1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34
35 #include "src/codegen/mips64/assembler-mips64.h"
36
37 #if V8_TARGET_ARCH_MIPS64
38
39 #include "src/base/cpu.h"
40 #include "src/codegen/mips64/assembler-mips64-inl.h"
41 #include "src/codegen/safepoint-table.h"
42 #include "src/codegen/string-constants.h"
43 #include "src/deoptimizer/deoptimizer.h"
44 #include "src/objects/heap-number-inl.h"
45
46 namespace v8 {
47 namespace internal {
48
49 // Get the CPU features enabled by the build. For cross compilation the
50 // preprocessor symbols CAN_USE_FPU_INSTRUCTIONS
51 // can be defined to enable FPU instructions when building the
52 // snapshot.
CpuFeaturesImpliedByCompiler()53 static unsigned CpuFeaturesImpliedByCompiler() {
54 unsigned answer = 0;
55 #ifdef CAN_USE_FPU_INSTRUCTIONS
56 answer |= 1u << FPU;
57 #endif // def CAN_USE_FPU_INSTRUCTIONS
58
59 // If the compiler is allowed to use FPU then we can use FPU too in our code
60 // generation even when generating snapshots. This won't work for cross
61 // compilation.
62 #if defined(__mips__) && defined(__mips_hard_float) && __mips_hard_float != 0
63 answer |= 1u << FPU;
64 #endif
65
66 return answer;
67 }
68
ProbeImpl(bool cross_compile)69 void CpuFeatures::ProbeImpl(bool cross_compile) {
70 supported_ |= CpuFeaturesImpliedByCompiler();
71
72 // Only use statically determined features for cross compile (snapshot).
73 if (cross_compile) return;
74
75 // If the compiler is allowed to use fpu then we can use fpu too in our
76 // code generation.
77 #ifndef __mips__
78 // For the simulator build, use FPU.
79 supported_ |= 1u << FPU;
80 #if defined(_MIPS_ARCH_MIPS64R6) && defined(_MIPS_MSA)
81 supported_ |= 1u << MIPS_SIMD;
82 #endif
83 #else
84 // Probe for additional features at runtime.
85 base::CPU cpu;
86 if (cpu.has_fpu()) supported_ |= 1u << FPU;
87 #if defined(_MIPS_MSA)
88 supported_ |= 1u << MIPS_SIMD;
89 #else
90 if (cpu.has_msa()) supported_ |= 1u << MIPS_SIMD;
91 #endif
92 #endif
93 }
94
PrintTarget()95 void CpuFeatures::PrintTarget() {}
PrintFeatures()96 void CpuFeatures::PrintFeatures() {}
97
ToNumber(Register reg)98 int ToNumber(Register reg) {
99 DCHECK(reg.is_valid());
100 const int kNumbers[] = {
101 0, // zero_reg
102 1, // at
103 2, // v0
104 3, // v1
105 4, // a0
106 5, // a1
107 6, // a2
108 7, // a3
109 8, // a4
110 9, // a5
111 10, // a6
112 11, // a7
113 12, // t0
114 13, // t1
115 14, // t2
116 15, // t3
117 16, // s0
118 17, // s1
119 18, // s2
120 19, // s3
121 20, // s4
122 21, // s5
123 22, // s6
124 23, // s7
125 24, // t8
126 25, // t9
127 26, // k0
128 27, // k1
129 28, // gp
130 29, // sp
131 30, // fp
132 31, // ra
133 };
134 return kNumbers[reg.code()];
135 }
136
ToRegister(int num)137 Register ToRegister(int num) {
138 DCHECK(num >= 0 && num < kNumRegisters);
139 const Register kRegisters[] = {
140 zero_reg, at, v0, v1, a0, a1, a2, a3, a4, a5, a6, a7, t0, t1, t2, t3,
141 s0, s1, s2, s3, s4, s5, s6, s7, t8, t9, k0, k1, gp, sp, fp, ra};
142 return kRegisters[num];
143 }
144
145 // -----------------------------------------------------------------------------
146 // Implementation of RelocInfo.
147
148 const int RelocInfo::kApplyMask =
149 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
150 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED);
151
IsCodedSpecially()152 bool RelocInfo::IsCodedSpecially() {
153 // The deserializer needs to know whether a pointer is specially coded. Being
154 // specially coded on MIPS means that it is a lui/ori instruction, and that is
155 // always the case inside code objects.
156 return true;
157 }
158
IsInConstantPool()159 bool RelocInfo::IsInConstantPool() { return false; }
160
wasm_call_tag() const161 uint32_t RelocInfo::wasm_call_tag() const {
162 DCHECK(rmode_ == WASM_CALL || rmode_ == WASM_STUB_CALL);
163 return static_cast<uint32_t>(
164 Assembler::target_address_at(pc_, constant_pool_));
165 }
166
167 // -----------------------------------------------------------------------------
168 // Implementation of Operand and MemOperand.
169 // See assembler-mips-inl.h for inlined constructors.
170
Operand(Handle<HeapObject> handle)171 Operand::Operand(Handle<HeapObject> handle)
172 : rm_(no_reg), rmode_(RelocInfo::FULL_EMBEDDED_OBJECT) {
173 value_.immediate = static_cast<intptr_t>(handle.address());
174 }
175
EmbeddedNumber(double value)176 Operand Operand::EmbeddedNumber(double value) {
177 int32_t smi;
178 if (DoubleToSmiInteger(value, &smi)) return Operand(Smi::FromInt(smi));
179 Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT);
180 result.is_heap_object_request_ = true;
181 result.value_.heap_object_request = HeapObjectRequest(value);
182 return result;
183 }
184
EmbeddedStringConstant(const StringConstantBase * str)185 Operand Operand::EmbeddedStringConstant(const StringConstantBase* str) {
186 Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT);
187 result.is_heap_object_request_ = true;
188 result.value_.heap_object_request = HeapObjectRequest(str);
189 return result;
190 }
191
MemOperand(Register rm,int32_t offset)192 MemOperand::MemOperand(Register rm, int32_t offset) : Operand(rm) {
193 offset_ = offset;
194 }
195
MemOperand(Register rm,int32_t unit,int32_t multiplier,OffsetAddend offset_addend)196 MemOperand::MemOperand(Register rm, int32_t unit, int32_t multiplier,
197 OffsetAddend offset_addend)
198 : Operand(rm) {
199 offset_ = unit * multiplier + offset_addend;
200 }
201
AllocateAndInstallRequestedHeapObjects(Isolate * isolate)202 void Assembler::AllocateAndInstallRequestedHeapObjects(Isolate* isolate) {
203 DCHECK_IMPLIES(isolate == nullptr, heap_object_requests_.empty());
204 for (auto& request : heap_object_requests_) {
205 Handle<HeapObject> object;
206 switch (request.kind()) {
207 case HeapObjectRequest::kHeapNumber:
208 object = isolate->factory()->NewHeapNumber<AllocationType::kOld>(
209 request.heap_number());
210 break;
211 case HeapObjectRequest::kStringConstant:
212 const StringConstantBase* str = request.string();
213 CHECK_NOT_NULL(str);
214 object = str->AllocateStringConstant(isolate);
215 break;
216 }
217 Address pc = reinterpret_cast<Address>(buffer_start_) + request.offset();
218 set_target_value_at(pc, reinterpret_cast<uint64_t>(object.location()));
219 }
220 }
221
222 // -----------------------------------------------------------------------------
223 // Specific instructions, constants, and masks.
224
225 // daddiu(sp, sp, 8) aka Pop() operation or part of Pop(r)
226 // operations as post-increment of sp.
227 const Instr kPopInstruction = DADDIU | (sp.code() << kRsShift) |
228 (sp.code() << kRtShift) |
229 (kPointerSize & kImm16Mask); // NOLINT
230 // daddiu(sp, sp, -8) part of Push(r) operation as pre-decrement of sp.
231 const Instr kPushInstruction = DADDIU | (sp.code() << kRsShift) |
232 (sp.code() << kRtShift) |
233 (-kPointerSize & kImm16Mask); // NOLINT
234 // Sd(r, MemOperand(sp, 0))
235 const Instr kPushRegPattern =
236 SD | (sp.code() << kRsShift) | (0 & kImm16Mask); // NOLINT
237 // Ld(r, MemOperand(sp, 0))
238 const Instr kPopRegPattern =
239 LD | (sp.code() << kRsShift) | (0 & kImm16Mask); // NOLINT
240
241 const Instr kLwRegFpOffsetPattern =
242 LW | (fp.code() << kRsShift) | (0 & kImm16Mask); // NOLINT
243
244 const Instr kSwRegFpOffsetPattern =
245 SW | (fp.code() << kRsShift) | (0 & kImm16Mask); // NOLINT
246
247 const Instr kLwRegFpNegOffsetPattern =
248 LW | (fp.code() << kRsShift) | (kNegOffset & kImm16Mask); // NOLINT
249
250 const Instr kSwRegFpNegOffsetPattern =
251 SW | (fp.code() << kRsShift) | (kNegOffset & kImm16Mask); // NOLINT
252 // A mask for the Rt register for push, pop, lw, sw instructions.
253 const Instr kRtMask = kRtFieldMask;
254 const Instr kLwSwInstrTypeMask = 0xFFE00000;
255 const Instr kLwSwInstrArgumentMask = ~kLwSwInstrTypeMask;
256 const Instr kLwSwOffsetMask = kImm16Mask;
257
Assembler(const AssemblerOptions & options,std::unique_ptr<AssemblerBuffer> buffer)258 Assembler::Assembler(const AssemblerOptions& options,
259 std::unique_ptr<AssemblerBuffer> buffer)
260 : AssemblerBase(options, std::move(buffer)),
261 scratch_register_list_(at.bit()) {
262 if (CpuFeatures::IsSupported(MIPS_SIMD)) {
263 EnableCpuFeature(MIPS_SIMD);
264 }
265 reloc_info_writer.Reposition(buffer_start_ + buffer_->size(), pc_);
266
267 last_trampoline_pool_end_ = 0;
268 no_trampoline_pool_before_ = 0;
269 trampoline_pool_blocked_nesting_ = 0;
270 // We leave space (16 * kTrampolineSlotsSize)
271 // for BlockTrampolinePoolScope buffer.
272 next_buffer_check_ = FLAG_force_long_branches
273 ? kMaxInt
274 : kMaxBranchOffset - kTrampolineSlotsSize * 16;
275 internal_trampoline_exception_ = false;
276 last_bound_pos_ = 0;
277
278 trampoline_emitted_ = FLAG_force_long_branches;
279 unbound_labels_count_ = 0;
280 block_buffer_growth_ = false;
281 }
282
GetCode(Isolate * isolate,CodeDesc * desc,SafepointTableBuilder * safepoint_table_builder,int handler_table_offset)283 void Assembler::GetCode(Isolate* isolate, CodeDesc* desc,
284 SafepointTableBuilder* safepoint_table_builder,
285 int handler_table_offset) {
286 // As a crutch to avoid having to add manual Align calls wherever we use a
287 // raw workflow to create Code objects (mostly in tests), add another Align
288 // call here. It does no harm - the end of the Code object is aligned to the
289 // (larger) kCodeAlignment anyways.
290 // TODO(jgruber): Consider moving responsibility for proper alignment to
291 // metadata table builders (safepoint, handler, constant pool, code
292 // comments).
293 DataAlign(Code::kMetadataAlignment);
294
295 EmitForbiddenSlotInstruction();
296
297 int code_comments_size = WriteCodeComments();
298
299 DCHECK(pc_ <= reloc_info_writer.pos()); // No overlap.
300
301 AllocateAndInstallRequestedHeapObjects(isolate);
302
303 // Set up code descriptor.
304 // TODO(jgruber): Reconsider how these offsets and sizes are maintained up to
305 // this point to make CodeDesc initialization less fiddly.
306
307 static constexpr int kConstantPoolSize = 0;
308 const int instruction_size = pc_offset();
309 const int code_comments_offset = instruction_size - code_comments_size;
310 const int constant_pool_offset = code_comments_offset - kConstantPoolSize;
311 const int handler_table_offset2 = (handler_table_offset == kNoHandlerTable)
312 ? constant_pool_offset
313 : handler_table_offset;
314 const int safepoint_table_offset =
315 (safepoint_table_builder == kNoSafepointTable)
316 ? handler_table_offset2
317 : safepoint_table_builder->GetCodeOffset();
318 const int reloc_info_offset =
319 static_cast<int>(reloc_info_writer.pos() - buffer_->start());
320 CodeDesc::Initialize(desc, this, safepoint_table_offset,
321 handler_table_offset2, constant_pool_offset,
322 code_comments_offset, reloc_info_offset);
323 }
324
Align(int m)325 void Assembler::Align(int m) {
326 DCHECK(m >= 4 && base::bits::IsPowerOfTwo(m));
327 EmitForbiddenSlotInstruction();
328 while ((pc_offset() & (m - 1)) != 0) {
329 nop();
330 }
331 }
332
CodeTargetAlign()333 void Assembler::CodeTargetAlign() {
334 // No advantage to aligning branch/call targets to more than
335 // single instruction, that I am aware of.
336 Align(4);
337 }
338
GetRtReg(Instr instr)339 Register Assembler::GetRtReg(Instr instr) {
340 return Register::from_code((instr & kRtFieldMask) >> kRtShift);
341 }
342
GetRsReg(Instr instr)343 Register Assembler::GetRsReg(Instr instr) {
344 return Register::from_code((instr & kRsFieldMask) >> kRsShift);
345 }
346
GetRdReg(Instr instr)347 Register Assembler::GetRdReg(Instr instr) {
348 return Register::from_code((instr & kRdFieldMask) >> kRdShift);
349 }
350
GetRt(Instr instr)351 uint32_t Assembler::GetRt(Instr instr) {
352 return (instr & kRtFieldMask) >> kRtShift;
353 }
354
GetRtField(Instr instr)355 uint32_t Assembler::GetRtField(Instr instr) { return instr & kRtFieldMask; }
356
GetRs(Instr instr)357 uint32_t Assembler::GetRs(Instr instr) {
358 return (instr & kRsFieldMask) >> kRsShift;
359 }
360
GetRsField(Instr instr)361 uint32_t Assembler::GetRsField(Instr instr) { return instr & kRsFieldMask; }
362
GetRd(Instr instr)363 uint32_t Assembler::GetRd(Instr instr) {
364 return (instr & kRdFieldMask) >> kRdShift;
365 }
366
GetRdField(Instr instr)367 uint32_t Assembler::GetRdField(Instr instr) { return instr & kRdFieldMask; }
368
GetSa(Instr instr)369 uint32_t Assembler::GetSa(Instr instr) {
370 return (instr & kSaFieldMask) >> kSaShift;
371 }
372
GetSaField(Instr instr)373 uint32_t Assembler::GetSaField(Instr instr) { return instr & kSaFieldMask; }
374
GetOpcodeField(Instr instr)375 uint32_t Assembler::GetOpcodeField(Instr instr) { return instr & kOpcodeMask; }
376
GetFunction(Instr instr)377 uint32_t Assembler::GetFunction(Instr instr) {
378 return (instr & kFunctionFieldMask) >> kFunctionShift;
379 }
380
GetFunctionField(Instr instr)381 uint32_t Assembler::GetFunctionField(Instr instr) {
382 return instr & kFunctionFieldMask;
383 }
384
GetImmediate16(Instr instr)385 uint32_t Assembler::GetImmediate16(Instr instr) { return instr & kImm16Mask; }
386
GetLabelConst(Instr instr)387 uint32_t Assembler::GetLabelConst(Instr instr) { return instr & ~kImm16Mask; }
388
IsPop(Instr instr)389 bool Assembler::IsPop(Instr instr) {
390 return (instr & ~kRtMask) == kPopRegPattern;
391 }
392
IsPush(Instr instr)393 bool Assembler::IsPush(Instr instr) {
394 return (instr & ~kRtMask) == kPushRegPattern;
395 }
396
IsSwRegFpOffset(Instr instr)397 bool Assembler::IsSwRegFpOffset(Instr instr) {
398 return ((instr & kLwSwInstrTypeMask) == kSwRegFpOffsetPattern);
399 }
400
IsLwRegFpOffset(Instr instr)401 bool Assembler::IsLwRegFpOffset(Instr instr) {
402 return ((instr & kLwSwInstrTypeMask) == kLwRegFpOffsetPattern);
403 }
404
IsSwRegFpNegOffset(Instr instr)405 bool Assembler::IsSwRegFpNegOffset(Instr instr) {
406 return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
407 kSwRegFpNegOffsetPattern);
408 }
409
IsLwRegFpNegOffset(Instr instr)410 bool Assembler::IsLwRegFpNegOffset(Instr instr) {
411 return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
412 kLwRegFpNegOffsetPattern);
413 }
414
415 // Labels refer to positions in the (to be) generated code.
416 // There are bound, linked, and unused labels.
417 //
418 // Bound labels refer to known positions in the already
419 // generated code. pos() is the position the label refers to.
420 //
421 // Linked labels refer to unknown positions in the code
422 // to be generated; pos() is the position of the last
423 // instruction using the label.
424
425 // The link chain is terminated by a value in the instruction of -1,
426 // which is an otherwise illegal value (branch -1 is inf loop).
427 // The instruction 16-bit offset field addresses 32-bit words, but in
428 // code is conv to an 18-bit value addressing bytes, hence the -4 value.
429
430 const int kEndOfChain = -4;
431 // Determines the end of the Jump chain (a subset of the label link chain).
432 const int kEndOfJumpChain = 0;
433
IsMsaBranch(Instr instr)434 bool Assembler::IsMsaBranch(Instr instr) {
435 uint32_t opcode = GetOpcodeField(instr);
436 uint32_t rs_field = GetRsField(instr);
437 if (opcode == COP1) {
438 switch (rs_field) {
439 case BZ_V:
440 case BZ_B:
441 case BZ_H:
442 case BZ_W:
443 case BZ_D:
444 case BNZ_V:
445 case BNZ_B:
446 case BNZ_H:
447 case BNZ_W:
448 case BNZ_D:
449 return true;
450 default:
451 return false;
452 }
453 } else {
454 return false;
455 }
456 }
457
IsBranch(Instr instr)458 bool Assembler::IsBranch(Instr instr) {
459 uint32_t opcode = GetOpcodeField(instr);
460 uint32_t rt_field = GetRtField(instr);
461 uint32_t rs_field = GetRsField(instr);
462 // Checks if the instruction is a branch.
463 bool isBranch =
464 opcode == BEQ || opcode == BNE || opcode == BLEZ || opcode == BGTZ ||
465 opcode == BEQL || opcode == BNEL || opcode == BLEZL || opcode == BGTZL ||
466 (opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ ||
467 rt_field == BLTZAL || rt_field == BGEZAL)) ||
468 (opcode == COP1 && rs_field == BC1) || // Coprocessor branch.
469 (opcode == COP1 && rs_field == BC1EQZ) ||
470 (opcode == COP1 && rs_field == BC1NEZ) || IsMsaBranch(instr);
471 if (!isBranch && kArchVariant == kMips64r6) {
472 // All the 3 variants of POP10 (BOVC, BEQC, BEQZALC) and
473 // POP30 (BNVC, BNEC, BNEZALC) are branch ops.
474 isBranch |= opcode == POP10 || opcode == POP30 || opcode == BC ||
475 opcode == BALC ||
476 (opcode == POP66 && rs_field != 0) || // BEQZC
477 (opcode == POP76 && rs_field != 0); // BNEZC
478 }
479 return isBranch;
480 }
481
IsBc(Instr instr)482 bool Assembler::IsBc(Instr instr) {
483 uint32_t opcode = GetOpcodeField(instr);
484 // Checks if the instruction is a BC or BALC.
485 return opcode == BC || opcode == BALC;
486 }
487
IsNal(Instr instr)488 bool Assembler::IsNal(Instr instr) {
489 uint32_t opcode = GetOpcodeField(instr);
490 uint32_t rt_field = GetRtField(instr);
491 uint32_t rs_field = GetRsField(instr);
492 return opcode == REGIMM && rt_field == BLTZAL && rs_field == 0;
493 }
494
IsBzc(Instr instr)495 bool Assembler::IsBzc(Instr instr) {
496 uint32_t opcode = GetOpcodeField(instr);
497 // Checks if the instruction is BEQZC or BNEZC.
498 return (opcode == POP66 && GetRsField(instr) != 0) ||
499 (opcode == POP76 && GetRsField(instr) != 0);
500 }
501
IsEmittedConstant(Instr instr)502 bool Assembler::IsEmittedConstant(Instr instr) {
503 uint32_t label_constant = GetLabelConst(instr);
504 return label_constant == 0; // Emitted label const in reg-exp engine.
505 }
506
IsBeq(Instr instr)507 bool Assembler::IsBeq(Instr instr) { return GetOpcodeField(instr) == BEQ; }
508
IsBne(Instr instr)509 bool Assembler::IsBne(Instr instr) { return GetOpcodeField(instr) == BNE; }
510
IsBeqzc(Instr instr)511 bool Assembler::IsBeqzc(Instr instr) {
512 uint32_t opcode = GetOpcodeField(instr);
513 return opcode == POP66 && GetRsField(instr) != 0;
514 }
515
IsBnezc(Instr instr)516 bool Assembler::IsBnezc(Instr instr) {
517 uint32_t opcode = GetOpcodeField(instr);
518 return opcode == POP76 && GetRsField(instr) != 0;
519 }
520
IsBeqc(Instr instr)521 bool Assembler::IsBeqc(Instr instr) {
522 uint32_t opcode = GetOpcodeField(instr);
523 uint32_t rs = GetRsField(instr);
524 uint32_t rt = GetRtField(instr);
525 return opcode == POP10 && rs != 0 && rs < rt; // && rt != 0
526 }
527
IsBnec(Instr instr)528 bool Assembler::IsBnec(Instr instr) {
529 uint32_t opcode = GetOpcodeField(instr);
530 uint32_t rs = GetRsField(instr);
531 uint32_t rt = GetRtField(instr);
532 return opcode == POP30 && rs != 0 && rs < rt; // && rt != 0
533 }
534
IsMov(Instr instr,Register rd,Register rs)535 bool Assembler::IsMov(Instr instr, Register rd, Register rs) {
536 uint32_t opcode = GetOpcodeField(instr);
537 uint32_t rd_field = GetRd(instr);
538 uint32_t rs_field = GetRs(instr);
539 uint32_t rt_field = GetRt(instr);
540 uint32_t rd_reg = static_cast<uint32_t>(rd.code());
541 uint32_t rs_reg = static_cast<uint32_t>(rs.code());
542 uint32_t function_field = GetFunctionField(instr);
543 // Checks if the instruction is a OR with zero_reg argument (aka MOV).
544 bool res = opcode == SPECIAL && function_field == OR && rd_field == rd_reg &&
545 rs_field == rs_reg && rt_field == 0;
546 return res;
547 }
548
IsJump(Instr instr)549 bool Assembler::IsJump(Instr instr) {
550 uint32_t opcode = GetOpcodeField(instr);
551 uint32_t rt_field = GetRtField(instr);
552 uint32_t rd_field = GetRdField(instr);
553 uint32_t function_field = GetFunctionField(instr);
554 // Checks if the instruction is a jump.
555 return opcode == J || opcode == JAL ||
556 (opcode == SPECIAL && rt_field == 0 &&
557 ((function_field == JALR) ||
558 (rd_field == 0 && (function_field == JR))));
559 }
560
IsJ(Instr instr)561 bool Assembler::IsJ(Instr instr) {
562 uint32_t opcode = GetOpcodeField(instr);
563 // Checks if the instruction is a jump.
