• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34 
35 #include "src/codegen/mips64/assembler-mips64.h"
36 
37 #if V8_TARGET_ARCH_MIPS64
38 
39 #include "src/base/cpu.h"
40 #include "src/codegen/mips64/assembler-mips64-inl.h"
41 #include "src/codegen/safepoint-table.h"
42 #include "src/codegen/string-constants.h"
43 #include "src/deoptimizer/deoptimizer.h"
44 #include "src/objects/heap-number-inl.h"
45 
46 namespace v8 {
47 namespace internal {
48 
49 // Get the CPU features enabled by the build. For cross compilation the
50 // preprocessor symbols CAN_USE_FPU_INSTRUCTIONS
51 // can be defined to enable FPU instructions when building the
52 // snapshot.
CpuFeaturesImpliedByCompiler()53 static unsigned CpuFeaturesImpliedByCompiler() {
54   unsigned answer = 0;
55 #ifdef CAN_USE_FPU_INSTRUCTIONS
56   answer |= 1u << FPU;
57 #endif  // def CAN_USE_FPU_INSTRUCTIONS
58 
59   // If the compiler is allowed to use FPU then we can use FPU too in our code
60   // generation even when generating snapshots.  This won't work for cross
61   // compilation.
62 #if defined(__mips__) && defined(__mips_hard_float) && __mips_hard_float != 0
63   answer |= 1u << FPU;
64 #endif
65 
66   return answer;
67 }
68 
ProbeImpl(bool cross_compile)69 void CpuFeatures::ProbeImpl(bool cross_compile) {
70   supported_ |= CpuFeaturesImpliedByCompiler();
71 
72   // Only use statically determined features for cross compile (snapshot).
73   if (cross_compile) return;
74 
75     // If the compiler is allowed to use fpu then we can use fpu too in our
76     // code generation.
77 #ifndef __mips__
78   // For the simulator build, use FPU.
79   supported_ |= 1u << FPU;
80 #if defined(_MIPS_ARCH_MIPS64R6) && defined(_MIPS_MSA)
81   supported_ |= 1u << MIPS_SIMD;
82 #endif
83 #else
84   // Probe for additional features at runtime.
85   base::CPU cpu;
86   if (cpu.has_fpu()) supported_ |= 1u << FPU;
87 #if defined(_MIPS_MSA)
88   supported_ |= 1u << MIPS_SIMD;
89 #else
90   if (cpu.has_msa()) supported_ |= 1u << MIPS_SIMD;
91 #endif
92 #endif
93 }
94 
PrintTarget()95 void CpuFeatures::PrintTarget() {}
PrintFeatures()96 void CpuFeatures::PrintFeatures() {}
97 
ToNumber(Register reg)98 int ToNumber(Register reg) {
99   DCHECK(reg.is_valid());
100   const int kNumbers[] = {
101       0,   // zero_reg
102       1,   // at
103       2,   // v0
104       3,   // v1
105       4,   // a0
106       5,   // a1
107       6,   // a2
108       7,   // a3
109       8,   // a4
110       9,   // a5
111       10,  // a6
112       11,  // a7
113       12,  // t0
114       13,  // t1
115       14,  // t2
116       15,  // t3
117       16,  // s0
118       17,  // s1
119       18,  // s2
120       19,  // s3
121       20,  // s4
122       21,  // s5
123       22,  // s6
124       23,  // s7
125       24,  // t8
126       25,  // t9
127       26,  // k0
128       27,  // k1
129       28,  // gp
130       29,  // sp
131       30,  // fp
132       31,  // ra
133   };
134   return kNumbers[reg.code()];
135 }
136 
ToRegister(int num)137 Register ToRegister(int num) {
138   DCHECK(num >= 0 && num < kNumRegisters);
139   const Register kRegisters[] = {
140       zero_reg, at, v0, v1, a0, a1, a2, a3, a4, a5, a6, a7, t0, t1, t2, t3,
141       s0,       s1, s2, s3, s4, s5, s6, s7, t8, t9, k0, k1, gp, sp, fp, ra};
142   return kRegisters[num];
143 }
144 
145 // -----------------------------------------------------------------------------
146 // Implementation of RelocInfo.
147 
148 const int RelocInfo::kApplyMask =
149     RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
150     RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED);
151 
IsCodedSpecially()152 bool RelocInfo::IsCodedSpecially() {
153   // The deserializer needs to know whether a pointer is specially coded.  Being
154   // specially coded on MIPS means that it is a lui/ori instruction, and that is
155   // always the case inside code objects.
156   return true;
157 }
158 
IsInConstantPool()159 bool RelocInfo::IsInConstantPool() { return false; }
160 
wasm_call_tag() const161 uint32_t RelocInfo::wasm_call_tag() const {
162   DCHECK(rmode_ == WASM_CALL || rmode_ == WASM_STUB_CALL);
163   return static_cast<uint32_t>(
164       Assembler::target_address_at(pc_, constant_pool_));
165 }
166 
167 // -----------------------------------------------------------------------------
168 // Implementation of Operand and MemOperand.
169 // See assembler-mips-inl.h for inlined constructors.
170 
Operand(Handle<HeapObject> handle)171 Operand::Operand(Handle<HeapObject> handle)
172     : rm_(no_reg), rmode_(RelocInfo::FULL_EMBEDDED_OBJECT) {
173   value_.immediate = static_cast<intptr_t>(handle.address());
174 }
175 
EmbeddedNumber(double value)176 Operand Operand::EmbeddedNumber(double value) {
177   int32_t smi;
178   if (DoubleToSmiInteger(value, &smi)) return Operand(Smi::FromInt(smi));
179   Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT);
180   result.is_heap_object_request_ = true;
181   result.value_.heap_object_request = HeapObjectRequest(value);
182   return result;
183 }
184 
EmbeddedStringConstant(const StringConstantBase * str)185 Operand Operand::EmbeddedStringConstant(const StringConstantBase* str) {
186   Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT);
187   result.is_heap_object_request_ = true;
188   result.value_.heap_object_request = HeapObjectRequest(str);
189   return result;
190 }
191 
MemOperand(Register rm,int32_t offset)192 MemOperand::MemOperand(Register rm, int32_t offset) : Operand(rm) {
193   offset_ = offset;
194 }
195 
MemOperand(Register rm,int32_t unit,int32_t multiplier,OffsetAddend offset_addend)196 MemOperand::MemOperand(Register rm, int32_t unit, int32_t multiplier,
197                        OffsetAddend offset_addend)
198     : Operand(rm) {
199   offset_ = unit * multiplier + offset_addend;
200 }
201 
AllocateAndInstallRequestedHeapObjects(Isolate * isolate)202 void Assembler::AllocateAndInstallRequestedHeapObjects(Isolate* isolate) {
203   DCHECK_IMPLIES(isolate == nullptr, heap_object_requests_.empty());
204   for (auto& request : heap_object_requests_) {
205     Handle<HeapObject> object;
206     switch (request.kind()) {
207       case HeapObjectRequest::kHeapNumber:
208         object = isolate->factory()->NewHeapNumber<AllocationType::kOld>(
209             request.heap_number());
210         break;
211       case HeapObjectRequest::kStringConstant:
212         const StringConstantBase* str = request.string();
213         CHECK_NOT_NULL(str);
214         object = str->AllocateStringConstant(isolate);
215         break;
216     }
217     Address pc = reinterpret_cast<Address>(buffer_start_) + request.offset();
218     set_target_value_at(pc, reinterpret_cast<uint64_t>(object.location()));
219   }
220 }
221 
222 // -----------------------------------------------------------------------------
223 // Specific instructions, constants, and masks.
224 
225 // daddiu(sp, sp, 8) aka Pop() operation or part of Pop(r)
226 // operations as post-increment of sp.
227 const Instr kPopInstruction = DADDIU | (sp.code() << kRsShift) |
228                               (sp.code() << kRtShift) |
229                               (kPointerSize & kImm16Mask);  // NOLINT
230 // daddiu(sp, sp, -8) part of Push(r) operation as pre-decrement of sp.
231 const Instr kPushInstruction = DADDIU | (sp.code() << kRsShift) |
232                                (sp.code() << kRtShift) |
233                                (-kPointerSize & kImm16Mask);  // NOLINT
234 // Sd(r, MemOperand(sp, 0))
235 const Instr kPushRegPattern =
236     SD | (sp.code() << kRsShift) | (0 & kImm16Mask);  // NOLINT
237 //  Ld(r, MemOperand(sp, 0))
238 const Instr kPopRegPattern =
239     LD | (sp.code() << kRsShift) | (0 & kImm16Mask);  // NOLINT
240 
241 const Instr kLwRegFpOffsetPattern =
242     LW | (fp.code() << kRsShift) | (0 & kImm16Mask);  // NOLINT
243 
244 const Instr kSwRegFpOffsetPattern =
245     SW | (fp.code() << kRsShift) | (0 & kImm16Mask);  // NOLINT
246 
247 const Instr kLwRegFpNegOffsetPattern =
248     LW | (fp.code() << kRsShift) | (kNegOffset & kImm16Mask);  // NOLINT
249 
250 const Instr kSwRegFpNegOffsetPattern =
251     SW | (fp.code() << kRsShift) | (kNegOffset & kImm16Mask);  // NOLINT
252 // A mask for the Rt register for push, pop, lw, sw instructions.
253 const Instr kRtMask = kRtFieldMask;
254 const Instr kLwSwInstrTypeMask = 0xFFE00000;
255 const Instr kLwSwInstrArgumentMask = ~kLwSwInstrTypeMask;
256 const Instr kLwSwOffsetMask = kImm16Mask;
257 
Assembler(const AssemblerOptions & options,std::unique_ptr<AssemblerBuffer> buffer)258 Assembler::Assembler(const AssemblerOptions& options,
259                      std::unique_ptr<AssemblerBuffer> buffer)
260     : AssemblerBase(options, std::move(buffer)),
261       scratch_register_list_(at.bit()) {
262   if (CpuFeatures::IsSupported(MIPS_SIMD)) {
263     EnableCpuFeature(MIPS_SIMD);
264   }
265   reloc_info_writer.Reposition(buffer_start_ + buffer_->size(), pc_);
266 
267   last_trampoline_pool_end_ = 0;
268   no_trampoline_pool_before_ = 0;
269   trampoline_pool_blocked_nesting_ = 0;
270   // We leave space (16 * kTrampolineSlotsSize)
271   // for BlockTrampolinePoolScope buffer.
272   next_buffer_check_ = FLAG_force_long_branches
273                            ? kMaxInt
274                            : kMaxBranchOffset - kTrampolineSlotsSize * 16;
275   internal_trampoline_exception_ = false;
276   last_bound_pos_ = 0;
277 
278   trampoline_emitted_ = FLAG_force_long_branches;
279   unbound_labels_count_ = 0;
280   block_buffer_growth_ = false;
281 }
282 
GetCode(Isolate * isolate,CodeDesc * desc,SafepointTableBuilder * safepoint_table_builder,int handler_table_offset)283 void Assembler::GetCode(Isolate* isolate, CodeDesc* desc,
284                         SafepointTableBuilder* safepoint_table_builder,
285                         int handler_table_offset) {
286   // As a crutch to avoid having to add manual Align calls wherever we use a
287   // raw workflow to create Code objects (mostly in tests), add another Align
288   // call here. It does no harm - the end of the Code object is aligned to the
289   // (larger) kCodeAlignment anyways.
290   // TODO(jgruber): Consider moving responsibility for proper alignment to
291   // metadata table builders (safepoint, handler, constant pool, code
292   // comments).
293   DataAlign(Code::kMetadataAlignment);
294 
295   EmitForbiddenSlotInstruction();
296 
297   int code_comments_size = WriteCodeComments();
298 
299   DCHECK(pc_ <= reloc_info_writer.pos());  // No overlap.
300 
301   AllocateAndInstallRequestedHeapObjects(isolate);
302 
303   // Set up code descriptor.
304   // TODO(jgruber): Reconsider how these offsets and sizes are maintained up to
305   // this point to make CodeDesc initialization less fiddly.
