __ call(kJavaScriptCallCodeStartRegister);
1091 masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
1092
1093 // Any returns to the entry trampoline are either due to the return bytecode
1094 // or the interpreter tail calling a builtin and then a dispatch.
1095
1096 // Get bytecode array and bytecode offset from the stack frame.
1097 __ mov(kInterpreterBytecodeArrayRegister,
1098 Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
1099 __ mov(kInterpreterBytecodeOffsetRegister,
1100 Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1101 __ SmiUntag(kInterpreterBytecodeOffsetRegister);
1102
1103 // Either return, or advance to the next bytecode and dispatch.
1104 Label do_return;
1105 __ Push(eax);
1106 AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
1107 kInterpreterBytecodeOffsetRegister, ecx,
1108 kInterpreterDispatchTableRegister, eax,
1109 &do_return);
1110 __ Pop(eax);
1111 __ jmp(&do_dispatch);
1112
1113 __ bind(&do_return);
1114 __ Pop(eax);
1115 // The return value is in eax.
1116 LeaveInterpreterFrame(masm, edx, ecx);
1117 __ ret(0);
1118
1119 __ bind(&stack_check_interrupt);
1120 // Modify the bytecode offset in the stack to be kFunctionEntryBytecodeOffset
1121 // for the call to the StackGuard.
1122 __ mov(Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp),
1123 Immediate(Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag +
1124 kFunctionEntryBytecodeOffset)));
1125 __ CallRuntime(Runtime::kStackGuard);
1126
1127 // After the call, restore the bytecode array, bytecode offset and accumulator
1128 // registers again. Also, restore the bytecode offset in the stack to its
1129 // previous value.
1130 __ mov(kInterpreterBytecodeArrayRegister,
1131 Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
1132 __ mov(kInterpreterBytecodeOffsetRegister,
1133 Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
1134 __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
1135
1136 // It's ok to clobber kInterpreterBytecodeOffsetRegister since we are setting
1137 // it again after continuing.
1138 __ SmiTag(kInterpreterBytecodeOffsetRegister);
1139 __ mov(Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp),
1140 kInterpreterBytecodeOffsetRegister);
1141
1142 __ jmp(&after_stack_check_interrupt);
1143
1144 __ bind(&has_optimized_code_or_marker);
1145 Label maybe_has_optimized_code;
1146 // Restore actual argument count.
1147 __ movd(eax, xmm0);
1148
1149 // Check if optimized code is available
1150 __ test(
1151 optimization_state,
1152 Immediate(FeedbackVector::kHasCompileOptimizedOrLogFirstExecutionMarker));
1153 __ j(zero, &maybe_has_optimized_code);
1154
1155 Register optimization_marker = optimization_state;
1156 __ DecodeField<FeedbackVector::OptimizationMarkerBits>(optimization_marker);
1157 MaybeOptimizeCode(masm, optimization_marker);
1158 // Fall through if there's no runnable optimized code.
1159 __ jmp(¬_optimized);
1160
1161 __ bind(&maybe_has_optimized_code);
1162 Register optimized_code_entry = optimization_marker;
1163 __ movd(optimized_code_entry, xmm1);
1164 __ mov(
1165 optimized_code_entry,
1166 FieldOperand(feedback_vector, FeedbackVector::kMaybeOptimizedCodeOffset));
1167 TailCallOptimizedCodeSlot(masm, optimized_code_entry);
1168
1169 __ bind(&compile_lazy);
1170 // Restore actual argument count.
1171 __ movd(eax, xmm0);
1172 GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
1173
1174 __ bind(&stack_overflow);
1175 __ CallRuntime(Runtime::kThrowStackOverflow);
1176 __ int3(); // Should not return.
1177 }
1178
1179
Generate_InterpreterPushArgs(MacroAssembler * masm,Register array_limit,Register start_address)1180 static void Generate_InterpreterPushArgs(MacroAssembler* masm,
1181 Register array_limit,
1182 Register start_address) {
1183 // ----------- S t a t e -------------
1184 // -- start_address : Pointer to the last argument in the args array.
1185 // -- array_limit : Pointer to one before the first argument in the
1186 // args array.
1187 // -----------------------------------
1188 Label loop_header, loop_check;
1189 __ jmp(&loop_check);
1190 __ bind(&loop_header);
1191 __ Push(Operand(array_limit, 0));
1192 __ bind(&loop_check);
1193 __ add(array_limit, Immediate(kSystemPointerSize));
1194 __ cmp(array_limit, start_address);
1195 __ j(below_equal, &loop_header, Label::kNear);
1196 }
1197
1198 // static
Generate_InterpreterPushArgsThenCallImpl(MacroAssembler * masm,ConvertReceiverMode receiver_mode,InterpreterPushArgsMode mode)1199 void Builtins::Generate_InterpreterPushArgsThenCallImpl(
1200 MacroAssembler* masm, ConvertReceiverMode receiver_mode,
1201 InterpreterPushArgsMode mode) {
1202 DCHECK(mode != InterpreterPushArgsMode::kArrayFunction);
1203 // ----------- S t a t e -------------
1204 // -- eax : the number of arguments (not including the receiver)
1205 // -- ecx : the address of the first argument to be pushed. Subsequent
1206 // arguments should be consecutive above this, in the same order as
1207 // they are to be pushed onto the stack.
1208 // -- edi : the target to call (can be any Object).
1209 // -----------------------------------
1210
1211 const Register scratch = edx;
1212 const Register argv = ecx;
1213
1214 Label stack_overflow;
1215 if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1216 // The spread argument should not be pushed.
1217 __ dec(eax);
1218 }
1219
1220 // Add a stack check before pushing the arguments.
1221 __ StackOverflowCheck(eax, scratch, &stack_overflow, true);
1222
1223 __ movd(xmm0, eax); // Spill number of arguments.
1224
1225 // Compute the expected number of arguments.
1226 __ mov(scratch, eax);
1227
1228 // Pop return address to allow tail-call after pushing arguments.
1229 __ PopReturnAddressTo(eax);
1230
1231 if (receiver_mode != ConvertReceiverMode::kNullOrUndefined) {
1232 __ add(scratch, Immediate(1)); // Add one for receiver.
1233 }
1234
1235 // Find the address of the last argument.
1236 __ shl(scratch, kSystemPointerSizeLog2);
1237 __ neg(scratch);
1238 __ add(scratch, argv);
1239
1240 if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1241 __ movd(xmm1, scratch);
1242 Generate_InterpreterPushArgs(masm, scratch, argv);
1243 // Pass the spread in the register ecx.
1244 __ movd(ecx, xmm1);
1245 __ mov(ecx, Operand(ecx, 0));
1246 } else {
1247 Generate_InterpreterPushArgs(masm, scratch, argv);
1248 }
1249
1250 // Push "undefined" as the receiver arg if we need to.
1251 if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
1252 __ PushRoot(RootIndex::kUndefinedValue);
1253 }
1254
1255 __ PushReturnAddressFrom(eax);
1256 __ movd(eax, xmm0); // Restore number of arguments.
1257
1258 // Call the target.
1259 if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1260 __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread),
1261 RelocInfo::CODE_TARGET);
1262 } else {
1263 __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny),
1264 RelocInfo::CODE_TARGET);
1265 }
1266
1267 __ bind(&stack_overflow);
1268 {
1269 __ TailCallRuntime(Runtime::kThrowStackOverflow);
1270
1271 // This should be unreachable.
1272 __ int3();
1273 }
1274 }
1275
1276 namespace {
1277
1278 // This function modifies start_addr, and only reads the contents of num_args
1279 // register. scratch1 and scratch2 are used as temporary registers.
Generate_InterpreterPushZeroAndArgsAndReturnAddress(MacroAssembler * masm,Register num_args,Register start_addr,Register scratch1,Register scratch2,int num_slots_to_move,Label * stack_overflow)1280 void Generate_InterpreterPushZeroAndArgsAndReturnAddress(
1281 MacroAssembler* masm, Register num_args, Register start_addr,
1282 Register scratch1, Register scratch2, int num_slots_to_move,
1283 Label* stack_overflow) {
1284 // We have to move return address and the temporary registers above it
1285 // before we can copy arguments onto the stack. To achieve this:
1286 // Step 1: Increment the stack pointer by num_args + 1 (for receiver).
1287 // Step 2: Move the return address and values around it to the top of stack.
1288 // Step 3: Copy the arguments into the correct locations.
1289 // current stack =====> required stack layout
1290 // | | | return addr | (2) <-- esp (1)
1291 // | | | addtl. slot |
1292 // | | | arg N | (3)
1293 // | | | .... |
1294 // | | | arg 1 |
1295 // | return addr | <-- esp | arg 0 |
1296 // | addtl. slot | | receiver slot |
1297
1298 // Check for stack overflow before we increment the stack pointer.
1299 __ StackOverflowCheck(num_args, scratch1, stack_overflow, true);
1300
1301 // Step 1 - Update the stack pointer.
1302
1303 __ lea(scratch1,
1304 Operand(num_args, times_system_pointer_size, kSystemPointerSize));
1305 __ AllocateStackSpace(scratch1);
1306
1307 // Step 2 move return_address and slots around it to the correct locations.
1308 // Move from top to bottom, otherwise we may overwrite when num_args = 0 or 1,
1309 // basically when the source and destination overlap. We at least need one
1310 // extra slot for receiver, so no extra checks are required to avoid copy.
1311 for (int i = 0; i < num_slots_to_move + 1; i++) {
1312 __ mov(scratch1, Operand(esp, num_args, times_system_pointer_size,
1313 (i + 1) * kSystemPointerSize));
1314 __ mov(Operand(esp, i * kSystemPointerSize), scratch1);
1315 }
1316
1317 // Step 3 copy arguments to correct locations.
1318 // Slot meant for receiver contains return address. Reset it so that
1319 // we will not incorrectly interpret return address as an object.
1320 __ mov(Operand(esp, (num_slots_to_move + 1) * kSystemPointerSize),
1321 Immediate(0));
1322 __ mov(scratch1, Immediate(0));
1323
1324 Label loop_header, loop_check;
1325 __ jmp(&loop_check);
1326 __ bind(&loop_header);
1327 __ mov(scratch2, Operand(start_addr, 0));
1328 __ mov(Operand(esp, scratch1, times_system_pointer_size,
1329 (num_slots_to_move + 1) * kSystemPointerSize),
1330 scratch2);
1331 __ sub(start_addr, Immediate(kSystemPointerSize));
1332 __ bind(&loop_check);
1333 __ inc(scratch1);
1334 __ cmp(scratch1, eax);
1335 __ j(less_equal, &loop_header, Label::kNear);
1336 }
1337
1338 } // anonymous namespace
1339
1340 // static
Generate_InterpreterPushArgsThenConstructImpl(MacroAssembler * masm,InterpreterPushArgsMode mode)1341 void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
1342 MacroAssembler* masm, InterpreterPushArgsMode mode) {
1343 // ----------- S t a t e -------------
1344 // -- eax : the number of arguments (not including the receiver)
1345 // -- ecx : the address of the first argument to be pushed. Subsequent
1346 // arguments should be consecutive above this, in the same order
1347 // as they are to be pushed onto the stack.
1348 // -- esp[0] : return address
1349 // -- esp[4] : allocation site feedback (if available or undefined)
1350 // -- esp[8] : the new target
1351 // -- esp[12] : the constructor
1352 // -----------------------------------
1353 Label stack_overflow;
1354
1355 if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1356 // The spread argument should not be pushed.
1357 __ dec(eax);
1358 }
1359
1360 // Push arguments and move return address and stack spill slots to the top of
1361 // stack. The eax register is readonly. The ecx register will be modified. edx
1362 // and edi are used as scratch registers.
1363 Generate_InterpreterPushZeroAndArgsAndReturnAddress(
1364 masm, eax, ecx, edx, edi,
1365 InterpreterPushArgsThenConstructDescriptor::kStackArgumentsCount,
1366 &stack_overflow);
1367
1368 // Call the appropriate constructor. eax and ecx already contain intended
1369 // values, remaining registers still need to be initialized from the stack.
1370
1371 if (mode == InterpreterPushArgsMode::kArrayFunction) {
1372 // Tail call to the array construct stub (still in the caller context at
1373 // this point).
1374
1375 __ movd(xmm0, eax); // Spill number of arguments.
1376 __ PopReturnAddressTo(eax);
1377 __ Pop(kJavaScriptCallExtraArg1Register);
1378 __ Pop(kJavaScriptCallNewTargetRegister);
1379 __ Pop(kJavaScriptCallTargetRegister);
1380 __ PushReturnAddressFrom(eax);
1381
1382 __ AssertFunction(kJavaScriptCallTargetRegister);
1383 __ AssertUndefinedOrAllocationSite(kJavaScriptCallExtraArg1Register, eax);
1384
1385 __ movd(eax, xmm0); // Reload number of arguments.
1386 __ Jump(BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl),
1387 RelocInfo::CODE_TARGET);
1388 } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1389 __ movd(xmm0, eax); // Spill number of arguments.
1390 __ PopReturnAddressTo(eax);
1391 __ Drop(1); // The allocation site is unused.
1392 __ Pop(kJavaScriptCallNewTargetRegister);
1393 __ Pop(kJavaScriptCallTargetRegister);
1394 // Pass the spread in the register ecx, overwriting ecx.
1395 __ mov(ecx, Operand(ecx, 0));
1396 __ PushReturnAddressFrom(eax);
1397 __ movd(eax, xmm0); // Reload number of arguments.
1398 __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread),
1399 RelocInfo::CODE_TARGET);
1400 } else {
1401 DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
1402 __ PopReturnAddressTo(ecx);
1403 __ Drop(1); // The allocation site is unused.
1404 __ Pop(kJavaScriptCallNewTargetRegister);
1405 __ Pop(kJavaScriptCallTargetRegister);
1406 __ PushReturnAddressFrom(ecx);
1407
1408 __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
1409 }
1410
1411 __ bind(&stack_overflow);
1412 __ TailCallRuntime(Runtime::kThrowStackOverflow);
1413 __ int3();
1414 }
1415
Generate_InterpreterEnterBytecode(MacroAssembler * masm)1416 static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
1417 // Set the return address to the correct point in the interpreter entry
1418 // trampoline.
1419 Label builtin_trampoline, trampoline_loaded;
1420 Smi interpreter_entry_return_pc_offset(
1421 masm->isolate()->heap()->interpreter_entry_return_pc_offset());
1422 DCHECK_NE(interpreter_entry_return_pc_offset, Smi::zero());
1423
1424 static constexpr Register scratch = ecx;
1425
1426 // If the SFI function_data is an InterpreterData, the function will have a
1427 // custom copy of the interpreter entry trampoline for profiling. If so,
1428 // get the custom trampoline, otherwise grab the entry address of the global
1429 // trampoline.
1430 __ mov(scratch, Operand(ebp, StandardFrameConstants::kFunctionOffset));
1431 __ mov(scratch, FieldOperand(scratch, JSFunction::kSharedFunctionInfoOffset));
1432 __ mov(scratch,
1433 FieldOperand(scratch, SharedFunctionInfo::kFunctionDataOffset));
1434 __ Push(eax);
1435 __ CmpObjectType(scratch, INTERPRETER_DATA_TYPE, eax);
1436 __ j(not_equal, &builtin_trampoline, Label::kNear);
1437
1438 __ mov(scratch,
1439 FieldOperand(scratch, InterpreterData::kInterpreterTrampolineOffset));
1440 __ add(scratch, Immediate(Code::kHeaderSize - kHeapObjectTag));
1441 __ jmp(&trampoline_loaded, Label::kNear);
1442
1443 __ bind(&builtin_trampoline);
1444 __ mov(scratch,
1445 __ ExternalReferenceAsOperand(
1446 ExternalReference::
1447 address_of_interpreter_entry_trampoline_instruction_start(
1448 masm->isolate()),
1449 scratch));
1450
1451 __ bind(&trampoline_loaded);
1452 __ Pop(eax);
1453 __ add(scratch, Immediate(interpreter_entry_return_pc_offset.value()));
1454 __ push(scratch);
1455
1456 // Initialize the dispatch table register.