564 return opcode == J;
565 }
566
IsJal(Instr instr)567 bool Assembler::IsJal(Instr instr) { return GetOpcodeField(instr) == JAL; }
568
IsJr(Instr instr)569 bool Assembler::IsJr(Instr instr) {
570 return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JR;
571 }
572
IsJalr(Instr instr)573 bool Assembler::IsJalr(Instr instr) {
574 return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JALR;
575 }
576
IsLui(Instr instr)577 bool Assembler::IsLui(Instr instr) {
578 uint32_t opcode = GetOpcodeField(instr);
579 // Checks if the instruction is a load upper immediate.
580 return opcode == LUI;
581 }
582
IsOri(Instr instr)583 bool Assembler::IsOri(Instr instr) {
584 uint32_t opcode = GetOpcodeField(instr);
585 // Checks if the instruction is a load upper immediate.
586 return opcode == ORI;
587 }
588
IsNop(Instr instr,unsigned int type)589 bool Assembler::IsNop(Instr instr, unsigned int type) {
590 // See Assembler::nop(type).
591 DCHECK_LT(type, 32);
592 uint32_t opcode = GetOpcodeField(instr);
593 uint32_t function = GetFunctionField(instr);
594 uint32_t rt = GetRt(instr);
595 uint32_t rd = GetRd(instr);
596 uint32_t sa = GetSa(instr);
597
598 // Traditional mips nop == sll(zero_reg, zero_reg, 0)
599 // When marking non-zero type, use sll(zero_reg, at, type)
600 // to avoid use of mips ssnop and ehb special encodings
601 // of the sll instruction.
602
603 Register nop_rt_reg = (type == 0) ? zero_reg : at;
604 bool ret = (opcode == SPECIAL && function == SLL &&
605 rd == static_cast<uint32_t>(ToNumber(zero_reg)) &&
606 rt == static_cast<uint32_t>(ToNumber(nop_rt_reg)) && sa == type);
607
608 return ret;
609 }
610
GetBranchOffset(Instr instr)611 int32_t Assembler::GetBranchOffset(Instr instr) {
612 DCHECK(IsBranch(instr));
613 return (static_cast<int16_t>(instr & kImm16Mask)) << 2;
614 }
615
IsLw(Instr instr)616 bool Assembler::IsLw(Instr instr) {
617 return (static_cast<uint32_t>(instr & kOpcodeMask) == LW);
618 }
619
GetLwOffset(Instr instr)620 int16_t Assembler::GetLwOffset(Instr instr) {
621 DCHECK(IsLw(instr));
622 return ((instr & kImm16Mask));
623 }
624
SetLwOffset(Instr instr,int16_t offset)625 Instr Assembler::SetLwOffset(Instr instr, int16_t offset) {
626 DCHECK(IsLw(instr));
627
628 // We actually create a new lw instruction based on the original one.
629 Instr temp_instr = LW | (instr & kRsFieldMask) | (instr & kRtFieldMask) |
630 (offset & kImm16Mask);
631
632 return temp_instr;
633 }
634
IsSw(Instr instr)635 bool Assembler::IsSw(Instr instr) {
636 return (static_cast<uint32_t>(instr & kOpcodeMask) == SW);
637 }
638
SetSwOffset(Instr instr,int16_t offset)639 Instr Assembler::SetSwOffset(Instr instr, int16_t offset) {
640 DCHECK(IsSw(instr));
641 return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
642 }
643
IsAddImmediate(Instr instr)644 bool Assembler::IsAddImmediate(Instr instr) {
645 return ((instr & kOpcodeMask) == ADDIU || (instr & kOpcodeMask) == DADDIU);
646 }
647
SetAddImmediateOffset(Instr instr,int16_t offset)648 Instr Assembler::SetAddImmediateOffset(Instr instr, int16_t offset) {
649 DCHECK(IsAddImmediate(instr));
650 return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
651 }
652
IsAndImmediate(Instr instr)653 bool Assembler::IsAndImmediate(Instr instr) {
654 return GetOpcodeField(instr) == ANDI;
655 }
656
OffsetSizeInBits(Instr instr)657 static Assembler::OffsetSize OffsetSizeInBits(Instr instr) {
658 if (kArchVariant == kMips64r6) {
659 if (Assembler::IsBc(instr)) {
660 return Assembler::OffsetSize::kOffset26;
661 } else if (Assembler::IsBzc(instr)) {
662 return Assembler::OffsetSize::kOffset21;
663 }
664 }
665 return Assembler::OffsetSize::kOffset16;
666 }
667
AddBranchOffset(int pos,Instr instr)668 static inline int32_t AddBranchOffset(int pos, Instr instr) {
669 int bits = OffsetSizeInBits(instr);
670 const int32_t mask = (1 << bits) - 1;
671 bits = 32 - bits;
672
673 // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming
674 // the compiler uses arithmetic shifts for signed integers.
675 int32_t imm = ((instr & mask) << bits) >> (bits - 2);
676
677 if (imm == kEndOfChain) {
678 // EndOfChain sentinel is returned directly, not relative to pc or pos.
679 return kEndOfChain;
680 } else {
681 return pos + Assembler::kBranchPCOffset + imm;
682 }
683 }
684
target_at(int pos,bool is_internal)685 int Assembler::target_at(int pos, bool is_internal) {
686 if (is_internal) {
687 int64_t* p = reinterpret_cast<int64_t*>(buffer_start_ + pos);
688 int64_t address = *p;
689 if (address == kEndOfJumpChain) {
690 return kEndOfChain;
691 } else {
692 int64_t instr_address = reinterpret_cast<int64_t>(p);
693 DCHECK(instr_address - address < INT_MAX);
694 int delta = static_cast<int>(instr_address - address);
695 DCHECK(pos > delta);
696 return pos - delta;
697 }
698 }
699 Instr instr = instr_at(pos);
700 if ((instr & ~kImm16Mask) == 0) {
701 // Emitted label constant, not part of a branch.
702 if (instr == 0) {
703 return kEndOfChain;
704 } else {
705 int32_t imm18 = ((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14;
706 return (imm18 + pos);
707 }
708 }
709 // Check we have a branch or jump instruction.
710 DCHECK(IsBranch(instr) || IsJ(instr) || IsJal(instr) || IsLui(instr) ||
711 IsMov(instr, t8, ra));
712 // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming
713 // the compiler uses arithmetic shifts for signed integers.
714 if (IsBranch(instr)) {
715 return AddBranchOffset(pos, instr);
716 } else if (IsMov(instr, t8, ra)) {
717 int32_t imm32;
718 Instr instr_lui = instr_at(pos + 2 * kInstrSize);
719 Instr instr_ori = instr_at(pos + 3 * kInstrSize);
720 DCHECK(IsLui(instr_lui));
721 DCHECK(IsOri(instr_ori));
722 imm32 = (instr_lui & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
723 imm32 |= (instr_ori & static_cast<int32_t>(kImm16Mask));
724 if (imm32 == kEndOfJumpChain) {
725 // EndOfChain sentinel is returned directly, not relative to pc or pos.
726 return kEndOfChain;
727 }
728 return pos + Assembler::kLongBranchPCOffset + imm32;
729 } else if (IsLui(instr)) {
730 if (IsNal(instr_at(pos + kInstrSize))) {
731 int32_t imm32;
732 Instr instr_lui = instr_at(pos + 0 * kInstrSize);
733 Instr instr_ori = instr_at(pos + 2 * kInstrSize);
734 DCHECK(IsLui(instr_lui));
735 DCHECK(IsOri(instr_ori));
736 imm32 = (instr_lui & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
737 imm32 |= (instr_ori & static_cast<int32_t>(kImm16Mask));
738 if (imm32 == kEndOfJumpChain) {
739 // EndOfChain sentinel is returned directly, not relative to pc or pos.
740 return kEndOfChain;
741 }
742 return pos + Assembler::kLongBranchPCOffset + imm32;
743 } else {
744 Instr instr_lui = instr_at(pos + 0 * kInstrSize);
745 Instr instr_ori = instr_at(pos + 1 * kInstrSize);
746 Instr instr_ori2 = instr_at(pos + 3 * kInstrSize);
747 DCHECK(IsOri(instr_ori));
748 DCHECK(IsOri(instr_ori2));
749
750 // TODO(plind) create named constants for shift values.
751 int64_t imm = static_cast<int64_t>(instr_lui & kImm16Mask) << 48;
752 imm |= static_cast<int64_t>(instr_ori & kImm16Mask) << 32;
753 imm |= static_cast<int64_t>(instr_ori2 & kImm16Mask) << 16;
754 // Sign extend address;
755 imm >>= 16;
756
757 if (imm == kEndOfJumpChain) {
758 // EndOfChain sentinel is returned directly, not relative to pc or pos.
759 return kEndOfChain;
760 } else {
761 uint64_t instr_address = reinterpret_cast<int64_t>(buffer_start_ + pos);
762 DCHECK(instr_address - imm < INT_MAX);
763 int delta = static_cast<int>(instr_address - imm);
764 DCHECK(pos > delta);
765 return pos - delta;
766 }
767 }
768 } else {
769 DCHECK(IsJ(instr) || IsJal(instr));
770 int32_t imm28 = (instr & static_cast<int32_t>(kImm26Mask)) << 2;
771 if (imm28 == kEndOfJumpChain) {
772 // EndOfChain sentinel is returned directly, not relative to pc or pos.
773 return kEndOfChain;
774 } else {
775 // Sign extend 28-bit offset.
776 int32_t delta = static_cast<int32_t>((imm28 << 4) >> 4);
777 return pos + delta;
778 }
779 }
780 }
781
SetBranchOffset(int32_t pos,int32_t target_pos,Instr instr)782 static inline Instr SetBranchOffset(int32_t pos, int32_t target_pos,
783 Instr instr) {
784 int32_t bits = OffsetSizeInBits(instr);
785 int32_t imm = target_pos - (pos + Assembler::kBranchPCOffset);
786 DCHECK_EQ(imm & 3, 0);
787 imm >>= 2;
788
789 const int32_t mask = (1 << bits) - 1;
790 instr &= ~mask;
791 DCHECK(is_intn(imm, bits));
792
793 return instr | (imm & mask);
794 }
795
target_at_put(int pos,int target_pos,bool is_internal)796 void Assembler::target_at_put(int pos, int target_pos, bool is_internal) {
797 if (is_internal) {
798 uint64_t imm = reinterpret_cast<uint64_t>(buffer_start_) + target_pos;
799 *reinterpret_cast<uint64_t*>(buffer_start_ + pos) = imm;
800 return;
801 }
802 Instr instr = instr_at(pos);
803 if ((instr & ~kImm16Mask) == 0) {
804 DCHECK(target_pos == kEndOfChain || target_pos >= 0);
805 // Emitted label constant, not part of a branch.
806 // Make label relative to Code pointer of generated Code object.
807 instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag));
808 return;
809 }
810
811 if (IsBranch(instr)) {
812 instr = SetBranchOffset(pos, target_pos, instr);
813 instr_at_put(pos, instr);
814 } else if (IsLui(instr)) {
815 if (IsNal(instr_at(pos + kInstrSize))) {
816 Instr instr_lui = instr_at(pos + 0 * kInstrSize);
817 Instr instr_ori = instr_at(pos + 2 * kInstrSize);
818 DCHECK(IsLui(instr_lui));
819 DCHECK(IsOri(instr_ori));
820 int32_t imm = target_pos - (pos + Assembler::kLongBranchPCOffset);
821 DCHECK_EQ(imm & 3, 0);
822 if (is_int16(imm + Assembler::kLongBranchPCOffset -
823 Assembler::kBranchPCOffset)) {
824 // Optimize by converting to regular branch and link with 16-bit
825 // offset.
826 Instr instr_b = REGIMM | BGEZAL; // Branch and link.
827 instr_b = SetBranchOffset(pos, target_pos, instr_b);
828 // Correct ra register to point to one instruction after jalr from
829 // TurboAssembler::BranchAndLinkLong.
830 Instr instr_a = DADDIU | ra.code() << kRsShift | ra.code() << kRtShift |
831 kOptimizedBranchAndLinkLongReturnOffset;
832
833 instr_at_put(pos, instr_b);
834 instr_at_put(pos + 1 * kInstrSize, instr_a);
835 } else {
836 instr_lui &= ~kImm16Mask;
837 instr_ori &= ~kImm16Mask;
838
839 instr_at_put(pos + 0 * kInstrSize,
840 instr_lui | ((imm >> kLuiShift) & kImm16Mask));
841 instr_at_put(pos + 2 * kInstrSize, instr_ori | (imm & kImm16Mask));
842 }
843 } else {
844 Instr instr_lui = instr_at(pos + 0 * kInstrSize);
845 Instr instr_ori = instr_at(pos + 1 * kInstrSize);
846 Instr instr_ori2 = instr_at(pos + 3 * kInstrSize);
847 DCHECK(IsOri(instr_ori));
848 DCHECK(IsOri(instr_ori2));
849
850 uint64_t imm = reinterpret_cast<uint64_t>(buffer_start_) + target_pos;
851 DCHECK_EQ(imm & 3, 0);
852
853 instr_lui &= ~kImm16Mask;
854 instr_ori &= ~kImm16Mask;
855 instr_ori2 &= ~kImm16Mask;
856
857 instr_at_put(pos + 0 * kInstrSize,
858 instr_lui | ((imm >> 32) & kImm16Mask));
859 instr_at_put(pos + 1 * kInstrSize,
860 instr_ori | ((imm >> 16) & kImm16Mask));
861 instr_at_put(pos + 3 * kInstrSize, instr_ori2 | (imm & kImm16Mask));
862 }
863 } else if (IsMov(instr, t8, ra)) {
864 Instr instr_lui = instr_at(pos + 2 * kInstrSize);
865 Instr instr_ori = instr_at(pos + 3 * kInstrSize);
866 DCHECK(IsLui(instr_lui));
867 DCHECK(IsOri(instr_ori));
868
869 int32_t imm_short = target_pos - (pos + Assembler::kBranchPCOffset);
870
871 if (is_int16(imm_short)) {
872 // Optimize by converting to regular branch with 16-bit
873 // offset
874 Instr instr_b = BEQ;
875 instr_b = SetBranchOffset(pos, target_pos, instr_b);
876
877 Instr instr_j = instr_at(pos + 5 * kInstrSize);
878 Instr instr_branch_delay;
879
880 if (IsJump(instr_j)) {
881 // Case when branch delay slot is protected.
882 instr_branch_delay = nopInstr;
883 } else {
884 // Case when branch delay slot is used.
885 instr_branch_delay = instr_at(pos + 7 * kInstrSize);
886 }
887 instr_at_put(pos, instr_b);
888 instr_at_put(pos + 1 * kInstrSize, instr_branch_delay);
889 } else {
890 int32_t imm = target_pos - (pos + Assembler::kLongBranchPCOffset);
891 DCHECK_EQ(imm & 3, 0);
892
893 instr_lui &= ~kImm16Mask;
894 instr_ori &= ~kImm16Mask;
895
896 instr_at_put(pos + 2 * kInstrSize,
897 instr_lui | ((imm >> kLuiShift) & kImm16Mask));
898 instr_at_put(pos + 3 * kInstrSize, instr_ori | (imm & kImm16Mask));
899 }
900 } else if (IsJ(instr) || IsJal(instr)) {
901 int32_t imm28 = target_pos - pos;
902 DCHECK_EQ(imm28 & 3, 0);
903
904 uint32_t imm26 = static_cast<uint32_t>(imm28 >> 2);
905 DCHECK(is_uint26(imm26));
906 // Place 26-bit signed offset with markings.
907 // When code is committed it will be resolved to j/jal.
908 int32_t mark = IsJ(instr) ? kJRawMark : kJalRawMark;
909 instr_at_put(pos, mark | (imm26 & kImm26Mask));
910 } else {
911 int32_t imm28 = target_pos - pos;
912 DCHECK_EQ(imm28 & 3, 0);
913
914 uint32_t imm26 = static_cast<uint32_t>(imm28 >> 2);
915 DCHECK(is_uint26(imm26));
916 // Place raw 26-bit signed offset.
917 // When code is committed it will be resolved to j/jal.
918 instr &= ~kImm26Mask;
919 instr_at_put(pos, instr | (imm26 & kImm26Mask));
920 }
921 }
922
print(const Label * L)923 void Assembler::print(const Label* L) {
924 if (L->is_unused()) {
925 PrintF("unused label\n");
926 } else if (L->is_bound()) {
927 PrintF("bound label to %d\n", L->pos());
928 } else if (L->is_linked()) {
929 Label l;
930 l.link_to(L->pos());
931 PrintF("unbound label");
932 while (l.is_linked()) {
933 PrintF("@ %d ", l.pos());
934 Instr instr = instr_at(l.pos());
935 if ((instr & ~kImm16Mask) == 0) {
936 PrintF("value\n");
937 } else {
938 PrintF("%d\n", instr);
939 }
940 next(&l, is_internal_reference(&l));
941 }
942 } else {
943 PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
944 }
945 }
946
bind_to(Label * L,int pos)947 void Assembler::bind_to(Label* L, int pos) {
948 DCHECK(0 <= pos && pos <= pc_offset()); // Must have valid binding position.
949 int trampoline_pos = kInvalidSlotPos;
950 bool is_internal = false;
951 if (L->is_linked() && !trampoline_emitted_) {
952 unbound_labels_count_--;
953 if (!is_internal_reference(L)) {
954 next_buffer_check_ += kTrampolineSlotsSize;
955 }
956 }
957
958 while (L->is_linked()) {
959 int fixup_pos = L->pos();
960 int dist = pos - fixup_pos;
961 is_internal = is_internal_reference(L);
962 next(L, is_internal); // Call next before overwriting link with target at
963 // fixup_pos.
964 Instr instr = instr_at(fixup_pos);
965 if (is_internal) {
966 target_at_put(fixup_pos, pos, is_internal);
967 } else {
968 if (IsBranch(instr)) {
969 int branch_offset = BranchOffset(instr);
970 if (dist > branch_offset) {
971 if (trampoline_pos == kInvalidSlotPos) {
972 trampoline_pos = get_trampoline_entry(fixup_pos);
973 CHECK_NE(trampoline_pos, kInvalidSlotPos);
974 }
975 CHECK((trampoline_pos - fixup_pos) <= branch_offset);
976 target_at_put(fixup_pos, trampoline_pos, false);
977 fixup_pos = trampoline_pos;
978 }
979 target_at_put(fixup_pos, pos, false);
980 } else {
981 DCHECK(IsJ(instr) || IsJal(instr) || IsLui(instr) ||
982 IsEmittedConstant(instr) || IsMov(instr, t8, ra));
983 target_at_put(fixup_pos, pos, false);
984 }
985 }
986 }
987 L->bind_to(pos);
988
989 // Keep track of the last bound label so we don't eliminate any instructions
990 // before a bound label.
991 if (pos > last_bound_pos_) last_bound_pos_ = pos;
992 }
993
bind(Label * L)994 void Assembler::bind(Label* L) {
995 DCHECK(!L->is_bound()); // Label can only be bound once.
996 bind_to(L, pc_offset());
997 }
998
next(Label * L,bool is_internal)999 void Assembler::next(Label* L, bool is_internal) {
1000 DCHECK(L->is_linked());
1001 int link = target_at(L->pos(), is_internal);
1002 if (link == kEndOfChain) {
1003 L->Unuse();
1004 } else {
1005 DCHECK_GE(link, 0);
1006 L->link_to(link);
1007 }
1008 }
1009
is_near(Label * L)1010 bool Assembler::is_near(Label* L) {
1011 DCHECK(L->is_bound());
1012 return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize;
1013 }
1014
is_near(Label * L,OffsetSize bits)1015 bool Assembler::is_near(Label* L, OffsetSize bits) {
1016 if (L == nullptr || !L->is_bound()) return true;
1017 return ((pc_offset() - L->pos()) <
1018 (1 << (bits + 2 - 1)) - 1 - 5 * kInstrSize);
1019 }
1020
is_near_branch(Label * L)1021 bool Assembler::is_near_branch(Label* L) {
1022 DCHECK(L->is_bound());
1023 return kArchVariant == kMips64r6 ? is_near_r6(L) : is_near_pre_r6(L);
1024 }
1025
BranchOffset(Instr instr)1026 int Assembler::BranchOffset(Instr instr) {
1027 // At pre-R6 and for other R6 branches the offset is 16 bits.
1028 int bits = OffsetSize::kOffset16;
1029
1030 if (kArchVariant == kMips64r6) {
1031 uint32_t opcode = GetOpcodeField(instr);
1032 switch (opcode) {
1033 // Checks BC or BALC.
1034 case BC:
1035 case BALC:
1036 bits = OffsetSize::kOffset26;
1037 break;
1038
1039 // Checks BEQZC or BNEZC.
1040 case POP66:
1041 case POP76:
1042 if (GetRsField(instr) != 0) bits = OffsetSize::kOffset21;
1043 break;
1044 default:
1045 break;
1046 }
1047 }
1048
1049 return (1 << (bits + 2 - 1)) - 1;
1050 }
1051
1052 // We have to use a temporary register for things that can be relocated even
1053 // if they can be encoded in the MIPS's 16 bits of immediate-offset instruction
1054 // space. There is no guarantee that the relocated location can be similarly
1055 // encoded.
MustUseReg(RelocInfo::Mode rmode)1056 bool Assembler::MustUseReg(RelocInfo::Mode rmode) {
1057 return !RelocInfo::IsNone(rmode);
1058 }
1059
GenInstrRegister(Opcode opcode,Register rs,Register rt,Register rd,uint16_t sa,SecondaryField func)1060 void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt,
1061 Register rd, uint16_t sa,
1062 SecondaryField func) {
1063 DCHECK(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa));
1064 Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1065 (rd.code() << kRdShift) | (sa << kSaShift) | func;
1066 emit(instr);
1067 }
1068
GenInstrRegister(Opcode opcode,Register rs,Register rt,uint16_t msb,uint16_t lsb,SecondaryField func)1069 void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt,
1070 uint16_t msb, uint16_t lsb,
1071 SecondaryField func) {
1072 DCHECK(rs.is_valid() && rt.is_valid() && is_uint5(msb) && is_uint5(lsb));
1073 Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1074 (msb << kRdShift) | (lsb << kSaShift) | func;
1075 emit(instr);
1076 }
1077
GenInstrRegister(Opcode opcode,SecondaryField fmt,FPURegister ft,FPURegister fs,FPURegister fd,SecondaryField func)1078 void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt,
1079 FPURegister ft, FPURegister fs, FPURegister fd,
1080 SecondaryField func) {
1081 DCHECK(fd.is_valid() && fs.is_valid() && ft.is_valid());
1082 Instr instr = opcode | fmt | (ft.code() << kFtShift) |
1083 (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
1084 emit(instr);
1085 }
1086
GenInstrRegister(Opcode opcode,FPURegister fr,FPURegister ft,FPURegister fs,FPURegister fd,SecondaryField func)1087 void Assembler::GenInstrRegister(Opcode opcode, FPURegister fr, FPURegister ft,
1088 FPURegister fs, FPURegister fd,
1089 SecondaryField func) {
1090 DCHECK(fd.is_valid() && fr.is_valid() && fs.is_valid() && ft.is_valid());
1091 Instr instr = opcode | (fr.code() << kFrShift) | (ft.code() << kFtShift) |
1092 (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
1093 emit(instr);
1094 }
1095
GenInstrRegister(Opcode opcode,SecondaryField fmt,Register rt,FPURegister fs,FPURegister fd,SecondaryField func)1096 void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
1097 FPURegister fs, FPURegister fd,
1098 SecondaryField func) {
1099 DCHECK(fd.is_valid() && fs.is_valid() && rt.is_valid());
1100 Instr instr = opcode | fmt | (rt.code() << kRtShift) |
1101 (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
1102 emit(instr);
1103 }
1104
GenInstrRegister(Opcode opcode,SecondaryField fmt,Register rt,FPUControlRegister fs,SecondaryField func)1105 void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
1106 FPUControlRegister fs, SecondaryField func) {
1107 DCHECK(fs.is_valid() && rt.is_valid());
1108 Instr instr =
1109 opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | func;
1110 emit(instr);
1111 }
1112
1113 // Instructions with immediate value.