306 
307   static constexpr int kConstantPoolSize = 0;
308   const int instruction_size = pc_offset();
309   const int code_comments_offset = instruction_size - code_comments_size;
310   const int constant_pool_offset = code_comments_offset - kConstantPoolSize;
311   const int handler_table_offset2 = (handler_table_offset == kNoHandlerTable)
312                                         ? constant_pool_offset
313                                         : handler_table_offset;
314   const int safepoint_table_offset =
315       (safepoint_table_builder == kNoSafepointTable)
316           ? handler_table_offset2
317           : safepoint_table_builder->GetCodeOffset();
318   const int reloc_info_offset =
319       static_cast<int>(reloc_info_writer.pos() - buffer_->start());
320   CodeDesc::Initialize(desc, this, safepoint_table_offset,
321                        handler_table_offset2, constant_pool_offset,
322                        code_comments_offset, reloc_info_offset);
323 }
324 
Align(int m)325 void Assembler::Align(int m) {
326   DCHECK(m >= 4 && base::bits::IsPowerOfTwo(m));
327   EmitForbiddenSlotInstruction();
328   while ((pc_offset() & (m - 1)) != 0) {
329     nop();
330   }
331 }
332 
CodeTargetAlign()333 void Assembler::CodeTargetAlign() {
334   // No advantage to aligning branch/call targets to more than
335   // single instruction, that I am aware of.
336   Align(4);
337 }
338 
GetRtReg(Instr instr)339 Register Assembler::GetRtReg(Instr instr) {
340   return Register::from_code((instr & kRtFieldMask) >> kRtShift);
341 }
342 
GetRsReg(Instr instr)343 Register Assembler::GetRsReg(Instr instr) {
344   return Register::from_code((instr & kRsFieldMask) >> kRsShift);
345 }
346 
GetRdReg(Instr instr)347 Register Assembler::GetRdReg(Instr instr) {
348   return Register::from_code((instr & kRdFieldMask) >> kRdShift);
349 }
350 
GetRt(Instr instr)351 uint32_t Assembler::GetRt(Instr instr) {
352   return (instr & kRtFieldMask) >> kRtShift;
353 }
354 
GetRtField(Instr instr)355 uint32_t Assembler::GetRtField(Instr instr) { return instr & kRtFieldMask; }
356 
GetRs(Instr instr)357 uint32_t Assembler::GetRs(Instr instr) {
358   return (instr & kRsFieldMask) >> kRsShift;
359 }
360 
GetRsField(Instr instr)361 uint32_t Assembler::GetRsField(Instr instr) { return instr & kRsFieldMask; }
362 
GetRd(Instr instr)363 uint32_t Assembler::GetRd(Instr instr) {
364   return (instr & kRdFieldMask) >> kRdShift;
365 }
366 
GetRdField(Instr instr)367 uint32_t Assembler::GetRdField(Instr instr) { return instr & kRdFieldMask; }
368 
GetSa(Instr instr)369 uint32_t Assembler::GetSa(Instr instr) {
370   return (instr & kSaFieldMask) >> kSaShift;
371 }
372 
GetSaField(Instr instr)373 uint32_t Assembler::GetSaField(Instr instr) { return instr & kSaFieldMask; }
374 
GetOpcodeField(Instr instr)375 uint32_t Assembler::GetOpcodeField(Instr instr) { return instr & kOpcodeMask; }
376 
GetFunction(Instr instr)377 uint32_t Assembler::GetFunction(Instr instr) {
378   return (instr & kFunctionFieldMask) >> kFunctionShift;
379 }
380 
GetFunctionField(Instr instr)381 uint32_t Assembler::GetFunctionField(Instr instr) {
382   return instr & kFunctionFieldMask;
383 }
384 
GetImmediate16(Instr instr)385 uint32_t Assembler::GetImmediate16(Instr instr) { return instr & kImm16Mask; }
386 
GetLabelConst(Instr instr)387 uint32_t Assembler::GetLabelConst(Instr instr) { return instr & ~kImm16Mask; }
388 
IsPop(Instr instr)389 bool Assembler::IsPop(Instr instr) {
390   return (instr & ~kRtMask) == kPopRegPattern;
391 }
392 
IsPush(Instr instr)393 bool Assembler::IsPush(Instr instr) {
394   return (instr & ~kRtMask) == kPushRegPattern;
395 }
396 
IsSwRegFpOffset(Instr instr)397 bool Assembler::IsSwRegFpOffset(Instr instr) {
398   return ((instr & kLwSwInstrTypeMask) == kSwRegFpOffsetPattern);
399 }
400 
IsLwRegFpOffset(Instr instr)401 bool Assembler::IsLwRegFpOffset(Instr instr) {
402   return ((instr & kLwSwInstrTypeMask) == kLwRegFpOffsetPattern);
403 }
404 
IsSwRegFpNegOffset(Instr instr)405 bool Assembler::IsSwRegFpNegOffset(Instr instr) {
406   return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
407           kSwRegFpNegOffsetPattern);
408 }
409 
IsLwRegFpNegOffset(Instr instr)410 bool Assembler::IsLwRegFpNegOffset(Instr instr) {
411   return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
412           kLwRegFpNegOffsetPattern);
413 }
414 
415 // Labels refer to positions in the (to be) generated code.
416 // There are bound, linked, and unused labels.
417 //
418 // Bound labels refer to known positions in the already
419 // generated code. pos() is the position the label refers to.
420 //
421 // Linked labels refer to unknown positions in the code
422 // to be generated; pos() is the position of the last
423 // instruction using the label.
424 
425 // The link chain is terminated by a value in the instruction of -1,
426 // which is an otherwise illegal value (branch -1 is inf loop).
427 // The instruction 16-bit offset field addresses 32-bit words, but in
428 // code is conv to an 18-bit value addressing bytes, hence the -4 value.
429 
430 const int kEndOfChain = -4;
431 // Determines the end of the Jump chain (a subset of the label link chain).
432 const int kEndOfJumpChain = 0;
433 
IsMsaBranch(Instr instr)434 bool Assembler::IsMsaBranch(Instr instr) {
435   uint32_t opcode = GetOpcodeField(instr);
436   uint32_t rs_field = GetRsField(instr);
437   if (opcode == COP1) {
438     switch (rs_field) {
439       case BZ_V:
440       case BZ_B:
441       case BZ_H:
442       case BZ_W:
443       case BZ_D:
444       case BNZ_V:
445       case BNZ_B:
446       case BNZ_H:
447       case BNZ_W:
448       case BNZ_D:
449         return true;
450       default:
451         return false;
452     }
453   } else {
454     return false;
455   }
456 }
457 
IsBranch(Instr instr)458 bool Assembler::IsBranch(Instr instr) {
459   uint32_t opcode = GetOpcodeField(instr);
460   uint32_t rt_field = GetRtField(instr);
461   uint32_t rs_field = GetRsField(instr);
462   // Checks if the instruction is a branch.
463   bool isBranch =
464       opcode == BEQ || opcode == BNE || opcode == BLEZ || opcode == BGTZ ||
465       opcode == BEQL || opcode == BNEL || opcode == BLEZL || opcode == BGTZL ||
466       (opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ ||
467                             rt_field == BLTZAL || rt_field == BGEZAL)) ||
468       (opcode == COP1 && rs_field == BC1) ||  // Coprocessor branch.
469       (opcode == COP1 && rs_field == BC1EQZ) ||
470       (opcode == COP1 && rs_field == BC1NEZ) || IsMsaBranch(instr);
471   if (!isBranch && kArchVariant == kMips64r6) {
472     // All the 3 variants of POP10 (BOVC, BEQC, BEQZALC) and
473     // POP30 (BNVC, BNEC, BNEZALC) are branch ops.
474     isBranch |= opcode == POP10 || opcode == POP30 || opcode == BC ||
475                 opcode == BALC ||
476                 (opcode == POP66 && rs_field != 0) ||  // BEQZC
477                 (opcode == POP76 && rs_field != 0);    // BNEZC
478   }
479   return isBranch;
480 }
481 
IsBc(Instr instr)482 bool Assembler::IsBc(Instr instr) {
483   uint32_t opcode = GetOpcodeField(instr);
484   // Checks if the instruction is a BC or BALC.
485   return opcode == BC || opcode == BALC;
486 }
487 
IsNal(Instr instr)488 bool Assembler::IsNal(Instr instr) {
489   uint32_t opcode = GetOpcodeField(instr);
490   uint32_t rt_field = GetRtField(instr);
491   uint32_t rs_field = GetRsField(instr);
492   return opcode == REGIMM && rt_field == BLTZAL && rs_field == 0;
493 }
494 
IsBzc(Instr instr)495 bool Assembler::IsBzc(Instr instr) {
496   uint32_t opcode = GetOpcodeField(instr);
497   // Checks if the instruction is BEQZC or BNEZC.
498   return (opcode == POP66 && GetRsField(instr) != 0) ||
499          (opcode == POP76 && GetRsField(instr) != 0);
500 }
501 
IsEmittedConstant(Instr instr)502 bool Assembler::IsEmittedConstant(Instr instr) {
503   uint32_t label_constant = GetLabelConst(instr);
504   return label_constant == 0;  // Emitted label const in reg-exp engine.
505 }
506 
IsBeq(Instr instr)507 bool Assembler::IsBeq(Instr instr) { return GetOpcodeField(instr) == BEQ; }
508 
IsBne(Instr instr)509 bool Assembler::IsBne(Instr instr) { return GetOpcodeField(instr) == BNE; }
510 
IsBeqzc(Instr instr)511 bool Assembler::IsBeqzc(Instr instr) {
512   uint32_t opcode = GetOpcodeField(instr);
513   return opcode == POP66 && GetRsField(instr) != 0;
514 }
515 
IsBnezc(Instr instr)516 bool Assembler::IsBnezc(Instr instr) {
517   uint32_t opcode = GetOpcodeField(instr);
518   return opcode == POP76 && GetRsField(instr) != 0;
519 }
520 
IsBeqc(Instr instr)521 bool Assembler::IsBeqc(Instr instr) {
522   uint32_t opcode = GetOpcodeField(instr);
523   uint32_t rs = GetRsField(instr);
524   uint32_t rt = GetRtField(instr);
525   return opcode == POP10 && rs != 0 && rs < rt;  // && rt != 0
526 }
527 
IsBnec(Instr instr)528 bool Assembler::IsBnec(Instr instr) {
529   uint32_t opcode = GetOpcodeField(instr);
530   uint32_t rs = GetRsField(instr);
531   uint32_t rt = GetRtField(instr);
532   return opcode == POP30 && rs != 0 && rs < rt;  // && rt != 0
533 }
534 
IsMov(Instr instr,Register rd,Register rs)535 bool Assembler::IsMov(Instr instr, Register rd, Register rs) {
536   uint32_t opcode = GetOpcodeField(instr);
537   uint32_t rd_field = GetRd(instr);
538   uint32_t rs_field = GetRs(instr);
539   uint32_t rt_field = GetRt(instr);
540   uint32_t rd_reg = static_cast<uint32_t>(rd.code());
541   uint32_t rs_reg = static_cast<uint32_t>(rs.code());
542   uint32_t function_field = GetFunctionField(instr);
543   // Checks if the instruction is a OR with zero_reg argument (aka MOV).
544   bool res = opcode == SPECIAL && function_field == OR && rd_field == rd_reg &&
545              rs_field == rs_reg && rt_field == 0;
546   return res;
547 }
548 
IsJump(Instr instr)549 bool Assembler::IsJump(Instr instr) {
550   uint32_t opcode = GetOpcodeField(instr);
551   uint32_t rt_field = GetRtField(instr);
552   uint32_t rd_field = GetRdField(instr);
553   uint32_t function_field = GetFunctionField(instr);
554   // Checks if the instruction is a jump.
555   return opcode == J || opcode == JAL ||
556          (opcode == SPECIAL && rt_field == 0 &&
557           ((function_field == JALR) ||
558            (rd_field == 0 && (function_field == JR))));
559 }
560 
IsJ(Instr instr)561 bool Assembler::IsJ(Instr instr) {
562   uint32_t opcode = GetOpcodeField(instr);
563   // Checks if the instruction is a jump.
564   return opcode == J;
565 }
566 
IsJal(Instr instr)567 bool Assembler::IsJal(Instr instr) { return GetOpcodeField(instr) == JAL; }
568 
IsJr(Instr instr)569 bool Assembler::IsJr(Instr instr) {
570   return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JR;
571 }
572 
IsJalr(Instr instr)573 bool Assembler::IsJalr(Instr instr) {
574   return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JALR;
575 }
576 
IsLui(Instr instr)577 bool Assembler::IsLui(Instr instr) {
578   uint32_t opcode = GetOpcodeField(instr);
579   // Checks if the instruction is a load upper immediate.