1457 __ Move(kInterpreterDispatchTableRegister,
1458 Immediate(ExternalReference::interpreter_dispatch_table_address(
1459 masm->isolate())));
1460
1461 // Get the bytecode array pointer from the frame.
1462 __ mov(kInterpreterBytecodeArrayRegister,
1463 Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
1464
1465 if (FLAG_debug_code) {
1466 // Check function data field is actually a BytecodeArray object.
1467 __ AssertNotSmi(kInterpreterBytecodeArrayRegister);
1468 __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE,
1469 scratch);
1470 __ Assert(
1471 equal,
1472 AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
1473 }
1474
1475 // Get the target bytecode offset from the frame.
1476 __ mov(kInterpreterBytecodeOffsetRegister,
1477 Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1478 __ SmiUntag(kInterpreterBytecodeOffsetRegister);
1479
1480 if (FLAG_debug_code) {
1481 Label okay;
1482 __ cmp(kInterpreterBytecodeOffsetRegister,
1483 Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
1484 __ j(greater_equal, &okay, Label::kNear);
1485 __ int3();
1486 __ bind(&okay);
1487 }
1488
1489 // Dispatch to the target bytecode.
1490 __ movzx_b(scratch, Operand(kInterpreterBytecodeArrayRegister,
1491 kInterpreterBytecodeOffsetRegister, times_1, 0));
1492 __ mov(kJavaScriptCallCodeStartRegister,
1493 Operand(kInterpreterDispatchTableRegister, scratch,
1494 times_system_pointer_size, 0));
1495 __ jmp(kJavaScriptCallCodeStartRegister);
1496 }
1497
Generate_InterpreterEnterBytecodeAdvance(MacroAssembler * masm)1498 void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) {
1499 // Get bytecode array and bytecode offset from the stack frame.
1500 __ mov(kInterpreterBytecodeArrayRegister,
1501 Operand(ebp, InterpreterFrameConstants::kBytecodeArrayFromFp));
1502 __ mov(kInterpreterBytecodeOffsetRegister,
1503 Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1504 __ SmiUntag(kInterpreterBytecodeOffsetRegister);
1505
1506 Label enter_bytecode, function_entry_bytecode;
1507 __ cmp(kInterpreterBytecodeOffsetRegister,
1508 Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag +
1509 kFunctionEntryBytecodeOffset));
1510 __ j(equal, &function_entry_bytecode);
1511
1512 // Advance to the next bytecode.
1513 Label if_return;
1514 __ Push(eax);
1515 AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
1516 kInterpreterBytecodeOffsetRegister, ecx, esi,
1517 eax, &if_return);
1518 __ Pop(eax);
1519
1520 __ bind(&enter_bytecode);
1521 // Convert new bytecode offset to a Smi and save in the stackframe.
1522 __ mov(ecx, kInterpreterBytecodeOffsetRegister);
1523 __ SmiTag(ecx);
1524 __ mov(Operand(ebp, InterpreterFrameConstants::kBytecodeOffsetFromFp), ecx);
1525
1526 Generate_InterpreterEnterBytecode(masm);
1527
1528 __ bind(&function_entry_bytecode);
1529 // If the code deoptimizes during the implicit function entry stack interrupt
1530 // check, it will have a bailout ID of kFunctionEntryBytecodeOffset, which is
1531 // not a valid bytecode offset. Detect this case and advance to the first
1532 // actual bytecode.
1533 __ mov(kInterpreterBytecodeOffsetRegister,
1534 Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag));
1535 __ jmp(&enter_bytecode);
1536
1537 // We should never take the if_return path.
1538 __ bind(&if_return);
1539 // No need to pop eax here since we will be aborting anyway.
1540 __ Abort(AbortReason::kInvalidBytecodeAdvance);
1541 }
1542
Generate_InterpreterEnterBytecodeDispatch(MacroAssembler * masm)1543 void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) {
1544 Generate_InterpreterEnterBytecode(masm);
1545 }
1546
1547 namespace {
Generate_ContinueToBuiltinHelper(MacroAssembler * masm,bool java_script_builtin,bool with_result)1548 void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
1549 bool java_script_builtin,
1550 bool with_result) {
1551 const RegisterConfiguration* config(RegisterConfiguration::Default());
1552 int allocatable_register_count = config->num_allocatable_general_registers();
1553 if (with_result) {
1554 if (java_script_builtin) {
1555 // xmm0 is not included in the allocateable registers.
1556 __ movd(xmm0, eax);
1557 } else {
1558 // Overwrite the hole inserted by the deoptimizer with the return value
1559 // from the LAZY deopt point.
1560 __ mov(
1561 Operand(esp, config->num_allocatable_general_registers() *
1562 kSystemPointerSize +
1563 BuiltinContinuationFrameConstants::kFixedFrameSize),
1564 eax);
1565 }
1566 }
1567
1568 // Replace the builtin index Smi on the stack with the start address of the
1569 // builtin loaded from the builtins table. The ret below will return to this
1570 // address.
1571 int offset_to_builtin_index = allocatable_register_count * kSystemPointerSize;
1572 __ mov(eax, Operand(esp, offset_to_builtin_index));
1573 __ LoadEntryFromBuiltinIndex(eax);
1574 __ mov(Operand(esp, offset_to_builtin_index), eax);
1575
1576 for (int i = allocatable_register_count - 1; i >= 0; --i) {
1577 int code = config->GetAllocatableGeneralCode(i);
1578 __ pop(Register::from_code(code));
1579 if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) {
1580 __ SmiUntag(Register::from_code(code));
1581 }
1582 }
1583 if (with_result && java_script_builtin) {
1584 // Overwrite the hole inserted by the deoptimizer with the return value from
1585 // the LAZY deopt point. eax contains the arguments count, the return value
1586 // from LAZY is always the last argument.
1587 __ movd(Operand(esp, eax, times_system_pointer_size,
1588 BuiltinContinuationFrameConstants::kFixedFrameSize),
1589 xmm0);
1590 }
1591 __ mov(
1592 ebp,
1593 Operand(esp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
1594 const int offsetToPC =
1595 BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp -
1596 kSystemPointerSize;
1597 __ pop(Operand(esp, offsetToPC));
1598 __ Drop(offsetToPC / kSystemPointerSize);
1599 __ ret(0);
1600 }
1601 } // namespace
1602
Generate_ContinueToCodeStubBuiltin(MacroAssembler * masm)1603 void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
1604 Generate_ContinueToBuiltinHelper(masm, false, false);
1605 }
1606
Generate_ContinueToCodeStubBuiltinWithResult(MacroAssembler * masm)1607 void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
1608 MacroAssembler* masm) {
1609 Generate_ContinueToBuiltinHelper(masm, false, true);
1610 }
1611
Generate_ContinueToJavaScriptBuiltin(MacroAssembler * masm)1612 void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
1613 Generate_ContinueToBuiltinHelper(masm, true, false);
1614 }
1615
Generate_ContinueToJavaScriptBuiltinWithResult(MacroAssembler * masm)1616 void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
1617 MacroAssembler* masm) {
1618 Generate_ContinueToBuiltinHelper(masm, true, true);
1619 }
1620
Generate_NotifyDeoptimized(MacroAssembler * masm)1621 void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
1622 {
1623 FrameScope scope(masm, StackFrame::INTERNAL);
1624 __ CallRuntime(Runtime::kNotifyDeoptimized);
1625 // Tear down internal frame.
1626 }
1627
1628 DCHECK_EQ(kInterpreterAccumulatorRegister.code(), eax.code());
1629 __ mov(eax, Operand(esp, 1 * kSystemPointerSize));
1630 __ ret(1 * kSystemPointerSize); // Remove eax.
1631 }
1632
1633 // static
Generate_FunctionPrototypeApply(MacroAssembler * masm)1634 void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
1635 // ----------- S t a t e -------------
1636 // -- eax : argc
1637 // -- esp[0] : return address
1638 // -- esp[1] : receiver
1639 // -- esp[2] : thisArg
1640 // -- esp[3] : argArray
1641 // -----------------------------------
1642
1643 // 1. Load receiver into xmm0, argArray into edx (if present), remove all
1644 // arguments from the stack (including the receiver), and push thisArg (if
1645 // present) instead.
1646 {
1647 Label no_arg_array, no_this_arg;
1648 StackArgumentsAccessor args(eax);
1649 // Spill receiver to allow the usage of edi as a scratch register.
1650 __ movd(xmm0, args[0]);
1651
1652 __ LoadRoot(edx, RootIndex::kUndefinedValue);
1653 __ mov(edi, edx);
1654 __ test(eax, eax);
1655 __ j(zero, &no_this_arg, Label::kNear);
1656 {
1657 __ mov(edi, args[1]);
1658 __ cmp(eax, Immediate(1));
1659 __ j(equal, &no_arg_array, Label::kNear);
1660 __ mov(edx, args[2]);
1661 __ bind(&no_arg_array);
1662 }
1663 __ bind(&no_this_arg);
1664 __ PopReturnAddressTo(ecx);
1665 __ lea(esp,
1666 Operand(esp, eax, times_system_pointer_size, kSystemPointerSize));
1667 __ Push(edi);
1668 __ PushReturnAddressFrom(ecx);
1669
1670 // Restore receiver to edi.
1671 __ movd(edi, xmm0);
1672 }
1673
1674 // ----------- S t a t e -------------
1675 // -- edx : argArray
1676 // -- edi : receiver
1677 // -- esp[0] : return address
1678 // -- esp[4] : thisArg
1679 // -----------------------------------
1680
1681 // 2. We don't need to check explicitly for callable receiver here,
1682 // since that's the first thing the Call/CallWithArrayLike builtins
1683 // will do.
1684
1685 // 3. Tail call with no arguments if argArray is null or undefined.
1686 Label no_arguments;
1687 __ JumpIfRoot(edx, RootIndex::kNullValue, &no_arguments, Label::kNear);
1688 __ JumpIfRoot(edx, RootIndex::kUndefinedValue, &no_arguments, Label::kNear);
1689
1690 // 4a. Apply the receiver to the given argArray.
1691 __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
1692 RelocInfo::CODE_TARGET);
1693
1694 // 4b. The argArray is either null or undefined, so we tail call without any
1695 // arguments to the receiver.
1696 __ bind(&no_arguments);
1697 {
1698 __ Set(eax, 0);
1699 __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
1700 }
1701 }
1702
1703 // static
Generate_FunctionPrototypeCall(MacroAssembler * masm)1704 void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
1705 // Stack Layout:
1706 // esp[0] : Return address
1707 // esp[8] : Argument 0 (receiver: callable to call)
1708 // esp[16] : Argument 1
1709 // ...
1710 // esp[8 * n] : Argument n-1
1711 // esp[8 * (n + 1)] : Argument n
1712 // eax contains the number of arguments, n, not counting the receiver.
1713
1714 // 1. Get the callable to call (passed as receiver) from the stack.
1715 {
1716 StackArgumentsAccessor args(eax);
1717 __ mov(edi, args.GetReceiverOperand());
1718 }
1719
1720 // 2. Save the return address and drop the callable.
1721 __ PopReturnAddressTo(edx);
1722 __ Pop(ecx);
1723
1724 // 3. Make sure we have at least one argument.
1725 {
1726 Label done;
1727 __ test(eax, eax);
1728 __ j(not_zero, &done, Label::kNear);
1729 __ PushRoot(RootIndex::kUndefinedValue);
1730 __ inc(eax);
1731 __ bind(&done);
1732 }
1733
1734 // 4. Push back the return address one slot down on the stack (overwriting the
1735 // original callable), making the original first argument the new receiver.
1736 __ PushReturnAddressFrom(edx);
1737 __ dec(eax); // One fewer argument (first argument is new receiver).
1738
1739 // 5. Call the callable.
1740 __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
1741 }
1742
Generate_ReflectApply(MacroAssembler * masm)1743 void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
1744 // ----------- S t a t e -------------
1745 // -- eax : argc
1746 // -- esp[0] : return address
1747 // -- esp[4] : receiver
1748 // -- esp[8] : target (if argc >= 1)
1749 // -- esp[12] : thisArgument (if argc >= 2)
1750 // -- esp[16] : argumentsList (if argc == 3)
1751 // -----------------------------------
1752
1753 // 1. Load target into edi (if present), argumentsList into edx (if present),
1754 // remove all arguments from the stack (including the receiver), and push
1755 // thisArgument (if present) instead.
1756 {
1757 Label done;
1758 StackArgumentsAccessor args(eax);
1759 __ LoadRoot(edi, RootIndex::kUndefinedValue);
1760 __ mov(edx, edi);
1761 __ mov(ecx, edi);
1762 __ cmp(eax, Immediate(1));
1763 __ j(below, &done, Label::kNear);
1764 __ mov(edi, args[1]); // target
1765 __ j(equal, &done, Label::kNear);
1766 __ mov(ecx, args[2]); // thisArgument
1767 __ cmp(eax, Immediate(3));
1768 __ j(below, &done, Label::kNear);
1769 __ mov(edx, args[3]); // argumentsList
1770 __ bind(&done);
1771
1772 // Spill argumentsList to use edx as a scratch register.
1773 __ movd(xmm0, edx);
1774
1775 __ PopReturnAddressTo(edx);
1776 __ lea(esp,
1777 Operand(esp, eax, times_system_pointer_size, kSystemPointerSize));
1778 __ Push(ecx);
1779 __ PushReturnAddressFrom(edx);
1780
1781 // Restore argumentsList.
1782 __ movd(edx, xmm0);
1783 }
1784
1785 // ----------- S t a t e -------------
1786 // -- edx : argumentsList
1787 // -- edi : target
1788 // -- esp[0] : return address
1789 // -- esp[4] : thisArgument
1790 // -----------------------------------
1791
1792 // 2. We don't need to check explicitly for callable target here,
1793 // since that's the first thing the Call/CallWithArrayLike builtins
1794 // will do.
1795
1796 // 3. Apply the target to the given argumentsList.
1797 __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
1798 RelocInfo::CODE_TARGET);
1799 }
1800
Generate_ReflectConstruct(MacroAssembler * masm)1801 void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
1802 // ----------- S t a t e -------------
1803 // -- eax : argc
1804 // -- esp[0] : return address
1805 // -- esp[4] : receiver
1806 // -- esp[8] : target
1807 // -- esp[12] : argumentsList
1808 // -- esp[16] : new.target (optional)
1809 // -----------------------------------
1810
1811 // 1. Load target into edi (if present), argumentsList into ecx (if present),
1812 // new.target into edx (if present, otherwise use target), remove all
1813 // arguments from the stack (including the receiver), and push thisArgument
1814 // (if present) instead.
1815 {
1816 Label done;
1817 StackArgumentsAccessor args(eax);
1818 __ LoadRoot(edi, RootIndex::kUndefinedValue);
1819 __ mov(edx, edi);
1820 __ mov(ecx, edi);
1821 __ cmp(eax, Immediate(1));
1822 __ j(below, &done, Label::kNear);
1823 __ mov(edi, args[1]); // target
1824 __ mov(edx, edi);
1825 __ j(equal, &done, Label::kNear);
1826 __ mov(ecx, args[2]); // argumentsList
1827 __ cmp(eax, Immediate(3));
1828 __ j(below, &done, Label::kNear);
1829 __ mov(edx, args[3]); // new.target
1830 __ bind(&done);
1831
1832 // Spill argumentsList to use ecx as a scratch register.
1833 __ movd(xmm0, ecx);
1834
1835 __ PopReturnAddressTo(ecx);
1836 __ lea(esp,
1837 Operand(esp, eax, times_system_pointer_size, kSystemPointerSize));
1838 __ PushRoot(RootIndex::kUndefinedValue);
1839 __ PushReturnAddressFrom(ecx);
1840
1841 // Restore argumentsList.
1842 __ movd(ecx, xmm0);
1843 }
1844
1845 // ----------- S t a t e -------------
1846 // -- ecx : argumentsList
1847 // -- edx : new.target
1848 // -- edi : target
1849 // -- esp[0] : return address
1850 // -- esp[4] : receiver (undefined)
1851 // -----------------------------------
1852
1853 // 2. We don't need to check explicitly for constructor target here,
1854 // since that's the first thing the Construct/ConstructWithArrayLike
1855 // builtins will do.