1114 // Registers are in the order of the instruction encoding, from left to right.
GenInstrImmediate(Opcode opcode,Register rs,Register rt,int32_t j,CompactBranchType is_compact_branch)1115 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, Register rt,
1116 int32_t j,
1117 CompactBranchType is_compact_branch) {
1118 DCHECK(rs.is_valid() && rt.is_valid() && (is_int16(j) || is_uint16(j)));
1119 Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1120 (j & kImm16Mask);
1121 emit(instr, is_compact_branch);
1122 }
1123
GenInstrImmediate(Opcode opcode,Register base,Register rt,int32_t offset9,int bit6,SecondaryField func)1124 void Assembler::GenInstrImmediate(Opcode opcode, Register base, Register rt,
1125 int32_t offset9, int bit6,
1126 SecondaryField func) {
1127 DCHECK(base.is_valid() && rt.is_valid() && is_int9(offset9) &&
1128 is_uint1(bit6));
1129 Instr instr = opcode | (base.code() << kBaseShift) | (rt.code() << kRtShift) |
1130 ((offset9 << kImm9Shift) & kImm9Mask) | bit6 << kBit6Shift |
1131 func;
1132 emit(instr);
1133 }
1134
GenInstrImmediate(Opcode opcode,Register rs,SecondaryField SF,int32_t j,CompactBranchType is_compact_branch)1135 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, SecondaryField SF,
1136 int32_t j,
1137 CompactBranchType is_compact_branch) {
1138 DCHECK(rs.is_valid() && (is_int16(j) || is_uint16(j)));
1139 Instr instr = opcode | (rs.code() << kRsShift) | SF | (j & kImm16Mask);
1140 emit(instr, is_compact_branch);
1141 }
1142
GenInstrImmediate(Opcode opcode,Register rs,FPURegister ft,int32_t j,CompactBranchType is_compact_branch)1143 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, FPURegister ft,
1144 int32_t j,
1145 CompactBranchType is_compact_branch) {
1146 DCHECK(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j)));
1147 Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift) |
1148 (j & kImm16Mask);
1149 emit(instr, is_compact_branch);
1150 }
1151
GenInstrImmediate(Opcode opcode,Register rs,int32_t offset21,CompactBranchType is_compact_branch)1152 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, int32_t offset21,
1153 CompactBranchType is_compact_branch) {
1154 DCHECK(rs.is_valid() && (is_int21(offset21)));
1155 Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask);
1156 emit(instr, is_compact_branch);
1157 }
1158
GenInstrImmediate(Opcode opcode,Register rs,uint32_t offset21)1159 void Assembler::GenInstrImmediate(Opcode opcode, Register rs,
1160 uint32_t offset21) {
1161 DCHECK(rs.is_valid() && (is_uint21(offset21)));
1162 Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask);
1163 emit(instr);
1164 }
1165
GenInstrImmediate(Opcode opcode,int32_t offset26,CompactBranchType is_compact_branch)1166 void Assembler::GenInstrImmediate(Opcode opcode, int32_t offset26,
1167 CompactBranchType is_compact_branch) {
1168 DCHECK(is_int26(offset26));
1169 Instr instr = opcode | (offset26 & kImm26Mask);
1170 emit(instr, is_compact_branch);
1171 }
1172
GenInstrJump(Opcode opcode,uint32_t address)1173 void Assembler::GenInstrJump(Opcode opcode, uint32_t address) {
1174 BlockTrampolinePoolScope block_trampoline_pool(this);
1175 DCHECK(is_uint26(address));
1176 Instr instr = opcode | address;
1177 emit(instr);
1178 BlockTrampolinePoolFor(1); // For associated delay slot.
1179 }
1180
1181 // MSA instructions
GenInstrMsaI8(SecondaryField operation,uint32_t imm8,MSARegister ws,MSARegister wd)1182 void Assembler::GenInstrMsaI8(SecondaryField operation, uint32_t imm8,
1183 MSARegister ws, MSARegister wd) {
1184 DCHECK(IsEnabled(MIPS_SIMD));
1185 DCHECK(ws.is_valid() && wd.is_valid() && is_uint8(imm8));
1186 Instr instr = MSA | operation | ((imm8 & kImm8Mask) << kWtShift) |
1187 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1188 emit(instr);
1189 }
1190
GenInstrMsaI5(SecondaryField operation,SecondaryField df,int32_t imm5,MSARegister ws,MSARegister wd)1191 void Assembler::GenInstrMsaI5(SecondaryField operation, SecondaryField df,
1192 int32_t imm5, MSARegister ws, MSARegister wd) {
1193 DCHECK(IsEnabled(MIPS_SIMD));
1194 DCHECK(ws.is_valid() && wd.is_valid());
1195 DCHECK((operation == MAXI_S) || (operation == MINI_S) ||
1196 (operation == CEQI) || (operation == CLTI_S) ||
1197 (operation == CLEI_S)
1198 ? is_int5(imm5)
1199 : is_uint5(imm5));
1200 Instr instr = MSA | operation | df | ((imm5 & kImm5Mask) << kWtShift) |
1201 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1202 emit(instr);
1203 }
1204
GenInstrMsaBit(SecondaryField operation,SecondaryField df,uint32_t m,MSARegister ws,MSARegister wd)1205 void Assembler::GenInstrMsaBit(SecondaryField operation, SecondaryField df,
1206 uint32_t m, MSARegister ws, MSARegister wd) {
1207 DCHECK(IsEnabled(MIPS_SIMD));
1208 DCHECK(ws.is_valid() && wd.is_valid() && is_valid_msa_df_m(df, m));
1209 Instr instr = MSA | operation | df | (m << kWtShift) |
1210 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1211 emit(instr);
1212 }
1213
GenInstrMsaI10(SecondaryField operation,SecondaryField df,int32_t imm10,MSARegister wd)1214 void Assembler::GenInstrMsaI10(SecondaryField operation, SecondaryField df,
1215 int32_t imm10, MSARegister wd) {
1216 DCHECK(IsEnabled(MIPS_SIMD));
1217 DCHECK(wd.is_valid() && is_int10(imm10));
1218 Instr instr = MSA | operation | df | ((imm10 & kImm10Mask) << kWsShift) |
1219 (wd.code() << kWdShift);
1220 emit(instr);
1221 }
1222
1223 template <typename RegType>
GenInstrMsa3R(SecondaryField operation,SecondaryField df,RegType t,MSARegister ws,MSARegister wd)1224 void Assembler::GenInstrMsa3R(SecondaryField operation, SecondaryField df,
1225 RegType t, MSARegister ws, MSARegister wd) {
1226 DCHECK(IsEnabled(MIPS_SIMD));
1227 DCHECK(t.is_valid() && ws.is_valid() && wd.is_valid());
1228 Instr instr = MSA | operation | df | (t.code() << kWtShift) |
1229 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1230 emit(instr);
1231 }
1232
1233 template <typename DstType, typename SrcType>
GenInstrMsaElm(SecondaryField operation,SecondaryField df,uint32_t n,SrcType src,DstType dst)1234 void Assembler::GenInstrMsaElm(SecondaryField operation, SecondaryField df,
1235 uint32_t n, SrcType src, DstType dst) {
1236 DCHECK(IsEnabled(MIPS_SIMD));
1237 DCHECK(src.is_valid() && dst.is_valid() && is_valid_msa_df_n(df, n));
1238 Instr instr = MSA | operation | df | (n << kWtShift) |
1239 (src.code() << kWsShift) | (dst.code() << kWdShift) |
1240 MSA_ELM_MINOR;
1241 emit(instr);
1242 }
1243
GenInstrMsa3RF(SecondaryField operation,uint32_t df,MSARegister wt,MSARegister ws,MSARegister wd)1244 void Assembler::GenInstrMsa3RF(SecondaryField operation, uint32_t df,
1245 MSARegister wt, MSARegister ws, MSARegister wd) {
1246 DCHECK(IsEnabled(MIPS_SIMD));
1247 DCHECK(wt.is_valid() && ws.is_valid() && wd.is_valid());
1248 DCHECK_LT(df, 2);
1249 Instr instr = MSA | operation | (df << 21) | (wt.code() << kWtShift) |
1250 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1251 emit(instr);
1252 }
1253
GenInstrMsaVec(SecondaryField operation,MSARegister wt,MSARegister ws,MSARegister wd)1254 void Assembler::GenInstrMsaVec(SecondaryField operation, MSARegister wt,
1255 MSARegister ws, MSARegister wd) {
1256 DCHECK(IsEnabled(MIPS_SIMD));
1257 DCHECK(wt.is_valid() && ws.is_valid() && wd.is_valid());
1258 Instr instr = MSA | operation | (wt.code() << kWtShift) |
1259 (ws.code() << kWsShift) | (wd.code() << kWdShift) |
1260 MSA_VEC_2R_2RF_MINOR;
1261 emit(instr);
1262 }
1263
GenInstrMsaMI10(SecondaryField operation,int32_t s10,Register rs,MSARegister wd)1264 void Assembler::GenInstrMsaMI10(SecondaryField operation, int32_t s10,
1265 Register rs, MSARegister wd) {
1266 DCHECK(IsEnabled(MIPS_SIMD));
1267 DCHECK(rs.is_valid() && wd.is_valid() && is_int10(s10));
1268 Instr instr = MSA | operation | ((s10 & kImm10Mask) << kWtShift) |
1269 (rs.code() << kWsShift) | (wd.code() << kWdShift);
1270 emit(instr);
1271 }
1272
GenInstrMsa2R(SecondaryField operation,SecondaryField df,MSARegister ws,MSARegister wd)1273 void Assembler::GenInstrMsa2R(SecondaryField operation, SecondaryField df,
1274 MSARegister ws, MSARegister wd) {
1275 DCHECK(IsEnabled(MIPS_SIMD));
1276 DCHECK(ws.is_valid() && wd.is_valid());
1277 Instr instr = MSA | MSA_2R_FORMAT | operation | df | (ws.code() << kWsShift) |
1278 (wd.code() << kWdShift) | MSA_VEC_2R_2RF_MINOR;
1279 emit(instr);
1280 }
1281
GenInstrMsa2RF(SecondaryField operation,SecondaryField df,MSARegister ws,MSARegister wd)1282 void Assembler::GenInstrMsa2RF(SecondaryField operation, SecondaryField df,
1283 MSARegister ws, MSARegister wd) {
1284 DCHECK(IsEnabled(MIPS_SIMD));
1285 DCHECK(ws.is_valid() && wd.is_valid());
1286 Instr instr = MSA | MSA_2RF_FORMAT | operation | df |
1287 (ws.code() << kWsShift) | (wd.code() << kWdShift) |
1288 MSA_VEC_2R_2RF_MINOR;
1289 emit(instr);
1290 }
1291
GenInstrMsaBranch(SecondaryField operation,MSARegister wt,int32_t offset16)1292 void Assembler::GenInstrMsaBranch(SecondaryField operation, MSARegister wt,
1293 int32_t offset16) {
1294 DCHECK(IsEnabled(MIPS_SIMD));
1295 DCHECK(wt.is_valid() && is_int16(offset16));
1296 BlockTrampolinePoolScope block_trampoline_pool(this);
1297 Instr instr =
1298 COP1 | operation | (wt.code() << kWtShift) | (offset16 & kImm16Mask);
1299 emit(instr);
1300 BlockTrampolinePoolFor(1); // For associated delay slot.
1301 }
1302
1303 // Returns the next free trampoline entry.
get_trampoline_entry(int32_t pos)1304 int32_t Assembler::get_trampoline_entry(int32_t pos) {
1305 int32_t trampoline_entry = kInvalidSlotPos;
1306 if (!internal_trampoline_exception_) {
1307 if (trampoline_.start() > pos) {
1308 trampoline_entry = trampoline_.take_slot();
1309 }
1310
1311 if (kInvalidSlotPos == trampoline_entry) {
1312 internal_trampoline_exception_ = true;
1313 }
1314 }
1315 return trampoline_entry;
1316 }
1317
jump_address(Label * L)1318 uint64_t Assembler::jump_address(Label* L) {
1319 int64_t target_pos;
1320 if (L->is_bound()) {
1321 target_pos = L->pos();
1322 } else {
1323 if (L->is_linked()) {
1324 target_pos = L->pos(); // L's link.
1325 L->link_to(pc_offset());
1326 } else {
1327 L->link_to(pc_offset());
1328 return kEndOfJumpChain;
1329 }
1330 }
1331 uint64_t imm = reinterpret_cast<uint64_t>(buffer_start_) + target_pos;
1332 DCHECK_EQ(imm & 3, 0);
1333
1334 return imm;
1335 }
1336
jump_offset(Label * L)1337 uint64_t Assembler::jump_offset(Label* L) {
1338 int64_t target_pos;
1339 int32_t pad = IsPrevInstrCompactBranch() ? kInstrSize : 0;
1340
1341 if (L->is_bound()) {
1342 target_pos = L->pos();
1343 } else {
1344 if (L->is_linked()) {
1345 target_pos = L->pos(); // L's link.
1346 L->link_to(pc_offset() + pad);
1347 } else {
1348 L->link_to(pc_offset() + pad);
1349 return kEndOfJumpChain;
1350 }
1351 }
1352 int64_t imm = target_pos - (pc_offset() + pad);
1353 DCHECK_EQ(imm & 3, 0);
1354
1355 return static_cast<uint64_t>(imm);
1356 }
1357
branch_long_offset(Label * L)1358 uint64_t Assembler::branch_long_offset(Label* L) {
1359 int64_t target_pos;
1360
1361 if (L->is_bound()) {
1362 target_pos = L->pos();
1363 } else {
1364 if (L->is_linked()) {
1365 target_pos = L->pos(); // L's link.
1366 L->link_to(pc_offset());
1367 } else {
1368 L->link_to(pc_offset());
1369 return kEndOfJumpChain;
1370 }
1371 }
1372 int64_t offset = target_pos - (pc_offset() + kLongBranchPCOffset);
1373 DCHECK_EQ(offset & 3, 0);
1374
1375 return static_cast<uint64_t>(offset);
1376 }
1377
branch_offset_helper(Label * L,OffsetSize bits)1378 int32_t Assembler::branch_offset_helper(Label* L, OffsetSize bits) {
1379 int32_t target_pos;
1380 int32_t pad = IsPrevInstrCompactBranch() ? kInstrSize : 0;
1381
1382 if (L->is_bound()) {
1383 target_pos = L->pos();
1384 } else {
1385 if (L->is_linked()) {
1386 target_pos = L->pos();
1387 L->link_to(pc_offset() + pad);
1388 } else {
1389 L->link_to(pc_offset() + pad);
1390 if (!trampoline_emitted_) {
1391 unbound_labels_count_++;
1392 next_buffer_check_ -= kTrampolineSlotsSize;
1393 }
1394 return kEndOfChain;
1395 }
1396 }
1397
1398 int32_t offset = target_pos - (pc_offset() + kBranchPCOffset + pad);
1399 DCHECK(is_intn(offset, bits + 2));
1400 DCHECK_EQ(offset & 3, 0);
1401
1402 return offset;
1403 }
1404
label_at_put(Label * L,int at_offset)1405 void Assembler::label_at_put(Label* L, int at_offset) {
1406 int target_pos;
1407 if (L->is_bound()) {
1408 target_pos = L->pos();
1409 instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag));
1410 } else {
1411 if (L->is_linked()) {
1412 target_pos = L->pos(); // L's link.
1413 int32_t imm18 = target_pos - at_offset;
1414 DCHECK_EQ(imm18 & 3, 0);
1415 int32_t imm16 = imm18 >> 2;
1416 DCHECK(is_int16(imm16));
1417 instr_at_put(at_offset, (imm16 & kImm16Mask));
1418 } else {
1419 target_pos = kEndOfChain;
1420 instr_at_put(at_offset, 0);
1421 if (!trampoline_emitted_) {
1422 unbound_labels_count_++;
1423 next_buffer_check_ -= kTrampolineSlotsSize;
1424 }
1425 }
1426 L->link_to(at_offset);
1427 }
1428 }
1429
1430 //------- Branch and jump instructions --------
1431
b(int16_t offset)1432 void Assembler::b(int16_t offset) { beq(zero_reg, zero_reg, offset); }
1433
bal(int16_t offset)1434 void Assembler::bal(int16_t offset) { bgezal(zero_reg, offset); }
1435
bc(int32_t offset)1436 void Assembler::bc(int32_t offset) {
1437 DCHECK_EQ(kArchVariant, kMips64r6);
1438 GenInstrImmediate(BC, offset, CompactBranchType::COMPACT_BRANCH);
1439 }
1440
balc(int32_t offset)1441 void Assembler::balc(int32_t offset) {
1442 DCHECK_EQ(kArchVariant, kMips64r6);
1443 GenInstrImmediate(BALC, offset, CompactBranchType::COMPACT_BRANCH);
1444 }
1445
beq(Register rs,Register rt,int16_t offset)1446 void Assembler::beq(Register rs, Register rt, int16_t offset) {
1447 BlockTrampolinePoolScope block_trampoline_pool(this);
1448 GenInstrImmediate(BEQ, rs, rt, offset);
1449 BlockTrampolinePoolFor(1); // For associated delay slot.
1450 }
1451
bgez(Register rs,int16_t offset)1452 void Assembler::bgez(Register rs, int16_t offset) {
1453 BlockTrampolinePoolScope block_trampoline_pool(this);
1454 GenInstrImmediate(REGIMM, rs, BGEZ, offset);
1455 BlockTrampolinePoolFor(1); // For associated delay slot.
1456 }
1457
bgezc(Register rt,int16_t offset)1458 void Assembler::bgezc(Register rt, int16_t offset) {
1459 DCHECK_EQ(kArchVariant, kMips64r6);
1460 DCHECK(rt != zero_reg);
1461 GenInstrImmediate(BLEZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1462 }
1463
bgeuc(Register rs,Register rt,int16_t offset)1464 void Assembler::bgeuc(Register rs, Register rt, int16_t offset) {
1465 DCHECK_EQ(kArchVariant, kMips64r6);
1466 DCHECK(rs != zero_reg);
1467 DCHECK(rt != zero_reg);
1468 DCHECK(rs.code() != rt.code());
1469 GenInstrImmediate(BLEZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1470 }
1471
bgec(Register rs,Register rt,int16_t offset)1472 void Assembler::bgec(Register rs, Register rt, int16_t offset) {
1473 DCHECK_EQ(kArchVariant, kMips64r6);
1474 DCHECK(rs != zero_reg);
1475 DCHECK(rt != zero_reg);
1476 DCHECK(rs.code() != rt.code());
1477 GenInstrImmediate(BLEZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1478 }
1479
bgezal(Register rs,int16_t offset)1480 void Assembler::bgezal(Register rs, int16_t offset) {
1481 DCHECK(kArchVariant != kMips64r6 || rs == zero_reg);
1482 DCHECK(rs != ra);
1483 BlockTrampolinePoolScope block_trampoline_pool(this);
1484 GenInstrImmediate(REGIMM, rs, BGEZAL, offset);
1485 BlockTrampolinePoolFor(1); // For associated delay slot.
1486 }
1487
bgtz(Register rs,int16_t offset)1488 void Assembler::bgtz(Register rs, int16_t offset) {
1489 BlockTrampolinePoolScope block_trampoline_pool(this);
1490 GenInstrImmediate(BGTZ, rs, zero_reg, offset);
1491 BlockTrampolinePoolFor(1); // For associated delay slot.
1492 }
1493
bgtzc(Register rt,int16_t offset)1494 void Assembler::bgtzc(Register rt, int16_t offset) {
1495 DCHECK_EQ(kArchVariant, kMips64r6);
1496 DCHECK(rt != zero_reg);
1497 GenInstrImmediate(BGTZL, zero_reg, rt, offset,
1498 CompactBranchType::COMPACT_BRANCH);
1499 }
1500
blez(Register rs,int16_t offset)1501 void Assembler::blez(Register rs, int16_t offset) {
1502 BlockTrampolinePoolScope block_trampoline_pool(this);
1503 GenInstrImmediate(BLEZ, rs, zero_reg, offset);
1504 BlockTrampolinePoolFor(1); // For associated delay slot.
1505 }
1506
blezc(Register rt,int16_t offset)1507 void Assembler::blezc(Register rt, int16_t offset) {
1508 DCHECK_EQ(kArchVariant, kMips64r6);
1509 DCHECK(rt != zero_reg);
1510 GenInstrImmediate(BLEZL, zero_reg, rt, offset,
1511 CompactBranchType::COMPACT_BRANCH);
1512 }
1513
bltzc(Register rt,int16_t offset)1514 void Assembler::bltzc(Register rt, int16_t offset) {
1515 DCHECK_EQ(kArchVariant, kMips64r6);
1516 DCHECK(rt != zero_reg);
1517 GenInstrImmediate(BGTZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1518 }
1519
bltuc(Register rs,Register rt,int16_t offset)1520 void Assembler::bltuc(Register rs, Register rt, int16_t offset) {
1521 DCHECK_EQ(kArchVariant, kMips64r6);
1522 DCHECK(rs != zero_reg);
1523 DCHECK(rt != zero_reg);
1524 DCHECK(rs.code() != rt.code());
1525 GenInstrImmediate(BGTZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1526 }
1527
bltc(Register rs,Register rt,int16_t offset)1528 void Assembler::bltc(Register rs, Register rt, int16_t offset) {
1529 DCHECK_EQ(kArchVariant, kMips64r6);
1530 DCHECK(rs != zero_reg);
1531 DCHECK(rt != zero_reg);
1532 DCHECK(rs.code() != rt.code());
1533 GenInstrImmediate(BGTZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1534 }
1535
bltz(Register rs,int16_t offset)1536 void Assembler::bltz(Register rs, int16_t offset) {
1537 BlockTrampolinePoolScope block_trampoline_pool(this);
1538 GenInstrImmediate(REGIMM, rs, BLTZ, offset);
1539 BlockTrampolinePoolFor(1); // For associated delay slot.
1540 }
1541
bltzal(Register rs,int16_t offset)1542 void Assembler::bltzal(Register rs, int16_t offset) {
1543 DCHECK(kArchVariant != kMips64r6 || rs == zero_reg);
1544 DCHECK(rs != ra);
1545 BlockTrampolinePoolScope block_trampoline_pool(this);
1546 GenInstrImmediate(REGIMM, rs, BLTZAL, offset);
1547 BlockTrampolinePoolFor(1); // For associated delay slot.
1548 }
1549
bne(Register rs,Register rt,int16_t offset)1550 void Assembler::bne(Register rs, Register rt, int16_t offset) {