580   return opcode == LUI;
581 }
582 
IsOri(Instr instr)583 bool Assembler::IsOri(Instr instr) {
584   uint32_t opcode = GetOpcodeField(instr);
585   // Checks if the instruction is a load upper immediate.
586   return opcode == ORI;
587 }
588 
IsNop(Instr instr,unsigned int type)589 bool Assembler::IsNop(Instr instr, unsigned int type) {
590   // See Assembler::nop(type).
591   DCHECK_LT(type, 32);
592   uint32_t opcode = GetOpcodeField(instr);
593   uint32_t function = GetFunctionField(instr);
594   uint32_t rt = GetRt(instr);
595   uint32_t rd = GetRd(instr);
596   uint32_t sa = GetSa(instr);
597 
598   // Traditional mips nop == sll(zero_reg, zero_reg, 0)
599   // When marking non-zero type, use sll(zero_reg, at, type)
600   // to avoid use of mips ssnop and ehb special encodings
601   // of the sll instruction.
602 
603   Register nop_rt_reg = (type == 0) ? zero_reg : at;
604   bool ret = (opcode == SPECIAL && function == SLL &&
605               rd == static_cast<uint32_t>(ToNumber(zero_reg)) &&
606               rt == static_cast<uint32_t>(ToNumber(nop_rt_reg)) && sa == type);
607 
608   return ret;
609 }
610 
GetBranchOffset(Instr instr)611 int32_t Assembler::GetBranchOffset(Instr instr) {
612   DCHECK(IsBranch(instr));
613   return (static_cast<int16_t>(instr & kImm16Mask)) << 2;
614 }
615 
IsLw(Instr instr)616 bool Assembler::IsLw(Instr instr) {
617   return (static_cast<uint32_t>(instr & kOpcodeMask) == LW);
618 }
619 
GetLwOffset(Instr instr)620 int16_t Assembler::GetLwOffset(Instr instr) {
621   DCHECK(IsLw(instr));
622   return ((instr & kImm16Mask));
623 }
624 
SetLwOffset(Instr instr,int16_t offset)625 Instr Assembler::SetLwOffset(Instr instr, int16_t offset) {
626   DCHECK(IsLw(instr));
627 
628   // We actually create a new lw instruction based on the original one.
629   Instr temp_instr = LW | (instr & kRsFieldMask) | (instr & kRtFieldMask) |
630                      (offset & kImm16Mask);
631 
632   return temp_instr;
633 }
634 
IsSw(Instr instr)635 bool Assembler::IsSw(Instr instr) {
636   return (static_cast<uint32_t>(instr & kOpcodeMask) == SW);
637 }
638 
SetSwOffset(Instr instr,int16_t offset)639 Instr Assembler::SetSwOffset(Instr instr, int16_t offset) {
640   DCHECK(IsSw(instr));
641   return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
642 }
643 
IsAddImmediate(Instr instr)644 bool Assembler::IsAddImmediate(Instr instr) {
645   return ((instr & kOpcodeMask) == ADDIU || (instr & kOpcodeMask) == DADDIU);
646 }
647 
SetAddImmediateOffset(Instr instr,int16_t offset)648 Instr Assembler::SetAddImmediateOffset(Instr instr, int16_t offset) {
649   DCHECK(IsAddImmediate(instr));
650   return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
651 }
652 
IsAndImmediate(Instr instr)653 bool Assembler::IsAndImmediate(Instr instr) {
654   return GetOpcodeField(instr) == ANDI;
655 }
656 
OffsetSizeInBits(Instr instr)657 static Assembler::OffsetSize OffsetSizeInBits(Instr instr) {
658   if (kArchVariant == kMips64r6) {
659     if (Assembler::IsBc(instr)) {
660       return Assembler::OffsetSize::kOffset26;
661     } else if (Assembler::IsBzc(instr)) {
662       return Assembler::OffsetSize::kOffset21;
663     }
664   }
665   return Assembler::OffsetSize::kOffset16;
666 }
667 
AddBranchOffset(int pos,Instr instr)668 static inline int32_t AddBranchOffset(int pos, Instr instr) {
669   int bits = OffsetSizeInBits(instr);
670   const int32_t mask = (1 << bits) - 1;
671   bits = 32 - bits;
672 
673   // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming
674   // the compiler uses arithmetic shifts for signed integers.
675   int32_t imm = ((instr & mask) << bits) >> (bits - 2);
676 
677   if (imm == kEndOfChain) {
678     // EndOfChain sentinel is returned directly, not relative to pc or pos.
679     return kEndOfChain;
680   } else {
681     return pos + Assembler::kBranchPCOffset + imm;
682   }
683 }
684 
target_at(int pos,bool is_internal)685 int Assembler::target_at(int pos, bool is_internal) {
686   if (is_internal) {
687     int64_t* p = reinterpret_cast<int64_t*>(buffer_start_ + pos);
688     int64_t address = *p;
689     if (address == kEndOfJumpChain) {
690       return kEndOfChain;
691     } else {
692       int64_t instr_address = reinterpret_cast<int64_t>(p);
693       DCHECK(instr_address - address < INT_MAX);
694       int delta = static_cast<int>(instr_address - address);
695       DCHECK(pos > delta);
696       return pos - delta;
697     }
698   }
699   Instr instr = instr_at(pos);
700   if ((instr & ~kImm16Mask) == 0) {
701     // Emitted label constant, not part of a branch.
702     if (instr == 0) {
703       return kEndOfChain;
704     } else {
705       int32_t imm18 = ((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14;
706       return (imm18 + pos);
707     }
708   }
709   // Check we have a branch or jump instruction.
710   DCHECK(IsBranch(instr) || IsJ(instr) || IsJal(instr) || IsLui(instr) ||
711          IsMov(instr, t8, ra));
712   // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming
713   // the compiler uses arithmetic shifts for signed integers.
714   if (IsBranch(instr)) {
715     return AddBranchOffset(pos, instr);
716   } else if (IsMov(instr, t8, ra)) {
717     int32_t imm32;
718     Instr instr_lui = instr_at(pos + 2 * kInstrSize);
719     Instr instr_ori = instr_at(pos + 3 * kInstrSize);
720     DCHECK(IsLui(instr_lui));
721     DCHECK(IsOri(instr_ori));
722     imm32 = (instr_lui & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
723     imm32 |= (instr_ori & static_cast<int32_t>(kImm16Mask));
724     if (imm32 == kEndOfJumpChain) {
725       // EndOfChain sentinel is returned directly, not relative to pc or pos.
726       return kEndOfChain;
727     }
728     return pos + Assembler::kLongBranchPCOffset + imm32;
729   } else if (IsLui(instr)) {
730     if (IsNal(instr_at(pos + kInstrSize))) {
731       int32_t imm32;
732       Instr instr_lui = instr_at(pos + 0 * kInstrSize);
733       Instr instr_ori = instr_at(pos + 2 * kInstrSize);
734       DCHECK(IsLui(instr_lui));
735       DCHECK(IsOri(instr_ori));
736       imm32 = (instr_lui & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
737       imm32 |= (instr_ori & static_cast<int32_t>(kImm16Mask));
738       if (imm32 == kEndOfJumpChain) {
739         // EndOfChain sentinel is returned directly, not relative to pc or pos.
740         return kEndOfChain;
741       }
742       return pos + Assembler::kLongBranchPCOffset + imm32;
743     } else {
744       Instr instr_lui = instr_at(pos + 0 * kInstrSize);
745       Instr instr_ori = instr_at(pos + 1 * kInstrSize);
746       Instr instr_ori2 = instr_at(pos + 3 * kInstrSize);
747       DCHECK(IsOri(instr_ori));
748       DCHECK(IsOri(instr_ori2));
749 
750       // TODO(plind) create named constants for shift values.
751       int64_t imm = static_cast<int64_t>(instr_lui & kImm16Mask) << 48;
752       imm |= static_cast<int64_t>(instr_ori & kImm16Mask) << 32;
753       imm |= static_cast<int64_t>(instr_ori2 & kImm16Mask) << 16;
754       // Sign extend address;
755       imm >>= 16;
756 
757       if (imm == kEndOfJumpChain) {
758         // EndOfChain sentinel is returned directly, not relative to pc or pos.
759         return kEndOfChain;
760       } else {
761         uint64_t instr_address = reinterpret_cast<int64_t>(buffer_start_ + pos);
762         DCHECK(instr_address - imm < INT_MAX);
763         int delta = static_cast<int>(instr_address - imm);
764         DCHECK(pos > delta);
765         return pos - delta;
766       }
767     }
768   } else {
769     DCHECK(IsJ(instr) || IsJal(instr));
770     int32_t imm28 = (instr & static_cast<int32_t>(kImm26Mask)) << 2;
771     if (imm28 == kEndOfJumpChain) {
772       // EndOfChain sentinel is returned directly, not relative to pc or pos.
773       return kEndOfChain;
774     } else {
775       // Sign extend 28-bit offset.
776       int32_t delta = static_cast<int32_t>((imm28 << 4) >> 4);
777       return pos + delta;
778     }
779   }
780 }
781 
SetBranchOffset(int32_t pos,int32_t target_pos,Instr instr)782 static inline Instr SetBranchOffset(int32_t pos, int32_t target_pos,
783                                     Instr instr) {
784   int32_t bits = OffsetSizeInBits(instr);
785   int32_t imm = target_pos - (pos + Assembler::kBranchPCOffset);
786   DCHECK_EQ(imm & 3, 0);
787   imm >>= 2;
788 
789   const int32_t mask = (1 << bits) - 1;
790   instr &= ~mask;
791   DCHECK(is_intn(imm, bits));
792 
793   return instr | (imm & mask);
794 }
795 
target_at_put(int pos,int target_pos,bool is_internal)796 void Assembler::target_at_put(int pos, int target_pos, bool is_internal) {
797   if (is_internal) {
798     uint64_t imm = reinterpret_cast<uint64_t>(buffer_start_) + target_pos;
799     *reinterpret_cast<uint64_t*>(buffer_start_ + pos) = imm;
800     return;
801   }
802   Instr instr = instr_at(pos);
803   if ((instr & ~kImm16Mask) == 0) {
804     DCHECK(target_pos == kEndOfChain || target_pos >= 0);
805     // Emitted label constant, not part of a branch.
806     // Make label relative to Code pointer of generated Code object.
807     instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag));
808     return;
809   }
810 
811   if (IsBranch(instr)) {
812     instr = SetBranchOffset(pos, target_pos, instr);
813     instr_at_put(pos, instr);
814   } else if (IsLui(instr)) {
815     if (IsNal(instr_at(pos + kInstrSize))) {
816       Instr instr_lui = instr_at(pos + 0 * kInstrSize);
817       Instr instr_ori = instr_at(pos + 2 * kInstrSize);
818       DCHECK(IsLui(instr_lui));
819       DCHECK(IsOri(instr_ori));
820       int32_t imm = target_pos - (pos + Assembler::kLongBranchPCOffset);
821       DCHECK_EQ(imm & 3, 0);
822       if (is_int16(imm + Assembler::kLongBranchPCOffset -
823                    Assembler::kBranchPCOffset)) {
824         // Optimize by converting to regular branch and link with 16-bit
825         // offset.
826         Instr instr_b = REGIMM | BGEZAL;  // Branch and link.
827         instr_b = SetBranchOffset(pos, target_pos, instr_b);
828         // Correct ra register to point to one instruction after jalr from
829         // TurboAssembler::BranchAndLinkLong.