1856
1857 // 3. We don't need to check explicitly for constructor new.target here,
1858 // since that's the second thing the Construct/ConstructWithArrayLike
1859 // builtins will do.
1860
1861 // 4. Construct the target with the given new.target and argumentsList.
1862 __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike),
1863 RelocInfo::CODE_TARGET);
1864 }
1865
EnterArgumentsAdaptorFrame(MacroAssembler * masm)1866 static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
1867 __ push(ebp);
1868 __ mov(ebp, esp);
1869
1870 // Store the arguments adaptor context sentinel.
1871 __ push(Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
1872
1873 // Push the function on the stack.
1874 __ push(edi);
1875
1876 // Preserve the number of arguments on the stack. Must preserve eax,
1877 // ebx and ecx because these registers are used when copying the
1878 // arguments and the receiver.
1879 STATIC_ASSERT(kSmiTagSize == 1);
1880 __ lea(edi, Operand(eax, eax, times_1, kSmiTag));
1881 __ push(edi);
1882
1883 __ Push(Immediate(0)); // Padding.
1884 }
1885
LeaveArgumentsAdaptorFrame(MacroAssembler * masm)1886 static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
1887 // Retrieve the number of arguments from the stack.
1888 __ mov(edi, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset));
1889
1890 // Leave the frame.
1891 __ leave();
1892
1893 // Remove caller arguments from the stack.
1894 STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
1895 __ PopReturnAddressTo(ecx);
1896 __ lea(esp, Operand(esp, edi, times_half_system_pointer_size,
1897 1 * kSystemPointerSize)); // 1 ~ receiver
1898 __ PushReturnAddressFrom(ecx);
1899 }
1900
1901 // static
Generate_CallOrConstructVarargs(MacroAssembler * masm,Handle<Code> code)1902 void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
1903 Handle<Code> code) {
1904 // ----------- S t a t e -------------
1905 // -- edi : target
1906 // -- esi : context for the Call / Construct builtin
1907 // -- eax : number of parameters on the stack (not including the receiver)
1908 // -- ecx : len (number of elements to from args)
1909 // -- ecx : new.target (checked to be constructor or undefined)
1910 // -- esp[4] : arguments list (a FixedArray)
1911 // -- esp[0] : return address.
1912 // -----------------------------------
1913
1914 // We need to preserve eax, edi, esi and ebx.
1915 __ movd(xmm0, edx);
1916 __ movd(xmm1, edi);
1917 __ movd(xmm2, eax);
1918 __ movd(xmm3, esi); // Spill the context.
1919
1920 const Register kArgumentsList = esi;
1921 const Register kArgumentsLength = ecx;
1922
1923 __ PopReturnAddressTo(edx);
1924 __ pop(kArgumentsList);
1925 __ PushReturnAddressFrom(edx);
1926
1927 if (masm->emit_debug_code()) {
1928 // Allow kArgumentsList to be a FixedArray, or a FixedDoubleArray if
1929 // kArgumentsLength == 0.
1930 Label ok, fail;
1931 __ AssertNotSmi(kArgumentsList);
1932 __ mov(edx, FieldOperand(kArgumentsList, HeapObject::kMapOffset));
1933 __ CmpInstanceType(edx, FIXED_ARRAY_TYPE);
1934 __ j(equal, &ok);
1935 __ CmpInstanceType(edx, FIXED_DOUBLE_ARRAY_TYPE);
1936 __ j(not_equal, &fail);
1937 __ cmp(kArgumentsLength, 0);
1938 __ j(equal, &ok);
1939 // Fall through.
1940 __ bind(&fail);
1941 __ Abort(AbortReason::kOperandIsNotAFixedArray);
1942
1943 __ bind(&ok);
1944 }
1945
1946 // Check the stack for overflow. We are not trying to catch interruptions
1947 // (i.e. debug break and preemption) here, so check the "real stack limit".
1948 Label stack_overflow;
1949 __ StackOverflowCheck(kArgumentsLength, edx, &stack_overflow);
1950
1951 __ movd(xmm4, kArgumentsList); // Spill the arguments list.
1952
1953 // Move the arguments already in the stack,
1954 // including the receiver and the return address.
1955 {
1956 Label copy, check;
1957 Register src = edx, current = edi, tmp = esi;
1958 // Update stack pointer.
1959 __ mov(src, esp);
1960 __ lea(tmp, Operand(kArgumentsLength, times_system_pointer_size, 0));
1961 __ AllocateStackSpace(tmp);
1962 // Include return address and receiver.
1963 __ add(eax, Immediate(2));
1964 __ mov(current, Immediate(0));
1965 __ jmp(&check);
1966 // Loop.
1967 __ bind(©);
1968 __ mov(tmp, Operand(src, current, times_system_pointer_size, 0));
1969 __ mov(Operand(esp, current, times_system_pointer_size, 0), tmp);
1970 __ inc(current);
1971 __ bind(&check);
1972 __ cmp(current, eax);
1973 __ j(less, ©);
1974 __ lea(edx, Operand(esp, eax, times_system_pointer_size, 0));
1975 }
1976
1977 __ movd(kArgumentsList, xmm4); // Recover arguments list.
1978
1979 // Push additional arguments onto the stack.
1980 {
1981 __ Move(eax, Immediate(0));
1982 Label done, push, loop;
1983 __ bind(&loop);
1984 __ cmp(eax, kArgumentsLength);
1985 __ j(equal, &done, Label::kNear);
1986 // Turn the hole into undefined as we go.
1987 __ mov(edi, FieldOperand(kArgumentsList, eax, times_tagged_size,
1988 FixedArray::kHeaderSize));
1989 __ CompareRoot(edi, RootIndex::kTheHoleValue);
1990 __ j(not_equal, &push, Label::kNear);
1991 __ LoadRoot(edi, RootIndex::kUndefinedValue);
1992 __ bind(&push);
1993 __ mov(Operand(edx, 0), edi);
1994 __ add(edx, Immediate(kSystemPointerSize));
1995 __ inc(eax);
1996 __ jmp(&loop);
1997 __ bind(&done);
1998 }
1999
2000 // Restore eax, edi and edx.
2001 __ movd(esi, xmm3); // Restore the context.
2002 __ movd(eax, xmm2);
2003 __ movd(edi, xmm1);
2004 __ movd(edx, xmm0);
2005
2006 // Compute the actual parameter count.
2007 __ add(eax, kArgumentsLength);
2008
2009 // Tail-call to the actual Call or Construct builtin.
2010 __ Jump(code, RelocInfo::CODE_TARGET);
2011
2012 __ bind(&stack_overflow);
2013 __ movd(esi, xmm3); // Restore the context.
2014 __ TailCallRuntime(Runtime::kThrowStackOverflow);
2015 }
2016
2017 // static
Generate_CallOrConstructForwardVarargs(MacroAssembler * masm,CallOrConstructMode mode,Handle<Code> code)2018 void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
2019 CallOrConstructMode mode,
2020 Handle<Code> code) {
2021 // ----------- S t a t e -------------
2022 // -- eax : the number of arguments (not including the receiver)
2023 // -- edi : the target to call (can be any Object)
2024 // -- esi : context for the Call / Construct builtin
2025 // -- edx : the new target (for [[Construct]] calls)
2026 // -- ecx : start index (to support rest parameters)
2027 // -----------------------------------
2028
2029 __ movd(xmm0, esi); // Spill the context.
2030
2031 Register scratch = esi;
2032
2033 // Check if new.target has a [[Construct]] internal method.
2034 if (mode == CallOrConstructMode::kConstruct) {
2035 Label new_target_constructor, new_target_not_constructor;
2036 __ JumpIfSmi(edx, &new_target_not_constructor, Label::kNear);
2037 __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset));
2038 __ test_b(FieldOperand(scratch, Map::kBitFieldOffset),
2039 Immediate(Map::Bits1::IsConstructorBit::kMask));
2040 __ j(not_zero, &new_target_constructor, Label::kNear);
2041 __ bind(&new_target_not_constructor);
2042 {
2043 FrameScope scope(masm, StackFrame::MANUAL);
2044 __ EnterFrame(StackFrame::INTERNAL);
2045 __ Push(edx);
2046 __ movd(esi, xmm0); // Restore the context.
2047 __ CallRuntime(Runtime::kThrowNotConstructor);
2048 }
2049 __ bind(&new_target_constructor);
2050 }
2051
2052 __ movd(xmm1, edx); // Preserve new.target (in case of [[Construct]]).
2053
2054 #ifdef V8_NO_ARGUMENTS_ADAPTOR
2055 // TODO(victorgomes): Remove this copy when all the arguments adaptor frame
2056 // code is erased.
2057 __ mov(scratch, ebp);
2058 __ mov(edx, Operand(ebp, StandardFrameConstants::kArgCOffset));
2059 #else
2060 // Check if we have an arguments adaptor frame below the function frame.
2061 Label arguments_adaptor, arguments_done;
2062 __ mov(scratch, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
2063 __ cmp(Operand(scratch, CommonFrameConstants::kContextOrFrameTypeOffset),
2064 Immediate(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR)));
2065 __ j(equal, &arguments_adaptor, Label::kNear);
2066 {
2067 __ mov(edx, Operand(ebp, StandardFrameConstants::kFunctionOffset));
2068 __ mov(edx, FieldOperand(edx, JSFunction::kSharedFunctionInfoOffset));
2069 __ movzx_w(edx, FieldOperand(
2070 edx, SharedFunctionInfo::kFormalParameterCountOffset));
2071 __ mov(scratch, ebp);
2072 }
2073 __ jmp(&arguments_done, Label::kNear);
2074 __ bind(&arguments_adaptor);
2075 {
2076 // Just load the length from the ArgumentsAdaptorFrame.
2077 __ mov(edx,
2078 Operand(scratch, ArgumentsAdaptorFrameConstants::kLengthOffset));
2079 __ SmiUntag(edx);
2080 }
2081 __ bind(&arguments_done);
2082 #endif
2083
2084 Label stack_done, stack_overflow;
2085 __ sub(edx, ecx);
2086 __ j(less_equal, &stack_done);
2087 {
2088 // ----------- S t a t e -------------
2089 // -- eax : the number of arguments already in the stack (not including the
2090 // receiver)
2091 // -- ecx : start index (to support rest parameters)
2092 // -- edx : number of arguments to copy, i.e. arguments count - start index
2093 // -- edi : the target to call (can be any Object)
2094 // -- esi : point to the caller stack frame
2095 // -- xmm0 : context for the Call / Construct builtin
2096 // -- xmm1 : the new target (for [[Construct]] calls)
2097 // -----------------------------------
2098
2099 // Forward the arguments from the caller frame.
2100 __ movd(xmm2, edi); // Preserve the target to call.
2101 __ StackOverflowCheck(edx, edi, &stack_overflow);
2102 __ movd(xmm3, ebx); // Preserve root register.
2103
2104 Register scratch = ebx;
2105
2106 // Point to the first argument to copy (skipping receiver).
2107 __ lea(ecx, Operand(ecx, times_system_pointer_size,
2108 CommonFrameConstants::kFixedFrameSizeAboveFp +
2109 kSystemPointerSize));
2110 __ add(esi, ecx);
2111
2112 // Move the arguments already in the stack,
2113 // including the receiver and the return address.
2114 {
2115 Label copy, check;
2116 Register src = ecx, current = edi;
2117 // Update stack pointer.
2118 __ mov(src, esp);
2119 __ lea(scratch, Operand(edx, times_system_pointer_size, 0));
2120 __ AllocateStackSpace(scratch);
2121 // Include return address and receiver.
2122 __ add(eax, Immediate(2));
2123 __ Set(current, 0);
2124 __ jmp(&check);
2125 // Loop.
2126 __ bind(©);
2127 __ mov(scratch, Operand(src, current, times_system_pointer_size, 0));
2128 __ mov(Operand(esp, current, times_system_pointer_size, 0), scratch);
2129 __ inc(current);
2130 __ bind(&check);
2131 __ cmp(current, eax);
2132 __ j(less, ©);
2133 __ lea(ecx, Operand(esp, eax, times_system_pointer_size, 0));
2134 }
2135
2136 // Update total number of arguments.
2137 __ sub(eax, Immediate(2));
2138 __ add(eax, edx);
2139
2140 // Copy the additional caller arguments onto the stack.
2141 // TODO(victorgomes): Consider using forward order as potentially more cache
2142 // friendly.
2143 {
2144 Register src = esi, dest = ecx, num = edx;
2145 Label loop;
2146 __ bind(&loop);
2147 __ dec(num);
2148 __ mov(scratch, Operand(src, num, times_system_pointer_size, 0));
2149 __ mov(Operand(dest, num, times_system_pointer_size, 0), scratch);
2150 __ j(not_zero, &loop);
2151 }
2152
2153 __ movd(ebx, xmm3); // Restore root register.
2154 __ movd(edi, xmm2); // Restore the target to call.
2155 }
2156 __ bind(&stack_done);
2157
2158 __ movd(edx, xmm1); // Restore new.target (in case of [[Construct]]).
2159 __ movd(esi, xmm0); // Restore the context.
2160
2161 // Tail-call to the {code} handler.
2162 __ Jump(code, RelocInfo::CODE_TARGET);
2163
2164 __ bind(&stack_overflow);
2165 __ movd(edi, xmm2); // Restore the target to call.
2166 __ movd(esi, xmm0); // Restore the context.
2167 __ TailCallRuntime(Runtime::kThrowStackOverflow);
2168 }
2169
2170 // static
Generate_CallFunction(MacroAssembler * masm,ConvertReceiverMode mode)2171 void Builtins::Generate_CallFunction(MacroAssembler* masm,
2172 ConvertReceiverMode mode) {
2173 // ----------- S t a t e -------------
2174 // -- eax : the number of arguments (not including the receiver)
2175 // -- edi : the function to call (checked to be a JSFunction)
2176 // -----------------------------------
2177 StackArgumentsAccessor args(eax);
2178 __ AssertFunction(edi);
2179
2180 // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
2181 // Check that the function is not a "classConstructor".
2182 Label class_constructor;
2183 __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
2184 __ test(FieldOperand(edx, SharedFunctionInfo::kFlagsOffset),
2185 Immediate(SharedFunctionInfo::IsClassConstructorBit::kMask));
2186 __ j(not_zero, &class_constructor);
2187
2188 // Enter the context of the function; ToObject has to run in the function
2189 // context, and we also need to take the global proxy from the function
2190 // context in case of conversion.
2191 __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
2192 // We need to convert the receiver for non-native sloppy mode functions.
2193 Label done_convert;
2194 __ test(FieldOperand(edx, SharedFunctionInfo::kFlagsOffset),
2195 Immediate(SharedFunctionInfo::IsNativeBit::kMask |
2196 SharedFunctionInfo::IsStrictBit::kMask));
2197 __ j(not_zero, &done_convert);
2198 {
2199 // ----------- S t a t e -------------
2200 // -- eax : the number of arguments (not including the receiver)
2201 // -- edx : the shared function info.
2202 // -- edi : the function to call (checked to be a JSFunction)
2203 // -- esi : the function context.
2204 // -----------------------------------
2205
2206 if (mode == ConvertReceiverMode::kNullOrUndefined) {
2207 // Patch receiver to global proxy.
2208 __ LoadGlobalProxy(ecx);
2209 } else {
2210 Label convert_to_object, convert_receiver;
2211 __ mov(ecx, args.GetReceiverOperand());
2212 __ JumpIfSmi(ecx, &convert_to_object, Label::kNear);
2213 STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
2214 __ CmpObjectType(ecx, FIRST_JS_RECEIVER_TYPE, ecx); // Clobbers ecx.
2215 __ j(above_equal, &done_convert);
2216 // Reload the receiver (it was clobbered by CmpObjectType).
2217 __ mov(ecx, args.GetReceiverOperand());
2218 if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
2219 Label convert_global_proxy;
2220 __ JumpIfRoot(ecx, RootIndex::kUndefinedValue, &convert_global_proxy,
2221 Label::kNear);
2222 __ JumpIfNotRoot(ecx, RootIndex::kNullValue, &convert_to_object,
2223 Label::kNear);
2224 __ bind(&convert_global_proxy);
2225 {
2226 // Patch receiver to global proxy.