1551 BlockTrampolinePoolScope block_trampoline_pool(this);
1552 GenInstrImmediate(BNE, rs, rt, offset);
1553 BlockTrampolinePoolFor(1); // For associated delay slot.
1554 }
1555
bovc(Register rs,Register rt,int16_t offset)1556 void Assembler::bovc(Register rs, Register rt, int16_t offset) {
1557 DCHECK_EQ(kArchVariant, kMips64r6);
1558 if (rs.code() >= rt.code()) {
1559 GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1560 } else {
1561 GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1562 }
1563 }
1564
bnvc(Register rs,Register rt,int16_t offset)1565 void Assembler::bnvc(Register rs, Register rt, int16_t offset) {
1566 DCHECK_EQ(kArchVariant, kMips64r6);
1567 if (rs.code() >= rt.code()) {
1568 GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1569 } else {
1570 GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1571 }
1572 }
1573
blezalc(Register rt,int16_t offset)1574 void Assembler::blezalc(Register rt, int16_t offset) {
1575 DCHECK_EQ(kArchVariant, kMips64r6);
1576 DCHECK(rt != zero_reg);
1577 DCHECK(rt != ra);
1578 GenInstrImmediate(BLEZ, zero_reg, rt, offset,
1579 CompactBranchType::COMPACT_BRANCH);
1580 }
1581
bgezalc(Register rt,int16_t offset)1582 void Assembler::bgezalc(Register rt, int16_t offset) {
1583 DCHECK_EQ(kArchVariant, kMips64r6);
1584 DCHECK(rt != zero_reg);
1585 DCHECK(rt != ra);
1586 GenInstrImmediate(BLEZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1587 }
1588
bgezall(Register rs,int16_t offset)1589 void Assembler::bgezall(Register rs, int16_t offset) {
1590 DCHECK_NE(kArchVariant, kMips64r6);
1591 DCHECK(rs != zero_reg);
1592 DCHECK(rs != ra);
1593 BlockTrampolinePoolScope block_trampoline_pool(this);
1594 GenInstrImmediate(REGIMM, rs, BGEZALL, offset);
1595 BlockTrampolinePoolFor(1); // For associated delay slot.
1596 }
1597
bltzalc(Register rt,int16_t offset)1598 void Assembler::bltzalc(Register rt, int16_t offset) {
1599 DCHECK_EQ(kArchVariant, kMips64r6);
1600 DCHECK(rt != zero_reg);
1601 DCHECK(rt != ra);
1602 GenInstrImmediate(BGTZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1603 }
1604
bgtzalc(Register rt,int16_t offset)1605 void Assembler::bgtzalc(Register rt, int16_t offset) {
1606 DCHECK_EQ(kArchVariant, kMips64r6);
1607 DCHECK(rt != zero_reg);
1608 DCHECK(rt != ra);
1609 GenInstrImmediate(BGTZ, zero_reg, rt, offset,
1610 CompactBranchType::COMPACT_BRANCH);
1611 }
1612
beqzalc(Register rt,int16_t offset)1613 void Assembler::beqzalc(Register rt, int16_t offset) {
1614 DCHECK_EQ(kArchVariant, kMips64r6);
1615 DCHECK(rt != zero_reg);
1616 DCHECK(rt != ra);
1617 GenInstrImmediate(ADDI, zero_reg, rt, offset,
1618 CompactBranchType::COMPACT_BRANCH);
1619 }
1620
bnezalc(Register rt,int16_t offset)1621 void Assembler::bnezalc(Register rt, int16_t offset) {
1622 DCHECK_EQ(kArchVariant, kMips64r6);
1623 DCHECK(rt != zero_reg);
1624 DCHECK(rt != ra);
1625 GenInstrImmediate(DADDI, zero_reg, rt, offset,
1626 CompactBranchType::COMPACT_BRANCH);
1627 }
1628
beqc(Register rs,Register rt,int16_t offset)1629 void Assembler::beqc(Register rs, Register rt, int16_t offset) {
1630 DCHECK_EQ(kArchVariant, kMips64r6);
1631 DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0);
1632 if (rs.code() < rt.code()) {
1633 GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1634 } else {
1635 GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1636 }
1637 }
1638
beqzc(Register rs,int32_t offset)1639 void Assembler::beqzc(Register rs, int32_t offset) {
1640 DCHECK_EQ(kArchVariant, kMips64r6);
1641 DCHECK(rs != zero_reg);
1642 GenInstrImmediate(POP66, rs, offset, CompactBranchType::COMPACT_BRANCH);
1643 }
1644
bnec(Register rs,Register rt,int16_t offset)1645 void Assembler::bnec(Register rs, Register rt, int16_t offset) {
1646 DCHECK_EQ(kArchVariant, kMips64r6);
1647 DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0);
1648 if (rs.code() < rt.code()) {
1649 GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1650 } else {
1651 GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1652 }
1653 }
1654
bnezc(Register rs,int32_t offset)1655 void Assembler::bnezc(Register rs, int32_t offset) {
1656 DCHECK_EQ(kArchVariant, kMips64r6);
1657 DCHECK(rs != zero_reg);
1658 GenInstrImmediate(POP76, rs, offset, CompactBranchType::COMPACT_BRANCH);
1659 }
1660
j(int64_t target)1661 void Assembler::j(int64_t target) {
1662 // Deprecated. Use PC-relative jumps instead.
1663 UNREACHABLE();
1664 }
1665
j(Label * target)1666 void Assembler::j(Label* target) {
1667 // Deprecated. Use PC-relative jumps instead.
1668 UNREACHABLE();
1669 }
1670
jal(Label * target)1671 void Assembler::jal(Label* target) {
1672 // Deprecated. Use PC-relative jumps instead.
1673 UNREACHABLE();
1674 }
1675
jal(int64_t target)1676 void Assembler::jal(int64_t target) {
1677 // Deprecated. Use PC-relative jumps instead.
1678 UNREACHABLE();
1679 }
1680
jr(Register rs)1681 void Assembler::jr(Register rs) {
1682 if (kArchVariant != kMips64r6) {
1683 BlockTrampolinePoolScope block_trampoline_pool(this);
1684 GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR);
1685 BlockTrampolinePoolFor(1); // For associated delay slot.
1686 } else {
1687 jalr(rs, zero_reg);
1688 }
1689 }
1690
jalr(Register rs,Register rd)1691 void Assembler::jalr(Register rs, Register rd) {
1692 DCHECK(rs.code() != rd.code());
1693 BlockTrampolinePoolScope block_trampoline_pool(this);
1694 GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR);
1695 BlockTrampolinePoolFor(1); // For associated delay slot.
1696 }
1697
jic(Register rt,int16_t offset)1698 void Assembler::jic(Register rt, int16_t offset) {
1699 DCHECK_EQ(kArchVariant, kMips64r6);
1700 GenInstrImmediate(POP66, zero_reg, rt, offset);
1701 }
1702
jialc(Register rt,int16_t offset)1703 void Assembler::jialc(Register rt, int16_t offset) {
1704 DCHECK_EQ(kArchVariant, kMips64r6);
1705 GenInstrImmediate(POP76, zero_reg, rt, offset);
1706 }
1707
1708 // -------Data-processing-instructions---------
1709
1710 // Arithmetic.
1711
addu(Register rd,Register rs,Register rt)1712 void Assembler::addu(Register rd, Register rs, Register rt) {
1713 GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU);
1714 }
1715
addiu(Register rd,Register rs,int32_t j)1716 void Assembler::addiu(Register rd, Register rs, int32_t j) {
1717 GenInstrImmediate(ADDIU, rs, rd, j);
1718 }
1719
subu(Register rd,Register rs,Register rt)1720 void Assembler::subu(Register rd, Register rs, Register rt) {
1721 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUBU);
1722 }
1723
mul(Register rd,Register rs,Register rt)1724 void Assembler::mul(Register rd, Register rs, Register rt) {
1725 if (kArchVariant == kMips64r6) {
1726 GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH);
1727 } else {
1728 GenInstrRegister(SPECIAL2, rs, rt, rd, 0, MUL);
1729 }
1730 }
1731
muh(Register rd,Register rs,Register rt)1732 void Assembler::muh(Register rd, Register rs, Register rt) {
1733 DCHECK_EQ(kArchVariant, kMips64r6);
1734 GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH);
1735 }
1736
mulu(Register rd,Register rs,Register rt)1737 void Assembler::mulu(Register rd, Register rs, Register rt) {
1738 DCHECK_EQ(kArchVariant, kMips64r6);
1739 GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH_U);
1740 }
1741
muhu(Register rd,Register rs,Register rt)1742 void Assembler::muhu(Register rd, Register rs, Register rt) {
1743 DCHECK_EQ(kArchVariant, kMips64r6);
1744 GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH_U);
1745 }
1746
dmul(Register rd,Register rs,Register rt)1747 void Assembler::dmul(Register rd, Register rs, Register rt) {
1748 DCHECK_EQ(kArchVariant, kMips64r6);
1749 GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, D_MUL_MUH);
1750 }
1751
dmuh(Register rd,Register rs,Register rt)1752 void Assembler::dmuh(Register rd, Register rs, Register rt) {
1753 DCHECK_EQ(kArchVariant, kMips64r6);
1754 GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, D_MUL_MUH);
1755 }
1756
dmulu(Register rd,Register rs,Register rt)1757 void Assembler::dmulu(Register rd, Register rs, Register rt) {
1758 DCHECK_EQ(kArchVariant, kMips64r6);
1759 GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, D_MUL_MUH_U);
1760 }
1761
dmuhu(Register rd,Register rs,Register rt)1762 void Assembler::dmuhu(Register rd, Register rs, Register rt) {
1763 DCHECK_EQ(kArchVariant, kMips64r6);
1764 GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, D_MUL_MUH_U);
1765 }
1766
mult(Register rs,Register rt)1767 void Assembler::mult(Register rs, Register rt) {
1768 DCHECK_NE(kArchVariant, kMips64r6);
1769 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULT);
1770 }
1771
multu(Register rs,Register rt)1772 void Assembler::multu(Register rs, Register rt) {
1773 DCHECK_NE(kArchVariant, kMips64r6);
1774 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULTU);
1775 }
1776
daddiu(Register rd,Register rs,int32_t j)1777 void Assembler::daddiu(Register rd, Register rs, int32_t j) {
1778 GenInstrImmediate(DADDIU, rs, rd, j);
1779 }
1780
div(Register rs,Register rt)1781 void Assembler::div(Register rs, Register rt) {
1782 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIV);
1783 }
1784
div(Register rd,Register rs,Register rt)1785 void Assembler::div(Register rd, Register rs, Register rt) {
1786 DCHECK_EQ(kArchVariant, kMips64r6);
1787 GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD);
1788 }
1789
mod(Register rd,Register rs,Register rt)1790 void Assembler::mod(Register rd, Register rs, Register rt) {
1791 DCHECK_EQ(kArchVariant, kMips64r6);
1792 GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD);
1793 }
1794
divu(Register rs,Register rt)1795 void Assembler::divu(Register rs, Register rt) {
1796 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIVU);
1797 }
1798
divu(Register rd,Register rs,Register rt)1799 void Assembler::divu(Register rd, Register rs, Register rt) {
1800 DCHECK_EQ(kArchVariant, kMips64r6);
1801 GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD_U);
1802 }
1803
modu(Register rd,Register rs,Register rt)1804 void Assembler::modu(Register rd, Register rs, Register rt) {
1805 DCHECK_EQ(kArchVariant, kMips64r6);
1806 GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD_U);
1807 }
1808
daddu(Register rd,Register rs,Register rt)1809 void Assembler::daddu(Register rd, Register rs, Register rt) {
1810 GenInstrRegister(SPECIAL, rs, rt, rd, 0, DADDU);
1811 }
1812
dsubu(Register rd,Register rs,Register rt)1813 void Assembler::dsubu(Register rd, Register rs, Register rt) {
1814 GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSUBU);
1815 }
1816
dmult(Register rs,Register rt)1817 void Assembler::dmult(Register rs, Register rt) {
1818 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DMULT);
1819 }
1820
dmultu(Register rs,Register rt)1821 void Assembler::dmultu(Register rs, Register rt) {
1822 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DMULTU);
1823 }
1824
ddiv(Register rs,Register rt)1825 void Assembler::ddiv(Register rs, Register rt) {
1826 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DDIV);
1827 }
1828
ddiv(Register rd,Register rs,Register rt)1829 void Assembler::ddiv(Register rd, Register rs, Register rt) {
1830 DCHECK_EQ(kArchVariant, kMips64r6);
1831 GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, D_DIV_MOD);
1832 }
1833
dmod(Register rd,Register rs,Register rt)1834 void Assembler::dmod(Register rd, Register rs, Register rt) {
1835 DCHECK_EQ(kArchVariant, kMips64r6);
1836 GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, D_DIV_MOD);
1837 }
1838
ddivu(Register rs,Register rt)1839 void Assembler::ddivu(Register rs, Register rt) {
1840 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DDIVU);
1841 }
1842
ddivu(Register rd,Register rs,Register rt)1843 void Assembler::ddivu(Register rd, Register rs, Register rt) {
1844 DCHECK_EQ(kArchVariant, kMips64r6);
1845 GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, D_DIV_MOD_U);
1846 }
1847
dmodu(Register rd,Register rs,Register rt)1848 void Assembler::dmodu(Register rd, Register rs, Register rt) {
1849 DCHECK_EQ(kArchVariant, kMips64r6);
1850 GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, D_DIV_MOD_U);
1851 }
1852
1853 // Logical.
1854
and_(Register rd,Register rs,Register rt)1855 void Assembler::and_(Register rd, Register rs, Register rt) {
1856 GenInstrRegister(SPECIAL, rs, rt, rd, 0, AND);
1857 }
1858
andi(Register rt,Register rs,int32_t j)1859 void Assembler::andi(Register rt, Register rs, int32_t j) {
1860 DCHECK(is_uint16(j));
1861 GenInstrImmediate(ANDI, rs, rt, j);
1862 }
1863
or_(Register rd,Register rs,Register rt)1864 void Assembler::or_(Register rd, Register rs, Register rt) {
1865 GenInstrRegister(SPECIAL, rs, rt, rd, 0, OR);
1866 }
1867
ori(Register rt,Register rs,int32_t j)1868 void Assembler::ori(Register rt, Register rs, int32_t j) {
1869 DCHECK(is_uint16(j));
1870 GenInstrImmediate(ORI, rs, rt, j);
1871 }
1872
xor_(Register rd,Register rs,Register rt)1873 void Assembler::xor_(Register rd, Register rs, Register rt) {
1874 GenInstrRegister(SPECIAL, rs, rt, rd, 0, XOR);
1875 }
1876
xori(Register rt,Register rs,int32_t j)1877 void Assembler::xori(Register rt, Register rs, int32_t j) {
1878 DCHECK(is_uint16(j));
1879 GenInstrImmediate(XORI, rs, rt, j);
1880 }
1881
nor(Register rd,Register rs,Register rt)1882 void Assembler::nor(Register rd, Register rs, Register rt) {
1883 GenInstrRegister(SPECIAL, rs, rt, rd, 0, NOR);
1884 }
1885
1886 // Shifts.
sll(Register rd,Register rt,uint16_t sa,bool coming_from_nop)1887 void Assembler::sll(Register rd, Register rt, uint16_t sa,
1888 bool coming_from_nop) {
1889 // Don't allow nop instructions in the form sll zero_reg, zero_reg to be
1890 // generated using the sll instruction. They must be generated using
1891 // nop(int/NopMarkerTypes).
1892 DCHECK(coming_from_nop || (rd != zero_reg && rt != zero_reg));
1893 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SLL);
1894 }
1895
sllv(Register rd,Register rt,Register rs)1896 void Assembler::sllv(Register rd, Register rt, Register rs) {
1897 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLLV);
1898 }
1899
srl(Register rd,Register rt,uint16_t sa)1900 void Assembler::srl(Register rd, Register rt, uint16_t sa) {
1901 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRL);
1902 }
1903
srlv(Register rd,Register rt,Register rs)1904 void Assembler::srlv(Register rd, Register rt, Register rs) {
1905 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRLV);
1906 }
1907
sra(Register rd,Register rt,uint16_t sa)1908 void Assembler::sra(Register rd, Register rt, uint16_t sa) {
1909 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRA);
1910 }
1911
srav(Register rd,Register rt,Register rs)1912 void Assembler::srav(Register rd, Register rt, Register rs) {
1913 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRAV);
1914 }
1915
rotr(Register rd,Register rt,uint16_t sa)1916 void Assembler::rotr(Register rd, Register rt, uint16_t sa) {
1917 // Should be called via MacroAssembler::Ror.
1918 DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa));
1919 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
1920 Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) |
1921 (rd.code() << kRdShift) | (sa << kSaShift) | SRL;
1922 emit(instr);
1923 }
1924
rotrv(Register rd,Register rt,Register rs)1925 void Assembler::rotrv(Register rd, Register rt, Register rs) {
1926 // Should be called via MacroAssembler::Ror.
1927 DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
1928 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
1929 Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1930 (rd.code() << kRdShift) | (1 << kSaShift) | SRLV;
1931 emit(instr);
1932 }
1933
dsll(Register rd,Register rt,uint16_t sa)1934 void Assembler::dsll(Register rd, Register rt, uint16_t sa) {
1935 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSLL);
1936 }
1937
dsllv(Register rd,Register rt,Register rs)1938 void Assembler::dsllv(Register rd, Register rt, Register rs) {
1939 GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSLLV);
1940 }
1941
dsrl(Register rd,Register rt,uint16_t sa)1942 void Assembler::dsrl(Register rd, Register rt, uint16_t sa) {
1943 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRL);
1944 }
1945
dsrlv(Register rd,Register rt,Register rs)1946 void Assembler::dsrlv(Register rd, Register rt, Register rs) {
1947 GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSRLV);
1948 }
1949
drotr(Register rd,Register rt,uint16_t sa)1950 void Assembler::drotr(Register rd, Register rt, uint16_t sa) {
1951 DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa));
1952 Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) |
1953 (rd.code() << kRdShift) | (sa << kSaShift) | DSRL;
1954 emit(instr);
1955 }
1956
drotr32(Register rd,Register rt,uint16_t sa)1957 void Assembler::drotr32(Register rd, Register rt, uint16_t sa) {
1958 DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa));
1959 Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) |
1960 (rd.code() << kRdShift) | (sa << kSaShift) | DSRL32;
1961 emit(instr);
1962 }
1963
drotrv(Register rd,Register rt,Register rs)1964 void Assembler::drotrv(Register rd, Register rt, Register rs) {
1965 DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
1966 Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1967 (rd.code() << kRdShift) | (1 << kSaShift) | DSRLV;
1968 emit(instr);
1969 }
1970
dsra(Register rd,Register rt,uint16_t sa)1971 void Assembler::dsra(Register rd, Register rt, uint16_t sa) {
1972 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRA);
1973 }
1974
dsrav(Register rd,Register rt,Register rs)1975 void Assembler::dsrav(Register rd, Register rt, Register rs) {
1976 GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSRAV);
1977 }
1978
dsll32(Register rd,Register rt,uint16_t sa)1979 void Assembler::dsll32(Register rd, Register rt, uint16_t sa) {
1980 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSLL32);
1981 }
1982
dsrl32(Register rd,Register rt,uint16_t sa)1983 void Assembler::dsrl32(Register rd, Register rt, uint16_t sa) {
1984 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRL32);
1985 }
1986
dsra32(Register rd,Register rt,uint16_t sa)1987 void Assembler::dsra32(Register rd, Register rt, uint16_t sa) {
1988 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRA32);
1989 }
1990
lsa(Register rd,Register rt,Register rs,uint8_t sa)1991 void Assembler::lsa(Register rd, Register rt, Register rs, uint8_t sa) {
1992 DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
1993 DCHECK_LE(sa, 3);
1994 DCHECK_EQ(kArchVariant, kMips64r6);
1995 Instr instr = SPECIAL | rs.code() << kRsShift | rt.code() << kRtShift |
1996 rd.code() << kRdShift | sa << kSaShift | LSA;
1997 emit(instr);
1998 }
1999
dlsa(Register rd,Register rt,Register rs,uint8_t sa)2000 void Assembler::dlsa(Register rd, Register rt, Register rs, uint8_t sa) {
2001 DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
2002 DCHECK_LE(sa, 3);
2003 DCHECK_EQ(kArchVariant, kMips64r6);
2004 Instr instr = SPECIAL | rs.code() << kRsShift | rt.code() << kRtShift |
2005 rd.code() << kRdShift | sa << kSaShift | DLSA;
2006 emit(instr);
2007 }
2008
2009 // ------------Memory-instructions-------------
2010
AdjustBaseAndOffset(MemOperand * src,OffsetAccessType access_type,int second_access_add_to_offset)2011 void Assembler::AdjustBaseAndOffset(MemOperand* src,
2012 OffsetAccessType access_type,
2013 int second_access_add_to_offset) {
2014 // This method is used to adjust the base register and offset pair
2015 // for a load/store when the offset doesn't fit into int16_t.
2016 // It is assumed that 'base + offset' is sufficiently aligned for memory
2017 // operands that are machine word in size or smaller. For doubleword-sized
2018 // operands it's assumed that 'base' is a multiple of 8, while 'offset'
2019 // may be a multiple of 4 (e.g. 4-byte-aligned long and double arguments
2020 // and spilled variables on the stack accessed relative to the stack
2021 // pointer register).
2022 // We preserve the "alignment" of 'offset' by adjusting it by a multiple of 8.
2023
2024 bool doubleword_aligned = (src->offset() & (kDoubleSize - 1)) == 0;
2025 bool two_accesses = static_cast<bool>(access_type) || !doubleword_aligned;
2026 DCHECK_LE(second_access_add_to_offset, 7); // Must be <= 7.
2027
2028 // is_int16 must be passed a signed value, hence the static cast below.
2029 if (is_int16(src->offset()) &&
2030 (!two_accesses || is_int16(static_cast<int32_t>(
2031 src->offset() + second_access_add_to_offset)))) {
2032 // Nothing to do: 'offset' (and, if needed, 'offset + 4', or other specified
2033 // value) fits into int16_t.
2034 return;
2035 }
2036
2037 DCHECK(src->rm() !=
2038 at); // Must not overwrite the register 'base' while loading 'offset'.
2039
2040 #ifdef DEBUG
2041 // Remember the "(mis)alignment" of 'offset', it will be checked at the end.
2042 uint32_t misalignment = src->offset() & (kDoubleSize - 1);
2043 #endif
2044
2045 // Do not load the whole 32-bit 'offset' if it can be represented as
2046 // a sum of two 16-bit signed offsets. This can save an instruction or two.
2047 // To simplify matters, only do this for a symmetric range of offsets from
2048 // about -64KB to about +64KB, allowing further addition of 4 when accessing
2049 // 64-bit variables with two 32-bit accesses.
2050 constexpr int32_t kMinOffsetForSimpleAdjustment =
2051 0x7FF8; // Max int16_t that's a multiple of 8.
2052 constexpr int32_t kMaxOffsetForSimpleAdjustment =
2053 2 * kMinOffsetForSimpleAdjustment;
2054
2055 UseScratchRegisterScope temps(this);
2056 Register scratch = temps.Acquire();
2057 if (0 <= src->offset() && src->offset() <= kMaxOffsetForSimpleAdjustment) {
2058 daddiu(scratch, src->rm(), kMinOffsetForSimpleAdjustment);
2059 src->offset_ -= kMinOffsetForSimpleAdjustment;
2060 } else if (-kMaxOffsetForSimpleAdjustment <= src->offset() &&
2061 src->offset() < 0) {
2062 daddiu(scratch, src->rm(), -kMinOffsetForSimpleAdjustment);
2063 src->offset_ += kMinOffsetForSimpleAdjustment;
2064 } else if (kArchVariant == kMips64r6) {
2065 // On r6 take advantage of the daui instruction, e.g.:
2066 // daui at, base, offset_high
2067 // [dahi at, 1] // When `offset` is close to +2GB.
2068 // lw reg_lo, offset_low(at)
2069 // [lw reg_hi, (offset_low+4)(at)] // If misaligned 64-bit load.