830         Instr instr_a = DADDIU | ra.code() << kRsShift | ra.code() << kRtShift |
831                         kOptimizedBranchAndLinkLongReturnOffset;
832 
833         instr_at_put(pos, instr_b);
834         instr_at_put(pos + 1 * kInstrSize, instr_a);
835       } else {
836         instr_lui &= ~kImm16Mask;
837         instr_ori &= ~kImm16Mask;
838 
839         instr_at_put(pos + 0 * kInstrSize,
840                      instr_lui | ((imm >> kLuiShift) & kImm16Mask));
841         instr_at_put(pos + 2 * kInstrSize, instr_ori | (imm & kImm16Mask));
842       }
843     } else {
844       Instr instr_lui = instr_at(pos + 0 * kInstrSize);
845       Instr instr_ori = instr_at(pos + 1 * kInstrSize);
846       Instr instr_ori2 = instr_at(pos + 3 * kInstrSize);
847       DCHECK(IsOri(instr_ori));
848       DCHECK(IsOri(instr_ori2));
849 
850       uint64_t imm = reinterpret_cast<uint64_t>(buffer_start_) + target_pos;
851       DCHECK_EQ(imm & 3, 0);
852 
853       instr_lui &= ~kImm16Mask;
854       instr_ori &= ~kImm16Mask;
855       instr_ori2 &= ~kImm16Mask;
856 
857       instr_at_put(pos + 0 * kInstrSize,
858                    instr_lui | ((imm >> 32) & kImm16Mask));
859       instr_at_put(pos + 1 * kInstrSize,
860                    instr_ori | ((imm >> 16) & kImm16Mask));
861       instr_at_put(pos + 3 * kInstrSize, instr_ori2 | (imm & kImm16Mask));
862     }
863   } else if (IsMov(instr, t8, ra)) {
864     Instr instr_lui = instr_at(pos + 2 * kInstrSize);
865     Instr instr_ori = instr_at(pos + 3 * kInstrSize);
866     DCHECK(IsLui(instr_lui));
867     DCHECK(IsOri(instr_ori));
868 
869     int32_t imm_short = target_pos - (pos + Assembler::kBranchPCOffset);
870 
871     if (is_int16(imm_short)) {
872       // Optimize by converting to regular branch with 16-bit
873       // offset
874       Instr instr_b = BEQ;
875       instr_b = SetBranchOffset(pos, target_pos, instr_b);
876 
877       Instr instr_j = instr_at(pos + 5 * kInstrSize);
878       Instr instr_branch_delay;
879 
880       if (IsJump(instr_j)) {
881         // Case when branch delay slot is protected.
882         instr_branch_delay = nopInstr;
883       } else {
884         // Case when branch delay slot is used.
885         instr_branch_delay = instr_at(pos + 7 * kInstrSize);
886       }
887       instr_at_put(pos, instr_b);
888       instr_at_put(pos + 1 * kInstrSize, instr_branch_delay);
889     } else {
890       int32_t imm = target_pos - (pos + Assembler::kLongBranchPCOffset);
891       DCHECK_EQ(imm & 3, 0);
892 
893       instr_lui &= ~kImm16Mask;
894       instr_ori &= ~kImm16Mask;
895 
896       instr_at_put(pos + 2 * kInstrSize,
897                    instr_lui | ((imm >> kLuiShift) & kImm16Mask));
898       instr_at_put(pos + 3 * kInstrSize, instr_ori | (imm & kImm16Mask));
899     }
900   } else if (IsJ(instr) || IsJal(instr)) {
901     int32_t imm28 = target_pos - pos;
902     DCHECK_EQ(imm28 & 3, 0);
903 
904     uint32_t imm26 = static_cast<uint32_t>(imm28 >> 2);
905     DCHECK(is_uint26(imm26));
906     // Place 26-bit signed offset with markings.
907     // When code is committed it will be resolved to j/jal.
908     int32_t mark = IsJ(instr) ? kJRawMark : kJalRawMark;
909     instr_at_put(pos, mark | (imm26 & kImm26Mask));
910   } else {
911     int32_t imm28 = target_pos - pos;
912     DCHECK_EQ(imm28 & 3, 0);
913 
914     uint32_t imm26 = static_cast<uint32_t>(imm28 >> 2);
915     DCHECK(is_uint26(imm26));
916     // Place raw 26-bit signed offset.
917     // When code is committed it will be resolved to j/jal.
918     instr &= ~kImm26Mask;
919     instr_at_put(pos, instr | (imm26 & kImm26Mask));
920   }
921 }
922 
print(const Label * L)923 void Assembler::print(const Label* L) {
924   if (L->is_unused()) {
925     PrintF("unused label\n");
926   } else if (L->is_bound()) {
927     PrintF("bound label to %d\n", L->pos());
928   } else if (L->is_linked()) {
929     Label l;
930     l.link_to(L->pos());
931     PrintF("unbound label");
932     while (l.is_linked()) {
933       PrintF("@ %d ", l.pos());
934       Instr instr = instr_at(l.pos());
935       if ((instr & ~kImm16Mask) == 0) {
936         PrintF("value\n");
937       } else {
938         PrintF("%d\n", instr);
939       }
940       next(&l, is_internal_reference(&l));
941     }
942   } else {
943     PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
944   }
945 }
946 
bind_to(Label * L,int pos)947 void Assembler::bind_to(Label* L, int pos) {
948   DCHECK(0 <= pos && pos <= pc_offset());  // Must have valid binding position.
949   int trampoline_pos = kInvalidSlotPos;
950   bool is_internal = false;
951   if (L->is_linked() && !trampoline_emitted_) {
952     unbound_labels_count_--;
953     if (!is_internal_reference(L)) {
954       next_buffer_check_ += kTrampolineSlotsSize;
955     }
956   }
957 
958   while (L->is_linked()) {
959     int fixup_pos = L->pos();
960     int dist = pos - fixup_pos;
961     is_internal = is_internal_reference(L);
962     next(L, is_internal);  // Call next before overwriting link with target at
963                            // fixup_pos.
964     Instr instr = instr_at(fixup_pos);
965     if (is_internal) {
966       target_at_put(fixup_pos, pos, is_internal);
967     } else {
968       if (IsBranch(instr)) {
969         int branch_offset = BranchOffset(instr);
970         if (dist > branch_offset) {
971           if (trampoline_pos == kInvalidSlotPos) {
972             trampoline_pos = get_trampoline_entry(fixup_pos);
973             CHECK_NE(trampoline_pos, kInvalidSlotPos);
974           }
975           CHECK((trampoline_pos - fixup_pos) <= branch_offset);
976           target_at_put(fixup_pos, trampoline_pos, false);
977           fixup_pos = trampoline_pos;
978         }
979         target_at_put(fixup_pos, pos, false);
980       } else {
981         DCHECK(IsJ(instr) || IsJal(instr) || IsLui(instr) ||
982                IsEmittedConstant(instr) || IsMov(instr, t8, ra));
983         target_at_put(fixup_pos, pos, false);
984       }
985     }
986   }
987   L->bind_to(pos);
988 
989   // Keep track of the last bound label so we don't eliminate any instructions
990   // before a bound label.
991   if (pos > last_bound_pos_) last_bound_pos_ = pos;
992 }
993 
bind(Label * L)994 void Assembler::bind(Label* L) {
995   DCHECK(!L->is_bound());  // Label can only be bound once.
996   bind_to(L, pc_offset());
997 }
998 
next(Label * L,bool is_internal)999 void Assembler::next(Label* L, bool is_internal) {
1000   DCHECK(L->is_linked());
1001   int link = target_at(L->pos(), is_internal);
1002   if (link == kEndOfChain) {
1003     L->Unuse();
1004   } else {
1005     DCHECK_GE(link, 0);
1006     L->link_to(link);
1007   }
1008 }
1009 
is_near(Label * L)1010 bool Assembler::is_near(Label* L) {
1011   DCHECK(L->is_bound());
1012   return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize;
1013 }
1014 
is_near(Label * L,OffsetSize bits)1015 bool Assembler::is_near(Label* L, OffsetSize bits) {
1016   if (L == nullptr || !L->is_bound()) return true;
1017   return ((pc_offset() - L->pos()) <
1018           (1 << (bits + 2 - 1)) - 1 - 5 * kInstrSize);
1019 }
1020 
is_near_branch(Label * L)1021 bool Assembler::is_near_branch(Label* L) {
1022   DCHECK(L->is_bound());
1023   return kArchVariant == kMips64r6 ? is_near_r6(L) : is_near_pre_r6(L);
1024 }
1025 
BranchOffset(Instr instr)1026 int Assembler::BranchOffset(Instr instr) {
1027   // At pre-R6 and for other R6 branches the offset is 16 bits.
1028   int bits = OffsetSize::kOffset16;
1029 
1030   if (kArchVariant == kMips64r6) {
1031     uint32_t opcode = GetOpcodeField(instr);
1032     switch (opcode) {
1033       // Checks BC or BALC.
1034       case BC:
1035       case BALC:
1036         bits = OffsetSize::kOffset26;
1037         break;
1038 
1039       // Checks BEQZC or BNEZC.
1040       case POP66:
1041       case POP76:
1042         if (GetRsField(instr) != 0) bits = OffsetSize::kOffset21;
1043         break;
1044       default:
1045         break;
1046     }
1047   }
1048 
1049   return (1 << (bits + 2 - 1)) - 1;
1050 }
1051 
1052 // We have to use a temporary register for things that can be relocated even
1053 // if they can be encoded in the MIPS's 16 bits of immediate-offset instruction
1054 // space.  There is no guarantee that the relocated location can be similarly
1055 // encoded.
MustUseReg(RelocInfo::Mode rmode)1056 bool Assembler::MustUseReg(RelocInfo::Mode rmode) {
1057   return !RelocInfo::IsNone(rmode);
1058 }
1059 
GenInstrRegister(Opcode opcode,Register rs,Register rt,Register rd,uint16_t sa,SecondaryField func)1060 void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt,
1061                                  Register rd, uint16_t sa,
1062                                  SecondaryField func) {
1063   DCHECK(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa));
1064   Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1065                 (rd.code() << kRdShift) | (sa << kSaShift) | func;
1066   emit(instr);
1067 }
1068 
GenInstrRegister(Opcode opcode,Register rs,Register rt,uint16_t msb,uint16_t lsb,SecondaryField func)1069 void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt,
1070                                  uint16_t msb, uint16_t lsb,
1071                                  SecondaryField func) {
1072   DCHECK(rs.is_valid() && rt.is_valid() && is_uint5(msb) && is_uint5(lsb));
1073   Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1074                 (msb << kRdShift) | (lsb << kSaShift) | func;
1075   emit(instr);
1076 }
1077 
GenInstrRegister(Opcode opcode,SecondaryField fmt,FPURegister ft,FPURegister fs,FPURegister fd,SecondaryField func)1078 void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt,
1079                                  FPURegister ft, FPURegister fs, FPURegister fd,
1080                                  SecondaryField func) {
1081   DCHECK(fd.is_valid() && fs.is_valid() && ft.is_valid());
1082   Instr instr = opcode | fmt | (ft.code() << kFtShift) |
1083                 (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
1084   emit(instr);
1085 }
1086 
GenInstrRegister(Opcode opcode,FPURegister fr,FPURegister ft,FPURegister fs,FPURegister fd,SecondaryField func)1087 void Assembler::GenInstrRegister(Opcode opcode, FPURegister fr, FPURegister ft,
1088                                  FPURegister fs, FPURegister fd,
1089                                  SecondaryField func) {
1090   DCHECK(fd.is_valid() && fr.is_valid() && fs.is_valid() && ft.is_valid());
1091   Instr instr = opcode | (fr.code() << kFrShift) | (ft.code() << kFtShift) |
1092                 (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
1093   emit(instr);
1094 }
1095 
GenInstrRegister(Opcode opcode,SecondaryField fmt,Register rt,FPURegister fs,FPURegister fd,SecondaryField func)1096 void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
1097                                  FPURegister fs, FPURegister fd,
1098                                  SecondaryField func) {
1099   DCHECK(fd.is_valid() && fs.is_valid() && rt.is_valid());
1100   Instr instr = opcode | fmt | (rt.code() << kRtShift) |
1101                 (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
1102   emit(instr);
1103 }
1104 
GenInstrRegister(Opcode opcode,SecondaryField fmt,Register rt,FPUControlRegister fs,SecondaryField func)1105 void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
1106                                  FPUControlRegister fs, SecondaryField func) {
1107   DCHECK(fs.is_valid() && rt.is_valid());
1108   Instr instr =
1109       opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | func;
1110   emit(instr);
1111 }
1112 
1113 // Instructions with immediate value.
1114 // Registers are in the order of the instruction encoding, from left to right.