2227 __ LoadGlobalProxy(ecx);
2228 }
2229 __ jmp(&convert_receiver);
2230 }
2231 __ bind(&convert_to_object);
2232 {
2233 // Convert receiver using ToObject.
2234 // TODO(bmeurer): Inline the allocation here to avoid building the frame
2235 // in the fast case? (fall back to AllocateInNewSpace?)
2236 FrameScope scope(masm, StackFrame::INTERNAL);
2237 __ SmiTag(eax);
2238 __ Push(eax);
2239 __ Push(edi);
2240 __ mov(eax, ecx);
2241 __ Push(esi);
2242 __ Call(BUILTIN_CODE(masm->isolate(), ToObject),
2243 RelocInfo::CODE_TARGET);
2244 __ Pop(esi);
2245 __ mov(ecx, eax);
2246 __ Pop(edi);
2247 __ Pop(eax);
2248 __ SmiUntag(eax);
2249 }
2250 __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
2251 __ bind(&convert_receiver);
2252 }
2253 __ mov(args.GetReceiverOperand(), ecx);
2254 }
2255 __ bind(&done_convert);
2256
2257 // ----------- S t a t e -------------
2258 // -- eax : the number of arguments (not including the receiver)
2259 // -- edx : the shared function info.
2260 // -- edi : the function to call (checked to be a JSFunction)
2261 // -- esi : the function context.
2262 // -----------------------------------
2263
2264 __ movzx_w(
2265 ecx, FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
2266 __ InvokeFunctionCode(edi, no_reg, ecx, eax, JUMP_FUNCTION);
2267 // The function is a "classConstructor", need to raise an exception.
2268 __ bind(&class_constructor);
2269 {
2270 FrameScope frame(masm, StackFrame::INTERNAL);
2271 __ push(edi);
2272 __ CallRuntime(Runtime::kThrowConstructorNonCallableError);
2273 }
2274 }
2275
2276 namespace {
2277
Generate_PushBoundArguments(MacroAssembler * masm)2278 void Generate_PushBoundArguments(MacroAssembler* masm) {
2279 // ----------- S t a t e -------------
2280 // -- eax : the number of arguments (not including the receiver)
2281 // -- edx : new.target (only in case of [[Construct]])
2282 // -- edi : target (checked to be a JSBoundFunction)
2283 // -----------------------------------
2284 __ movd(xmm0, edx); // Spill edx.
2285
2286 // Load [[BoundArguments]] into ecx and length of that into edx.
2287 Label no_bound_arguments;
2288 __ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundArgumentsOffset));
2289 __ mov(edx, FieldOperand(ecx, FixedArray::kLengthOffset));
2290 __ SmiUntag(edx);
2291 __ test(edx, edx);
2292 __ j(zero, &no_bound_arguments);
2293 {
2294 // ----------- S t a t e -------------
2295 // -- eax : the number of arguments (not including the receiver)
2296 // -- xmm0 : new.target (only in case of [[Construct]])
2297 // -- edi : target (checked to be a JSBoundFunction)
2298 // -- ecx : the [[BoundArguments]] (implemented as FixedArray)
2299 // -- edx : the number of [[BoundArguments]]
2300 // -----------------------------------
2301
2302 // Check the stack for overflow.
2303 {
2304 Label done, stack_overflow;
2305 __ StackOverflowCheck(edx, ecx, &stack_overflow);
2306 __ jmp(&done);
2307 __ bind(&stack_overflow);
2308 {
2309 FrameScope frame(masm, StackFrame::MANUAL);
2310 __ CallRuntime(Runtime::kThrowStackOverflow);
2311 __ int3();
2312 }
2313 __ bind(&done);
2314 }
2315
2316 // Spill context.
2317 __ movd(xmm3, esi);
2318
2319 // Save Return Adress and Receiver into registers.
2320 __ pop(esi);
2321 __ movd(xmm1, esi);
2322 __ pop(esi);
2323 __ movd(xmm2, esi);
2324
2325 // Push [[BoundArguments]] to the stack.
2326 {
2327 Label loop;
2328 __ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundArgumentsOffset));
2329 __ mov(edx, FieldOperand(ecx, FixedArray::kLengthOffset));
2330 __ SmiUntag(edx);
2331 // Adjust effective number of arguments (eax contains the number of
2332 // arguments from the call not including receiver plus the number of
2333 // [[BoundArguments]]).
2334 __ add(eax, edx);
2335 __ bind(&loop);
2336 __ dec(edx);
2337 __ mov(esi, FieldOperand(ecx, edx, times_tagged_size,
2338 FixedArray::kHeaderSize));
2339 __ push(esi);
2340 __ j(greater, &loop);
2341 }
2342
2343 // Restore Receiver and Return Address.
2344 __ movd(esi, xmm2);
2345 __ push(esi);
2346 __ movd(esi, xmm1);
2347 __ push(esi);
2348
2349 // Restore context.
2350 __ movd(esi, xmm3);
2351 }
2352
2353 __ bind(&no_bound_arguments);
2354 __ movd(edx, xmm0); // Reload edx.
2355 }
2356
2357 } // namespace
2358
2359 // static
Generate_CallBoundFunctionImpl(MacroAssembler * masm)2360 void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
2361 // ----------- S t a t e -------------
2362 // -- eax : the number of arguments (not including the receiver)
2363 // -- edi : the function to call (checked to be a JSBoundFunction)
2364 // -----------------------------------
2365 __ AssertBoundFunction(edi);
2366
2367 // Patch the receiver to [[BoundThis]].
2368 StackArgumentsAccessor args(eax);
2369 __ mov(ecx, FieldOperand(edi, JSBoundFunction::kBoundThisOffset));
2370 __ mov(args.GetReceiverOperand(), ecx);
2371
2372 // Push the [[BoundArguments]] onto the stack.
2373 Generate_PushBoundArguments(masm);
2374
2375 // Call the [[BoundTargetFunction]] via the Call builtin.
2376 __ mov(edi, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset));
2377 __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny),
2378 RelocInfo::CODE_TARGET);
2379 }
2380
2381 // static
Generate_Call(MacroAssembler * masm,ConvertReceiverMode mode)2382 void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
2383 // ----------- S t a t e -------------
2384 // -- eax : the number of arguments (not including the receiver)
2385 // -- edi : the target to call (can be any Object).
2386 // -----------------------------------
2387 StackArgumentsAccessor args(eax);
2388
2389 Label non_callable, non_function, non_smi, non_jsfunction,
2390 non_jsboundfunction;
2391 __ JumpIfSmi(edi, &non_callable);
2392 __ bind(&non_smi);
2393 __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
2394 __ j(not_equal, &non_jsfunction);
2395 __ Jump(masm->isolate()->builtins()->CallFunction(mode),
2396 RelocInfo::CODE_TARGET);
2397
2398 __ bind(&non_jsfunction);
2399 __ CmpInstanceType(ecx, JS_BOUND_FUNCTION_TYPE);
2400 __ j(not_equal, &non_jsboundfunction);
2401 __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction),
2402 RelocInfo::CODE_TARGET);
2403
2404 // Check if target is a proxy and call CallProxy external builtin
2405 __ bind(&non_jsboundfunction);
2406 __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
2407 Immediate(Map::Bits1::IsCallableBit::kMask));
2408 __ j(zero, &non_callable);
2409
2410 // Call CallProxy external builtin
2411 __ CmpInstanceType(ecx, JS_PROXY_TYPE);
2412 __ j(not_equal, &non_function);
2413 __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET);
2414
2415 // 2. Call to something else, which might have a [[Call]] internal method (if
2416 // not we raise an exception).
2417 __ bind(&non_function);
2418 // Overwrite the original receiver with the (original) target.
2419 __ mov(args.GetReceiverOperand(), edi);
2420 // Let the "call_as_function_delegate" take care of the rest.
2421 __ LoadNativeContextSlot(edi, Context::CALL_AS_FUNCTION_DELEGATE_INDEX);
2422 __ Jump(masm->isolate()->builtins()->CallFunction(
2423 ConvertReceiverMode::kNotNullOrUndefined),
2424 RelocInfo::CODE_TARGET);
2425
2426 // 3. Call to something that is not callable.
2427 __ bind(&non_callable);
2428 {
2429 FrameScope scope(masm, StackFrame::INTERNAL);
2430 __ Push(edi);
2431 __ CallRuntime(Runtime::kThrowCalledNonCallable);
2432 }
2433 }
2434
2435 // static
Generate_ConstructFunction(MacroAssembler * masm)2436 void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
2437 // ----------- S t a t e -------------
2438 // -- eax : the number of arguments (not including the receiver)
2439 // -- edx : the new target (checked to be a constructor)
2440 // -- edi : the constructor to call (checked to be a JSFunction)
2441 // -----------------------------------
2442 __ AssertConstructor(edi);
2443 __ AssertFunction(edi);
2444
2445 Label call_generic_stub;
2446
2447 // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric.
2448 __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
2449 __ test(FieldOperand(ecx, SharedFunctionInfo::kFlagsOffset),
2450 Immediate(SharedFunctionInfo::ConstructAsBuiltinBit::kMask));
2451 __ j(zero, &call_generic_stub, Label::kNear);
2452
2453 // Calling convention for function specific ConstructStubs require
2454 // ecx to contain either an AllocationSite or undefined.
2455 __ LoadRoot(ecx, RootIndex::kUndefinedValue);
2456 __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub),
2457 RelocInfo::CODE_TARGET);
2458
2459 __ bind(&call_generic_stub);
2460 // Calling convention for function specific ConstructStubs require
2461 // ecx to contain either an AllocationSite or undefined.
2462 __ LoadRoot(ecx, RootIndex::kUndefinedValue);
2463 __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric),
2464 RelocInfo::CODE_TARGET);
2465 }
2466
2467 // static
Generate_ConstructBoundFunction(MacroAssembler * masm)2468 void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
2469 // ----------- S t a t e -------------
2470 // -- eax : the number of arguments (not including the receiver)
2471 // -- edx : the new target (checked to be a constructor)
2472 // -- edi : the constructor to call (checked to be a JSBoundFunction)
2473 // -----------------------------------
2474 __ AssertConstructor(edi);
2475 __ AssertBoundFunction(edi);
2476
2477 // Push the [[BoundArguments]] onto the stack.
2478 Generate_PushBoundArguments(masm);
2479
2480 // Patch new.target to [[BoundTargetFunction]] if new.target equals target.
2481 {
2482 Label done;
2483 __ cmp(edi, edx);
2484 __ j(not_equal, &done, Label::kNear);
2485 __ mov(edx, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset));
2486 __ bind(&done);
2487 }
2488
2489 // Construct the [[BoundTargetFunction]] via the Construct builtin.
2490 __ mov(edi, FieldOperand(edi, JSBoundFunction::kBoundTargetFunctionOffset));
2491 __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
2492 }
2493
2494 // static
Generate_Construct(MacroAssembler * masm)2495 void Builtins::Generate_Construct(MacroAssembler* masm) {
2496 // ----------- S t a t e -------------
2497 // -- eax : the number of arguments (not including the receiver)
2498 // -- edx : the new target (either the same as the constructor or
2499 // the JSFunction on which new was invoked initially)
2500 // -- edi : the constructor to call (can be any Object)
2501 // -----------------------------------
2502 StackArgumentsAccessor args(eax);
2503
2504 // Check if target is a Smi.
2505 Label non_constructor, non_proxy, non_jsfunction, non_jsboundfunction;
2506 __ JumpIfSmi(edi, &non_constructor);
2507
2508 // Check if target has a [[Construct]] internal method.
2509 __ mov(ecx, FieldOperand(edi, HeapObject::kMapOffset));
2510 __ test_b(FieldOperand(ecx, Map::kBitFieldOffset),
2511 Immediate(Map::Bits1::IsConstructorBit::kMask));
2512 __ j(zero, &non_constructor);
2513
2514 // Dispatch based on instance type.
2515 __ CmpInstanceType(ecx, JS_FUNCTION_TYPE);
2516 __ j(not_equal, &non_jsfunction);
2517 __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction),
2518 RelocInfo::CODE_TARGET);
2519
2520 // Only dispatch to bound functions after checking whether they are
2521 // constructors.
2522 __ bind(&non_jsfunction);
2523 __ CmpInstanceType(ecx, JS_BOUND_FUNCTION_TYPE);
2524 __ j(not_equal, &non_jsboundfunction);
2525 __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction),
2526 RelocInfo::CODE_TARGET);
2527
2528 // Only dispatch to proxies after checking whether they are constructors.
2529 __ bind(&non_jsboundfunction);
2530 __ CmpInstanceType(ecx, JS_PROXY_TYPE);
2531 __ j(not_equal, &non_proxy);
2532 __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy),
2533 RelocInfo::CODE_TARGET);
2534
2535 // Called Construct on an exotic Object with a [[Construct]] internal method.
2536 __ bind(&non_proxy);
2537 {
2538 // Overwrite the original receiver with the (original) target.
2539 __ mov(args.GetReceiverOperand(), edi);
2540 // Let the "call_as_constructor_delegate" take care of the rest.
2541 __ LoadNativeContextSlot(edi, Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX);
2542 __ Jump(masm->isolate()->builtins()->CallFunction(),
2543 RelocInfo::CODE_TARGET);
2544 }
2545
2546 // Called Construct on an Object that doesn't have a [[Construct]] internal
2547 // method.
2548 __ bind(&non_constructor);
2549 __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
2550 RelocInfo::CODE_TARGET);
2551 }
2552
Generate_ArgumentsAdaptorTrampoline(MacroAssembler * masm)2553 void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
2554 // ----------- S t a t e -------------
2555 // -- eax : actual number of arguments
2556 // -- ecx : expected number of arguments
2557 // -- edx : new target (passed through to callee)
2558 // -- edi : function (passed through to callee)
2559 // -----------------------------------
2560
2561 const Register kExpectedNumberOfArgumentsRegister = ecx;
2562
2563 Label invoke, dont_adapt_arguments, stack_overflow, enough, too_few;
2564 __ cmp(kExpectedNumberOfArgumentsRegister, kDontAdaptArgumentsSentinel);
2565 __ j(equal, &dont_adapt_arguments);
2566 __ cmp(eax, kExpectedNumberOfArgumentsRegister);
2567 __ j(less, &too_few);
2568
2569 { // Enough parameters: Actual >= expected.
2570 __ bind(&enough);
2571 EnterArgumentsAdaptorFrame(masm);
2572 // edi is used as a scratch register. It should be restored from the frame
2573 // when needed.
2574 __ StackOverflowCheck(kExpectedNumberOfArgumentsRegister, edi,
2575 &stack_overflow);
2576
2577 // Copy receiver and all expected arguments.
2578 const int offset = StandardFrameConstants::kCallerSPOffset;
2579 __ lea(edi, Operand(ebp, ecx, times_system_pointer_size, offset));
2580 __ mov(eax, -1); // account for receiver
2581
2582 Label copy;
2583 __ bind(©);
2584 __ inc(eax);
2585 __ push(Operand(edi, 0));
2586 __ sub(edi, Immediate(kSystemPointerSize));
2587 __ cmp(eax, kExpectedNumberOfArgumentsRegister);
2588 __ j(less, ©);
2589 // eax now contains the expected number of arguments.
2590 __ jmp(&invoke);
2591 }
2592
2593 { // Too few parameters: Actual < expected.
2594 __ bind(&too_few);
2595 EnterArgumentsAdaptorFrame(masm);
2596 // edi is used as a scratch register. It should be restored from the frame
2597 // when needed.
2598 __ StackOverflowCheck(kExpectedNumberOfArgumentsRegister, edi,
2599 &stack_overflow);
2600
2601 // Remember expected arguments in xmm0.
2602 __ movd(xmm0, kExpectedNumberOfArgumentsRegister);
2603
2604 // Remember new target.
2605 __ movd(xmm1, edx);
2606
2607 // Fill remaining expected arguments with undefined values.