2070 // or when offset_low+4 overflows int16_t:
2071 // daui at, base, offset_high
2072 // daddiu at, at, 8
2073 // lw reg_lo, (offset_low-8)(at)
2074 // lw reg_hi, (offset_low-4)(at)
2075 int16_t offset_low = static_cast<uint16_t>(src->offset());
2076 int32_t offset_low32 = offset_low;
2077 int16_t offset_high = static_cast<uint16_t>(src->offset() >> 16);
2078 bool increment_hi16 = offset_low < 0;
2079 bool overflow_hi16 = false;
2080
2081 if (increment_hi16) {
2082 offset_high++;
2083 overflow_hi16 = (offset_high == -32768);
2084 }
2085 daui(scratch, src->rm(), static_cast<uint16_t>(offset_high));
2086
2087 if (overflow_hi16) {
2088 dahi(scratch, 1);
2089 }
2090
2091 if (two_accesses && !is_int16(static_cast<int32_t>(
2092 offset_low32 + second_access_add_to_offset))) {
2093 // Avoid overflow in the 16-bit offset of the load/store instruction when
2094 // adding 4.
2095 daddiu(scratch, scratch, kDoubleSize);
2096 offset_low32 -= kDoubleSize;
2097 }
2098
2099 src->offset_ = offset_low32;
2100 } else {
2101 // Do not load the whole 32-bit 'offset' if it can be represented as
2102 // a sum of three 16-bit signed offsets. This can save an instruction.
2103 // To simplify matters, only do this for a symmetric range of offsets from
2104 // about -96KB to about +96KB, allowing further addition of 4 when accessing
2105 // 64-bit variables with two 32-bit accesses.
2106 constexpr int32_t kMinOffsetForMediumAdjustment =
2107 2 * kMinOffsetForSimpleAdjustment;
2108 constexpr int32_t kMaxOffsetForMediumAdjustment =
2109 3 * kMinOffsetForSimpleAdjustment;
2110 if (0 <= src->offset() && src->offset() <= kMaxOffsetForMediumAdjustment) {
2111 daddiu(scratch, src->rm(), kMinOffsetForMediumAdjustment / 2);
2112 daddiu(scratch, scratch, kMinOffsetForMediumAdjustment / 2);
2113 src->offset_ -= kMinOffsetForMediumAdjustment;
2114 } else if (-kMaxOffsetForMediumAdjustment <= src->offset() &&
2115 src->offset() < 0) {
2116 daddiu(scratch, src->rm(), -kMinOffsetForMediumAdjustment / 2);
2117 daddiu(scratch, scratch, -kMinOffsetForMediumAdjustment / 2);
2118 src->offset_ += kMinOffsetForMediumAdjustment;
2119 } else {
2120 // Now that all shorter options have been exhausted, load the full 32-bit
2121 // offset.
2122 int32_t loaded_offset = RoundDown(src->offset(), kDoubleSize);
2123 lui(scratch, (loaded_offset >> kLuiShift) & kImm16Mask);
2124 ori(scratch, scratch, loaded_offset & kImm16Mask); // Load 32-bit offset.
2125 daddu(scratch, scratch, src->rm());
2126 src->offset_ -= loaded_offset;
2127 }
2128 }
2129 src->rm_ = scratch;
2130
2131 DCHECK(is_int16(src->offset()));
2132 if (two_accesses) {
2133 DCHECK(is_int16(
2134 static_cast<int32_t>(src->offset() + second_access_add_to_offset)));
2135 }
2136 DCHECK(misalignment == (src->offset() & (kDoubleSize - 1)));
2137 }
2138
lb(Register rd,const MemOperand & rs)2139 void Assembler::lb(Register rd, const MemOperand& rs) {
2140 GenInstrImmediate(LB, rs.rm(), rd, rs.offset_);
2141 }
2142
lbu(Register rd,const MemOperand & rs)2143 void Assembler::lbu(Register rd, const MemOperand& rs) {
2144 GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_);
2145 }
2146
lh(Register rd,const MemOperand & rs)2147 void Assembler::lh(Register rd, const MemOperand& rs) {
2148 GenInstrImmediate(LH, rs.rm(), rd, rs.offset_);
2149 }
2150
lhu(Register rd,const MemOperand & rs)2151 void Assembler::lhu(Register rd, const MemOperand& rs) {
2152 GenInstrImmediate(LHU, rs.rm(), rd, rs.offset_);
2153 }
2154
lw(Register rd,const MemOperand & rs)2155 void Assembler::lw(Register rd, const MemOperand& rs) {
2156 GenInstrImmediate(LW, rs.rm(), rd, rs.offset_);
2157 }
2158
lwu(Register rd,const MemOperand & rs)2159 void Assembler::lwu(Register rd, const MemOperand& rs) {
2160 GenInstrImmediate(LWU, rs.rm(), rd, rs.offset_);
2161 }
2162
lwl(Register rd,const MemOperand & rs)2163 void Assembler::lwl(Register rd, const MemOperand& rs) {
2164 DCHECK(is_int16(rs.offset_));
2165 DCHECK_EQ(kArchVariant, kMips64r2);
2166 GenInstrImmediate(LWL, rs.rm(), rd, rs.offset_);
2167 }
2168
lwr(Register rd,const MemOperand & rs)2169 void Assembler::lwr(Register rd, const MemOperand& rs) {
2170 DCHECK(is_int16(rs.offset_));
2171 DCHECK_EQ(kArchVariant, kMips64r2);
2172 GenInstrImmediate(LWR, rs.rm(), rd, rs.offset_);
2173 }
2174
sb(Register rd,const MemOperand & rs)2175 void Assembler::sb(Register rd, const MemOperand& rs) {
2176 GenInstrImmediate(SB, rs.rm(), rd, rs.offset_);
2177 }
2178
sh(Register rd,const MemOperand & rs)2179 void Assembler::sh(Register rd, const MemOperand& rs) {
2180 GenInstrImmediate(SH, rs.rm(), rd, rs.offset_);
2181 }
2182
sw(Register rd,const MemOperand & rs)2183 void Assembler::sw(Register rd, const MemOperand& rs) {
2184 GenInstrImmediate(SW, rs.rm(), rd, rs.offset_);
2185 }
2186
swl(Register rd,const MemOperand & rs)2187 void Assembler::swl(Register rd, const MemOperand& rs) {
2188 DCHECK(is_int16(rs.offset_));
2189 DCHECK_EQ(kArchVariant, kMips64r2);
2190 GenInstrImmediate(SWL, rs.rm(), rd, rs.offset_);
2191 }
2192
swr(Register rd,const MemOperand & rs)2193 void Assembler::swr(Register rd, const MemOperand& rs) {
2194 DCHECK(is_int16(rs.offset_));
2195 DCHECK_EQ(kArchVariant, kMips64r2);
2196 GenInstrImmediate(SWR, rs.rm(), rd, rs.offset_);
2197 }
2198
ll(Register rd,const MemOperand & rs)2199 void Assembler::ll(Register rd, const MemOperand& rs) {
2200 if (kArchVariant == kMips64r6) {
2201 DCHECK(is_int9(rs.offset_));
2202 GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, LL_R6);
2203 } else {
2204 DCHECK_EQ(kArchVariant, kMips64r2);
2205 DCHECK(is_int16(rs.offset_));
2206 GenInstrImmediate(LL, rs.rm(), rd, rs.offset_);
2207 }
2208 }
2209
lld(Register rd,const MemOperand & rs)2210 void Assembler::lld(Register rd, const MemOperand& rs) {
2211 if (kArchVariant == kMips64r6) {
2212 DCHECK(is_int9(rs.offset_));
2213 GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, LLD_R6);
2214 } else {
2215 DCHECK_EQ(kArchVariant, kMips64r2);
2216 DCHECK(is_int16(rs.offset_));
2217 GenInstrImmediate(LLD, rs.rm(), rd, rs.offset_);
2218 }
2219 }
2220
sc(Register rd,const MemOperand & rs)2221 void Assembler::sc(Register rd, const MemOperand& rs) {
2222 if (kArchVariant == kMips64r6) {
2223 DCHECK(is_int9(rs.offset_));
2224 GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, SC_R6);
2225 } else {
2226 DCHECK_EQ(kArchVariant, kMips64r2);
2227 GenInstrImmediate(SC, rs.rm(), rd, rs.offset_);
2228 }
2229 }
2230
scd(Register rd,const MemOperand & rs)2231 void Assembler::scd(Register rd, const MemOperand& rs) {
2232 if (kArchVariant == kMips64r6) {
2233 DCHECK(is_int9(rs.offset_));
2234 GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, SCD_R6);
2235 } else {
2236 DCHECK_EQ(kArchVariant, kMips64r2);
2237 GenInstrImmediate(SCD, rs.rm(), rd, rs.offset_);
2238 }
2239 }
2240
lui(Register rd,int32_t j)2241 void Assembler::lui(Register rd, int32_t j) {
2242 DCHECK(is_uint16(j) || is_int16(j));
2243 GenInstrImmediate(LUI, zero_reg, rd, j);
2244 }
2245
aui(Register rt,Register rs,int32_t j)2246 void Assembler::aui(Register rt, Register rs, int32_t j) {
2247 // This instruction uses same opcode as 'lui'. The difference in encoding is
2248 // 'lui' has zero reg. for rs field.
2249 DCHECK(is_uint16(j));
2250 GenInstrImmediate(LUI, rs, rt, j);
2251 }
2252
daui(Register rt,Register rs,int32_t j)2253 void Assembler::daui(Register rt, Register rs, int32_t j) {
2254 DCHECK(is_uint16(j));
2255 DCHECK(rs != zero_reg);
2256 GenInstrImmediate(DAUI, rs, rt, j);
2257 }
2258
dahi(Register rs,int32_t j)2259 void Assembler::dahi(Register rs, int32_t j) {
2260 DCHECK(is_uint16(j));
2261 GenInstrImmediate(REGIMM, rs, DAHI, j);
2262 }
2263
dati(Register rs,int32_t j)2264 void Assembler::dati(Register rs, int32_t j) {
2265 DCHECK(is_uint16(j));
2266 GenInstrImmediate(REGIMM, rs, DATI, j);
2267 }
2268
ldl(Register rd,const MemOperand & rs)2269 void Assembler::ldl(Register rd, const MemOperand& rs) {
2270 DCHECK(is_int16(rs.offset_));
2271 DCHECK_EQ(kArchVariant, kMips64r2);
2272 GenInstrImmediate(LDL, rs.rm(), rd, rs.offset_);
2273 }
2274
ldr(Register rd,const MemOperand & rs)2275 void Assembler::ldr(Register rd, const MemOperand& rs) {
2276 DCHECK(is_int16(rs.offset_));
2277 DCHECK_EQ(kArchVariant, kMips64r2);
2278 GenInstrImmediate(LDR, rs.rm(), rd, rs.offset_);
2279 }
2280
sdl(Register rd,const MemOperand & rs)2281 void Assembler::sdl(Register rd, const MemOperand& rs) {
2282 DCHECK(is_int16(rs.offset_));
2283 DCHECK_EQ(kArchVariant, kMips64r2);
2284 GenInstrImmediate(SDL, rs.rm(), rd, rs.offset_);
2285 }
2286
sdr(Register rd,const MemOperand & rs)2287 void Assembler::sdr(Register rd, const MemOperand& rs) {
2288 DCHECK(is_int16(rs.offset_));
2289 DCHECK_EQ(kArchVariant, kMips64r2);
2290 GenInstrImmediate(SDR, rs.rm(), rd, rs.offset_);
2291 }
2292
ld(Register rd,const MemOperand & rs)2293 void Assembler::ld(Register rd, const MemOperand& rs) {
2294 GenInstrImmediate(LD, rs.rm(), rd, rs.offset_);
2295 }
2296
sd(Register rd,const MemOperand & rs)2297 void Assembler::sd(Register rd, const MemOperand& rs) {
2298 GenInstrImmediate(SD, rs.rm(), rd, rs.offset_);
2299 }
2300
2301 // ---------PC-Relative instructions-----------
2302
addiupc(Register rs,int32_t imm19)2303 void Assembler::addiupc(Register rs, int32_t imm19) {
2304 DCHECK_EQ(kArchVariant, kMips64r6);
2305 DCHECK(rs.is_valid() && is_int19(imm19));
2306 uint32_t imm21 = ADDIUPC << kImm19Bits | (imm19 & kImm19Mask);
2307 GenInstrImmediate(PCREL, rs, imm21);
2308 }
2309
lwpc(Register rs,int32_t offset19)2310 void Assembler::lwpc(Register rs, int32_t offset19) {
2311 DCHECK_EQ(kArchVariant, kMips64r6);
2312 DCHECK(rs.is_valid() && is_int19(offset19));
2313 uint32_t imm21 = LWPC << kImm19Bits | (offset19 & kImm19Mask);
2314 GenInstrImmediate(PCREL, rs, imm21);
2315 }
2316
lwupc(Register rs,int32_t offset19)2317 void Assembler::lwupc(Register rs, int32_t offset19) {
2318 DCHECK_EQ(kArchVariant, kMips64r6);
2319 DCHECK(rs.is_valid() && is_int19(offset19));
2320 uint32_t imm21 = LWUPC << kImm19Bits | (offset19 & kImm19Mask);
2321 GenInstrImmediate(PCREL, rs, imm21);
2322 }
2323
ldpc(Register rs,int32_t offset18)2324 void Assembler::ldpc(Register rs, int32_t offset18) {
2325 DCHECK_EQ(kArchVariant, kMips64r6);
2326 DCHECK(rs.is_valid() && is_int18(offset18));
2327 uint32_t imm21 = LDPC << kImm18Bits | (offset18 & kImm18Mask);
2328 GenInstrImmediate(PCREL, rs, imm21);
2329 }
2330
auipc(Register rs,int16_t imm16)2331 void Assembler::auipc(Register rs, int16_t imm16) {
2332 DCHECK_EQ(kArchVariant, kMips64r6);
2333 DCHECK(rs.is_valid());
2334 uint32_t imm21 = AUIPC << kImm16Bits | (imm16 & kImm16Mask);
2335 GenInstrImmediate(PCREL, rs, imm21);
2336 }
2337
aluipc(Register rs,int16_t imm16)2338 void Assembler::aluipc(Register rs, int16_t imm16) {
2339 DCHECK_EQ(kArchVariant, kMips64r6);
2340 DCHECK(rs.is_valid());
2341 uint32_t imm21 = ALUIPC << kImm16Bits | (imm16 & kImm16Mask);
2342 GenInstrImmediate(PCREL, rs, imm21);
2343 }
2344
2345 // -------------Misc-instructions--------------
2346
2347 // Break / Trap instructions.
break_(uint32_t code,bool break_as_stop)2348 void Assembler::break_(uint32_t code, bool break_as_stop) {
2349 DCHECK_EQ(code & ~0xFFFFF, 0);
2350 // We need to invalidate breaks that could be stops as well because the
2351 // simulator expects a char pointer after the stop instruction.
2352 // See constants-mips.h for explanation.
2353 DCHECK(
2354 (break_as_stop && code <= kMaxStopCode && code > kMaxWatchpointCode) ||
2355 (!break_as_stop && (code > kMaxStopCode || code <= kMaxWatchpointCode)));
2356 Instr break_instr = SPECIAL | BREAK | (code << 6);
2357 emit(break_instr);
2358 }
2359
stop(uint32_t code)2360 void Assembler::stop(uint32_t code) {
2361 DCHECK_GT(code, kMaxWatchpointCode);
2362 DCHECK_LE(code, kMaxStopCode);
2363 #if defined(V8_HOST_ARCH_MIPS) || defined(V8_HOST_ARCH_MIPS64)
2364 break_(0x54321);
2365 #else // V8_HOST_ARCH_MIPS
2366 break_(code, true);
2367 #endif
2368 }
2369
tge(Register rs,Register rt,uint16_t code)2370 void Assembler::tge(Register rs, Register rt, uint16_t code) {
2371 DCHECK(is_uint10(code));
2372 Instr instr =
2373 SPECIAL | TGE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2374 emit(instr);
2375 }
2376
tgeu(Register rs,Register rt,uint16_t code)2377 void Assembler::tgeu(Register rs, Register rt, uint16_t code) {
2378 DCHECK(is_uint10(code));
2379 Instr instr = SPECIAL | TGEU | rs.code() << kRsShift | rt.code() << kRtShift |
2380 code << 6;
2381 emit(instr);
2382 }
2383
tlt(Register rs,Register rt,uint16_t code)2384 void Assembler::tlt(Register rs, Register rt, uint16_t code) {
2385 DCHECK(is_uint10(code));
2386 Instr instr =
2387 SPECIAL | TLT | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2388 emit(instr);
2389 }
2390
tltu(Register rs,Register rt,uint16_t code)2391 void Assembler::tltu(Register rs, Register rt, uint16_t code) {
2392 DCHECK(is_uint10(code));
2393 Instr instr = SPECIAL | TLTU | rs.code() << kRsShift | rt.code() << kRtShift |
2394 code << 6;
2395 emit(instr);
2396 }
2397
teq(Register rs,Register rt,uint16_t code)2398 void Assembler::teq(Register rs, Register rt, uint16_t code) {
2399 DCHECK(is_uint10(code));
2400 Instr instr =
2401 SPECIAL | TEQ | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2402 emit(instr);
2403 }
2404
tne(Register rs,Register rt,uint16_t code)2405 void Assembler::tne(Register rs, Register rt, uint16_t code) {
2406 DCHECK(is_uint10(code));
2407 Instr instr =
2408 SPECIAL | TNE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2409 emit(instr);
2410 }
2411
sync()2412 void Assembler::sync() {
2413 Instr sync_instr = SPECIAL | SYNC;
2414 emit(sync_instr);
2415 }
2416
2417 // Move from HI/LO register.
2418
mfhi(Register rd)2419 void Assembler::mfhi(Register rd) {
2420 GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFHI);
2421 }
2422
mflo(Register rd)2423 void Assembler::mflo(Register rd) {
2424 GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFLO);
2425 }
2426
2427 // Set on less than instructions.
slt(Register rd,Register rs,Register rt)2428 void Assembler::slt(Register rd, Register rs, Register rt) {
2429 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLT);
2430 }
2431
sltu(Register rd,Register rs,Register rt)2432 void Assembler::sltu(Register rd, Register rs, Register rt) {
2433 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLTU);
2434 }
2435
slti(Register rt,Register rs,int32_t j)2436 void Assembler::slti(Register rt, Register rs, int32_t j) {
2437 GenInstrImmediate(SLTI, rs, rt, j);
2438 }
2439
sltiu(Register rt,Register rs,int32_t j)2440 void Assembler::sltiu(Register rt, Register rs, int32_t j) {
2441 GenInstrImmediate(SLTIU, rs, rt, j);
2442 }
2443
2444 // Conditional move.
movz(Register rd,Register rs,Register rt)2445 void Assembler::movz(Register rd, Register rs, Register rt) {
2446 GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVZ);
2447 }
2448
movn(Register rd,Register rs,Register rt)2449 void Assembler::movn(Register rd, Register rs, Register rt) {
2450 GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVN);
2451 }
2452
movt(Register rd,Register rs,uint16_t cc)2453 void Assembler::movt(Register rd, Register rs, uint16_t cc) {
2454 Register rt = Register::from_code((cc & 0x0007) << 2 | 1);
2455 GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
2456 }
2457
movf(Register rd,Register rs,uint16_t cc)2458 void Assembler::movf(Register rd, Register rs, uint16_t cc) {
2459 Register rt = Register::from_code((cc & 0x0007) << 2 | 0);
2460 GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
2461 }
2462
min_s(FPURegister fd,FPURegister fs,FPURegister ft)2463 void Assembler::min_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2464 min(S, fd, fs, ft);
2465 }
2466
min_d(FPURegister fd,FPURegister fs,FPURegister ft)2467 void Assembler::min_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2468 min(D, fd, fs, ft);
2469 }
2470
max_s(FPURegister fd,FPURegister fs,FPURegister ft)2471 void Assembler::max_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2472 max(S, fd, fs, ft);
2473 }
2474
max_d(FPURegister fd,FPURegister fs,FPURegister ft)2475 void Assembler::max_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2476 max(D, fd, fs, ft);
2477 }
2478
mina_s(FPURegister fd,FPURegister fs,FPURegister ft)2479 void Assembler::mina_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2480 mina(S, fd, fs, ft);
2481 }
2482
mina_d(FPURegister fd,FPURegister fs,FPURegister ft)2483 void Assembler::mina_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2484 mina(D, fd, fs, ft);
2485 }
2486
maxa_s(FPURegister fd,FPURegister fs,FPURegister ft)2487 void Assembler::maxa_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2488 maxa(S, fd, fs, ft);
2489 }
2490
maxa_d(FPURegister fd,FPURegister fs,FPURegister ft)2491 void Assembler::maxa_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2492 maxa(D, fd, fs, ft);
2493 }
2494
max(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2495 void Assembler::max(SecondaryField fmt, FPURegister fd, FPURegister fs,
2496 FPURegister ft) {
2497 DCHECK_EQ(kArchVariant, kMips64r6);
2498 DCHECK((fmt == D) || (fmt == S));
2499 GenInstrRegister(COP1, fmt, ft, fs, fd, MAX);
2500 }
2501
min(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2502 void Assembler::min(SecondaryField fmt, FPURegister fd, FPURegister fs,
2503 FPURegister ft) {
2504 DCHECK_EQ(kArchVariant, kMips64r6);
2505 DCHECK((fmt == D) || (fmt == S));
2506 GenInstrRegister(COP1, fmt, ft, fs, fd, MIN);
2507 }
2508
2509 // GPR.
seleqz(Register rd,Register rs,Register rt)2510 void Assembler::seleqz(Register rd, Register rs, Register rt) {
2511 DCHECK_EQ(kArchVariant, kMips64r6);
2512 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELEQZ_S);
2513 }
2514
2515 // GPR.
selnez(Register rd,Register rs,Register rt)2516 void Assembler::selnez(Register rd, Register rs, Register rt) {
2517 DCHECK_EQ(kArchVariant, kMips64r6);
2518 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELNEZ_S);
2519 }
2520
2521 // Bit twiddling.
clz(Register rd,Register rs)2522 void Assembler::clz(Register rd, Register rs) {
2523 if (kArchVariant != kMips64r6) {
2524 // clz instr requires same GPR number in 'rd' and 'rt' fields.
2525 GenInstrRegister(SPECIAL2, rs, rd, rd, 0, CLZ);
2526 } else {
2527 GenInstrRegister(SPECIAL, rs, zero_reg, rd, 1, CLZ_R6);
2528 }
2529 }
2530
dclz(Register rd,Register rs)2531 void Assembler::dclz(Register rd, Register rs) {
2532 if (kArchVariant != kMips64r6) {
2533 // dclz instr requires same GPR number in 'rd' and 'rt' fields.
2534 GenInstrRegister(SPECIAL2, rs, rd, rd, 0, DCLZ);
2535 } else {
2536 GenInstrRegister(SPECIAL, rs, zero_reg, rd, 1, DCLZ_R6);
2537 }
2538 }
2539
ins_(Register rt,Register rs,uint16_t pos,uint16_t size)2540 void Assembler::ins_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2541 // Should be called via MacroAssembler::Ins.
2542 // ins instr has 'rt' field as dest, and two uint5: msb, lsb.
2543 DCHECK((kArchVariant == kMips64r2) || (kArchVariant == kMips64r6));
2544 GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, INS);
2545 }
2546
dins_(Register rt,Register rs,uint16_t pos,uint16_t size)2547 void Assembler::dins_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2548 // Should be called via MacroAssembler::Dins.
2549 // dins instr has 'rt' field as dest, and two uint5: msb, lsb.
2550 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2551 GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, DINS);
2552 }
2553
dinsm_(Register rt,Register rs,uint16_t pos,uint16_t size)2554 void Assembler::dinsm_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2555 // Should be called via MacroAssembler::Dins.
2556 // dinsm instr has 'rt' field as dest, and two uint5: msbminus32, lsb.