GenInstrImmediate(Opcode opcode,Register rs,Register rt,int32_t j,CompactBranchType is_compact_branch)1115 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, Register rt,
1116                                   int32_t j,
1117                                   CompactBranchType is_compact_branch) {
1118   DCHECK(rs.is_valid() && rt.is_valid() && (is_int16(j) || is_uint16(j)));
1119   Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1120                 (j & kImm16Mask);
1121   emit(instr, is_compact_branch);
1122 }
1123 
GenInstrImmediate(Opcode opcode,Register base,Register rt,int32_t offset9,int bit6,SecondaryField func)1124 void Assembler::GenInstrImmediate(Opcode opcode, Register base, Register rt,
1125                                   int32_t offset9, int bit6,
1126                                   SecondaryField func) {
1127   DCHECK(base.is_valid() && rt.is_valid() && is_int9(offset9) &&
1128          is_uint1(bit6));
1129   Instr instr = opcode | (base.code() << kBaseShift) | (rt.code() << kRtShift) |
1130                 ((offset9 << kImm9Shift) & kImm9Mask) | bit6 << kBit6Shift |
1131                 func;
1132   emit(instr);
1133 }
1134 
GenInstrImmediate(Opcode opcode,Register rs,SecondaryField SF,int32_t j,CompactBranchType is_compact_branch)1135 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, SecondaryField SF,
1136                                   int32_t j,
1137                                   CompactBranchType is_compact_branch) {
1138   DCHECK(rs.is_valid() && (is_int16(j) || is_uint16(j)));
1139   Instr instr = opcode | (rs.code() << kRsShift) | SF | (j & kImm16Mask);
1140   emit(instr, is_compact_branch);
1141 }
1142 
GenInstrImmediate(Opcode opcode,Register rs,FPURegister ft,int32_t j,CompactBranchType is_compact_branch)1143 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, FPURegister ft,
1144                                   int32_t j,
1145                                   CompactBranchType is_compact_branch) {
1146   DCHECK(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j)));
1147   Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift) |
1148                 (j & kImm16Mask);
1149   emit(instr, is_compact_branch);
1150 }
1151 
GenInstrImmediate(Opcode opcode,Register rs,int32_t offset21,CompactBranchType is_compact_branch)1152 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, int32_t offset21,
1153                                   CompactBranchType is_compact_branch) {
1154   DCHECK(rs.is_valid() && (is_int21(offset21)));
1155   Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask);
1156   emit(instr, is_compact_branch);
1157 }
1158 
GenInstrImmediate(Opcode opcode,Register rs,uint32_t offset21)1159 void Assembler::GenInstrImmediate(Opcode opcode, Register rs,
1160                                   uint32_t offset21) {
1161   DCHECK(rs.is_valid() && (is_uint21(offset21)));
1162   Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask);
1163   emit(instr);
1164 }
1165 
GenInstrImmediate(Opcode opcode,int32_t offset26,CompactBranchType is_compact_branch)1166 void Assembler::GenInstrImmediate(Opcode opcode, int32_t offset26,
1167                                   CompactBranchType is_compact_branch) {
1168   DCHECK(is_int26(offset26));
1169   Instr instr = opcode | (offset26 & kImm26Mask);
1170   emit(instr, is_compact_branch);
1171 }
1172 
GenInstrJump(Opcode opcode,uint32_t address)1173 void Assembler::GenInstrJump(Opcode opcode, uint32_t address) {
1174   BlockTrampolinePoolScope block_trampoline_pool(this);
1175   DCHECK(is_uint26(address));
1176   Instr instr = opcode | address;
1177   emit(instr);
1178   BlockTrampolinePoolFor(1);  // For associated delay slot.
1179 }
1180 
1181 // MSA instructions
GenInstrMsaI8(SecondaryField operation,uint32_t imm8,MSARegister ws,MSARegister wd)1182 void Assembler::GenInstrMsaI8(SecondaryField operation, uint32_t imm8,
1183                               MSARegister ws, MSARegister wd) {
1184   DCHECK(IsEnabled(MIPS_SIMD));
1185   DCHECK(ws.is_valid() && wd.is_valid() && is_uint8(imm8));
1186   Instr instr = MSA | operation | ((imm8 & kImm8Mask) << kWtShift) |
1187                 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1188   emit(instr);
1189 }
1190 
GenInstrMsaI5(SecondaryField operation,SecondaryField df,int32_t imm5,MSARegister ws,MSARegister wd)1191 void Assembler::GenInstrMsaI5(SecondaryField operation, SecondaryField df,
1192                               int32_t imm5, MSARegister ws, MSARegister wd) {
1193   DCHECK(IsEnabled(MIPS_SIMD));
1194   DCHECK(ws.is_valid() && wd.is_valid());
1195   DCHECK((operation == MAXI_S) || (operation == MINI_S) ||
1196                  (operation == CEQI) || (operation == CLTI_S) ||
1197                  (operation == CLEI_S)
1198              ? is_int5(imm5)
1199              : is_uint5(imm5));
1200   Instr instr = MSA | operation | df | ((imm5 & kImm5Mask) << kWtShift) |
1201                 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1202   emit(instr);
1203 }
1204 
GenInstrMsaBit(SecondaryField operation,SecondaryField df,uint32_t m,MSARegister ws,MSARegister wd)1205 void Assembler::GenInstrMsaBit(SecondaryField operation, SecondaryField df,
1206                                uint32_t m, MSARegister ws, MSARegister wd) {
1207   DCHECK(IsEnabled(MIPS_SIMD));
1208   DCHECK(ws.is_valid() && wd.is_valid() && is_valid_msa_df_m(df, m));
1209   Instr instr = MSA | operation | df | (m << kWtShift) |
1210                 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1211   emit(instr);
1212 }
1213 
GenInstrMsaI10(SecondaryField operation,SecondaryField df,int32_t imm10,MSARegister wd)1214 void Assembler::GenInstrMsaI10(SecondaryField operation, SecondaryField df,
1215                                int32_t imm10, MSARegister wd) {
1216   DCHECK(IsEnabled(MIPS_SIMD));
1217   DCHECK(wd.is_valid() && is_int10(imm10));
1218   Instr instr = MSA | operation | df | ((imm10 & kImm10Mask) << kWsShift) |
1219                 (wd.code() << kWdShift);
1220   emit(instr);
1221 }
1222 
1223 template <typename RegType>
GenInstrMsa3R(SecondaryField operation,SecondaryField df,RegType t,MSARegister ws,MSARegister wd)1224 void Assembler::GenInstrMsa3R(SecondaryField operation, SecondaryField df,
1225                               RegType t, MSARegister ws, MSARegister wd) {
1226   DCHECK(IsEnabled(MIPS_SIMD));
1227   DCHECK(t.is_valid() && ws.is_valid() && wd.is_valid());
1228   Instr instr = MSA | operation | df | (t.code() << kWtShift) |
1229                 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1230   emit(instr);
1231 }
1232 
1233 template <typename DstType, typename SrcType>
GenInstrMsaElm(SecondaryField operation,SecondaryField df,uint32_t n,SrcType src,DstType dst)1234 void Assembler::GenInstrMsaElm(SecondaryField operation, SecondaryField df,
1235                                uint32_t n, SrcType src, DstType dst) {
1236   DCHECK(IsEnabled(MIPS_SIMD));
1237   DCHECK(src.is_valid() && dst.is_valid() && is_valid_msa_df_n(df, n));
1238   Instr instr = MSA | operation | df | (n << kWtShift) |
1239                 (src.code() << kWsShift) | (dst.code() << kWdShift) |
1240                 MSA_ELM_MINOR;
1241   emit(instr);
1242 }
1243 
GenInstrMsa3RF(SecondaryField operation,uint32_t df,MSARegister wt,MSARegister ws,MSARegister wd)1244 void Assembler::GenInstrMsa3RF(SecondaryField operation, uint32_t df,
1245                                MSARegister wt, MSARegister ws, MSARegister wd) {
1246   DCHECK(IsEnabled(MIPS_SIMD));
1247   DCHECK(wt.is_valid() && ws.is_valid() && wd.is_valid());
1248   DCHECK_LT(df, 2);
1249   Instr instr = MSA | operation | (df << 21) | (wt.code() << kWtShift) |
1250                 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1251   emit(instr);
1252 }
1253 
GenInstrMsaVec(SecondaryField operation,MSARegister wt,MSARegister ws,MSARegister wd)1254 void Assembler::GenInstrMsaVec(SecondaryField operation, MSARegister wt,
1255                                MSARegister ws, MSARegister wd) {
1256   DCHECK(IsEnabled(MIPS_SIMD));
1257   DCHECK(wt.is_valid() && ws.is_valid() && wd.is_valid());
1258   Instr instr = MSA | operation | (wt.code() << kWtShift) |
1259                 (ws.code() << kWsShift) | (wd.code() << kWdShift) |
1260                 MSA_VEC_2R_2RF_MINOR;
1261   emit(instr);
1262 }
1263 
GenInstrMsaMI10(SecondaryField operation,int32_t s10,Register rs,MSARegister wd)1264 void Assembler::GenInstrMsaMI10(SecondaryField operation, int32_t s10,
1265                                 Register rs, MSARegister wd) {
1266   DCHECK(IsEnabled(MIPS_SIMD));
1267   DCHECK(rs.is_valid() && wd.is_valid() && is_int10(s10));
1268   Instr instr = MSA | operation | ((s10 & kImm10Mask) << kWtShift) |
1269                 (rs.code() << kWsShift) | (wd.code() << kWdShift);
1270   emit(instr);
1271 }
1272 
GenInstrMsa2R(SecondaryField operation,SecondaryField df,MSARegister ws,MSARegister wd)1273 void Assembler::GenInstrMsa2R(SecondaryField operation, SecondaryField df,
1274                               MSARegister ws, MSARegister wd) {
1275   DCHECK(IsEnabled(MIPS_SIMD));
1276   DCHECK(ws.is_valid() && wd.is_valid());
1277   Instr instr = MSA | MSA_2R_FORMAT | operation | df | (ws.code() << kWsShift) |
1278                 (wd.code() << kWdShift) | MSA_VEC_2R_2RF_MINOR;
1279   emit(instr);
1280 }
1281 
GenInstrMsa2RF(SecondaryField operation,SecondaryField df,MSARegister ws,MSARegister wd)1282 void Assembler::GenInstrMsa2RF(SecondaryField operation, SecondaryField df,
1283                                MSARegister ws, MSARegister wd) {
1284   DCHECK(IsEnabled(MIPS_SIMD));
1285   DCHECK(ws.is_valid() && wd.is_valid());
1286   Instr instr = MSA | MSA_2RF_FORMAT | operation | df |
1287                 (ws.code() << kWsShift) | (wd.code() << kWdShift) |
1288                 MSA_VEC_2R_2RF_MINOR;
1289   emit(instr);
1290 }
1291 
GenInstrMsaBranch(SecondaryField operation,MSARegister wt,int32_t offset16)1292 void Assembler::GenInstrMsaBranch(SecondaryField operation, MSARegister wt,
1293                                   int32_t offset16) {
1294   DCHECK(IsEnabled(MIPS_SIMD));
1295   DCHECK(wt.is_valid() && is_int16(offset16));
1296   BlockTrampolinePoolScope block_trampoline_pool(this);
1297   Instr instr =
1298       COP1 | operation | (wt.code() << kWtShift) | (offset16 & kImm16Mask);
1299   emit(instr);
1300   BlockTrampolinePoolFor(1);  // For associated delay slot.
1301 }
1302 
1303 // Returns the next free trampoline entry.
get_trampoline_entry(int32_t pos)1304 int32_t Assembler::get_trampoline_entry(int32_t pos) {
1305   int32_t trampoline_entry = kInvalidSlotPos;
1306   if (!internal_trampoline_exception_) {
1307     if (trampoline_.start() > pos) {
1308       trampoline_entry = trampoline_.take_slot();
1309     }
1310 
1311     if (kInvalidSlotPos == trampoline_entry) {
1312       internal_trampoline_exception_ = true;
1313     }
1314   }
1315   return trampoline_entry;
1316 }
1317 
jump_address(Label * L)1318 uint64_t Assembler::jump_address(Label* L) {
1319   int64_t target_pos;
1320   if (L->is_bound()) {
1321     target_pos = L->pos();
1322   } else {
1323     if (L->is_linked()) {
1324       target_pos = L->pos();  // L's link.
1325       L->link_to(pc_offset());
1326     } else {
1327       L->link_to(pc_offset());
1328       return kEndOfJumpChain;
1329     }
1330   }
1331   uint64_t imm = reinterpret_cast<uint64_t>(buffer_start_) + target_pos;
1332   DCHECK_EQ(imm & 3, 0);
1333 
1334   return imm;
1335 }
1336 
jump_offset(Label * L)1337 uint64_t Assembler::jump_offset(Label* L) {
1338   int64_t target_pos;
1339   int32_t pad = IsPrevInstrCompactBranch() ? kInstrSize : 0;
1340 
1341   if (L->is_bound()) {
1342     target_pos = L->pos();
1343   } else {
1344     if (L->is_linked()) {
1345       target_pos = L->pos();  // L's link.