2608 Label fill;
2609 __ mov(edx, ecx);
2610 __ sub(edx, eax);
2611 __ bind(&fill);
2612 __ Push(Immediate(masm->isolate()->factory()->undefined_value()));
2613 __ dec(edx);
2614 __ j(greater, &fill);
2615
2616 // Copy receiver and all actual arguments.
2617 const int offset = StandardFrameConstants::kCallerSPOffset;
2618 __ lea(edi, Operand(ebp, eax, times_system_pointer_size, offset));
2619 __ mov(edx, Immediate(-1));
2620
2621 Label copy;
2622 __ bind(©);
2623 __ inc(edx);
2624 __ push(Operand(edi, 0));
2625 __ sub(edi, Immediate(kSystemPointerSize));
2626 __ cmp(edx, eax);
2627 __ j(less, ©);
2628
2629 // Restore new.target
2630 __ movd(edx, xmm1);
2631
2632 // Restore expected arguments.
2633 __ movd(eax, xmm0);
2634 }
2635
2636 // Call the entry point.
2637 __ bind(&invoke);
2638 // Restore function pointer.
2639 __ mov(edi, Operand(ebp, ArgumentsAdaptorFrameConstants::kFunctionOffset));
2640 // eax : expected number of arguments
2641 // edx : new target (passed through to callee)
2642 // edi : function (passed through to callee)
2643 static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
2644 __ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset));
2645 __ CallCodeObject(ecx);
2646
2647 // Store offset of return address for deoptimizer.
2648 masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
2649
2650 // Leave frame and return.
2651 LeaveArgumentsAdaptorFrame(masm);
2652 __ ret(0);
2653
2654 // -------------------------------------------
2655 // Dont adapt arguments.
2656 // -------------------------------------------
2657 __ bind(&dont_adapt_arguments);
2658 static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch");
2659 __ mov(ecx, FieldOperand(edi, JSFunction::kCodeOffset));
2660 __ JumpCodeObject(ecx);
2661
2662 __ bind(&stack_overflow);
2663 {
2664 FrameScope frame(masm, StackFrame::MANUAL);
2665 __ CallRuntime(Runtime::kThrowStackOverflow);
2666 __ int3();
2667 }
2668 }
2669
Generate_InterpreterOnStackReplacement(MacroAssembler * masm)2670 void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
2671 {
2672 FrameScope scope(masm, StackFrame::INTERNAL);
2673 __ CallRuntime(Runtime::kCompileForOnStackReplacement);
2674 }
2675
2676 Label skip;
2677 // If the code object is null, just return to the caller.
2678 __ cmp(eax, Immediate(0));
2679 __ j(not_equal, &skip, Label::kNear);
2680 __ ret(0);
2681
2682 __ bind(&skip);
2683
2684 // Drop the handler frame that is be sitting on top of the actual
2685 // JavaScript frame. This is the case then OSR is triggered from bytecode.
2686 __ leave();
2687
2688 // Load deoptimization data from the code object.
2689 __ mov(ecx, Operand(eax, Code::kDeoptimizationDataOffset - kHeapObjectTag));
2690
2691 // Load the OSR entrypoint offset from the deoptimization data.
2692 __ mov(ecx, Operand(ecx, FixedArray::OffsetOfElementAt(
2693 DeoptimizationData::kOsrPcOffsetIndex) -
2694 kHeapObjectTag));
2695 __ SmiUntag(ecx);
2696
2697 // Compute the target address = code_obj + header_size + osr_offset
2698 __ lea(eax, Operand(eax, ecx, times_1, Code::kHeaderSize - kHeapObjectTag));
2699
2700 // Overwrite the return address on the stack.
2701 __ mov(Operand(esp, 0), eax);
2702
2703 // And "return" to the OSR entry point of the function.
2704 __ ret(0);
2705 }
2706
Generate_WasmCompileLazy(MacroAssembler * masm)2707 void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
2708 // The function index was put in edi by the jump table trampoline.
2709 // Convert to Smi for the runtime call.
2710 __ SmiTag(kWasmCompileLazyFuncIndexRegister);
2711 {
2712 HardAbortScope hard_abort(masm); // Avoid calls to Abort.
2713 FrameScope scope(masm, StackFrame::WASM_COMPILE_LAZY);
2714
2715 // Save all parameter registers (see wasm-linkage.cc). They might be
2716 // overwritten in the runtime call below. We don't have any callee-saved
2717 // registers in wasm, so no need to store anything else.
2718 static_assert(WasmCompileLazyFrameConstants::kNumberOfSavedGpParamRegs ==
2719 arraysize(wasm::kGpParamRegisters),
2720 "frame size mismatch");
2721 for (Register reg : wasm::kGpParamRegisters) {
2722 __ Push(reg);
2723 }
2724 static_assert(WasmCompileLazyFrameConstants::kNumberOfSavedFpParamRegs ==
2725 arraysize(wasm::kFpParamRegisters),
2726 "frame size mismatch");
2727 __ AllocateStackSpace(kSimd128Size * arraysize(wasm::kFpParamRegisters));
2728 int offset = 0;
2729 for (DoubleRegister reg : wasm::kFpParamRegisters) {
2730 __ movdqu(Operand(esp, offset), reg);
2731 offset += kSimd128Size;
2732 }
2733
2734 // Push the Wasm instance as an explicit argument to WasmCompileLazy.
2735 __ Push(kWasmInstanceRegister);
2736 // Push the function index as second argument.
2737 __ Push(kWasmCompileLazyFuncIndexRegister);
2738 // Initialize the JavaScript context with 0. CEntry will use it to
2739 // set the current context on the isolate.
2740 __ Move(kContextRegister, Smi::zero());
2741 {
2742 // At this point, ebx has been spilled to the stack but is not yet
2743 // overwritten with another value. We can still use it as kRootRegister.
2744 __ CallRuntime(Runtime::kWasmCompileLazy, 2);
2745 }
2746 // The entrypoint address is the return value.
2747 __ mov(edi, kReturnRegister0);
2748
2749 // Restore registers.
2750 for (DoubleRegister reg : base::Reversed(wasm::kFpParamRegisters)) {
2751 offset -= kSimd128Size;
2752 __ movdqu(reg, Operand(esp, offset));
2753 }
2754 DCHECK_EQ(0, offset);
2755 __ add(esp, Immediate(kSimd128Size * arraysize(wasm::kFpParamRegisters)));
2756 for (Register reg : base::Reversed(wasm::kGpParamRegisters)) {
2757 __ Pop(reg);
2758 }
2759 }
2760 // Finally, jump to the entrypoint.
2761 __ jmp(edi);
2762 }
2763
Generate_WasmDebugBreak(MacroAssembler * masm)2764 void Builtins::Generate_WasmDebugBreak(MacroAssembler* masm) {
2765 HardAbortScope hard_abort(masm); // Avoid calls to Abort.
2766 {
2767 FrameScope scope(masm, StackFrame::WASM_DEBUG_BREAK);
2768
2769 // Save all parameter registers. They might hold live values, we restore
2770 // them after the runtime call.
2771 for (int reg_code : base::bits::IterateBitsBackwards(
2772 WasmDebugBreakFrameConstants::kPushedGpRegs)) {
2773 __ Push(Register::from_code(reg_code));
2774 }
2775
2776 constexpr int kFpStackSize =
2777 kSimd128Size * WasmDebugBreakFrameConstants::kNumPushedFpRegisters;
2778 __ AllocateStackSpace(kFpStackSize);
2779 int offset = kFpStackSize;
2780 for (int reg_code : base::bits::IterateBitsBackwards(
2781 WasmDebugBreakFrameConstants::kPushedFpRegs)) {
2782 offset -= kSimd128Size;
2783 __ movdqu(Operand(esp, offset), DoubleRegister::from_code(reg_code));
2784 }
2785
2786 // Initialize the JavaScript context with 0. CEntry will use it to
2787 // set the current context on the isolate.
2788 __ Move(kContextRegister, Smi::zero());
2789 __ CallRuntime(Runtime::kWasmDebugBreak, 0);
2790
2791 // Restore registers.
2792 for (int reg_code :
2793 base::bits::IterateBits(WasmDebugBreakFrameConstants::kPushedFpRegs)) {
2794 __ movdqu(DoubleRegister::from_code(reg_code), Operand(esp, offset));
2795 offset += kSimd128Size;
2796 }
2797 __ add(esp, Immediate(kFpStackSize));
2798 for (int reg_code :
2799 base::bits::IterateBits(WasmDebugBreakFrameConstants::kPushedGpRegs)) {
2800 __ Pop(Register::from_code(reg_code));
2801 }
2802 }
2803
2804 __ ret(0);
2805 }
2806
Generate_CEntry(MacroAssembler * masm,int result_size,SaveFPRegsMode save_doubles,ArgvMode argv_mode,bool builtin_exit_frame)2807 void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size,
2808 SaveFPRegsMode save_doubles, ArgvMode argv_mode,
2809 bool builtin_exit_frame) {
2810 // eax: number of arguments including receiver
2811 // edx: pointer to C function
2812 // ebp: frame pointer (restored after C call)
2813 // esp: stack pointer (restored after C call)
2814 // esi: current context (C callee-saved)
2815 // edi: JS function of the caller (C callee-saved)
2816 //
2817 // If argv_mode == kArgvInRegister:
2818 // ecx: pointer to the first argument
2819
2820 STATIC_ASSERT(eax == kRuntimeCallArgCountRegister);
2821 STATIC_ASSERT(ecx == kRuntimeCallArgvRegister);
2822 STATIC_ASSERT(edx == kRuntimeCallFunctionRegister);
2823 STATIC_ASSERT(esi == kContextRegister);
2824 STATIC_ASSERT(edi == kJSFunctionRegister);
2825
2826 DCHECK(!AreAliased(kRuntimeCallArgCountRegister, kRuntimeCallArgvRegister,
2827 kRuntimeCallFunctionRegister, kContextRegister,
2828 kJSFunctionRegister, kRootRegister));
2829
2830 // Reserve space on the stack for the three arguments passed to the call. If
2831 // result size is greater than can be returned in registers, also reserve
2832 // space for the hidden argument for the result location, and space for the
2833 // result itself.
2834 int arg_stack_space = 3;
2835
2836 // Enter the exit frame that transitions from JavaScript to C++.
2837 if (argv_mode == kArgvInRegister) {
2838 DCHECK(save_doubles == kDontSaveFPRegs);
2839 DCHECK(!builtin_exit_frame);
2840 __ EnterApiExitFrame(arg_stack_space, edi);
2841
2842 // Move argc and argv into the correct registers.
2843 __ mov(esi, ecx);
2844 __ mov(edi, eax);
2845 } else {
2846 __ EnterExitFrame(
2847 arg_stack_space, save_doubles == kSaveFPRegs,
2848 builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);
2849 }
2850
2851 // edx: pointer to C function
2852 // ebp: frame pointer (restored after C call)
2853 // esp: stack pointer (restored after C call)
2854 // edi: number of arguments including receiver (C callee-saved)
2855 // esi: pointer to the first argument (C callee-saved)
2856
2857 // Result returned in eax, or eax+edx if result size is 2.
2858
2859 // Check stack alignment.
2860 if (FLAG_debug_code) {
2861 __ CheckStackAlignment();
2862 }
2863 // Call C function.
2864 __ mov(Operand(esp, 0 * kSystemPointerSize), edi); // argc.
2865 __ mov(Operand(esp, 1 * kSystemPointerSize), esi); // argv.
2866 __ Move(ecx, Immediate(ExternalReference::isolate_address(masm->isolate())));
2867 __ mov(Operand(esp, 2 * kSystemPointerSize), ecx);
2868 __ call(kRuntimeCallFunctionRegister);
2869
2870 // Result is in eax or edx:eax - do not destroy these registers!
2871
2872 // Check result for exception sentinel.
2873 Label exception_returned;
2874 __ CompareRoot(eax, RootIndex::kException);
2875 __ j(equal, &exception_returned);
2876
2877 // Check that there is no pending exception, otherwise we
2878 // should have returned the exception sentinel.
2879 if (FLAG_debug_code) {
2880 __ push(edx);
2881 __ LoadRoot(edx, RootIndex::kTheHoleValue);
2882 Label okay;
2883 ExternalReference pending_exception_address = ExternalReference::Create(
2884 IsolateAddressId::kPendingExceptionAddress, masm->isolate());
2885 __ cmp(edx, __ ExternalReferenceAsOperand(pending_exception_address, ecx));
2886 // Cannot use check here as it attempts to generate call into runtime.
2887 __ j(equal, &okay, Label::kNear);
2888 __ int3();
2889 __ bind(&okay);
2890 __ pop(edx);
2891 }
2892
2893 // Exit the JavaScript to C++ exit frame.
2894 __ LeaveExitFrame(save_doubles == kSaveFPRegs, argv_mode == kArgvOnStack);
2895 __ ret(0);
2896
2897 // Handling of exception.
2898 __ bind(&exception_returned);
2899
2900 ExternalReference pending_handler_context_address = ExternalReference::Create(
2901 IsolateAddressId::kPendingHandlerContextAddress, masm->isolate());
2902 ExternalReference pending_handler_entrypoint_address =
2903 ExternalReference::Create(
2904 IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate());
2905 ExternalReference pending_handler_fp_address = ExternalReference::Create(
2906 IsolateAddressId::kPendingHandlerFPAddress, masm->isolate());
2907 ExternalReference pending_handler_sp_address = ExternalReference::Create(
2908 IsolateAddressId::kPendingHandlerSPAddress, masm->isolate());
2909
2910 // Ask the runtime for help to determine the handler. This will set eax to
2911 // contain the current pending exception, don't clobber it.
2912 ExternalReference find_handler =
2913 ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler);
2914 {
2915 FrameScope scope(masm, StackFrame::MANUAL);
2916 __ PrepareCallCFunction(3, eax);
2917 __ mov(Operand(esp, 0 * kSystemPointerSize), Immediate(0)); // argc.
2918 __ mov(Operand(esp, 1 * kSystemPointerSize), Immediate(0)); // argv.
2919 __ Move(esi,
2920 Immediate(ExternalReference::isolate_address(masm->isolate())));
2921 __ mov(Operand(esp, 2 * kSystemPointerSize), esi);
2922 __ CallCFunction(find_handler, 3);
2923 }
2924
2925 // Retrieve the handler context, SP and FP.
2926 __ mov(esp, __ ExternalReferenceAsOperand(pending_handler_sp_address, esi));
2927 __ mov(ebp, __ ExternalReferenceAsOperand(pending_handler_fp_address, esi));
2928 __ mov(esi,
2929 __ ExternalReferenceAsOperand(pending_handler_context_address, esi));
2930
2931 // If the handler is a JS frame, restore the context to the frame. Note that
2932 // the context will be set to (esi == 0) for non-JS frames.
2933 Label skip;
2934 __ test(esi, esi);
2935 __ j(zero, &skip, Label::kNear);
2936 __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi);
2937 __ bind(&skip);
2938
2939 // Compute the handler entry address and jump to it.
2940 __ mov(edi, __ ExternalReferenceAsOperand(pending_handler_entrypoint_address,
2941 edi));
2942 __ jmp(edi);
2943 }
2944
Generate_DoubleToI(MacroAssembler * masm)2945 void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
2946 Label check_negative, process_64_bits, done;
2947
2948 // Account for return address and saved regs.
2949 const int kArgumentOffset = 4 * kSystemPointerSize;
2950
2951 MemOperand mantissa_operand(MemOperand(esp, kArgumentOffset));
2952 MemOperand exponent_operand(
2953 MemOperand(esp, kArgumentOffset + kDoubleSize / 2));
2954
2955 // The result is returned on the stack.
2956 MemOperand return_operand = mantissa_operand;
2957
2958 Register scratch1 = ebx;
2959
2960 // Since we must use ecx for shifts below, use some other register (eax)
2961 // to calculate the result.
2962 Register result_reg = eax;
2963 // Save ecx if it isn't the return register and therefore volatile, or if it
2964 // is the return register, then save the temp register we use in its stead for
2965 // the result.