2557 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2558 GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1 - 32, pos, DINSM);
2559 }
2560
dinsu_(Register rt,Register rs,uint16_t pos,uint16_t size)2561 void Assembler::dinsu_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2562 // Should be called via MacroAssembler::Dins.
2563 // dinsu instr has 'rt' field as dest, and two uint5: msbminus32, lsbminus32.
2564 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2565 GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1 - 32, pos - 32, DINSU);
2566 }
2567
ext_(Register rt,Register rs,uint16_t pos,uint16_t size)2568 void Assembler::ext_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2569 // Should be called via MacroAssembler::Ext.
2570 // ext instr has 'rt' field as dest, and two uint5: msbd, lsb.
2571 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2572 GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, EXT);
2573 }
2574
dext_(Register rt,Register rs,uint16_t pos,uint16_t size)2575 void Assembler::dext_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2576 // Should be called via MacroAssembler::Dext.
2577 // dext instr has 'rt' field as dest, and two uint5: msbd, lsb.
2578 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2579 GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, DEXT);
2580 }
2581
dextm_(Register rt,Register rs,uint16_t pos,uint16_t size)2582 void Assembler::dextm_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2583 // Should be called via MacroAssembler::Dextm.
2584 // dextm instr has 'rt' field as dest, and two uint5: msbdminus32, lsb.
2585 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2586 GenInstrRegister(SPECIAL3, rs, rt, size - 1 - 32, pos, DEXTM);
2587 }
2588
dextu_(Register rt,Register rs,uint16_t pos,uint16_t size)2589 void Assembler::dextu_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2590 // Should be called via MacroAssembler::Dextu.
2591 // dextu instr has 'rt' field as dest, and two uint5: msbd, lsbminus32.
2592 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2593 GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos - 32, DEXTU);
2594 }
2595
bitswap(Register rd,Register rt)2596 void Assembler::bitswap(Register rd, Register rt) {
2597 DCHECK_EQ(kArchVariant, kMips64r6);
2598 GenInstrRegister(SPECIAL3, zero_reg, rt, rd, 0, BSHFL);
2599 }
2600
dbitswap(Register rd,Register rt)2601 void Assembler::dbitswap(Register rd, Register rt) {
2602 DCHECK_EQ(kArchVariant, kMips64r6);
2603 GenInstrRegister(SPECIAL3, zero_reg, rt, rd, 0, DBSHFL);
2604 }
2605
pref(int32_t hint,const MemOperand & rs)2606 void Assembler::pref(int32_t hint, const MemOperand& rs) {
2607 DCHECK(is_uint5(hint) && is_uint16(rs.offset_));
2608 Instr instr =
2609 PREF | (rs.rm().code() << kRsShift) | (hint << kRtShift) | (rs.offset_);
2610 emit(instr);
2611 }
2612
align(Register rd,Register rs,Register rt,uint8_t bp)2613 void Assembler::align(Register rd, Register rs, Register rt, uint8_t bp) {
2614 DCHECK_EQ(kArchVariant, kMips64r6);
2615 DCHECK(is_uint3(bp));
2616 uint16_t sa = (ALIGN << kBp2Bits) | bp;
2617 GenInstrRegister(SPECIAL3, rs, rt, rd, sa, BSHFL);
2618 }
2619
dalign(Register rd,Register rs,Register rt,uint8_t bp)2620 void Assembler::dalign(Register rd, Register rs, Register rt, uint8_t bp) {
2621 DCHECK_EQ(kArchVariant, kMips64r6);
2622 DCHECK(is_uint3(bp));
2623 uint16_t sa = (DALIGN << kBp3Bits) | bp;
2624 GenInstrRegister(SPECIAL3, rs, rt, rd, sa, DBSHFL);
2625 }
2626
wsbh(Register rd,Register rt)2627 void Assembler::wsbh(Register rd, Register rt) {
2628 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2629 GenInstrRegister(SPECIAL3, zero_reg, rt, rd, WSBH, BSHFL);
2630 }
2631
dsbh(Register rd,Register rt)2632 void Assembler::dsbh(Register rd, Register rt) {
2633 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2634 GenInstrRegister(SPECIAL3, zero_reg, rt, rd, DSBH, DBSHFL);
2635 }
2636
dshd(Register rd,Register rt)2637 void Assembler::dshd(Register rd, Register rt) {
2638 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2639 GenInstrRegister(SPECIAL3, zero_reg, rt, rd, DSHD, DBSHFL);
2640 }
2641
seh(Register rd,Register rt)2642 void Assembler::seh(Register rd, Register rt) {
2643 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2644 GenInstrRegister(SPECIAL3, zero_reg, rt, rd, SEH, BSHFL);
2645 }
2646
seb(Register rd,Register rt)2647 void Assembler::seb(Register rd, Register rt) {
2648 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2649 GenInstrRegister(SPECIAL3, zero_reg, rt, rd, SEB, BSHFL);
2650 }
2651
2652 // --------Coprocessor-instructions----------------
2653
2654 // Load, store, move.
lwc1(FPURegister fd,const MemOperand & src)2655 void Assembler::lwc1(FPURegister fd, const MemOperand& src) {
2656 GenInstrImmediate(LWC1, src.rm(), fd, src.offset_);
2657 }
2658
ldc1(FPURegister fd,const MemOperand & src)2659 void Assembler::ldc1(FPURegister fd, const MemOperand& src) {
2660 GenInstrImmediate(LDC1, src.rm(), fd, src.offset_);
2661 }
2662
swc1(FPURegister fs,const MemOperand & src)2663 void Assembler::swc1(FPURegister fs, const MemOperand& src) {
2664 GenInstrImmediate(SWC1, src.rm(), fs, src.offset_);
2665 }
2666
sdc1(FPURegister fs,const MemOperand & src)2667 void Assembler::sdc1(FPURegister fs, const MemOperand& src) {
2668 GenInstrImmediate(SDC1, src.rm(), fs, src.offset_);
2669 }
2670
mtc1(Register rt,FPURegister fs)2671 void Assembler::mtc1(Register rt, FPURegister fs) {
2672 GenInstrRegister(COP1, MTC1, rt, fs, f0);
2673 }
2674
mthc1(Register rt,FPURegister fs)2675 void Assembler::mthc1(Register rt, FPURegister fs) {
2676 GenInstrRegister(COP1, MTHC1, rt, fs, f0);
2677 }
2678
dmtc1(Register rt,FPURegister fs)2679 void Assembler::dmtc1(Register rt, FPURegister fs) {
2680 GenInstrRegister(COP1, DMTC1, rt, fs, f0);
2681 }
2682
mfc1(Register rt,FPURegister fs)2683 void Assembler::mfc1(Register rt, FPURegister fs) {
2684 GenInstrRegister(COP1, MFC1, rt, fs, f0);
2685 }
2686
mfhc1(Register rt,FPURegister fs)2687 void Assembler::mfhc1(Register rt, FPURegister fs) {
2688 GenInstrRegister(COP1, MFHC1, rt, fs, f0);
2689 }
2690
dmfc1(Register rt,FPURegister fs)2691 void Assembler::dmfc1(Register rt, FPURegister fs) {
2692 GenInstrRegister(COP1, DMFC1, rt, fs, f0);
2693 }
2694
ctc1(Register rt,FPUControlRegister fs)2695 void Assembler::ctc1(Register rt, FPUControlRegister fs) {
2696 GenInstrRegister(COP1, CTC1, rt, fs);
2697 }
2698
cfc1(Register rt,FPUControlRegister fs)2699 void Assembler::cfc1(Register rt, FPUControlRegister fs) {
2700 GenInstrRegister(COP1, CFC1, rt, fs);
2701 }
2702
sel(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2703 void Assembler::sel(SecondaryField fmt, FPURegister fd, FPURegister fs,
2704 FPURegister ft) {
2705 DCHECK_EQ(kArchVariant, kMips64r6);
2706 DCHECK((fmt == D) || (fmt == S));
2707
2708 GenInstrRegister(COP1, fmt, ft, fs, fd, SEL);
2709 }
2710
sel_s(FPURegister fd,FPURegister fs,FPURegister ft)2711 void Assembler::sel_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2712 sel(S, fd, fs, ft);
2713 }
2714
sel_d(FPURegister fd,FPURegister fs,FPURegister ft)2715 void Assembler::sel_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2716 sel(D, fd, fs, ft);
2717 }
2718
2719 // FPR.
seleqz(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2720 void Assembler::seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
2721 FPURegister ft) {
2722 DCHECK((fmt == D) || (fmt == S));
2723 GenInstrRegister(COP1, fmt, ft, fs, fd, SELEQZ_C);
2724 }
2725
seleqz_d(FPURegister fd,FPURegister fs,FPURegister ft)2726 void Assembler::seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2727 seleqz(D, fd, fs, ft);
2728 }
2729
seleqz_s(FPURegister fd,FPURegister fs,FPURegister ft)2730 void Assembler::seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2731 seleqz(S, fd, fs, ft);
2732 }
2733
selnez_d(FPURegister fd,FPURegister fs,FPURegister ft)2734 void Assembler::selnez_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2735 selnez(D, fd, fs, ft);
2736 }
2737
selnez_s(FPURegister fd,FPURegister fs,FPURegister ft)2738 void Assembler::selnez_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2739 selnez(S, fd, fs, ft);
2740 }
2741
movz_s(FPURegister fd,FPURegister fs,Register rt)2742 void Assembler::movz_s(FPURegister fd, FPURegister fs, Register rt) {
2743 DCHECK_EQ(kArchVariant, kMips64r2);
2744 GenInstrRegister(COP1, S, rt, fs, fd, MOVZ_C);
2745 }
2746
movz_d(FPURegister fd,FPURegister fs,Register rt)2747 void Assembler::movz_d(FPURegister fd, FPURegister fs, Register rt) {
2748 DCHECK_EQ(kArchVariant, kMips64r2);
2749 GenInstrRegister(COP1, D, rt, fs, fd, MOVZ_C);
2750 }
2751
movt_s(FPURegister fd,FPURegister fs,uint16_t cc)2752 void Assembler::movt_s(FPURegister fd, FPURegister fs, uint16_t cc) {
2753 DCHECK_EQ(kArchVariant, kMips64r2);
2754 FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 1);
2755 GenInstrRegister(COP1, S, ft, fs, fd, MOVF);
2756 }
2757
movt_d(FPURegister fd,FPURegister fs,uint16_t cc)2758 void Assembler::movt_d(FPURegister fd, FPURegister fs, uint16_t cc) {
2759 DCHECK_EQ(kArchVariant, kMips64r2);
2760 FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 1);
2761 GenInstrRegister(COP1, D, ft, fs, fd, MOVF);
2762 }
2763
movf_s(FPURegister fd,FPURegister fs,uint16_t cc)2764 void Assembler::movf_s(FPURegister fd, FPURegister fs, uint16_t cc) {
2765 DCHECK_EQ(kArchVariant, kMips64r2);
2766 FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 0);
2767 GenInstrRegister(COP1, S, ft, fs, fd, MOVF);
2768 }
2769
movf_d(FPURegister fd,FPURegister fs,uint16_t cc)2770 void Assembler::movf_d(FPURegister fd, FPURegister fs, uint16_t cc) {
2771 DCHECK_EQ(kArchVariant, kMips64r2);
2772 FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 0);
2773 GenInstrRegister(COP1, D, ft, fs, fd, MOVF);
2774 }
2775
movn_s(FPURegister fd,FPURegister fs,Register rt)2776 void Assembler::movn_s(FPURegister fd, FPURegister fs, Register rt) {
2777 DCHECK_EQ(kArchVariant, kMips64r2);
2778 GenInstrRegister(COP1, S, rt, fs, fd, MOVN_C);
2779 }
2780
movn_d(FPURegister fd,FPURegister fs,Register rt)2781 void Assembler::movn_d(FPURegister fd, FPURegister fs, Register rt) {
2782 DCHECK_EQ(kArchVariant, kMips64r2);
2783 GenInstrRegister(COP1, D, rt, fs, fd, MOVN_C);
2784 }
2785
2786 // FPR.
selnez(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2787 void Assembler::selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
2788 FPURegister ft) {
2789 DCHECK_EQ(kArchVariant, kMips64r6);
2790 DCHECK((fmt == D) || (fmt == S));
2791 GenInstrRegister(COP1, fmt, ft, fs, fd, SELNEZ_C);
2792 }
2793
2794 // Arithmetic.
2795
add_s(FPURegister fd,FPURegister fs,FPURegister ft)2796 void Assembler::add_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2797 GenInstrRegister(COP1, S, ft, fs, fd, ADD_D);
2798 }
2799
add_d(FPURegister fd,FPURegister fs,FPURegister ft)2800 void Assembler::add_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2801 GenInstrRegister(COP1, D, ft, fs, fd, ADD_D);
2802 }
2803
sub_s(FPURegister fd,FPURegister fs,FPURegister ft)2804 void Assembler::sub_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2805 GenInstrRegister(COP1, S, ft, fs, fd, SUB_D);
2806 }
2807
sub_d(FPURegister fd,FPURegister fs,FPURegister ft)2808 void Assembler::sub_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2809 GenInstrRegister(COP1, D, ft, fs, fd, SUB_D);
2810 }
2811
mul_s(FPURegister fd,FPURegister fs,FPURegister ft)2812 void Assembler::mul_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2813 GenInstrRegister(COP1, S, ft, fs, fd, MUL_D);
2814 }
2815
mul_d(FPURegister fd,FPURegister fs,FPURegister ft)2816 void Assembler::mul_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2817 GenInstrRegister(COP1, D, ft, fs, fd, MUL_D);
2818 }
2819
madd_s(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2820 void Assembler::madd_s(FPURegister fd, FPURegister fr, FPURegister fs,
2821 FPURegister ft) {
2822 // On Loongson 3A (MIPS64R2), MADD.S instruction is actually fused MADD.S and
2823 // this causes failure in some of the tests. Since this optimization is rarely
2824 // used, and not used at all on MIPS64R6, this isntruction is removed.
2825 UNREACHABLE();
2826 }
2827
madd_d(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2828 void Assembler::madd_d(FPURegister fd, FPURegister fr, FPURegister fs,
2829 FPURegister ft) {
2830 // On Loongson 3A (MIPS64R2), MADD.D instruction is actually fused MADD.D and
2831 // this causes failure in some of the tests. Since this optimization is rarely
2832 // used, and not used at all on MIPS64R6, this isntruction is removed.
2833 UNREACHABLE();
2834 }
2835
msub_s(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2836 void Assembler::msub_s(FPURegister fd, FPURegister fr, FPURegister fs,
2837 FPURegister ft) {
2838 // See explanation for instruction madd_s.
2839 UNREACHABLE();
2840 }
2841
msub_d(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2842 void Assembler::msub_d(FPURegister fd, FPURegister fr, FPURegister fs,
2843 FPURegister ft) {
2844 // See explanation for instruction madd_d.
2845 UNREACHABLE();
2846 }
2847
maddf_s(FPURegister fd,FPURegister fs,FPURegister ft)2848 void Assembler::maddf_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2849 DCHECK_EQ(kArchVariant, kMips64r6);
2850 GenInstrRegister(COP1, S, ft, fs, fd, MADDF_S);
2851 }
2852
maddf_d(FPURegister fd,FPURegister fs,FPURegister ft)2853 void Assembler::maddf_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2854 DCHECK_EQ(kArchVariant, kMips64r6);
2855 GenInstrRegister(COP1, D, ft, fs, fd, MADDF_D);
2856 }
2857
msubf_s(FPURegister fd,FPURegister fs,FPURegister ft)2858 void Assembler::msubf_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2859 DCHECK_EQ(kArchVariant, kMips64r6);
2860 GenInstrRegister(COP1, S, ft, fs, fd, MSUBF_S);
2861 }
2862
msubf_d(FPURegister fd,FPURegister fs,FPURegister ft)2863 void Assembler::msubf_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2864 DCHECK_EQ(kArchVariant, kMips64r6);
2865 GenInstrRegister(COP1, D, ft, fs, fd, MSUBF_D);
2866 }
2867
div_s(FPURegister fd,FPURegister fs,FPURegister ft)2868 void Assembler::div_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2869 GenInstrRegister(COP1, S, ft, fs, fd, DIV_D);
2870 }
2871
div_d(FPURegister fd,FPURegister fs,FPURegister ft)2872 void Assembler::div_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2873 GenInstrRegister(COP1, D, ft, fs, fd, DIV_D);
2874 }
2875
abs_s(FPURegister fd,FPURegister fs)2876 void Assembler::abs_s(FPURegister fd, FPURegister fs) {
2877 GenInstrRegister(COP1, S, f0, fs, fd, ABS_D);
2878 }
2879
abs_d(FPURegister fd,FPURegister fs)2880 void Assembler::abs_d(FPURegister fd, FPURegister fs) {
2881 GenInstrRegister(COP1, D, f0, fs, fd, ABS_D);
2882 }
2883
mov_d(FPURegister fd,FPURegister fs)2884 void Assembler::mov_d(FPURegister fd, FPURegister fs) {
2885 GenInstrRegister(COP1, D, f0, fs, fd, MOV_D);
2886 }
2887
mov_s(FPURegister fd,FPURegister fs)2888 void Assembler::mov_s(FPURegister fd, FPURegister fs) {
2889 GenInstrRegister(COP1, S, f0, fs, fd, MOV_S);
2890 }
2891
neg_s(FPURegister fd,FPURegister fs)2892 void Assembler::neg_s(FPURegister fd, FPURegister fs) {
2893 GenInstrRegister(COP1, S, f0, fs, fd, NEG_D);
2894 }
2895
neg_d(FPURegister fd,FPURegister fs)2896 void Assembler::neg_d(FPURegister fd, FPURegister fs) {
2897 GenInstrRegister(COP1, D, f0, fs, fd, NEG_D);
2898 }
2899
sqrt_s(FPURegister fd,FPURegister fs)2900 void Assembler::sqrt_s(FPURegister fd, FPURegister fs) {
2901 GenInstrRegister(COP1, S, f0, fs, fd, SQRT_D);
2902 }
2903
sqrt_d(FPURegister fd,FPURegister fs)2904 void Assembler::sqrt_d(FPURegister fd, FPURegister fs) {
2905 GenInstrRegister(COP1, D, f0, fs, fd, SQRT_D);
2906 }
2907
rsqrt_s(FPURegister fd,FPURegister fs)2908 void Assembler::rsqrt_s(FPURegister fd, FPURegister fs) {
2909 GenInstrRegister(COP1, S, f0, fs, fd, RSQRT_S);
2910 }
2911
rsqrt_d(FPURegister fd,FPURegister fs)2912 void Assembler::rsqrt_d(FPURegister fd, FPURegister fs) {
2913 GenInstrRegister(COP1, D, f0, fs, fd, RSQRT_D);
2914 }
2915
recip_d(FPURegister fd,FPURegister fs)2916 void Assembler::recip_d(FPURegister fd, FPURegister fs) {
2917 GenInstrRegister(COP1, D, f0, fs, fd, RECIP_D);
2918 }
2919
recip_s(FPURegister fd,FPURegister fs)2920 void Assembler::recip_s(FPURegister fd, FPURegister fs) {
2921 GenInstrRegister(COP1, S, f0, fs, fd, RECIP_S);
2922 }
2923
2924 // Conversions.
cvt_w_s(FPURegister fd,FPURegister fs)2925 void Assembler::cvt_w_s(FPURegister fd, FPURegister fs) {
2926 GenInstrRegister(COP1, S, f0, fs, fd, CVT_W_S);
2927 }
2928
cvt_w_d(FPURegister fd,FPURegister fs)2929 void Assembler::cvt_w_d(FPURegister fd, FPURegister fs) {
2930 GenInstrRegister(COP1, D, f0, fs, fd, CVT_W_D);
2931 }
2932
trunc_w_s(FPURegister fd,FPURegister fs)2933 void Assembler::trunc_w_s(FPURegister fd, FPURegister fs) {
2934 GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_W_S);
2935 }
2936
trunc_w_d(FPURegister fd,FPURegister fs)2937 void Assembler::trunc_w_d(FPURegister fd, FPURegister fs) {
2938 GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_W_D);
2939 }
2940
round_w_s(FPURegister fd,FPURegister fs)2941 void Assembler::round_w_s(FPURegister fd, FPURegister fs) {
2942 GenInstrRegister(COP1, S, f0, fs, fd, ROUND_W_S);
2943 }
2944
round_w_d(FPURegister fd,FPURegister fs)2945 void Assembler::round_w_d(FPURegister fd, FPURegister fs) {
2946 GenInstrRegister(COP1, D, f0, fs, fd, ROUND_W_D);
2947 }
2948
floor_w_s(FPURegister fd,FPURegister fs)2949 void Assembler::floor_w_s(FPURegister fd, FPURegister fs) {
2950 GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_W_S);
2951 }
2952
floor_w_d(FPURegister fd,FPURegister fs)2953 void Assembler::floor_w_d(FPURegister fd, FPURegister fs) {
2954 GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_W_D);
2955 }
2956
ceil_w_s(FPURegister fd,FPURegister fs)2957 void Assembler::ceil_w_s(FPURegister fd, FPURegister fs) {
2958 GenInstrRegister(COP1, S, f0, fs, fd, CEIL_W_S);
2959 }
2960
ceil_w_d(FPURegister fd,FPURegister fs)2961 void Assembler::ceil_w_d(FPURegister fd, FPURegister fs) {
2962 GenInstrRegister(COP1, D, f0, fs, fd, CEIL_W_D);
2963 }
2964
rint_s(FPURegister fd,FPURegister fs)2965 void Assembler::rint_s(FPURegister fd, FPURegister fs) { rint(S, fd, fs); }
2966
rint_d(FPURegister fd,FPURegister fs)2967 void Assembler::rint_d(FPURegister fd, FPURegister fs) { rint(D, fd, fs); }
2968
rint(SecondaryField fmt,FPURegister fd,FPURegister fs)2969 void Assembler::rint(SecondaryField fmt, FPURegister fd, FPURegister fs) {
2970 DCHECK_EQ(kArchVariant, kMips64r6);
2971 GenInstrRegister(COP1, fmt, f0, fs, fd, RINT);
2972 }
2973
cvt_l_s(FPURegister fd,FPURegister fs)2974 void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) {
2975 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2976 GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S);
2977 }
2978
cvt_l_d(FPURegister fd,FPURegister fs)2979 void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) {
2980 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2981 GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D);
2982 }
2983
trunc_l_s(FPURegister fd,FPURegister fs)2984 void Assembler::trunc_l_s(FPURegister fd, FPURegister fs) {
2985 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2986 GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_L_S);
2987 }
2988
trunc_l_d(FPURegister fd,FPURegister fs)2989 void Assembler::trunc_l_d(FPURegister fd, FPURegister fs) {
2990 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2991 GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_L_D);
2992 }
2993
round_l_s(FPURegister fd,FPURegister fs)2994 void Assembler::round_l_s(FPURegister fd, FPURegister fs) {
2995 GenInstrRegister(COP1, S, f0, fs, fd, ROUND_L_S);
2996 }
2997
round_l_d(FPURegister fd,FPURegister fs)2998 void Assembler::round_l_d(FPURegister fd, FPURegister fs) {
2999 GenInstrRegister(COP1, D, f0, fs, fd, ROUND_L_D);
3000 }
3001
floor_l_s(FPURegister fd,FPURegister fs)3002 void Assembler::floor_l_s(FPURegister fd, FPURegister fs) {
3003 GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_L_S);
3004 }
3005
floor_l_d(FPURegister fd,FPURegister fs)3006 void Assembler::floor_l_d(FPURegister fd, FPURegister fs) {
3007 GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_L_D);
3008 }
3009
ceil_l_s(FPURegister fd,FPURegister fs)3010 void Assembler::ceil_l_s(FPURegister fd, FPURegister fs) {
3011 GenInstrRegister(COP1, S, f0, fs, fd, CEIL_L_S);
3012 }
3013
ceil_l_d(FPURegister fd,FPURegister fs)3014 void Assembler::ceil_l_d(FPURegister fd, FPURegister fs) {
3015 GenInstrRegister(COP1, D, f0, fs, fd, CEIL_L_D);
3016 }
3017
class_s(FPURegister fd,FPURegister fs)3018 void Assembler::class_s(FPURegister fd, FPURegister fs) {
3019 DCHECK_EQ(kArchVariant, kMips64r6);
3020 GenInstrRegister(COP1, S, f0, fs, fd, CLASS_S);
3021 }
3022
class_d(FPURegister fd,FPURegister fs)3023 void Assembler::class_d(FPURegister fd, FPURegister fs) {
3024 DCHECK_EQ(kArchVariant, kMips64r6);
3025 GenInstrRegister(COP1, D, f0, fs, fd, CLASS_D);
3026 }
3027
mina(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)3028 void Assembler::mina(SecondaryField fmt, FPURegister fd, FPURegister fs,
3029 FPURegister ft) {
3030 DCHECK_EQ(kArchVariant, kMips64r6);
3031 DCHECK((fmt == D) || (fmt == S));
3032 GenInstrRegister(COP1, fmt, ft, fs, fd, MINA);
3033 }
3034
maxa(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)3035 void Assembler::maxa(SecondaryField fmt, FPURegister fd, FPURegister fs,
3036 FPURegister ft) {
3037 DCHECK_EQ(kArchVariant, kMips64r6);
3038 DCHECK((fmt == D) || (fmt == S));
3039 GenInstrRegister(COP1, fmt, ft, fs, fd, MAXA);
3040 }
3041
cvt_s_w(FPURegister fd,FPURegister fs)3042 void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) {
3043 GenInstrRegister(COP1, W, f0, fs, fd, CVT_S_W);
3044 }
3045
cvt_s_l(FPURegister fd,FPURegister fs)3046 void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) {
3047 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
3048 GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L);
3049 }
3050
cvt_s_d(FPURegister fd,FPURegister fs)3051 void Assembler::cvt_s_d(FPURegister fd, FPURegister fs) {
3052 GenInstrRegister(COP1, D, f0, fs, fd, CVT_S_D);
3053 }
3054
cvt_d_w(FPURegister fd,FPURegister fs)3055 void Assembler::cvt_d_w(FPURegister fd, FPURegister fs) {
3056 GenInstrRegister(COP1, W, f0, fs, fd, CVT_D_W);
3057 }
3058
cvt_d_l(FPURegister fd,FPURegister fs)3059 void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) {
3060 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
3061 GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L);
3062 }
3063
cvt_d_s(FPURegister fd,FPURegister fs)3064 void Assembler::cvt_d_s(FPURegister fd, FPURegister fs) {
3065 GenInstrRegister(COP1, S, f0, fs, fd, CVT_D_S);
3066 }
3067
3068 // Conditions for >= MIPSr6.