1346       L->link_to(pc_offset() + pad);
1347     } else {
1348       L->link_to(pc_offset() + pad);
1349       return kEndOfJumpChain;
1350     }
1351   }
1352   int64_t imm = target_pos - (pc_offset() + pad);
1353   DCHECK_EQ(imm & 3, 0);
1354 
1355   return static_cast<uint64_t>(imm);
1356 }
1357 
branch_long_offset(Label * L)1358 uint64_t Assembler::branch_long_offset(Label* L) {
1359   int64_t target_pos;
1360 
1361   if (L->is_bound()) {
1362     target_pos = L->pos();
1363   } else {
1364     if (L->is_linked()) {
1365       target_pos = L->pos();  // L's link.
1366       L->link_to(pc_offset());
1367     } else {
1368       L->link_to(pc_offset());
1369       return kEndOfJumpChain;
1370     }
1371   }
1372   int64_t offset = target_pos - (pc_offset() + kLongBranchPCOffset);
1373   DCHECK_EQ(offset & 3, 0);
1374 
1375   return static_cast<uint64_t>(offset);
1376 }
1377 
branch_offset_helper(Label * L,OffsetSize bits)1378 int32_t Assembler::branch_offset_helper(Label* L, OffsetSize bits) {
1379   int32_t target_pos;
1380   int32_t pad = IsPrevInstrCompactBranch() ? kInstrSize : 0;
1381 
1382   if (L->is_bound()) {
1383     target_pos = L->pos();
1384   } else {
1385     if (L->is_linked()) {
1386       target_pos = L->pos();
1387       L->link_to(pc_offset() + pad);
1388     } else {
1389       L->link_to(pc_offset() + pad);
1390       if (!trampoline_emitted_) {
1391         unbound_labels_count_++;
1392         next_buffer_check_ -= kTrampolineSlotsSize;
1393       }
1394       return kEndOfChain;
1395     }
1396   }
1397 
1398   int32_t offset = target_pos - (pc_offset() + kBranchPCOffset + pad);
1399   DCHECK(is_intn(offset, bits + 2));
1400   DCHECK_EQ(offset & 3, 0);
1401 
1402   return offset;
1403 }
1404 
label_at_put(Label * L,int at_offset)1405 void Assembler::label_at_put(Label* L, int at_offset) {
1406   int target_pos;
1407   if (L->is_bound()) {
1408     target_pos = L->pos();
1409     instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag));
1410   } else {
1411     if (L->is_linked()) {
1412       target_pos = L->pos();  // L's link.
1413       int32_t imm18 = target_pos - at_offset;
1414       DCHECK_EQ(imm18 & 3, 0);
1415       int32_t imm16 = imm18 >> 2;
1416       DCHECK(is_int16(imm16));
1417       instr_at_put(at_offset, (imm16 & kImm16Mask));
1418     } else {
1419       target_pos = kEndOfChain;
1420       instr_at_put(at_offset, 0);
1421       if (!trampoline_emitted_) {
1422         unbound_labels_count_++;
1423         next_buffer_check_ -= kTrampolineSlotsSize;
1424       }
1425     }
1426     L->link_to(at_offset);
1427   }
1428 }
1429 
1430 //------- Branch and jump instructions --------
1431 
b(int16_t offset)1432 void Assembler::b(int16_t offset) { beq(zero_reg, zero_reg, offset); }
1433 
bal(int16_t offset)1434 void Assembler::bal(int16_t offset) { bgezal(zero_reg, offset); }
1435 
bc(int32_t offset)1436 void Assembler::bc(int32_t offset) {
1437   DCHECK_EQ(kArchVariant, kMips64r6);
1438   GenInstrImmediate(BC, offset, CompactBranchType::COMPACT_BRANCH);
1439 }
1440 
balc(int32_t offset)1441 void Assembler::balc(int32_t offset) {
1442   DCHECK_EQ(kArchVariant, kMips64r6);
1443   GenInstrImmediate(BALC, offset, CompactBranchType::COMPACT_BRANCH);
1444 }
1445 
beq(Register rs,Register rt,int16_t offset)1446 void Assembler::beq(Register rs, Register rt, int16_t offset) {
1447   BlockTrampolinePoolScope block_trampoline_pool(this);
1448   GenInstrImmediate(BEQ, rs, rt, offset);
1449   BlockTrampolinePoolFor(1);  // For associated delay slot.
1450 }
1451 
bgez(Register rs,int16_t offset)1452 void Assembler::bgez(Register rs, int16_t offset) {
1453   BlockTrampolinePoolScope block_trampoline_pool(this);
1454   GenInstrImmediate(REGIMM, rs, BGEZ, offset);
1455   BlockTrampolinePoolFor(1);  // For associated delay slot.
1456 }
1457 
bgezc(Register rt,int16_t offset)1458 void Assembler::bgezc(Register rt, int16_t offset) {
1459   DCHECK_EQ(kArchVariant, kMips64r6);
1460   DCHECK(rt != zero_reg);
1461   GenInstrImmediate(BLEZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1462 }
1463 
bgeuc(Register rs,Register rt,int16_t offset)1464 void Assembler::bgeuc(Register rs, Register rt, int16_t offset) {
1465   DCHECK_EQ(kArchVariant, kMips64r6);
1466   DCHECK(rs != zero_reg);
1467   DCHECK(rt != zero_reg);
1468   DCHECK(rs.code() != rt.code());
1469   GenInstrImmediate(BLEZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1470 }
1471 
bgec(Register rs,Register rt,int16_t offset)1472 void Assembler::bgec(Register rs, Register rt, int16_t offset) {
1473   DCHECK_EQ(kArchVariant, kMips64r6);
1474   DCHECK(rs != zero_reg);
1475   DCHECK(rt != zero_reg);
1476   DCHECK(rs.code() != rt.code());
1477   GenInstrImmediate(BLEZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1478 }
1479 
bgezal(Register rs,int16_t offset)1480 void Assembler::bgezal(Register rs, int16_t offset) {
1481   DCHECK(kArchVariant != kMips64r6 || rs == zero_reg);
1482   DCHECK(rs != ra);
1483   BlockTrampolinePoolScope block_trampoline_pool(this);
1484   GenInstrImmediate(REGIMM, rs, BGEZAL, offset);
1485   BlockTrampolinePoolFor(1);  // For associated delay slot.
1486 }
1487 
bgtz(Register rs,int16_t offset)1488 void Assembler::bgtz(Register rs, int16_t offset) {
1489   BlockTrampolinePoolScope block_trampoline_pool(this);
1490   GenInstrImmediate(BGTZ, rs, zero_reg, offset);
1491   BlockTrampolinePoolFor(1);  // For associated delay slot.
1492 }
1493 
bgtzc(Register rt,int16_t offset)1494 void Assembler::bgtzc(Register rt, int16_t offset) {
1495   DCHECK_EQ(kArchVariant, kMips64r6);
1496   DCHECK(rt != zero_reg);
1497   GenInstrImmediate(BGTZL, zero_reg, rt, offset,
1498                     CompactBranchType::COMPACT_BRANCH);
1499 }
1500 
blez(Register rs,int16_t offset)1501 void Assembler::blez(Register rs, int16_t offset) {
1502   BlockTrampolinePoolScope block_trampoline_pool(this);
1503   GenInstrImmediate(BLEZ, rs, zero_reg, offset);
1504   BlockTrampolinePoolFor(1);  // For associated delay slot.
1505 }
1506 
blezc(Register rt,int16_t offset)1507 void Assembler::blezc(Register rt, int16_t offset) {
1508   DCHECK_EQ(kArchVariant, kMips64r6);
1509   DCHECK(rt != zero_reg);
1510   GenInstrImmediate(BLEZL, zero_reg, rt, offset,
1511                     CompactBranchType::COMPACT_BRANCH);
1512 }
1513 
bltzc(Register rt,int16_t offset)1514 void Assembler::bltzc(Register rt, int16_t offset) {
1515   DCHECK_EQ(kArchVariant, kMips64r6);
1516   DCHECK(rt != zero_reg);
1517   GenInstrImmediate(BGTZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1518 }
1519 
bltuc(Register rs,Register rt,int16_t offset)1520 void Assembler::bltuc(Register rs, Register rt, int16_t offset) {
1521   DCHECK_EQ(kArchVariant, kMips64r6);
1522   DCHECK(rs != zero_reg);
1523   DCHECK(rt != zero_reg);
1524   DCHECK(rs.code() != rt.code());
1525   GenInstrImmediate(BGTZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1526 }
1527 
bltc(Register rs,Register rt,int16_t offset)1528 void Assembler::bltc(Register rs, Register rt, int16_t offset) {
1529   DCHECK_EQ(kArchVariant, kMips64r6);
1530   DCHECK(rs != zero_reg);
1531   DCHECK(rt != zero_reg);
1532   DCHECK(rs.code() != rt.code());
1533   GenInstrImmediate(BGTZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1534 }
1535 
bltz(Register rs,int16_t offset)1536 void Assembler::bltz(Register rs, int16_t offset) {
1537   BlockTrampolinePoolScope block_trampoline_pool(this);
1538   GenInstrImmediate(REGIMM, rs, BLTZ, offset);
1539   BlockTrampolinePoolFor(1);  // For associated delay slot.
1540 }
1541 
bltzal(Register rs,int16_t offset)1542 void Assembler::bltzal(Register rs, int16_t offset) {
1543   DCHECK(kArchVariant != kMips64r6 || rs == zero_reg);
1544   DCHECK(rs != ra);
1545   BlockTrampolinePoolScope block_trampoline_pool(this);
1546   GenInstrImmediate(REGIMM, rs, BLTZAL, offset);
1547   BlockTrampolinePoolFor(1);  // For associated delay slot.
1548 }
1549 
bne(Register rs,Register rt,int16_t offset)1550 void Assembler::bne(Register rs, Register rt, int16_t offset) {
1551   BlockTrampolinePoolScope block_trampoline_pool(this);
1552   GenInstrImmediate(BNE, rs, rt, offset);
1553   BlockTrampolinePoolFor(1);  // For associated delay slot.
1554 }
1555 
bovc(Register rs,Register rt,int16_t offset)1556 void Assembler::bovc(Register rs, Register rt, int16_t offset) {
1557   DCHECK_EQ(kArchVariant, kMips64r6);
1558   if (rs.code() >= rt.code()) {
1559     GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1560   } else {
1561     GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1562   }
1563 }
1564 
bnvc(Register rs,Register rt,int16_t offset)1565 void Assembler::bnvc(Register rs, Register rt, int16_t offset) {
1566   DCHECK_EQ(kArchVariant, kMips64r6);
1567   if (rs.code() >= rt.code()) {
1568     GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1569   } else {
1570     GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1571   }
1572 }
1573 
blezalc(Register rt,int16_t offset)1574 void Assembler::blezalc(Register rt, int16_t offset) {
1575   DCHECK_EQ(kArchVariant, kMips64r6);
1576   DCHECK(rt != zero_reg);
1577   DCHECK(rt != ra);
1578   GenInstrImmediate(BLEZ, zero_reg, rt, offset,
1579                     CompactBranchType::COMPACT_BRANCH);
1580 }
1581 
bgezalc(Register rt,int16_t offset)1582 void Assembler::bgezalc(Register rt, int16_t offset) {
1583   DCHECK_EQ(kArchVariant, kMips64r6);
1584   DCHECK(rt != zero_reg);
1585   DCHECK(rt != ra);
1586   GenInstrImmediate(BLEZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1587 }
1588 
bgezall(Register rs,int16_t offset)1589 void Assembler::bgezall(Register rs, int16_t offset) {