2966 Register save_reg = eax;
2967 __ push(ecx);
2968 __ push(scratch1);
2969 __ push(save_reg);
2970
2971 __ mov(scratch1, mantissa_operand);
2972 if (CpuFeatures::IsSupported(SSE3)) {
2973 CpuFeatureScope scope(masm, SSE3);
2974 // Load x87 register with heap number.
2975 __ fld_d(mantissa_operand);
2976 }
2977 __ mov(ecx, exponent_operand);
2978
2979 __ and_(ecx, HeapNumber::kExponentMask);
2980 __ shr(ecx, HeapNumber::kExponentShift);
2981 __ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias));
2982 __ cmp(result_reg, Immediate(HeapNumber::kMantissaBits));
2983 __ j(below, &process_64_bits);
2984
2985 // Result is entirely in lower 32-bits of mantissa
2986 int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize;
2987 if (CpuFeatures::IsSupported(SSE3)) {
2988 __ fstp(0);
2989 }
2990 __ sub(ecx, Immediate(delta));
2991 __ xor_(result_reg, result_reg);
2992 __ cmp(ecx, Immediate(31));
2993 __ j(above, &done);
2994 __ shl_cl(scratch1);
2995 __ jmp(&check_negative);
2996
2997 __ bind(&process_64_bits);
2998 if (CpuFeatures::IsSupported(SSE3)) {
2999 CpuFeatureScope scope(masm, SSE3);
3000 // Reserve space for 64 bit answer.
3001 __ AllocateStackSpace(kDoubleSize); // Nolint.
3002 // Do conversion, which cannot fail because we checked the exponent.
3003 __ fisttp_d(Operand(esp, 0));
3004 __ mov(result_reg, Operand(esp, 0)); // Load low word of answer as result
3005 __ add(esp, Immediate(kDoubleSize));
3006 __ jmp(&done);
3007 } else {
3008 // Result must be extracted from shifted 32-bit mantissa
3009 __ sub(ecx, Immediate(delta));
3010 __ neg(ecx);
3011 __ mov(result_reg, exponent_operand);
3012 __ and_(result_reg,
3013 Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32)));
3014 __ add(result_reg,
3015 Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32)));
3016 __ shrd_cl(scratch1, result_reg);
3017 __ shr_cl(result_reg);
3018 __ test(ecx, Immediate(32));
3019 __ cmov(not_equal, scratch1, result_reg);
3020 }
3021
3022 // If the double was negative, negate the integer result.
3023 __ bind(&check_negative);
3024 __ mov(result_reg, scratch1);
3025 __ neg(result_reg);
3026 __ cmp(exponent_operand, Immediate(0));
3027 __ cmov(greater, result_reg, scratch1);
3028
3029 // Restore registers
3030 __ bind(&done);
3031 __ mov(return_operand, result_reg);
3032 __ pop(save_reg);
3033 __ pop(scratch1);
3034 __ pop(ecx);
3035 __ ret(0);
3036 }
3037
Generate_GenericJSToWasmWrapper(MacroAssembler * masm)3038 void Builtins::Generate_GenericJSToWasmWrapper(MacroAssembler* masm) {
3039 // TODO(v8:10701): Implement for this platform.
3040 __ Trap();
3041 }
3042
3043 namespace {
3044
3045 // Generates an Operand for saving parameters after PrepareCallApiFunction.
ApiParameterOperand(int index)3046 Operand ApiParameterOperand(int index) {
3047 return Operand(esp, index * kSystemPointerSize);
3048 }
3049
3050 // Prepares stack to put arguments (aligns and so on). Reserves
3051 // space for return value if needed (assumes the return value is a handle).
3052 // Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1)
3053 // etc. Saves context (esi). If space was reserved for return value then
3054 // stores the pointer to the reserved slot into esi.
PrepareCallApiFunction(MacroAssembler * masm,int argc,Register scratch)3055 void PrepareCallApiFunction(MacroAssembler* masm, int argc, Register scratch) {
3056 __ EnterApiExitFrame(argc, scratch);
3057 if (__ emit_debug_code()) {
3058 __ mov(esi, Immediate(bit_cast<int32_t>(kZapValue)));
3059 }
3060 }
3061
3062 // Calls an API function. Allocates HandleScope, extracts returned value
3063 // from handle and propagates exceptions. Clobbers esi, edi and
3064 // caller-save registers. Restores context. On return removes
3065 // stack_space * kSystemPointerSize (GCed).
CallApiFunctionAndReturn(MacroAssembler * masm,Register function_address,ExternalReference thunk_ref,Operand thunk_last_arg,int stack_space,Operand * stack_space_operand,Operand return_value_operand)3066 void CallApiFunctionAndReturn(MacroAssembler* masm, Register function_address,
3067 ExternalReference thunk_ref,
3068 Operand thunk_last_arg, int stack_space,
3069 Operand* stack_space_operand,
3070 Operand return_value_operand) {
3071 Isolate* isolate = masm->isolate();
3072
3073 ExternalReference next_address =
3074 ExternalReference::handle_scope_next_address(isolate);
3075 ExternalReference limit_address =
3076 ExternalReference::handle_scope_limit_address(isolate);
3077 ExternalReference level_address =
3078 ExternalReference::handle_scope_level_address(isolate);
3079
3080 DCHECK(edx == function_address);
3081 // Allocate HandleScope in callee-save registers.
3082 __ add(__ ExternalReferenceAsOperand(level_address, esi), Immediate(1));
3083 __ mov(esi, __ ExternalReferenceAsOperand(next_address, esi));
3084 __ mov(edi, __ ExternalReferenceAsOperand(limit_address, edi));
3085
3086 Label profiler_enabled, end_profiler_check;
3087 __ Move(eax, Immediate(ExternalReference::is_profiling_address(isolate)));
3088 __ cmpb(Operand(eax, 0), Immediate(0));
3089 __ j(not_zero, &profiler_enabled);
3090 __ Move(eax, Immediate(ExternalReference::address_of_runtime_stats_flag()));
3091 __ cmp(Operand(eax, 0), Immediate(0));
3092 __ j(not_zero, &profiler_enabled);
3093 {
3094 // Call the api function directly.
3095 __ mov(eax, function_address);
3096 __ jmp(&end_profiler_check);
3097 }
3098 __ bind(&profiler_enabled);
3099 {
3100 // Additional parameter is the address of the actual getter function.
3101 __ mov(thunk_last_arg, function_address);
3102 __ Move(eax, Immediate(thunk_ref));
3103 }
3104 __ bind(&end_profiler_check);
3105
3106 // Call the api function.
3107 __ call(eax);
3108
3109 Label prologue;
3110 // Load the value from ReturnValue
3111 __ mov(eax, return_value_operand);
3112
3113 Label promote_scheduled_exception;
3114 Label delete_allocated_handles;
3115 Label leave_exit_frame;
3116
3117 __ bind(&prologue);
3118 // No more valid handles (the result handle was the last one). Restore
3119 // previous handle scope.
3120 __ mov(__ ExternalReferenceAsOperand(next_address, ecx), esi);
3121 __ sub(__ ExternalReferenceAsOperand(level_address, ecx), Immediate(1));
3122 __ Assert(above_equal, AbortReason::kInvalidHandleScopeLevel);
3123 __ cmp(edi, __ ExternalReferenceAsOperand(limit_address, ecx));
3124 __ j(not_equal, &delete_allocated_handles);
3125
3126 // Leave the API exit frame.
3127 __ bind(&leave_exit_frame);
3128 if (stack_space_operand != nullptr) {
3129 DCHECK_EQ(stack_space, 0);
3130 __ mov(edx, *stack_space_operand);
3131 }
3132 __ LeaveApiExitFrame();
3133
3134 // Check if the function scheduled an exception.
3135 ExternalReference scheduled_exception_address =
3136 ExternalReference::scheduled_exception_address(isolate);
3137 __ mov(ecx, __ ExternalReferenceAsOperand(scheduled_exception_address, ecx));
3138 __ CompareRoot(ecx, RootIndex::kTheHoleValue);
3139 __ j(not_equal, &promote_scheduled_exception);
3140
3141 #if DEBUG
3142 // Check if the function returned a valid JavaScript value.
3143 Label ok;
3144 Register return_value = eax;
3145 Register map = ecx;
3146
3147 __ JumpIfSmi(return_value, &ok, Label::kNear);
3148 __ mov(map, FieldOperand(return_value, HeapObject::kMapOffset));
3149
3150 __ CmpInstanceType(map, LAST_NAME_TYPE);
3151 __ j(below_equal, &ok, Label::kNear);
3152
3153 __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
3154 __ j(above_equal, &ok, Label::kNear);
3155
3156 __ CompareRoot(map, RootIndex::kHeapNumberMap);
3157 __ j(equal, &ok, Label::kNear);
3158
3159 __ CompareRoot(map, RootIndex::kBigIntMap);
3160 __ j(equal, &ok, Label::kNear);
3161
3162 __ CompareRoot(return_value, RootIndex::kUndefinedValue);
3163 __ j(equal, &ok, Label::kNear);
3164
3165 __ CompareRoot(return_value, RootIndex::kTrueValue);
3166 __ j(equal, &ok, Label::kNear);
3167
3168 __ CompareRoot(return_value, RootIndex::kFalseValue);
3169 __ j(equal, &ok, Label::kNear);
3170
3171 __ CompareRoot(return_value, RootIndex::kNullValue);
3172 __ j(equal, &ok, Label::kNear);
3173
3174 __ Abort(AbortReason::kAPICallReturnedInvalidObject);
3175
3176 __ bind(&ok);
3177 #endif
3178
3179 if (stack_space_operand == nullptr) {
3180 DCHECK_NE(stack_space, 0);
3181 __ ret(stack_space * kSystemPointerSize);
3182 } else {
3183 DCHECK_EQ(0, stack_space);
3184 __ pop(ecx);
3185 __ add(esp, edx);
3186 __ jmp(ecx);
3187 }
3188
3189 // Re-throw by promoting a scheduled exception.
3190 __ bind(&promote_scheduled_exception);
3191 __ TailCallRuntime(Runtime::kPromoteScheduledException);
3192
3193 // HandleScope limit has changed. Delete allocated extensions.
3194 ExternalReference delete_extensions =
3195 ExternalReference::delete_handle_scope_extensions();
3196 __ bind(&delete_allocated_handles);
3197 __ mov(__ ExternalReferenceAsOperand(limit_address, ecx), edi);
3198 __ mov(edi, eax);
3199 __ Move(eax, Immediate(ExternalReference::isolate_address(isolate)));
3200 __ mov(Operand(esp, 0), eax);
3201 __ Move(eax, Immediate(delete_extensions));
3202 __ call(eax);
3203 __ mov(eax, edi);
3204 __ jmp(&leave_exit_frame);
3205 }
3206
3207 } // namespace
3208
Generate_CallApiCallback(MacroAssembler * masm)3209 void Builtins::Generate_CallApiCallback(MacroAssembler* masm) {
3210 // ----------- S t a t e -------------
3211 // -- esi : context
3212 // -- edx : api function address
3213 // -- ecx : arguments count (not including the receiver)
3214 // -- eax : call data
3215 // -- edi : holder
3216 // -- esp[0] : return address
3217 // -- esp[8] : argument 0 (receiver)
3218 // -- esp[16] : argument 1
3219 // -- ...
3220 // -- esp[argc * 8] : argument (argc - 1)
3221 // -- esp[(argc + 1) * 8] : argument argc
3222 // -----------------------------------
3223
3224 Register api_function_address = edx;
3225 Register argc = ecx;
3226 Register call_data = eax;
3227 Register holder = edi;
3228
3229 // Park argc in xmm0.
3230 __ movd(xmm0, argc);
3231
3232 DCHECK(!AreAliased(api_function_address, argc, holder));
3233
3234 using FCA = FunctionCallbackArguments;
3235
3236 STATIC_ASSERT(FCA::kArgsLength == 6);
3237 STATIC_ASSERT(FCA::kNewTargetIndex == 5);
3238 STATIC_ASSERT(FCA::kDataIndex == 4);
3239 STATIC_ASSERT(FCA::kReturnValueOffset == 3);
3240 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
3241 STATIC_ASSERT(FCA::kIsolateIndex == 1);
3242 STATIC_ASSERT(FCA::kHolderIndex == 0);
3243
3244 // Set up FunctionCallbackInfo's implicit_args on the stack as follows:
3245 //
3246 // Current state:
3247 // esp[0]: return address
3248 //
3249 // Target state:
3250 // esp[0 * kSystemPointerSize]: return address
3251 // esp[1 * kSystemPointerSize]: kHolder
3252 // esp[2 * kSystemPointerSize]: kIsolate
3253 // esp[3 * kSystemPointerSize]: undefined (kReturnValueDefaultValue)
3254 // esp[4 * kSystemPointerSize]: undefined (kReturnValue)
3255 // esp[5 * kSystemPointerSize]: kData
3256 // esp[6 * kSystemPointerSize]: undefined (kNewTarget)
3257
3258 __ PopReturnAddressTo(ecx);
3259 __ PushRoot(RootIndex::kUndefinedValue);
3260 __ Push(call_data);
3261 __ PushRoot(RootIndex::kUndefinedValue);
3262 __ PushRoot(RootIndex::kUndefinedValue);
3263 __ Push(Immediate(ExternalReference::isolate_address(masm->isolate())));
3264 __ Push(holder);
3265 __ PushReturnAddressFrom(ecx);
3266
3267 // Reload argc from xmm0.
3268 __ movd(argc, xmm0);
3269
3270 // Keep a pointer to kHolder (= implicit_args) in a scratch register.
3271 // We use it below to set up the FunctionCallbackInfo object.
3272 Register scratch = eax;
3273 __ lea(scratch, Operand(esp, 1 * kSystemPointerSize));
3274
3275 // The API function takes a reference to v8::Arguments. If the CPU profiler
3276 // is enabled, a wrapper function will be called and we need to pass
3277 // the address of the callback as an additional parameter. Always allocate
3278 // space for it.
3279 static constexpr int kApiArgc = 1 + 1;
3280
3281 // Allocate the v8::Arguments structure in the arguments' space since
3282 // it's not controlled by GC.
3283 static constexpr int kApiStackSpace = 4;
3284
3285 PrepareCallApiFunction(masm, kApiArgc + kApiStackSpace, edi);
3286
3287 // FunctionCallbackInfo::implicit_args_ (points at kHolder as set up above).
3288 __ mov(ApiParameterOperand(kApiArgc + 0), scratch);
3289
3290 // FunctionCallbackInfo::values_ (points at the first varargs argument passed
3291 // on the stack).
3292 __ lea(scratch,
3293 Operand(scratch, (FCA::kArgsLength + 1) * kSystemPointerSize));
3294 __ mov(ApiParameterOperand(kApiArgc + 1), scratch);
3295
3296 // FunctionCallbackInfo::length_.
3297 __ mov(ApiParameterOperand(kApiArgc + 2), argc);
3298
3299 // We also store the number of bytes to drop from the stack after returning
3300 // from the API function here.
3301 __ lea(scratch,
3302 Operand(argc, times_system_pointer_size,
3303 (FCA::kArgsLength + 1 /* receiver */) * kSystemPointerSize));
3304 __ mov(ApiParameterOperand(kApiArgc + 3), scratch);
3305
3306 // v8::InvocationCallback's argument.
3307 __ lea(scratch, ApiParameterOperand(kApiArgc + 0));
3308 __ mov(ApiParameterOperand(0), scratch);
3309
3310 ExternalReference thunk_ref = ExternalReference::invoke_function_callback();
3311
3312 // There are two stack slots above the arguments we constructed on the stack:
3313 // the stored ebp (pushed by EnterApiExitFrame), and the return address.
3314 static constexpr int kStackSlotsAboveFCA = 2;
3315 Operand return_value_operand(
3316 ebp,
3317 (kStackSlotsAboveFCA + FCA::kReturnValueOffset) * kSystemPointerSize);
3318
3319 static constexpr int kUseStackSpaceOperand = 0;
3320 Operand stack_space_operand = ApiParameterOperand(kApiArgc + 3);
3321 CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
3322 ApiParameterOperand(1), kUseStackSpaceOperand,
3323 &stack_space_operand, return_value_operand);
3324 }
3325
Generate_CallApiGetter(MacroAssembler * masm)3326 void Builtins::Generate_CallApiGetter(MacroAssembler* masm) {
3327 // Build v8::PropertyCallbackInfo::args_ array on the stack and push property
3328 // name below the exit frame to make GC aware of them.