cmp(FPUCondition cond,SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)3069 void Assembler::cmp(FPUCondition cond, SecondaryField fmt, FPURegister fd,
3070 FPURegister fs, FPURegister ft) {
3071 DCHECK_EQ(kArchVariant, kMips64r6);
3072 DCHECK_EQ(fmt & ~(31 << kRsShift), 0);
3073 Instr instr = COP1 | fmt | ft.code() << kFtShift | fs.code() << kFsShift |
3074 fd.code() << kFdShift | (0 << 5) | cond;
3075 emit(instr);
3076 }
3077
cmp_s(FPUCondition cond,FPURegister fd,FPURegister fs,FPURegister ft)3078 void Assembler::cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs,
3079 FPURegister ft) {
3080 cmp(cond, W, fd, fs, ft);
3081 }
3082
cmp_d(FPUCondition cond,FPURegister fd,FPURegister fs,FPURegister ft)3083 void Assembler::cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs,
3084 FPURegister ft) {
3085 cmp(cond, L, fd, fs, ft);
3086 }
3087
bc1eqz(int16_t offset,FPURegister ft)3088 void Assembler::bc1eqz(int16_t offset, FPURegister ft) {
3089 DCHECK_EQ(kArchVariant, kMips64r6);
3090 BlockTrampolinePoolScope block_trampoline_pool(this);
3091 Instr instr = COP1 | BC1EQZ | ft.code() << kFtShift | (offset & kImm16Mask);
3092 emit(instr);
3093 BlockTrampolinePoolFor(1); // For associated delay slot.
3094 }
3095
bc1nez(int16_t offset,FPURegister ft)3096 void Assembler::bc1nez(int16_t offset, FPURegister ft) {
3097 DCHECK_EQ(kArchVariant, kMips64r6);
3098 BlockTrampolinePoolScope block_trampoline_pool(this);
3099 Instr instr = COP1 | BC1NEZ | ft.code() << kFtShift | (offset & kImm16Mask);
3100 emit(instr);
3101 BlockTrampolinePoolFor(1); // For associated delay slot.
3102 }
3103
3104 // Conditions for < MIPSr6.
c(FPUCondition cond,SecondaryField fmt,FPURegister fs,FPURegister ft,uint16_t cc)3105 void Assembler::c(FPUCondition cond, SecondaryField fmt, FPURegister fs,
3106 FPURegister ft, uint16_t cc) {
3107 DCHECK_NE(kArchVariant, kMips64r6);
3108 DCHECK(is_uint3(cc));
3109 DCHECK(fmt == S || fmt == D);
3110 DCHECK_EQ(fmt & ~(31 << kRsShift), 0);
3111 Instr instr = COP1 | fmt | ft.code() << kFtShift | fs.code() << kFsShift |
3112 cc << 8 | 3 << 4 | cond;
3113 emit(instr);
3114 }
3115
c_s(FPUCondition cond,FPURegister fs,FPURegister ft,uint16_t cc)3116 void Assembler::c_s(FPUCondition cond, FPURegister fs, FPURegister ft,
3117 uint16_t cc) {
3118 c(cond, S, fs, ft, cc);
3119 }
3120
c_d(FPUCondition cond,FPURegister fs,FPURegister ft,uint16_t cc)3121 void Assembler::c_d(FPUCondition cond, FPURegister fs, FPURegister ft,
3122 uint16_t cc) {
3123 c(cond, D, fs, ft, cc);
3124 }
3125
fcmp(FPURegister src1,const double src2,FPUCondition cond)3126 void Assembler::fcmp(FPURegister src1, const double src2, FPUCondition cond) {
3127 DCHECK_EQ(src2, 0.0);
3128 mtc1(zero_reg, f14);
3129 cvt_d_w(f14, f14);
3130 c(cond, D, src1, f14, 0);
3131 }
3132
bc1f(int16_t offset,uint16_t cc)3133 void Assembler::bc1f(int16_t offset, uint16_t cc) {
3134 BlockTrampolinePoolScope block_trampoline_pool(this);
3135 DCHECK(is_uint3(cc));
3136 Instr instr = COP1 | BC1 | cc << 18 | 0 << 16 | (offset & kImm16Mask);
3137 emit(instr);
3138 BlockTrampolinePoolFor(1); // For associated delay slot.
3139 }
3140
bc1t(int16_t offset,uint16_t cc)3141 void Assembler::bc1t(int16_t offset, uint16_t cc) {
3142 BlockTrampolinePoolScope block_trampoline_pool(this);
3143 DCHECK(is_uint3(cc));
3144 Instr instr = COP1 | BC1 | cc << 18 | 1 << 16 | (offset & kImm16Mask);
3145 emit(instr);
3146 BlockTrampolinePoolFor(1); // For associated delay slot.
3147 }
3148
3149 // ---------- MSA instructions ------------
3150 #define MSA_BRANCH_LIST(V) \
3151 V(bz_v, BZ_V) \
3152 V(bz_b, BZ_B) \
3153 V(bz_h, BZ_H) \
3154 V(bz_w, BZ_W) \
3155 V(bz_d, BZ_D) \
3156 V(bnz_v, BNZ_V) \
3157 V(bnz_b, BNZ_B) \
3158 V(bnz_h, BNZ_H) \
3159 V(bnz_w, BNZ_W) \
3160 V(bnz_d, BNZ_D)
3161
3162 #define MSA_BRANCH(name, opcode) \
3163 void Assembler::name(MSARegister wt, int16_t offset) { \
3164 GenInstrMsaBranch(opcode, wt, offset); \
3165 }
3166
3167 MSA_BRANCH_LIST(MSA_BRANCH)
3168 #undef MSA_BRANCH
3169 #undef MSA_BRANCH_LIST
3170
3171 #define MSA_LD_ST_LIST(V) \
3172 V(ld_b, LD_B, 1) \
3173 V(ld_h, LD_H, 2) \
3174 V(ld_w, LD_W, 4) \
3175 V(ld_d, LD_D, 8) \
3176 V(st_b, ST_B, 1) \
3177 V(st_h, ST_H, 2) \
3178 V(st_w, ST_W, 4) \
3179 V(st_d, ST_D, 8)
3180
3181 #define MSA_LD_ST(name, opcode, b) \
3182 void Assembler::name(MSARegister wd, const MemOperand& rs) { \
3183 MemOperand source = rs; \
3184 AdjustBaseAndOffset(&source); \
3185 if (is_int10(source.offset())) { \
3186 DCHECK_EQ(source.offset() % b, 0); \
3187 GenInstrMsaMI10(opcode, source.offset() / b, source.rm(), wd); \
3188 } else { \
3189 UseScratchRegisterScope temps(this); \
3190 Register scratch = temps.Acquire(); \
3191 DCHECK_NE(rs.rm(), scratch); \
3192 daddiu(scratch, source.rm(), source.offset()); \
3193 GenInstrMsaMI10(opcode, 0, scratch, wd); \
3194 } \
3195 }
3196
MSA_LD_ST_LIST(MSA_LD_ST)3197 MSA_LD_ST_LIST(MSA_LD_ST)
3198 #undef MSA_LD_ST
3199 #undef MSA_LD_ST_LIST
3200
3201 #define MSA_I10_LIST(V) \
3202 V(ldi_b, I5_DF_b) \
3203 V(ldi_h, I5_DF_h) \
3204 V(ldi_w, I5_DF_w) \
3205 V(ldi_d, I5_DF_d)
3206
3207 #define MSA_I10(name, format) \
3208 void Assembler::name(MSARegister wd, int32_t imm10) { \
3209 GenInstrMsaI10(LDI, format, imm10, wd); \
3210 }
3211 MSA_I10_LIST(MSA_I10)
3212 #undef MSA_I10
3213 #undef MSA_I10_LIST
3214
3215 #define MSA_I5_LIST(V) \
3216 V(addvi, ADDVI) \
3217 V(subvi, SUBVI) \
3218 V(maxi_s, MAXI_S) \
3219 V(maxi_u, MAXI_U) \
3220 V(mini_s, MINI_S) \
3221 V(mini_u, MINI_U) \
3222 V(ceqi, CEQI) \
3223 V(clti_s, CLTI_S) \
3224 V(clti_u, CLTI_U) \
3225 V(clei_s, CLEI_S) \
3226 V(clei_u, CLEI_U)
3227
3228 #define MSA_I5_FORMAT(name, opcode, format) \
3229 void Assembler::name##_##format(MSARegister wd, MSARegister ws, \
3230 uint32_t imm5) { \
3231 GenInstrMsaI5(opcode, I5_DF_##format, imm5, ws, wd); \
3232 }
3233
3234 #define MSA_I5(name, opcode) \
3235 MSA_I5_FORMAT(name, opcode, b) \
3236 MSA_I5_FORMAT(name, opcode, h) \
3237 MSA_I5_FORMAT(name, opcode, w) \
3238 MSA_I5_FORMAT(name, opcode, d)
3239
3240 MSA_I5_LIST(MSA_I5)
3241 #undef MSA_I5
3242 #undef MSA_I5_FORMAT
3243 #undef MSA_I5_LIST
3244
3245 #define MSA_I8_LIST(V) \
3246 V(andi_b, ANDI_B) \
3247 V(ori_b, ORI_B) \
3248 V(nori_b, NORI_B) \
3249 V(xori_b, XORI_B) \
3250 V(bmnzi_b, BMNZI_B) \
3251 V(bmzi_b, BMZI_B) \
3252 V(bseli_b, BSELI_B) \
3253 V(shf_b, SHF_B) \
3254 V(shf_h, SHF_H) \
3255 V(shf_w, SHF_W)
3256
3257 #define MSA_I8(name, opcode) \
3258 void Assembler::name(MSARegister wd, MSARegister ws, uint32_t imm8) { \
3259 GenInstrMsaI8(opcode, imm8, ws, wd); \
3260 }
3261
3262 MSA_I8_LIST(MSA_I8)
3263 #undef MSA_I8
3264 #undef MSA_I8_LIST
3265
3266 #define MSA_VEC_LIST(V) \
3267 V(and_v, AND_V) \
3268 V(or_v, OR_V) \
3269 V(nor_v, NOR_V) \
3270 V(xor_v, XOR_V) \
3271 V(bmnz_v, BMNZ_V) \
3272 V(bmz_v, BMZ_V) \
3273 V(bsel_v, BSEL_V)
3274
3275 #define MSA_VEC(name, opcode) \
3276 void Assembler::name(MSARegister wd, MSARegister ws, MSARegister wt) { \
3277 GenInstrMsaVec(opcode, wt, ws, wd); \
3278 }
3279
3280 MSA_VEC_LIST(MSA_VEC)
3281 #undef MSA_VEC
3282 #undef MSA_VEC_LIST
3283
3284 #define MSA_2R_LIST(V) \
3285 V(pcnt, PCNT) \
3286 V(nloc, NLOC) \
3287 V(nlzc, NLZC)
3288
3289 #define MSA_2R_FORMAT(name, opcode, format) \
3290 void Assembler::name##_##format(MSARegister wd, MSARegister ws) { \
3291 GenInstrMsa2R(opcode, MSA_2R_DF_##format, ws, wd); \
3292 }
3293
3294 #define MSA_2R(name, opcode) \
3295 MSA_2R_FORMAT(name, opcode, b) \
3296 MSA_2R_FORMAT(name, opcode, h) \
3297 MSA_2R_FORMAT(name, opcode, w) \
3298 MSA_2R_FORMAT(name, opcode, d)
3299
3300 MSA_2R_LIST(MSA_2R)
3301 #undef MSA_2R
3302 #undef MSA_2R_FORMAT
3303 #undef MSA_2R_LIST
3304
3305 #define MSA_FILL(format) \
3306 void Assembler::fill_##format(MSARegister wd, Register rs) { \
3307 DCHECK(IsEnabled(MIPS_SIMD)); \
3308 DCHECK(rs.is_valid() && wd.is_valid()); \
3309 Instr instr = MSA | MSA_2R_FORMAT | FILL | MSA_2R_DF_##format | \
3310 (rs.code() << kWsShift) | (wd.code() << kWdShift) | \
3311 MSA_VEC_2R_2RF_MINOR; \
3312 emit(instr); \
3313 }
3314
3315 MSA_FILL(b)
3316 MSA_FILL(h)
3317 MSA_FILL(w)
3318 MSA_FILL(d)
3319 #undef MSA_FILL
3320
3321 #define MSA_2RF_LIST(V) \
3322 V(fclass, FCLASS) \
3323 V(ftrunc_s, FTRUNC_S) \
3324 V(ftrunc_u, FTRUNC_U) \
3325 V(fsqrt, FSQRT) \
3326 V(frsqrt, FRSQRT) \
3327 V(frcp, FRCP) \
3328 V(frint, FRINT) \
3329 V(flog2, FLOG2) \
3330 V(fexupl, FEXUPL) \
3331 V(fexupr, FEXUPR) \
3332 V(ffql, FFQL) \
3333 V(ffqr, FFQR) \
3334 V(ftint_s, FTINT_S) \
3335 V(ftint_u, FTINT_U) \
3336 V(ffint_s, FFINT_S) \
3337 V(ffint_u, FFINT_U)
3338
3339 #define MSA_2RF_FORMAT(name, opcode, format) \
3340 void Assembler::name##_##format(MSARegister wd, MSARegister ws) { \
3341 GenInstrMsa2RF(opcode, MSA_2RF_DF_##format, ws, wd); \
3342 }
3343
3344 #define MSA_2RF(name, opcode) \
3345 MSA_2RF_FORMAT(name, opcode, w) \
3346 MSA_2RF_FORMAT(name, opcode, d)
3347
3348 MSA_2RF_LIST(MSA_2RF)
3349 #undef MSA_2RF
3350 #undef MSA_2RF_FORMAT
3351 #undef MSA_2RF_LIST
3352
3353 #define MSA_3R_LIST(V) \
3354 V(sll, SLL_MSA) \
3355 V(sra, SRA_MSA) \
3356 V(srl, SRL_MSA) \
3357 V(bclr, BCLR) \
3358 V(bset, BSET) \
3359 V(bneg, BNEG) \
3360 V(binsl, BINSL) \
3361 V(binsr, BINSR) \
3362 V(addv, ADDV) \
3363 V(subv, SUBV) \
3364 V(max_s, MAX_S) \
3365 V(max_u, MAX_U) \
3366 V(min_s, MIN_S) \
3367 V(min_u, MIN_U) \
3368 V(max_a, MAX_A) \
3369 V(min_a, MIN_A) \
3370 V(ceq, CEQ) \
3371 V(clt_s, CLT_S) \
3372 V(clt_u, CLT_U) \
3373 V(cle_s, CLE_S) \
3374 V(cle_u, CLE_U) \
3375 V(add_a, ADD_A) \
3376 V(adds_a, ADDS_A) \
3377 V(adds_s, ADDS_S) \
3378 V(adds_u, ADDS_U) \
3379 V(ave_s, AVE_S) \
3380 V(ave_u, AVE_U) \
3381 V(aver_s, AVER_S) \
3382 V(aver_u, AVER_U) \
3383 V(subs_s, SUBS_S) \
3384 V(subs_u, SUBS_U) \
3385 V(subsus_u, SUBSUS_U) \
3386 V(subsuu_s, SUBSUU_S) \
3387 V(asub_s, ASUB_S) \
3388 V(asub_u, ASUB_U) \
3389 V(mulv, MULV) \
3390 V(maddv, MADDV) \
3391 V(msubv, MSUBV) \
3392 V(div_s, DIV_S_MSA) \
3393 V(div_u, DIV_U) \
3394 V(mod_s, MOD_S) \
3395 V(mod_u, MOD_U) \
3396 V(dotp_s, DOTP_S) \
3397 V(dotp_u, DOTP_U) \
3398 V(dpadd_s, DPADD_S) \
3399 V(dpadd_u, DPADD_U) \
3400 V(dpsub_s, DPSUB_S) \
3401 V(dpsub_u, DPSUB_U) \
3402 V(pckev, PCKEV) \
3403 V(pckod, PCKOD) \
3404 V(ilvl, ILVL) \
3405 V(ilvr, ILVR) \
3406 V(ilvev, ILVEV) \
3407 V(ilvod, ILVOD) \
3408 V(vshf, VSHF) \
3409 V(srar, SRAR) \
3410 V(srlr, SRLR) \
3411 V(hadd_s, HADD_S) \
3412 V(hadd_u, HADD_U) \
3413 V(hsub_s, HSUB_S) \
3414 V(hsub_u, HSUB_U)
3415
3416 #define MSA_3R_FORMAT(name, opcode, format) \
3417 void Assembler::name##_##format(MSARegister wd, MSARegister ws, \
3418 MSARegister wt) { \
3419 GenInstrMsa3R<MSARegister>(opcode, MSA_3R_DF_##format, wt, ws, wd); \
3420 }
3421
3422 #define MSA_3R_FORMAT_SLD_SPLAT(name, opcode, format) \
3423 void Assembler::name##_##format(MSARegister wd, MSARegister ws, \
3424 Register rt) { \
3425 GenInstrMsa3R<Register>(opcode, MSA_3R_DF_##format, rt, ws, wd); \
3426 }
3427
3428 #define MSA_3R(name, opcode) \
3429 MSA_3R_FORMAT(name, opcode, b) \
3430 MSA_3R_FORMAT(name, opcode, h) \
3431 MSA_3R_FORMAT(name, opcode, w) \
3432 MSA_3R_FORMAT(name, opcode, d)
3433
3434 #define MSA_3R_SLD_SPLAT(name, opcode) \
3435 MSA_3R_FORMAT_SLD_SPLAT(name, opcode, b) \
3436 MSA_3R_FORMAT_SLD_SPLAT(name, opcode, h) \
3437 MSA_3R_FORMAT_SLD_SPLAT(name, opcode, w) \
3438 MSA_3R_FORMAT_SLD_SPLAT(name, opcode, d)
3439
3440 MSA_3R_LIST(MSA_3R)
3441 MSA_3R_SLD_SPLAT(sld, SLD)
3442 MSA_3R_SLD_SPLAT(splat, SPLAT)
3443
3444 #undef MSA_3R
3445 #undef MSA_3R_FORMAT
3446 #undef MSA_3R_FORMAT_SLD_SPLAT
3447 #undef MSA_3R_SLD_SPLAT
3448 #undef MSA_3R_LIST
3449
3450 #define MSA_3RF_LIST1(V) \
3451 V(fcaf, FCAF) \
3452 V(fcun, FCUN) \
3453 V(fceq, FCEQ) \
3454 V(fcueq, FCUEQ) \
3455 V(fclt, FCLT) \
3456 V(fcult, FCULT) \
3457 V(fcle, FCLE) \
3458 V(fcule, FCULE) \
3459 V(fsaf, FSAF) \
3460 V(fsun, FSUN) \
3461 V(fseq, FSEQ) \
3462 V(fsueq, FSUEQ) \
3463 V(fslt, FSLT) \
3464 V(fsult, FSULT) \
3465 V(fsle, FSLE) \
3466 V(fsule, FSULE) \
3467 V(fadd, FADD) \
3468 V(fsub, FSUB) \
3469 V(fmul, FMUL) \
3470 V(fdiv, FDIV) \
3471 V(fmadd, FMADD) \
3472 V(fmsub, FMSUB) \
3473 V(fexp2, FEXP2) \
3474 V(fmin, FMIN) \
3475 V(fmin_a, FMIN_A) \
3476 V(fmax, FMAX) \
3477 V(fmax_a, FMAX_A) \
3478 V(fcor, FCOR) \
3479 V(fcune, FCUNE) \
3480 V(fcne, FCNE) \
3481 V(fsor, FSOR) \
3482 V(fsune, FSUNE) \
3483 V(fsne, FSNE)
3484
3485 #define MSA_3RF_LIST2(V) \
3486 V(fexdo, FEXDO) \
3487 V(ftq, FTQ) \
3488 V(mul_q, MUL_Q) \
3489 V(madd_q, MADD_Q) \
3490 V(msub_q, MSUB_Q) \
3491 V(mulr_q, MULR_Q) \
3492 V(maddr_q, MADDR_Q) \
3493 V(msubr_q, MSUBR_Q)
3494
3495 #define MSA_3RF_FORMAT(name, opcode, df, df_c) \
3496 void Assembler::name##_##df(MSARegister wd, MSARegister ws, \
3497 MSARegister wt) { \
3498 GenInstrMsa3RF(opcode, df_c, wt, ws, wd); \
3499 }
3500
3501 #define MSA_3RF_1(name, opcode) \
3502 MSA_3RF_FORMAT(name, opcode, w, 0) \
3503 MSA_3RF_FORMAT(name, opcode, d, 1)
3504
3505 #define MSA_3RF_2(name, opcode) \
3506 MSA_3RF_FORMAT(name, opcode, h, 0) \
3507 MSA_3RF_FORMAT(name, opcode, w, 1)
3508
3509 MSA_3RF_LIST1(MSA_3RF_1)
3510 MSA_3RF_LIST2(MSA_3RF_2)
3511 #undef MSA_3RF_1
3512 #undef MSA_3RF_2
3513 #undef MSA_3RF_FORMAT
3514 #undef MSA_3RF_LIST1
3515 #undef MSA_3RF_LIST2
3516
3517 void Assembler::sldi_b(MSARegister wd, MSARegister ws, uint32_t n) {
3518 GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_B, n, ws, wd);
3519 }
3520
sldi_h(MSARegister wd,MSARegister ws,uint32_t n)3521 void Assembler::sldi_h(MSARegister wd, MSARegister ws, uint32_t n) {
3522 GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_H, n, ws, wd);
3523 }
3524
sldi_w(MSARegister wd,MSARegister ws,uint32_t n)3525 void Assembler::sldi_w(MSARegister wd, MSARegister ws, uint32_t n) {
3526 GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_W, n, ws, wd);
3527 }
3528
sldi_d(MSARegister wd,MSARegister ws,uint32_t n)3529 void Assembler::sldi_d(MSARegister wd, MSARegister ws, uint32_t n) {
3530 GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_D, n, ws, wd);
3531 }
3532
splati_b(MSARegister wd,MSARegister ws,uint32_t n)3533 void Assembler::splati_b(MSARegister wd, MSARegister ws, uint32_t n) {
3534 GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_B, n, ws, wd);
3535 }
3536
splati_h(MSARegister wd,MSARegister ws,uint32_t n)3537 void Assembler::splati_h(MSARegister wd, MSARegister ws, uint32_t n) {
3538 GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_H, n, ws, wd);
3539 }
3540
splati_w(MSARegister wd,MSARegister ws,uint32_t n)3541 void Assembler::splati_w(MSARegister wd, MSARegister ws, uint32_t n) {
3542 GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_W, n, ws, wd);
3543 }
3544
splati_d(MSARegister wd,MSARegister ws,uint32_t n)3545 void Assembler::splati_d(MSARegister wd, MSARegister ws, uint32_t n) {
3546 GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_D, n, ws, wd);
3547 }
3548
copy_s_b(Register rd,MSARegister ws,uint32_t n)3549 void Assembler::copy_s_b(Register rd, MSARegister ws, uint32_t n) {
3550 GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_B, n, ws, rd);
3551 }
3552
copy_s_h(Register rd,MSARegister ws,uint32_t n)3553 void Assembler::copy_s_h(Register rd, MSARegister ws, uint32_t n) {
3554 GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_H, n, ws, rd);
3555 }
3556
copy_s_w(Register rd,MSARegister ws,uint32_t n)3557 void Assembler::copy_s_w(Register rd, MSARegister ws, uint32_t n) {
3558 GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_W, n, ws, rd);
3559 }
3560
copy_s_d(Register rd,MSARegister ws,uint32_t n)3561 void Assembler::copy_s_d(Register rd, MSARegister ws, uint32_t n) {
3562 GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_D, n, ws, rd);
3563 }
3564
copy_u_b(Register rd,MSARegister ws,uint32_t n)3565 void Assembler::copy_u_b(Register rd, MSARegister ws, uint32_t n) {
3566 GenInstrMsaElm<Register, MSARegister>(COPY_U, ELM_DF_B, n, ws, rd);
3567 }
3568
copy_u_h(Register rd,MSARegister ws,uint32_t n)3569 void Assembler::copy_u_h(Register rd, MSARegister ws, uint32_t n) {
3570 GenInstrMsaElm<Register, MSARegister>(COPY_U, ELM_DF_H, n, ws, rd);
3571 }
3572
copy_u_w(Register rd,MSARegister ws,uint32_t n)3573 void Assembler::copy_u_w(Register rd, MSARegister ws, uint32_t n) {