1590   DCHECK_NE(kArchVariant, kMips64r6);
1591   DCHECK(rs != zero_reg);
1592   DCHECK(rs != ra);
1593   BlockTrampolinePoolScope block_trampoline_pool(this);
1594   GenInstrImmediate(REGIMM, rs, BGEZALL, offset);
1595   BlockTrampolinePoolFor(1);  // For associated delay slot.
1596 }
1597 
bltzalc(Register rt,int16_t offset)1598 void Assembler::bltzalc(Register rt, int16_t offset) {
1599   DCHECK_EQ(kArchVariant, kMips64r6);
1600   DCHECK(rt != zero_reg);
1601   DCHECK(rt != ra);
1602   GenInstrImmediate(BGTZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1603 }
1604 
bgtzalc(Register rt,int16_t offset)1605 void Assembler::bgtzalc(Register rt, int16_t offset) {
1606   DCHECK_EQ(kArchVariant, kMips64r6);
1607   DCHECK(rt != zero_reg);
1608   DCHECK(rt != ra);
1609   GenInstrImmediate(BGTZ, zero_reg, rt, offset,
1610                     CompactBranchType::COMPACT_BRANCH);
1611 }
1612 
beqzalc(Register rt,int16_t offset)1613 void Assembler::beqzalc(Register rt, int16_t offset) {
1614   DCHECK_EQ(kArchVariant, kMips64r6);
1615   DCHECK(rt != zero_reg);
1616   DCHECK(rt != ra);
1617   GenInstrImmediate(ADDI, zero_reg, rt, offset,
1618                     CompactBranchType::COMPACT_BRANCH);
1619 }
1620 
bnezalc(Register rt,int16_t offset)1621 void Assembler::bnezalc(Register rt, int16_t offset) {
1622   DCHECK_EQ(kArchVariant, kMips64r6);
1623   DCHECK(rt != zero_reg);
1624   DCHECK(rt != ra);
1625   GenInstrImmediate(DADDI, zero_reg, rt, offset,
1626                     CompactBranchType::COMPACT_BRANCH);
1627 }
1628 
beqc(Register rs,Register rt,int16_t offset)1629 void Assembler::beqc(Register rs, Register rt, int16_t offset) {
1630   DCHECK_EQ(kArchVariant, kMips64r6);
1631   DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0);
1632   if (rs.code() < rt.code()) {
1633     GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1634   } else {
1635     GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1636   }
1637 }
1638 
beqzc(Register rs,int32_t offset)1639 void Assembler::beqzc(Register rs, int32_t offset) {
1640   DCHECK_EQ(kArchVariant, kMips64r6);
1641   DCHECK(rs != zero_reg);
1642   GenInstrImmediate(POP66, rs, offset, CompactBranchType::COMPACT_BRANCH);
1643 }
1644 
bnec(Register rs,Register rt,int16_t offset)1645 void Assembler::bnec(Register rs, Register rt, int16_t offset) {
1646   DCHECK_EQ(kArchVariant, kMips64r6);
1647   DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0);
1648   if (rs.code() < rt.code()) {
1649     GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1650   } else {
1651     GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1652   }
1653 }
1654 
bnezc(Register rs,int32_t offset)1655 void Assembler::bnezc(Register rs, int32_t offset) {
1656   DCHECK_EQ(kArchVariant, kMips64r6);
1657   DCHECK(rs != zero_reg);
1658   GenInstrImmediate(POP76, rs, offset, CompactBranchType::COMPACT_BRANCH);
1659 }
1660 
j(int64_t target)1661 void Assembler::j(int64_t target) {
1662   // Deprecated. Use PC-relative jumps instead.
1663   UNREACHABLE();
1664 }
1665 
j(Label * target)1666 void Assembler::j(Label* target) {
1667   // Deprecated. Use PC-relative jumps instead.
1668   UNREACHABLE();
1669 }
1670 
jal(Label * target)1671 void Assembler::jal(Label* target) {
1672   // Deprecated. Use PC-relative jumps instead.
1673   UNREACHABLE();
1674 }
1675 
jal(int64_t target)1676 void Assembler::jal(int64_t target) {
1677   // Deprecated. Use PC-relative jumps instead.
1678   UNREACHABLE();
1679 }
1680 
jr(Register rs)1681 void Assembler::jr(Register rs) {
1682   if (kArchVariant != kMips64r6) {
1683     BlockTrampolinePoolScope block_trampoline_pool(this);
1684     GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR);
1685     BlockTrampolinePoolFor(1);  // For associated delay slot.
1686   } else {
1687     jalr(rs, zero_reg);
1688   }
1689 }
1690 
jalr(Register rs,Register rd)1691 void Assembler::jalr(Register rs, Register rd) {
1692   DCHECK(rs.code() != rd.code());
1693   BlockTrampolinePoolScope block_trampoline_pool(this);
1694   GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR);
1695   BlockTrampolinePoolFor(1);  // For associated delay slot.
1696 }
1697 
jic(Register rt,int16_t offset)1698 void Assembler::jic(Register rt, int16_t offset) {
1699   DCHECK_EQ(kArchVariant, kMips64r6);
1700   GenInstrImmediate(POP66, zero_reg, rt, offset);
1701 }
1702 
jialc(Register rt,int16_t offset)1703 void Assembler::jialc(Register rt, int16_t offset) {
1704   DCHECK_EQ(kArchVariant, kMips64r6);
1705   GenInstrImmediate(POP76, zero_reg, rt, offset);
1706 }
1707 
1708 // -------Data-processing-instructions---------
1709 
1710 // Arithmetic.
1711 
addu(Register rd,Register rs,Register rt)1712 void Assembler::addu(Register rd, Register rs, Register rt) {
1713   GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU);
1714 }
1715 
addiu(Register rd,Register rs,int32_t j)1716 void Assembler::addiu(Register rd, Register rs, int32_t j) {
1717   GenInstrImmediate(ADDIU, rs, rd, j);
1718 }
1719 
subu(Register rd,Register rs,Register rt)1720 void Assembler::subu(Register rd, Register rs, Register rt) {
1721   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUBU);
1722 }
1723 
mul(Register rd,Register rs,Register rt)1724 void Assembler::mul(Register rd, Register rs, Register rt) {
1725   if (kArchVariant == kMips64r6) {
1726     GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH);
1727   } else {
1728     GenInstrRegister(SPECIAL2, rs, rt, rd, 0, MUL);
1729   }
1730 }
1731 
muh(Register rd,Register rs,Register rt)1732 void Assembler::muh(Register rd, Register rs, Register rt) {
1733   DCHECK_EQ(kArchVariant, kMips64r6);
1734   GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH);
1735 }
1736 
mulu(Register rd,Register rs,Register rt)1737 void Assembler::mulu(Register rd, Register rs, Register rt) {
1738   DCHECK_EQ(kArchVariant, kMips64r6);
1739   GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH_U);
1740 }
1741 
muhu(Register rd,Register rs,Register rt)1742 void Assembler::muhu(Register rd, Register rs, Register rt) {
1743   DCHECK_EQ(kArchVariant, kMips64r6);
1744   GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH_U);
1745 }
1746 
dmul(Register rd,Register rs,Register rt)1747 void Assembler::dmul(Register rd, Register rs, Register rt) {
1748   DCHECK_EQ(kArchVariant, kMips64r6);
1749   GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, D_MUL_MUH);
1750 }
1751 
dmuh(Register rd,Register rs,Register rt)1752 void Assembler::dmuh(Register rd, Register rs, Register rt) {
1753   DCHECK_EQ(kArchVariant, kMips64r6);
1754   GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, D_MUL_MUH);
1755 }
1756 
dmulu(Register rd,Register rs,Register rt)1757 void Assembler::dmulu(Register rd, Register rs, Register rt) {
1758   DCHECK_EQ(kArchVariant, kMips64r6);
1759   GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, D_MUL_MUH_U);
1760 }
1761 
dmuhu(Register rd,Register rs,Register rt)1762 void Assembler::dmuhu(Register rd, Register rs, Register rt) {
1763   DCHECK_EQ(kArchVariant, kMips64r6);
1764   GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, D_MUL_MUH_U);
1765 }
1766 
mult(Register rs,Register rt)1767 void Assembler::mult(Register rs, Register rt) {
1768   DCHECK_NE(kArchVariant, kMips64r6);
1769   GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULT);
1770 }
1771 
multu(Register rs,Register rt)1772 void Assembler::multu(Register rs, Register rt) {
1773   DCHECK_NE(kArchVariant, kMips64r6);
1774   GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULTU);
1775 }
1776 
daddiu(Register rd,Register rs,int32_t j)1777 void Assembler::daddiu(Register rd, Register rs, int32_t j) {
1778   GenInstrImmediate(DADDIU, rs, rd, j);
1779 }
1780 
div(Register rs,Register rt)1781 void Assembler::div(Register rs, Register rt) {
1782   GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIV);
1783 }
1784 
div(Register rd,Register rs,Register rt)1785 void Assembler::div(Register rd, Register rs, Register rt) {
1786   DCHECK_EQ(kArchVariant, kMips64r6);
1787   GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD);
1788 }
1789 
mod(Register rd,Register rs,Register rt)1790 void Assembler::mod(Register rd, Register rs, Register rt) {
1791   DCHECK_EQ(kArchVariant, kMips64r6);
1792   GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD);
1793 }
1794 
divu(Register rs,Register rt)1795 void Assembler::divu(Register rs, Register rt) {
1796   GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIVU);
1797 }
1798 
divu(Register rd,Register rs,Register rt)1799 void Assembler::divu(Register rd, Register rs, Register rt) {
1800   DCHECK_EQ(kArchVariant, kMips64r6);
1801   GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD_U);
1802 }
1803 
modu(Register rd,Register rs,Register rt)1804 void Assembler::modu(Register rd, Register rs, Register rt) {
1805   DCHECK_EQ(kArchVariant, kMips64r6);
1806   GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD_U);
1807 }
1808 
daddu(Register rd,Register rs,Register rt)1809 void Assembler::daddu(Register rd, Register rs, Register rt) {
1810   GenInstrRegister(SPECIAL, rs, rt, rd, 0, DADDU);
1811 }
1812 
dsubu(Register rd,Register rs,Register rt)1813 void Assembler::dsubu(Register rd, Register rs, Register rt) {
1814   GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSUBU);
1815 }
1816 
dmult(Register rs,Register rt)1817 void Assembler::dmult(Register rs, Register rt) {
1818   GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DMULT);
1819 }
1820 
dmultu(Register rs,Register rt)1821 void Assembler::dmultu(Register rs, Register rt) {
1822   GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DMULTU);
1823 }
1824 
ddiv(Register rs,Register rt)1825 void Assembler::ddiv(Register rs, Register rt) {
1826   GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DDIV);
1827 }
1828 
ddiv(Register rd,Register rs,Register rt)1829 void Assembler::ddiv(Register rd, Register rs, Register rt) {
1830   DCHECK_EQ(kArchVariant, kMips64r6);
1831   GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, D_DIV_MOD);
1832 }
1833 
dmod(Register rd,Register rs,Register rt)1834 void Assembler::dmod(Register rd, Register rs, Register rt) {
1835   DCHECK_EQ(kArchVariant, kMips64r6);
1836   GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, D_DIV_MOD);
1837 }
1838 
ddivu(Register rs,Register rt)1839 void Assembler::ddivu(Register rs, Register rt) {
1840   GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DDIVU);
1841 }
1842 
ddivu(Register rd,Register rs,Register rt)1843 void Assembler::ddivu(Register rd, Register rs, Register rt) {
1844   DCHECK_EQ(kArchVariant, kMips64r6);
1845   GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, D_DIV_MOD_U);
1846 }
1847 
dmodu(Register rd,Register rs,Register rt)1848 void Assembler::dmodu(Register rd, Register rs, Register rt) {
1849   DCHECK_EQ(kArchVariant, kMips64r6);
1850   GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, D_DIV_MOD_U);
1851 }
1852 
1853 // Logical.