3329 STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
3330 STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
3331 STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
3332 STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
3333 STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
3334 STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
3335 STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
3336 STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
3337
3338 Register receiver = ApiGetterDescriptor::ReceiverRegister();
3339 Register holder = ApiGetterDescriptor::HolderRegister();
3340 Register callback = ApiGetterDescriptor::CallbackRegister();
3341 Register scratch = edi;
3342 DCHECK(!AreAliased(receiver, holder, callback, scratch));
3343
3344 __ pop(scratch); // Pop return address to extend the frame.
3345 __ push(receiver);
3346 __ push(FieldOperand(callback, AccessorInfo::kDataOffset));
3347 __ PushRoot(RootIndex::kUndefinedValue); // ReturnValue
3348 // ReturnValue default value
3349 __ PushRoot(RootIndex::kUndefinedValue);
3350 __ Push(Immediate(ExternalReference::isolate_address(masm->isolate())));
3351 __ push(holder);
3352 __ push(Immediate(Smi::zero())); // should_throw_on_error -> false
3353 __ push(FieldOperand(callback, AccessorInfo::kNameOffset));
3354 __ push(scratch); // Restore return address.
3355
3356 // v8::PropertyCallbackInfo::args_ array and name handle.
3357 const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
3358
3359 // Allocate v8::PropertyCallbackInfo object, arguments for callback and
3360 // space for optional callback address parameter (in case CPU profiler is
3361 // active) in non-GCed stack space.
3362 const int kApiArgc = 3 + 1;
3363
3364 PrepareCallApiFunction(masm, kApiArgc, scratch);
3365
3366 // Load address of v8::PropertyAccessorInfo::args_ array. The value in ebp
3367 // here corresponds to esp + kSystemPointerSize before PrepareCallApiFunction.
3368 __ lea(scratch, Operand(ebp, kSystemPointerSize + 2 * kSystemPointerSize));
3369 // Create v8::PropertyCallbackInfo object on the stack and initialize
3370 // it's args_ field.
3371 Operand info_object = ApiParameterOperand(3);
3372 __ mov(info_object, scratch);
3373
3374 // Name as handle.
3375 __ sub(scratch, Immediate(kSystemPointerSize));
3376 __ mov(ApiParameterOperand(0), scratch);
3377 // Arguments pointer.
3378 __ lea(scratch, info_object);
3379 __ mov(ApiParameterOperand(1), scratch);
3380 // Reserve space for optional callback address parameter.
3381 Operand thunk_last_arg = ApiParameterOperand(2);
3382
3383 ExternalReference thunk_ref =
3384 ExternalReference::invoke_accessor_getter_callback();
3385
3386 __ mov(scratch, FieldOperand(callback, AccessorInfo::kJsGetterOffset));
3387 Register function_address = edx;
3388 __ mov(function_address,
3389 FieldOperand(scratch, Foreign::kForeignAddressOffset));
3390 // +3 is to skip prolog, return address and name handle.
3391 Operand return_value_operand(
3392 ebp,
3393 (PropertyCallbackArguments::kReturnValueOffset + 3) * kSystemPointerSize);
3394 Operand* const kUseStackSpaceConstant = nullptr;
3395 CallApiFunctionAndReturn(masm, function_address, thunk_ref, thunk_last_arg,
3396 kStackUnwindSpace, kUseStackSpaceConstant,
3397 return_value_operand);
3398 }
3399
Generate_DirectCEntry(MacroAssembler * masm)3400 void Builtins::Generate_DirectCEntry(MacroAssembler* masm) {
3401 __ int3(); // Unused on this architecture.
3402 }
3403
3404 namespace {
3405
3406 enum Direction { FORWARD, BACKWARD };
3407 enum Alignment { MOVE_ALIGNED, MOVE_UNALIGNED };
3408
3409 // Expects registers:
3410 // esi - source, aligned if alignment == ALIGNED
3411 // edi - destination, always aligned
3412 // ecx - count (copy size in bytes)
3413 // edx - loop count (number of 64 byte chunks)
MemMoveEmitMainLoop(MacroAssembler * masm,Label * move_last_15,Direction direction,Alignment alignment)3414 void MemMoveEmitMainLoop(MacroAssembler* masm, Label* move_last_15,
3415 Direction direction, Alignment alignment) {
3416 Register src = esi;
3417 Register dst = edi;
3418 Register count = ecx;
3419 Register loop_count = edx;
3420 Label loop, move_last_31, move_last_63;
3421 __ cmp(loop_count, 0);
3422 __ j(equal, &move_last_63);
3423 __ bind(&loop);
3424 // Main loop. Copy in 64 byte chunks.
3425 if (direction == BACKWARD) __ sub(src, Immediate(0x40));
3426 __ movdq(alignment == MOVE_ALIGNED, xmm0, Operand(src, 0x00));
3427 __ movdq(alignment == MOVE_ALIGNED, xmm1, Operand(src, 0x10));
3428 __ movdq(alignment == MOVE_ALIGNED, xmm2, Operand(src, 0x20));
3429 __ movdq(alignment == MOVE_ALIGNED, xmm3, Operand(src, 0x30));
3430 if (direction == FORWARD) __ add(src, Immediate(0x40));
3431 if (direction == BACKWARD) __ sub(dst, Immediate(0x40));
3432 __ movdqa(Operand(dst, 0x00), xmm0);
3433 __ movdqa(Operand(dst, 0x10), xmm1);
3434 __ movdqa(Operand(dst, 0x20), xmm2);
3435 __ movdqa(Operand(dst, 0x30), xmm3);
3436 if (direction == FORWARD) __ add(dst, Immediate(0x40));
3437 __ dec(loop_count);
3438 __ j(not_zero, &loop);
3439 // At most 63 bytes left to copy.
3440 __ bind(&move_last_63);
3441 __ test(count, Immediate(0x20));
3442 __ j(zero, &move_last_31);
3443 if (direction == BACKWARD) __ sub(src, Immediate(0x20));
3444 __ movdq(alignment == MOVE_ALIGNED, xmm0, Operand(src, 0x00));
3445 __ movdq(alignment == MOVE_ALIGNED, xmm1, Operand(src, 0x10));
3446 if (direction == FORWARD) __ add(src, Immediate(0x20));
3447 if (direction == BACKWARD) __ sub(dst, Immediate(0x20));
3448 __ movdqa(Operand(dst, 0x00), xmm0);
3449 __ movdqa(Operand(dst, 0x10), xmm1);
3450 if (direction == FORWARD) __ add(dst, Immediate(0x20));
3451 // At most 31 bytes left to copy.
3452 __ bind(&move_last_31);
3453 __ test(count, Immediate(0x10));
3454 __ j(zero, move_last_15);
3455 if (direction == BACKWARD) __ sub(src, Immediate(0x10));
3456 __ movdq(alignment == MOVE_ALIGNED, xmm0, Operand(src, 0));
3457 if (direction == FORWARD) __ add(src, Immediate(0x10));
3458 if (direction == BACKWARD) __ sub(dst, Immediate(0x10));
3459 __ movdqa(Operand(dst, 0), xmm0);
3460 if (direction == FORWARD) __ add(dst, Immediate(0x10));
3461 }
3462
MemMoveEmitPopAndReturn(MacroAssembler * masm)3463 void MemMoveEmitPopAndReturn(MacroAssembler* masm) {
3464 __ pop(esi);
3465 __ pop(edi);
3466 __ ret(0);
3467 }
3468
3469 } // namespace
3470
Generate_MemMove(MacroAssembler * masm)3471 void Builtins::Generate_MemMove(MacroAssembler* masm) {
3472 // Generated code is put into a fixed, unmovable buffer, and not into
3473 // the V8 heap. We can't, and don't, refer to any relocatable addresses
3474 // (e.g. the JavaScript nan-object).
3475
3476 // 32-bit C declaration function calls pass arguments on stack.
3477
3478 // Stack layout:
3479 // esp[12]: Third argument, size.
3480 // esp[8]: Second argument, source pointer.
3481 // esp[4]: First argument, destination pointer.
3482 // esp[0]: return address
3483
3484 const int kDestinationOffset = 1 * kSystemPointerSize;
3485 const int kSourceOffset = 2 * kSystemPointerSize;
3486 const int kSizeOffset = 3 * kSystemPointerSize;
3487
3488 // When copying up to this many bytes, use special "small" handlers.
3489 const size_t kSmallCopySize = 8;
3490 // When copying up to this many bytes, use special "medium" handlers.
3491 const size_t kMediumCopySize = 63;
3492 // When non-overlapping region of src and dst is less than this,
3493 // use a more careful implementation (slightly slower).
3494 const size_t kMinMoveDistance = 16;
3495 // Note that these values are dictated by the implementation below,
3496 // do not just change them and hope things will work!
3497
3498 int stack_offset = 0; // Update if we change the stack height.
3499
3500 Label backward, backward_much_overlap;
3501 Label forward_much_overlap, small_size, medium_size, pop_and_return;
3502 __ push(edi);
3503 __ push(esi);
3504 stack_offset += 2 * kSystemPointerSize;
3505 Register dst = edi;
3506 Register src = esi;
3507 Register count = ecx;
3508 Register loop_count = edx;
3509 __ mov(dst, Operand(esp, stack_offset + kDestinationOffset));
3510 __ mov(src, Operand(esp, stack_offset + kSourceOffset));
3511 __ mov(count, Operand(esp, stack_offset + kSizeOffset));
3512
3513 __ cmp(dst, src);
3514 __ j(equal, &pop_and_return);
3515
3516 __ prefetch(Operand(src, 0), 1);
3517 __ cmp(count, kSmallCopySize);
3518 __ j(below_equal, &small_size);
3519 __ cmp(count, kMediumCopySize);
3520 __ j(below_equal, &medium_size);
3521 __ cmp(dst, src);
3522 __ j(above, &backward);
3523
3524 {
3525 // |dst| is a lower address than |src|. Copy front-to-back.
3526 Label unaligned_source, move_last_15, skip_last_move;
3527 __ mov(eax, src);
3528 __ sub(eax, dst);
3529 __ cmp(eax, kMinMoveDistance);
3530 __ j(below, &forward_much_overlap);
3531 // Copy first 16 bytes.
3532 __ movdqu(xmm0, Operand(src, 0));
3533 __ movdqu(Operand(dst, 0), xmm0);
3534 // Determine distance to alignment: 16 - (dst & 0xF).
3535 __ mov(edx, dst);
3536 __ and_(edx, 0xF);
3537 __ neg(edx);
3538 __ add(edx, Immediate(16));
3539 __ add(dst, edx);
3540 __ add(src, edx);
3541 __ sub(count, edx);
3542 // dst is now aligned. Main copy loop.
3543 __ mov(loop_count, count);
3544 __ shr(loop_count, 6);
3545 // Check if src is also aligned.
3546 __ test(src, Immediate(0xF));
3547 __ j(not_zero, &unaligned_source);
3548 // Copy loop for aligned source and destination.
3549 MemMoveEmitMainLoop(masm, &move_last_15, FORWARD, MOVE_ALIGNED);
3550 // At most 15 bytes to copy. Copy 16 bytes at end of string.
3551 __ bind(&move_last_15);
3552 __ and_(count, 0xF);
3553 __ j(zero, &skip_last_move, Label::kNear);
3554 __ movdqu(xmm0, Operand(src, count, times_1, -0x10));
3555 __ movdqu(Operand(dst, count, times_1, -0x10), xmm0);
3556 __ bind(&skip_last_move);
3557 MemMoveEmitPopAndReturn(masm);
3558
3559 // Copy loop for unaligned source and aligned destination.
3560 __ bind(&unaligned_source);
3561 MemMoveEmitMainLoop(masm, &move_last_15, FORWARD, MOVE_UNALIGNED);
3562 __ jmp(&move_last_15);
3563
3564 // Less than kMinMoveDistance offset between dst and src.
3565 Label loop_until_aligned, last_15_much_overlap;
3566 __ bind(&loop_until_aligned);
3567 __ mov_b(eax, Operand(src, 0));
3568 __ inc(src);
3569 __ mov_b(Operand(dst, 0), eax);
3570 __ inc(dst);
3571 __ dec(count);
3572 __ bind(&forward_much_overlap); // Entry point into this block.
3573 __ test(dst, Immediate(0xF));
3574 __ j(not_zero, &loop_until_aligned);
3575 // dst is now aligned, src can't be. Main copy loop.
3576 __ mov(loop_count, count);
3577 __ shr(loop_count, 6);
3578 MemMoveEmitMainLoop(masm, &last_15_much_overlap, FORWARD, MOVE_UNALIGNED);
3579 __ bind(&last_15_much_overlap);
3580 __ and_(count, 0xF);
3581 __ j(zero, &pop_and_return);
3582 __ cmp(count, kSmallCopySize);
3583 __ j(below_equal, &small_size);
3584 __ jmp(&medium_size);
3585 }
3586
3587 {
3588 // |dst| is a higher address than |src|. Copy backwards.
3589 Label unaligned_source, move_first_15, skip_last_move;
3590 __ bind(&backward);
3591 // |dst| and |src| always point to the end of what's left to copy.
3592 __ add(dst, count);
3593 __ add(src, count);
3594 __ mov(eax, dst);
3595 __ sub(eax, src);
3596 __ cmp(eax, kMinMoveDistance);
3597 __ j(below, &backward_much_overlap);
3598 // Copy last 16 bytes.
3599 __ movdqu(xmm0, Operand(src, -0x10));
3600 __ movdqu(Operand(dst, -0x10), xmm0);
3601 // Find distance to alignment: dst & 0xF
3602 __ mov(edx, dst);
3603 __ and_(edx, 0xF);
3604 __ sub(dst, edx);
3605 __ sub(src, edx);
3606 __ sub(count, edx);
3607 // dst is now aligned. Main copy loop.
3608 __ mov(loop_count, count);
3609 __ shr(loop_count, 6);
3610 // Check if src is also aligned.
3611 __ test(src, Immediate(0xF));
3612 __ j(not_zero, &unaligned_source);
3613 // Copy loop for aligned source and destination.
3614 MemMoveEmitMainLoop(masm, &move_first_15, BACKWARD, MOVE_ALIGNED);
3615 // At most 15 bytes to copy. Copy 16 bytes at beginning of string.
3616 __ bind(&move_first_15);
3617 __ and_(count, 0xF);
3618 __ j(zero, &skip_last_move, Label::kNear);
3619 __ sub(src, count);
3620 __ sub(dst, count);
3621 __ movdqu(xmm0, Operand(src, 0));
3622 __ movdqu(Operand(dst, 0), xmm0);
3623 __ bind(&skip_last_move);
3624 MemMoveEmitPopAndReturn(masm);
3625
3626 // Copy loop for unaligned source and aligned destination.
3627 __ bind(&unaligned_source);
3628 MemMoveEmitMainLoop(masm, &move_first_15, BACKWARD, MOVE_UNALIGNED);
3629 __ jmp(&move_first_15);
3630
3631 // Less than kMinMoveDistance offset between dst and src.
3632 Label loop_until_aligned, first_15_much_overlap;
3633 __ bind(&loop_until_aligned);
3634 __ dec(src);
3635 __ dec(dst);
3636 __ mov_b(eax, Operand(src, 0));
3637 __ mov_b(Operand(dst, 0), eax);
3638 __ dec(count);
3639 __ bind(&backward_much_overlap); // Entry point into this block.
3640 __ test(dst, Immediate(0xF));
3641 __ j(not_zero, &loop_until_aligned);
3642 // dst is now aligned, src can't be. Main copy loop.
3643 __ mov(loop_count, count);
3644 __ shr(loop_count, 6);
3645 MemMoveEmitMainLoop(masm, &first_15_much_overlap, BACKWARD, MOVE_UNALIGNED);
3646 __ bind(&first_15_much_overlap);
3647 __ and_(count, 0xF);
3648 __ j(zero, &pop_and_return);
3649 // Small/medium handlers expect dst/src to point to the beginning.