3574 GenInstrMsaElm<Register, MSARegister>(COPY_U, ELM_DF_W, n, ws, rd);
3575 }
3576
insert_b(MSARegister wd,uint32_t n,Register rs)3577 void Assembler::insert_b(MSARegister wd, uint32_t n, Register rs) {
3578 GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_B, n, rs, wd);
3579 }
3580
insert_h(MSARegister wd,uint32_t n,Register rs)3581 void Assembler::insert_h(MSARegister wd, uint32_t n, Register rs) {
3582 GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_H, n, rs, wd);
3583 }
3584
insert_w(MSARegister wd,uint32_t n,Register rs)3585 void Assembler::insert_w(MSARegister wd, uint32_t n, Register rs) {
3586 GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_W, n, rs, wd);
3587 }
3588
insert_d(MSARegister wd,uint32_t n,Register rs)3589 void Assembler::insert_d(MSARegister wd, uint32_t n, Register rs) {
3590 GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_D, n, rs, wd);
3591 }
3592
insve_b(MSARegister wd,uint32_t n,MSARegister ws)3593 void Assembler::insve_b(MSARegister wd, uint32_t n, MSARegister ws) {
3594 GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_B, n, ws, wd);
3595 }
3596
insve_h(MSARegister wd,uint32_t n,MSARegister ws)3597 void Assembler::insve_h(MSARegister wd, uint32_t n, MSARegister ws) {
3598 GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_H, n, ws, wd);
3599 }
3600
insve_w(MSARegister wd,uint32_t n,MSARegister ws)3601 void Assembler::insve_w(MSARegister wd, uint32_t n, MSARegister ws) {
3602 GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_W, n, ws, wd);
3603 }
3604
insve_d(MSARegister wd,uint32_t n,MSARegister ws)3605 void Assembler::insve_d(MSARegister wd, uint32_t n, MSARegister ws) {
3606 GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_D, n, ws, wd);
3607 }
3608
move_v(MSARegister wd,MSARegister ws)3609 void Assembler::move_v(MSARegister wd, MSARegister ws) {
3610 DCHECK(IsEnabled(MIPS_SIMD));
3611 DCHECK(ws.is_valid() && wd.is_valid());
3612 Instr instr = MSA | MOVE_V | (ws.code() << kWsShift) |
3613 (wd.code() << kWdShift) | MSA_ELM_MINOR;
3614 emit(instr);
3615 }
3616
ctcmsa(MSAControlRegister cd,Register rs)3617 void Assembler::ctcmsa(MSAControlRegister cd, Register rs) {
3618 DCHECK(IsEnabled(MIPS_SIMD));
3619 DCHECK(cd.is_valid() && rs.is_valid());
3620 Instr instr = MSA | CTCMSA | (rs.code() << kWsShift) |
3621 (cd.code() << kWdShift) | MSA_ELM_MINOR;
3622 emit(instr);
3623 }
3624
cfcmsa(Register rd,MSAControlRegister cs)3625 void Assembler::cfcmsa(Register rd, MSAControlRegister cs) {
3626 DCHECK(IsEnabled(MIPS_SIMD));
3627 DCHECK(rd.is_valid() && cs.is_valid());
3628 Instr instr = MSA | CFCMSA | (cs.code() << kWsShift) |
3629 (rd.code() << kWdShift) | MSA_ELM_MINOR;
3630 emit(instr);
3631 }
3632
3633 #define MSA_BIT_LIST(V) \
3634 V(slli, SLLI) \
3635 V(srai, SRAI) \
3636 V(srli, SRLI) \
3637 V(bclri, BCLRI) \
3638 V(bseti, BSETI) \
3639 V(bnegi, BNEGI) \
3640 V(binsli, BINSLI) \
3641 V(binsri, BINSRI) \
3642 V(sat_s, SAT_S) \
3643 V(sat_u, SAT_U) \
3644 V(srari, SRARI) \
3645 V(srlri, SRLRI)
3646
3647 #define MSA_BIT_FORMAT(name, opcode, format) \
3648 void Assembler::name##_##format(MSARegister wd, MSARegister ws, \
3649 uint32_t m) { \
3650 GenInstrMsaBit(opcode, BIT_DF_##format, m, ws, wd); \
3651 }
3652
3653 #define MSA_BIT(name, opcode) \
3654 MSA_BIT_FORMAT(name, opcode, b) \
3655 MSA_BIT_FORMAT(name, opcode, h) \
3656 MSA_BIT_FORMAT(name, opcode, w) \
3657 MSA_BIT_FORMAT(name, opcode, d)
3658
MSA_BIT_LIST(MSA_BIT)3659 MSA_BIT_LIST(MSA_BIT)
3660 #undef MSA_BIT
3661 #undef MSA_BIT_FORMAT
3662 #undef MSA_BIT_LIST
3663
3664 int Assembler::RelocateInternalReference(RelocInfo::Mode rmode, Address pc,
3665 intptr_t pc_delta) {
3666 if (RelocInfo::IsInternalReference(rmode)) {
3667 int64_t* p = reinterpret_cast<int64_t*>(pc);
3668 if (*p == kEndOfJumpChain) {
3669 return 0; // Number of instructions patched.
3670 }
3671 *p += pc_delta;
3672 return 2; // Number of instructions patched.
3673 }
3674 Instr instr = instr_at(pc);
3675 DCHECK(RelocInfo::IsInternalReferenceEncoded(rmode));
3676 if (IsLui(instr)) {
3677 Instr instr_lui = instr_at(pc + 0 * kInstrSize);
3678 Instr instr_ori = instr_at(pc + 1 * kInstrSize);
3679 Instr instr_ori2 = instr_at(pc + 3 * kInstrSize);
3680 DCHECK(IsOri(instr_ori));
3681 DCHECK(IsOri(instr_ori2));
3682 // TODO(plind): symbolic names for the shifts.
3683 int64_t imm = (instr_lui & static_cast<int64_t>(kImm16Mask)) << 48;
3684 imm |= (instr_ori & static_cast<int64_t>(kImm16Mask)) << 32;
3685 imm |= (instr_ori2 & static_cast<int64_t>(kImm16Mask)) << 16;
3686 // Sign extend address.
3687 imm >>= 16;
3688
3689 if (imm == kEndOfJumpChain) {
3690 return 0; // Number of instructions patched.
3691 }
3692 imm += pc_delta;
3693 DCHECK_EQ(imm & 3, 0);
3694
3695 instr_lui &= ~kImm16Mask;
3696 instr_ori &= ~kImm16Mask;
3697 instr_ori2 &= ~kImm16Mask;
3698
3699 instr_at_put(pc + 0 * kInstrSize, instr_lui | ((imm >> 32) & kImm16Mask));
3700 instr_at_put(pc + 1 * kInstrSize, instr_ori | (imm >> 16 & kImm16Mask));
3701 instr_at_put(pc + 3 * kInstrSize, instr_ori2 | (imm & kImm16Mask));
3702 return 4; // Number of instructions patched.
3703 } else if (IsJ(instr) || IsJal(instr)) {
3704 // Regular j/jal relocation.
3705 uint32_t imm28 = (instr & static_cast<int32_t>(kImm26Mask)) << 2;
3706 imm28 += pc_delta;
3707 imm28 &= kImm28Mask;
3708 instr &= ~kImm26Mask;
3709 DCHECK_EQ(imm28 & 3, 0);
3710 uint32_t imm26 = static_cast<uint32_t>(imm28 >> 2);
3711 instr_at_put(pc, instr | (imm26 & kImm26Mask));
3712 return 1; // Number of instructions patched.
3713 } else {
3714 DCHECK(((instr & kJumpRawMask) == kJRawMark) ||
3715 ((instr & kJumpRawMask) == kJalRawMark));
3716 // Unbox raw offset and emit j/jal.
3717 int32_t imm28 = (instr & static_cast<int32_t>(kImm26Mask)) << 2;
3718 // Sign extend 28-bit offset to 32-bit.
3719 imm28 = (imm28 << 4) >> 4;
3720 uint64_t target =
3721 static_cast<int64_t>(imm28) + reinterpret_cast<uint64_t>(pc);
3722 target &= kImm28Mask;
3723 DCHECK_EQ(imm28 & 3, 0);
3724 uint32_t imm26 = static_cast<uint32_t>(target >> 2);
3725 // Check markings whether to emit j or jal.
3726 uint32_t unbox = (instr & kJRawMark) ? J : JAL;
3727 instr_at_put(pc, unbox | (imm26 & kImm26Mask));
3728 return 1; // Number of instructions patched.
3729 }
3730 }
3731
GrowBuffer()3732 void Assembler::GrowBuffer() {
3733 // Compute new buffer size.
3734 int old_size = buffer_->size();
3735 int new_size = std::min(2 * old_size, old_size + 1 * MB);
3736
3737 // Some internal data structures overflow for very large buffers,
3738 // they must ensure that kMaximalBufferSize is not too large.
3739 if (new_size > kMaximalBufferSize) {
3740 V8::FatalProcessOutOfMemory(nullptr, "Assembler::GrowBuffer");
3741 }
3742
3743 // Set up new buffer.
3744 std::unique_ptr<AssemblerBuffer> new_buffer = buffer_->Grow(new_size);
3745 DCHECK_EQ(new_size, new_buffer->size());
3746 byte* new_start = new_buffer->start();
3747
3748 // Copy the data.
3749 intptr_t pc_delta = new_start - buffer_start_;
3750 intptr_t rc_delta = (new_start + new_size) - (buffer_start_ + old_size);
3751 size_t reloc_size = (buffer_start_ + old_size) - reloc_info_writer.pos();
3752 MemMove(new_start, buffer_start_, pc_offset());
3753 MemMove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(),
3754 reloc_size);
3755
3756 // Switch buffers.
3757 buffer_ = std::move(new_buffer);
3758 buffer_start_ = new_start;
3759 pc_ += pc_delta;
3760 last_call_pc_ += pc_delta;
3761 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
3762 reloc_info_writer.last_pc() + pc_delta);
3763
3764 // Relocate runtime entries.
3765 Vector<byte> instructions{buffer_start_, pc_offset()};
3766 Vector<const byte> reloc_info{reloc_info_writer.pos(), reloc_size};
3767 for (RelocIterator it(instructions, reloc_info, 0); !it.done(); it.next()) {
3768 RelocInfo::Mode rmode = it.rinfo()->rmode();
3769 if (rmode == RelocInfo::INTERNAL_REFERENCE) {
3770 RelocateInternalReference(rmode, it.rinfo()->pc(), pc_delta);
3771 }
3772 }
3773 DCHECK(!overflow());
3774 }
3775
db(uint8_t data)3776 void Assembler::db(uint8_t data) {
3777 CheckForEmitInForbiddenSlot();
3778 *reinterpret_cast<uint8_t*>(pc_) = data;
3779 pc_ += sizeof(uint8_t);
3780 }
3781
dd(uint32_t data)3782 void Assembler::dd(uint32_t data) {
3783 CheckForEmitInForbiddenSlot();
3784 *reinterpret_cast<uint32_t*>(pc_) = data;
3785 pc_ += sizeof(uint32_t);
3786 }
3787
dq(uint64_t data)3788 void Assembler::dq(uint64_t data) {
3789 CheckForEmitInForbiddenSlot();
3790 *reinterpret_cast<uint64_t*>(pc_) = data;
3791 pc_ += sizeof(uint64_t);
3792 }
3793
dd(Label * label)3794 void Assembler::dd(Label* label) {
3795 uint64_t data;
3796 CheckForEmitInForbiddenSlot();
3797 if (label->is_bound()) {
3798 data = reinterpret_cast<uint64_t>(buffer_start_ + label->pos());
3799 } else {
3800 data = jump_address(label);
3801 unbound_labels_count_++;
3802 internal_reference_positions_.insert(label->pos());
3803 }
3804 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
3805 EmitHelper(data);
3806 }
3807
RecordRelocInfo(RelocInfo::Mode rmode,intptr_t data)3808 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
3809 if (!ShouldRecordRelocInfo(rmode)) return;
3810 // We do not try to reuse pool constants.
3811 RelocInfo rinfo(reinterpret_cast<Address>(pc_), rmode, data, Code());
3812 DCHECK_GE(buffer_space(), kMaxRelocSize); // Too late to grow buffer here.
3813 reloc_info_writer.Write(&rinfo);
3814 }
3815
BlockTrampolinePoolFor(int instructions)3816 void Assembler::BlockTrampolinePoolFor(int instructions) {
3817 CheckTrampolinePoolQuick(instructions);
3818 BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize);
3819 }
3820
CheckTrampolinePool()3821 void Assembler::CheckTrampolinePool() {
3822 // Some small sequences of instructions must not be broken up by the
3823 // insertion of a trampoline pool; such sequences are protected by setting
3824 // either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_,
3825 // which are both checked here. Also, recursive calls to CheckTrampolinePool
3826 // are blocked by trampoline_pool_blocked_nesting_.
3827 if ((trampoline_pool_blocked_nesting_ > 0) ||
3828 (pc_offset() < no_trampoline_pool_before_)) {
3829 // Emission is currently blocked; make sure we try again as soon as
3830 // possible.
3831 if (trampoline_pool_blocked_nesting_ > 0) {
3832 next_buffer_check_ = pc_offset() + kInstrSize;
3833 } else {
3834 next_buffer_check_ = no_trampoline_pool_before_;
3835 }
3836 return;
3837 }
3838
3839 DCHECK(!trampoline_emitted_);
3840 DCHECK_GE(unbound_labels_count_, 0);
3841 if (unbound_labels_count_ > 0) {
3842 // First we emit jump (2 instructions), then we emit trampoline pool.
3843 {
3844 BlockTrampolinePoolScope block_trampoline_pool(this);
3845 Label after_pool;
3846 if (kArchVariant == kMips64r6) {
3847 bc(&after_pool);
3848 } else {
3849 b(&after_pool);
3850 }
3851 nop();
3852
3853 int pool_start = pc_offset();
3854 for (int i = 0; i < unbound_labels_count_; i++) {
3855 {
3856 if (kArchVariant == kMips64r6) {
3857 bc(&after_pool);
3858 nop();
3859 } else {
3860 or_(t8, ra, zero_reg);
3861 nal(); // Read PC into ra register.
3862 lui(t9, 0); // Branch delay slot.
3863 ori(t9, t9, 0);
3864 daddu(t9, ra, t9);
3865 or_(ra, t8, zero_reg);
3866 // Instruction jr will take or_ from the next trampoline.
3867 // in its branch delay slot. This is the expected behavior
3868 // in order to decrease size of trampoline pool.
3869 jr(t9);
3870 }
3871 }
3872 }
3873 nop();
3874 // If unbound_labels_count_ is big enough, label after_pool will
3875 // need a trampoline too, so we must create the trampoline before
3876 // the bind operation to make sure function 'bind' can get this
3877 // information.
3878 trampoline_ = Trampoline(pool_start, unbound_labels_count_);
3879 bind(&after_pool);
3880
3881 trampoline_emitted_ = true;
3882 // As we are only going to emit trampoline once, we need to prevent any
3883 // further emission.
3884 next_buffer_check_ = kMaxInt;
3885 }
3886 } else {
3887 // Number of branches to unbound label at this point is zero, so we can
3888 // move next buffer check to maximum.
3889 next_buffer_check_ =
3890 pc_offset() + kMaxBranchOffset - kTrampolineSlotsSize * 16;
3891 }
3892 return;
3893 }
3894
target_address_at(Address pc)3895 Address Assembler::target_address_at(Address pc) {
3896 Instr instr0 = instr_at(pc);
3897 Instr instr1 = instr_at(pc + 1 * kInstrSize);
3898 Instr instr3 = instr_at(pc + 3 * kInstrSize);
3899
3900 // Interpret 4 instructions for address generated by li: See listing in
3901 // Assembler::set_target_address_at() just below.
3902 if ((GetOpcodeField(instr0) == LUI) && (GetOpcodeField(instr1) == ORI) &&
3903 (GetOpcodeField(instr3) == ORI)) {
3904 // Assemble the 48 bit value.
3905 int64_t addr =
3906 static_cast<int64_t>(((uint64_t)(GetImmediate16(instr0)) << 32) |
3907 ((uint64_t)(GetImmediate16(instr1)) << 16) |
3908 ((uint64_t)(GetImmediate16(instr3))));
3909
3910 // Sign extend to get canonical address.
3911 addr = (addr << 16) >> 16;
3912 return static_cast<Address>(addr);
3913 }
3914 // We should never get here, force a bad address if we do.
3915 UNREACHABLE();
3916 }
3917
3918 // On Mips64, a target address is stored in a 4-instruction sequence:
3919 // 0: lui(rd, (j.imm64_ >> 32) & kImm16Mask);
3920 // 1: ori(rd, rd, (j.imm64_ >> 16) & kImm16Mask);
3921 // 2: dsll(rd, rd, 16);
3922 // 3: ori(rd, rd, j.imm32_ & kImm16Mask);
3923 //
3924 // Patching the address must replace all the lui & ori instructions,
3925 // and flush the i-cache.
3926 //
3927 // There is an optimization below, which emits a nop when the address
3928 // fits in just 16 bits. This is unlikely to help, and should be benchmarked,
3929 // and possibly removed.
set_target_value_at(Address pc,uint64_t target,ICacheFlushMode icache_flush_mode)3930 void Assembler::set_target_value_at(Address pc, uint64_t target,
3931 ICacheFlushMode icache_flush_mode) {
3932 // There is an optimization where only 4 instructions are used to load address
3933 // in code on MIP64 because only 48-bits of address is effectively used.
3934 // It relies on fact the upper [63:48] bits are not used for virtual address
3935 // translation and they have to be set according to value of bit 47 in order
3936 // get canonical address.
3937 Instr instr1 = instr_at(pc + kInstrSize);
3938 uint32_t rt_code = GetRt(instr1);
3939 uint32_t* p = reinterpret_cast<uint32_t*>(pc);
3940
3941 #ifdef DEBUG
3942 // Check we have the result from a li macro-instruction.
3943 Instr instr0 = instr_at(pc);
3944 Instr instr3 = instr_at(pc + kInstrSize * 3);
3945 DCHECK((GetOpcodeField(instr0) == LUI && GetOpcodeField(instr1) == ORI &&
3946 GetOpcodeField(instr3) == ORI));
3947 #endif
3948
3949 // Must use 4 instructions to insure patchable code.
3950 // lui rt, upper-16.
3951 // ori rt, rt, lower-16.
3952 // dsll rt, rt, 16.
3953 // ori rt rt, lower-16.
3954 *p = LUI | (rt_code << kRtShift) | ((target >> 32) & kImm16Mask);
3955 *(p + 1) = ORI | (rt_code << kRtShift) | (rt_code << kRsShift) |
3956 ((target >> 16) & kImm16Mask);
3957 *(p + 3) = ORI | (rt_code << kRsShift) | (rt_code << kRtShift) |
3958 (target & kImm16Mask);
3959
3960 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
3961 FlushInstructionCache(pc, 4 * kInstrSize);
3962 }
3963 }
3964
UseScratchRegisterScope(Assembler * assembler)3965 UseScratchRegisterScope::UseScratchRegisterScope(Assembler* assembler)
3966 : available_(assembler->GetScratchRegisterList()),
3967 old_available_(*available_) {}
3968
~UseScratchRegisterScope()3969 UseScratchRegisterScope::~UseScratchRegisterScope() {
3970 *available_ = old_available_;
3971 }
3972
Acquire()3973 Register UseScratchRegisterScope::Acquire() {
3974 DCHECK_NOT_NULL(available_);
3975 DCHECK_NE(*available_, 0);
3976 int index = static_cast<int>(base::bits::CountTrailingZeros32(*available_));
3977 *available_ &= ~(1UL << index);
3978
3979 return Register::from_code(index);
3980 }
3981
hasAvailable() const3982 bool UseScratchRegisterScope::hasAvailable() const { return *available_ != 0; }
3983
3984 } // namespace internal
3985 } // namespace v8
3986
3987 #endif // V8_TARGET_ARCH_MIPS64
3988