3650 __ sub(dst, count);
3651 __ sub(src, count);
3652 __ cmp(count, kSmallCopySize);
3653 __ j(below_equal, &small_size);
3654 __ jmp(&medium_size);
3655 }
3656 {
3657 // Special handlers for 9 <= copy_size < 64. No assumptions about
3658 // alignment or move distance, so all reads must be unaligned and
3659 // must happen before any writes.
3660 Label f9_16, f17_32, f33_48, f49_63;
3661
3662 __ bind(&f9_16);
3663 __ movsd(xmm0, Operand(src, 0));
3664 __ movsd(xmm1, Operand(src, count, times_1, -8));
3665 __ movsd(Operand(dst, 0), xmm0);
3666 __ movsd(Operand(dst, count, times_1, -8), xmm1);
3667 MemMoveEmitPopAndReturn(masm);
3668
3669 __ bind(&f17_32);
3670 __ movdqu(xmm0, Operand(src, 0));
3671 __ movdqu(xmm1, Operand(src, count, times_1, -0x10));
3672 __ movdqu(Operand(dst, 0x00), xmm0);
3673 __ movdqu(Operand(dst, count, times_1, -0x10), xmm1);
3674 MemMoveEmitPopAndReturn(masm);
3675
3676 __ bind(&f33_48);
3677 __ movdqu(xmm0, Operand(src, 0x00));
3678 __ movdqu(xmm1, Operand(src, 0x10));
3679 __ movdqu(xmm2, Operand(src, count, times_1, -0x10));
3680 __ movdqu(Operand(dst, 0x00), xmm0);
3681 __ movdqu(Operand(dst, 0x10), xmm1);
3682 __ movdqu(Operand(dst, count, times_1, -0x10), xmm2);
3683 MemMoveEmitPopAndReturn(masm);
3684
3685 __ bind(&f49_63);
3686 __ movdqu(xmm0, Operand(src, 0x00));
3687 __ movdqu(xmm1, Operand(src, 0x10));
3688 __ movdqu(xmm2, Operand(src, 0x20));
3689 __ movdqu(xmm3, Operand(src, count, times_1, -0x10));
3690 __ movdqu(Operand(dst, 0x00), xmm0);
3691 __ movdqu(Operand(dst, 0x10), xmm1);
3692 __ movdqu(Operand(dst, 0x20), xmm2);
3693 __ movdqu(Operand(dst, count, times_1, -0x10), xmm3);
3694 MemMoveEmitPopAndReturn(masm);
3695
3696 __ bind(&medium_size); // Entry point into this block.
3697 __ mov(eax, count);
3698 __ dec(eax);
3699 __ shr(eax, 4);
3700 if (FLAG_debug_code) {
3701 Label ok;
3702 __ cmp(eax, 3);
3703 __ j(below_equal, &ok);
3704 __ int3();
3705 __ bind(&ok);
3706 }
3707
3708 // Dispatch to handlers.
3709 Label eax_is_2_or_3;
3710
3711 __ cmp(eax, 1);
3712 __ j(greater, &eax_is_2_or_3);
3713 __ j(less, &f9_16); // eax == 0.
3714 __ jmp(&f17_32); // eax == 1.
3715
3716 __ bind(&eax_is_2_or_3);
3717 __ cmp(eax, 3);
3718 __ j(less, &f33_48); // eax == 2.
3719 __ jmp(&f49_63); // eax == 3.
3720 }
3721 {
3722 // Specialized copiers for copy_size <= 8 bytes.
3723 Label f0, f1, f2, f3, f4, f5_8;
3724 __ bind(&f0);
3725 MemMoveEmitPopAndReturn(masm);
3726
3727 __ bind(&f1);
3728 __ mov_b(eax, Operand(src, 0));
3729 __ mov_b(Operand(dst, 0), eax);
3730 MemMoveEmitPopAndReturn(masm);
3731
3732 __ bind(&f2);
3733 __ mov_w(eax, Operand(src, 0));
3734 __ mov_w(Operand(dst, 0), eax);
3735 MemMoveEmitPopAndReturn(masm);
3736
3737 __ bind(&f3);
3738 __ mov_w(eax, Operand(src, 0));
3739 __ mov_b(edx, Operand(src, 2));
3740 __ mov_w(Operand(dst, 0), eax);
3741 __ mov_b(Operand(dst, 2), edx);
3742 MemMoveEmitPopAndReturn(masm);
3743
3744 __ bind(&f4);
3745 __ mov(eax, Operand(src, 0));
3746 __ mov(Operand(dst, 0), eax);
3747 MemMoveEmitPopAndReturn(masm);
3748
3749 __ bind(&f5_8);
3750 __ mov(eax, Operand(src, 0));
3751 __ mov(edx, Operand(src, count, times_1, -4));
3752 __ mov(Operand(dst, 0), eax);
3753 __ mov(Operand(dst, count, times_1, -4), edx);
3754 MemMoveEmitPopAndReturn(masm);
3755
3756 __ bind(&small_size); // Entry point into this block.
3757 if (FLAG_debug_code) {
3758 Label ok;
3759 __ cmp(count, 8);
3760 __ j(below_equal, &ok);
3761 __ int3();
3762 __ bind(&ok);
3763 }
3764
3765 // Dispatch to handlers.
3766 Label count_is_above_3, count_is_2_or_3;
3767
3768 __ cmp(count, 3);
3769 __ j(greater, &count_is_above_3);
3770
3771 __ cmp(count, 1);
3772 __ j(greater, &count_is_2_or_3);
3773 __ j(less, &f0); // count == 0.
3774 __ jmp(&f1); // count == 1.
3775
3776 __ bind(&count_is_2_or_3);
3777 __ cmp(count, 3);
3778 __ j(less, &f2); // count == 2.
3779 __ jmp(&f3); // count == 3.
3780
3781 __ bind(&count_is_above_3);
3782 __ cmp(count, 5);
3783 __ j(less, &f4); // count == 4.
3784 __ jmp(&f5_8); // count in [5, 8[.
3785 }
3786
3787 __ bind(&pop_and_return);
3788 MemMoveEmitPopAndReturn(masm);
3789 }
3790
3791 namespace {
3792
Generate_DeoptimizationEntry(MacroAssembler * masm,DeoptimizeKind deopt_kind)3793 void Generate_DeoptimizationEntry(MacroAssembler* masm,
3794 DeoptimizeKind deopt_kind) {
3795 Isolate* isolate = masm->isolate();
3796
3797 // Save all general purpose registers before messing with them.
3798 const int kNumberOfRegisters = Register::kNumRegisters;
3799
3800 const int kDoubleRegsSize = kDoubleSize * XMMRegister::kNumRegisters;
3801 __ AllocateStackSpace(kDoubleRegsSize);
3802 const RegisterConfiguration* config = RegisterConfiguration::Default();
3803 for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
3804 int code = config->GetAllocatableDoubleCode(i);
3805 XMMRegister xmm_reg = XMMRegister::from_code(code);
3806 int offset = code * kDoubleSize;
3807 __ movsd(Operand(esp, offset), xmm_reg);
3808 }
3809
3810 __ pushad();
3811
3812 ExternalReference c_entry_fp_address =
3813 ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate);
3814 __ mov(masm->ExternalReferenceAsOperand(c_entry_fp_address, esi), ebp);
3815
3816 const int kSavedRegistersAreaSize =
3817 kNumberOfRegisters * kSystemPointerSize + kDoubleRegsSize;
3818
3819 // Get the address of the location in the code object
3820 // and compute the fp-to-sp delta in register edx.
3821 __ mov(ecx, Operand(esp, kSavedRegistersAreaSize));
3822 __ lea(edx, Operand(esp, kSavedRegistersAreaSize + 1 * kSystemPointerSize));
3823
3824 __ sub(edx, ebp);
3825 __ neg(edx);
3826
3827 // Allocate a new deoptimizer object.
3828 __ PrepareCallCFunction(6, eax);
3829 __ mov(eax, Immediate(0));
3830 Label context_check;
3831 __ mov(edi, Operand(ebp, CommonFrameConstants::kContextOrFrameTypeOffset));
3832 __ JumpIfSmi(edi, &context_check);
3833 __ mov(eax, Operand(ebp, StandardFrameConstants::kFunctionOffset));
3834 __ bind(&context_check);
3835 __ mov(Operand(esp, 0 * kSystemPointerSize), eax); // Function.
3836 __ mov(Operand(esp, 1 * kSystemPointerSize),
3837 Immediate(static_cast<int>(deopt_kind)));
3838 __ mov(Operand(esp, 2 * kSystemPointerSize),
3839 Immediate(Deoptimizer::kFixedExitSizeMarker)); // Bailout id.
3840 __ mov(Operand(esp, 3 * kSystemPointerSize), ecx); // Code address or 0.
3841 __ mov(Operand(esp, 4 * kSystemPointerSize), edx); // Fp-to-sp delta.
3842 __ Move(Operand(esp, 5 * kSystemPointerSize),
3843 Immediate(ExternalReference::isolate_address(masm->isolate())));
3844 {
3845 AllowExternalCallThatCantCauseGC scope(masm);
3846 __ CallCFunction(ExternalReference::new_deoptimizer_function(), 6);
3847 }
3848
3849 // Preserve deoptimizer object in register eax and get the input
3850 // frame descriptor pointer.
3851 __ mov(esi, Operand(eax, Deoptimizer::input_offset()));
3852
3853 // Fill in the input registers.
3854 for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
3855 int offset =
3856 (i * kSystemPointerSize) + FrameDescription::registers_offset();
3857 __ pop(Operand(esi, offset));
3858 }
3859
3860 int double_regs_offset = FrameDescription::double_registers_offset();
3861 // Fill in the double input registers.
3862 for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
3863 int code = config->GetAllocatableDoubleCode(i);
3864 int dst_offset = code * kDoubleSize + double_regs_offset;
3865 int src_offset = code * kDoubleSize;
3866 __ movsd(xmm0, Operand(esp, src_offset));
3867 __ movsd(Operand(esi, dst_offset), xmm0);
3868 }
3869
3870 // Clear FPU all exceptions.
3871 // TODO(ulan): Find out why the TOP register is not zero here in some cases,
3872 // and check that the generated code never deoptimizes with unbalanced stack.
3873 __ fnclex();
3874
3875 // Mark the stack as not iterable for the CPU profiler which won't be able to
3876 // walk the stack without the return address.
3877 __ mov_b(__ ExternalReferenceAsOperand(
3878 ExternalReference::stack_is_iterable_address(isolate), edx),
3879 Immediate(0));
3880
3881 // Remove the return address and the double registers.
3882 __ add(esp, Immediate(kDoubleRegsSize + 1 * kSystemPointerSize));
3883
3884 // Compute a pointer to the unwinding limit in register ecx; that is
3885 // the first stack slot not part of the input frame.
3886 __ mov(ecx, Operand(esi, FrameDescription::frame_size_offset()));
3887 __ add(ecx, esp);
3888
3889 // Unwind the stack down to - but not including - the unwinding
3890 // limit and copy the contents of the activation frame to the input
3891 // frame description.
3892 __ lea(edx, Operand(esi, FrameDescription::frame_content_offset()));
3893 Label pop_loop_header;
3894 __ jmp(&pop_loop_header);
3895 Label pop_loop;
3896 __ bind(&pop_loop);
3897 __ pop(Operand(edx, 0));
3898 __ add(edx, Immediate(sizeof(uint32_t)));
3899 __ bind(&pop_loop_header);
3900 __ cmp(ecx, esp);
3901 __ j(not_equal, &pop_loop);
3902
3903 // Compute the output frame in the deoptimizer.
3904 __ push(eax);
3905 __ PrepareCallCFunction(1, esi);
3906 __ mov(Operand(esp, 0 * kSystemPointerSize), eax);
3907 {
3908 AllowExternalCallThatCantCauseGC scope(masm);
3909 __ CallCFunction(ExternalReference::compute_output_frames_function(), 1);
3910 }
3911 __ pop(eax);
3912
3913 __ mov(esp, Operand(eax, Deoptimizer::caller_frame_top_offset()));
3914
3915 // Replace the current (input) frame with the output frames.
3916 Label outer_push_loop, inner_push_loop, outer_loop_header, inner_loop_header;
3917 // Outer loop state: eax = current FrameDescription**, edx = one
3918 // past the last FrameDescription**.
3919 __ mov(edx, Operand(eax, Deoptimizer::output_count_offset()));
3920 __ mov(eax, Operand(eax, Deoptimizer::output_offset()));
3921 __ lea(edx, Operand(eax, edx, times_system_pointer_size, 0));
3922 __ jmp(&outer_loop_header);
3923 __ bind(&outer_push_loop);
3924 // Inner loop state: esi = current FrameDescription*, ecx = loop
3925 // index.
3926 __ mov(esi, Operand(eax, 0));
3927 __ mov(ecx, Operand(esi, FrameDescription::frame_size_offset()));
3928 __ jmp(&inner_loop_header);
3929 __ bind(&inner_push_loop);
3930 __ sub(ecx, Immediate(sizeof(uint32_t)));
3931 __ push(Operand(esi, ecx, times_1, FrameDescription::frame_content_offset()));
3932 __ bind(&inner_loop_header);
3933 __ test(ecx, ecx);
3934 __ j(not_zero, &inner_push_loop);
3935 __ add(eax, Immediate(kSystemPointerSize));
3936 __ bind(&outer_loop_header);
3937 __ cmp(eax, edx);
3938 __ j(below, &outer_push_loop);
3939
3940 // In case of a failed STUB, we have to restore the XMM registers.
3941 for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
3942 int code = config->GetAllocatableDoubleCode(i);
3943 XMMRegister xmm_reg = XMMRegister::from_code(code);
3944 int src_offset = code * kDoubleSize + double_regs_offset;
3945 __ movsd(xmm_reg, Operand(esi, src_offset));
3946 }
3947
3948 // Push pc and continuation from the last output frame.
3949 __ push(Operand(esi, FrameDescription::pc_offset()));
3950 __ push(Operand(esi, FrameDescription::continuation_offset()));
3951
3952 // Push the registers from the last output frame.
3953 for (int i = 0; i < kNumberOfRegisters; i++) {
3954 int offset =
3955 (i * kSystemPointerSize) + FrameDescription::registers_offset();
3956 __ push(Operand(esi, offset));
3957 }
3958
3959 __ mov_b(__ ExternalReferenceAsOperand(
3960 ExternalReference::stack_is_iterable_address(isolate), edx),
3961 Immediate(1));
3962
3963 // Restore the registers from the stack.
3964 __ popad();
3965
3966 __ InitializeRootRegister();
3967
3968 // Return to the continuation point.
3969 __ ret(0);
3970 }
3971
3972 } // namespace
3973
Generate_DeoptimizationEntry_Eager(MacroAssembler * masm)3974 void Builtins::Generate_DeoptimizationEntry_Eager(MacroAssembler* masm) {
3975 Generate_DeoptimizationEntry(masm, DeoptimizeKind::kEager);
3976 }
3977
Generate_DeoptimizationEntry_Soft(MacroAssembler * masm)3978 void Builtins::Generate_DeoptimizationEntry_Soft(MacroAssembler* masm) {
3979 Generate_DeoptimizationEntry(masm, DeoptimizeKind::kSoft);
3980 }
3981
Generate_DeoptimizationEntry_Bailout(MacroAssembler * masm)3982 void Builtins::Generate_DeoptimizationEntry_Bailout(MacroAssembler* masm) {
3983 Generate_DeoptimizationEntry(masm, DeoptimizeKind::kBailout);
3984 }
3985
Generate_DeoptimizationEntry_Lazy(MacroAssembler * masm)3986 void Builtins::Generate_DeoptimizationEntry_Lazy(MacroAssembler* masm) {
3987 Generate_DeoptimizationEntry(masm, DeoptimizeKind::kLazy);
3988 }
3989
3990 #undef __
3991
3992 } // namespace internal
3993 } // namespace v8
3994
3995 #endif // V8_TARGET_ARCH_IA32
3996