1854 
and_(Register rd,Register rs,Register rt)1855 void Assembler::and_(Register rd, Register rs, Register rt) {
1856   GenInstrRegister(SPECIAL, rs, rt, rd, 0, AND);
1857 }
1858 
andi(Register rt,Register rs,int32_t j)1859 void Assembler::andi(Register rt, Register rs, int32_t j) {
1860   DCHECK(is_uint16(j));
1861   GenInstrImmediate(ANDI, rs, rt, j);
1862 }
1863 
or_(Register rd,Register rs,Register rt)1864 void Assembler::or_(Register rd, Register rs, Register rt) {
1865   GenInstrRegister(SPECIAL, rs, rt, rd, 0, OR);
1866 }
1867 
ori(Register rt,Register rs,int32_t j)1868 void Assembler::ori(Register rt, Register rs, int32_t j) {
1869   DCHECK(is_uint16(j));
1870   GenInstrImmediate(ORI, rs, rt, j);
1871 }
1872 
xor_(Register rd,Register rs,Register rt)1873 void Assembler::xor_(Register rd, Register rs, Register rt) {
1874   GenInstrRegister(SPECIAL, rs, rt, rd, 0, XOR);
1875 }
1876 
xori(Register rt,Register rs,int32_t j)1877 void Assembler::xori(Register rt, Register rs, int32_t j) {
1878   DCHECK(is_uint16(j));
1879   GenInstrImmediate(XORI, rs, rt, j);
1880 }
1881 
nor(Register rd,Register rs,Register rt)1882 void Assembler::nor(Register rd, Register rs, Register rt) {
1883   GenInstrRegister(SPECIAL, rs, rt, rd, 0, NOR);
1884 }
1885 
1886 // Shifts.
sll(Register rd,Register rt,uint16_t sa,bool coming_from_nop)1887 void Assembler::sll(Register rd, Register rt, uint16_t sa,
1888                     bool coming_from_nop) {
1889   // Don't allow nop instructions in the form sll zero_reg, zero_reg to be
1890   // generated using the sll instruction. They must be generated using
1891   // nop(int/NopMarkerTypes).
1892   DCHECK(coming_from_nop || (rd != zero_reg && rt != zero_reg));
1893   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SLL);
1894 }
1895 
sllv(Register rd,Register rt,Register rs)1896 void Assembler::sllv(Register rd, Register rt, Register rs) {
1897   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLLV);
1898 }
1899 
srl(Register rd,Register rt,uint16_t sa)1900 void Assembler::srl(Register rd, Register rt, uint16_t sa) {
1901   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRL);
1902 }
1903 
srlv(Register rd,Register rt,Register rs)1904 void Assembler::srlv(Register rd, Register rt, Register rs) {
1905   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRLV);
1906 }
1907 
sra(Register rd,Register rt,uint16_t sa)1908 void Assembler::sra(Register rd, Register rt, uint16_t sa) {
1909   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRA);
1910 }
1911 
srav(Register rd,Register rt,Register rs)1912 void Assembler::srav(Register rd, Register rt, Register rs) {
1913   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRAV);
1914 }
1915 
rotr(Register rd,Register rt,uint16_t sa)1916 void Assembler::rotr(Register rd, Register rt, uint16_t sa) {
1917   // Should be called via MacroAssembler::Ror.
1918   DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa));
1919   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
1920   Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) |
1921                 (rd.code() << kRdShift) | (sa << kSaShift) | SRL;
1922   emit(instr);
1923 }
1924 
rotrv(Register rd,Register rt,Register rs)1925 void Assembler::rotrv(Register rd, Register rt, Register rs) {
1926   // Should be called via MacroAssembler::Ror.
1927   DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
1928   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
1929   Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1930                 (rd.code() << kRdShift) | (1 << kSaShift) | SRLV;
1931   emit(instr);
1932 }
1933 
dsll(Register rd,Register rt,uint16_t sa)1934 void Assembler::dsll(Register rd, Register rt, uint16_t sa) {
1935   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSLL);
1936 }
1937 
dsllv(Register rd,Register rt,Register rs)1938 void Assembler::dsllv(Register rd, Register rt, Register rs) {
1939   GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSLLV);
1940 }
1941 
dsrl(Register rd,Register rt,uint16_t sa)1942 void Assembler::dsrl(Register rd, Register rt, uint16_t sa) {
1943   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRL);
1944 }
1945 
dsrlv(Register rd,Register rt,Register rs)1946 void Assembler::dsrlv(Register rd, Register rt, Register rs) {
1947   GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSRLV);
1948 }
1949 
drotr(Register rd,Register rt,uint16_t sa)1950 void Assembler::drotr(Register rd, Register rt, uint16_t sa) {
1951   DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa));
1952   Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) |
1953                 (rd.code() << kRdShift) | (sa << kSaShift) | DSRL;
1954   emit(instr);
1955 }
1956 
drotr32(Register rd,Register rt,uint16_t sa)1957 void Assembler::drotr32(Register rd, Register rt, uint16_t sa) {
1958   DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa));
1959   Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) |
1960                 (rd.code() << kRdShift) | (sa << kSaShift) | DSRL32;
1961   emit(instr);
1962 }
1963 
drotrv(Register rd,Register rt,Register rs)1964 void Assembler::drotrv(Register rd, Register rt, Register rs) {
1965   DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
1966   Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1967                 (rd.code() << kRdShift) | (1 << kSaShift) | DSRLV;
1968   emit(instr);
1969 }
1970 
dsra(Register rd,Register rt,uint16_t sa)1971 void Assembler::dsra(Register rd, Register rt, uint16_t sa) {
1972   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRA);
1973 }
1974 
dsrav(Register rd,Register rt,Register rs)1975 void Assembler::dsrav(Register rd, Register rt, Register rs) {
1976   GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSRAV);
1977 }
1978 
dsll32(Register rd,Register rt,uint16_t sa)1979 void Assembler::dsll32(Register rd, Register rt, uint16_t sa) {
1980   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSLL32);
1981 }
1982 
dsrl32(Register rd,Register rt,uint16_t sa)1983 void Assembler::dsrl32(Register rd, Register rt, uint16_t sa) {
1984   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRL32);
1985 }
1986 
dsra32(Register rd,Register rt,uint16_t sa)1987 void Assembler::dsra32(Register rd, Register rt, uint16_t sa) {
1988   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRA32);
1989 }
1990 
lsa(Register rd,Register rt,Register rs,uint8_t sa)1991 void Assembler::lsa(Register rd, Register rt, Register rs, uint8_t sa) {
1992   DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
1993   DCHECK_LE(sa, 3);
1994   DCHECK_EQ(kArchVariant, kMips64r6);
1995   Instr instr = SPECIAL | rs.code() << kRsShift | rt.code() << kRtShift |
1996                 rd.code() << kRdShift | sa << kSaShift | LSA;
1997   emit(instr);
1998 }
1999 
dlsa(Register rd,Register rt,Register rs,uint8_t sa)2000 void Assembler::dlsa(Register rd, Register rt, Register rs, uint8_t sa) {
2001   DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
2002   DCHECK_LE(sa, 3);
2003   DCHECK_EQ(kArchVariant, kMips64r6);
2004   Instr instr = SPECIAL | rs.code() << kRsShift | rt.code() << kRtShift |
2005                 rd.code() << kRdShift | sa << kSaShift | DLSA;
2006   emit(instr);
2007 }
2008 
2009 // ------------Memory-instructions-------------
2010 
AdjustBaseAndOffset(MemOperand * src,OffsetAccessType access_type,int second_access_add_to_offset)2011 void Assembler::AdjustBaseAndOffset(MemOperand* src,
2012                                     OffsetAccessType access_type,
2013                                     int second_access_add_to_offset) {
2014   // This method is used to adjust the base register and offset pair
2015   // for a load/store when the offset doesn't fit into int16_t.
2016   // It is assumed that 'base + offset' is sufficiently aligned for memory
2017   // operands that are machine word in size or smaller. For doubleword-sized
2018   // operands it's assumed that 'base' is a multiple of 8, while 'offset'
2019   // may be a multiple of 4 (e.g. 4-byte-aligned long and double arguments
2020   // and spilled variables on the stack accessed relative to the stack
2021   // pointer register).
2022   // We preserve the "alignment" of 'offset' by adjusting it by a multiple of 8.
2023 
2024   bool doubleword_aligned = (src->offset() & (kDoubleSize - 1)) == 0;
2025   bool two_accesses = static_cast<bool>(access_type) || !doubleword_aligned;
2026   DCHECK_LE(second_access_add_to_offset, 7);  // Must be <= 7.
2027 
2028   // is_int16 must be passed a signed value, hence the static cast below.
2029   if (is_int16(src->offset()) &&
2030       (!two_accesses || is_int16(static_cast<int32_t>(
2031                             src->offset() + second_access_add_to_offset)))) {
2032     // Nothing to do: 'offset' (and, if needed, 'offset + 4', or other specified
2033     // value) fits into int16_t.
2034     return;
2035   }
2036 
2037   DCHECK(src->rm() !=
2038          at);  // Must not overwrite the register 'base' while loading 'offset'.
2039 
2040 #ifdef DEBUG
2041   // Remember the "(mis)alignment" of 'offset', it will be checked at the end.
2042   uint32_t misalignment = src->offset() & (kDoubleSize - 1);
2043 #endif
2044 
2045   // Do not load the whole 32-bit 'offset' if it can be represented as
2046   // a sum of two 16-bit signed offsets. This can save an instruction or two.
2047   // To simplify matters, only do this for a symmetric range of offsets from
2048   // about -64KB to about +64KB, allowing further addition of 4 when accessing
2049   // 64-bit variables with two 32-bit accesses.
2050   constexpr int32_t kMinOffsetForSimpleAdjustment =
2051       0x7FF8;  // Max int16_t that's a multiple of 8.
2052   constexpr int32_t kMaxOffsetForSimpleAdjustment =
2053       2 * kMinOffsetForSimpleAdjustment;
2054 
2055   UseScratchRegisterScope temps(this);
2056   Register scratch = temps.Acquire();
2057   if (0 <= src->offset() && src->offset() <= kMaxOffsetForSimpleAdjustment) {
2058     daddiu(scratch, src->rm(), kMinOffsetForSimpleAdjustment);
2059     src->offset_ -= kMinOffsetForSimpleAdjustment;
2060   } else if (-kMaxOffsetForSimpleAdjustment <= src->offset() &&
2061              src->offset() < 0) {
2062     daddiu(scratch, src->rm(), -kMinOffsetForSimpleAdjustment);
2063     src->offset_ += kMinOffsetForSimpleAdjustment;
2064   } else if (kArchVariant == kMips64r6) {
2065     // On r6 take advantage of the daui instruction, e.g.:
2066     //    daui   at, base, offset_high
2067     //   [dahi   at, 1]                       // When `offset` is close to +2GB.
2068     //    lw     reg_lo, offset_low(at)
2069     //   [lw     reg_hi, (offset_low+4)(at)]  // If misaligned 64-bit load.
2070     // or when offset_low+4 overflows int16_t:
2071     //    daui   at, base, offset_high
2072     //    daddiu at, at, 8
2073     //    lw     reg_lo, (offset_low-8)(at)
2074     //    lw     reg_hi, (offset_low-4)(at)
2075     int16_t offset_low = static_cast<uint16_t>(src->offset());
2076     int32_t offset_low32 = offset_low;
2077     int16_t offset_high = static_cast<uint16_t>(src->offset() >> 16);
2078     bool increment_hi16 = offset_low < 0;
2079     bool overflow_hi16 = false;
2080 
2081     if (increment_hi16) {
2082       offset_high++;
2083       overflow_hi16 = (offset_high == -32768);
2084     }
2085     daui(scratch, src->rm(), static_cast<uint16_t>(offset_high));
2086 
2087     if (overflow_hi16) {
2088       dahi(scratch, 1);
2089     }
2090 
2091     if (two_accesses && !is_int16(static_cast<int32_t>(
2092                             offset_low32 + second_access_add_to_offset))) {
2093       // Avoid overflow in the 16-bit offset of the load/store instruction when
2094       // adding 4.
2095       daddiu(scratch, scratch, kDoubleSize);
2096       offset_low32 -= kDoubleSize;
2097     }
2098 
2099     src->offset_ = offset_low32;
2100   } else {
2101     // Do not load the whole 32-bit 'offset' if it can be represented as
2102     // a sum of three 16-bit signed offsets. This can save an instruction.
2103     // To simplify matters, only do this for a symmetric range of offsets from
2104     // about -96KB to about +96KB, allowing further addition of 4 when accessing
2105     // 64-bit variables with two 32-bit accesses.
2106     constexpr int32_t kMinOffsetForMediumAdjustment =
2107         2 * kMinOffsetForSimpleAdjustment;
2108     constexpr int32_t kMaxOffsetForMediumAdjustment =
2109         3 * kMinOffsetForSimpleAdjustment;
2110     if (0 <= src->offset() && src->offset() <= kMaxOffsetForMediumAdjustment) {
2111       daddiu(scratch, src->rm(), kMinOffsetForMediumAdjustment / 2);
2112       daddiu(scratch, scratch, kMinOffsetForMediumAdjustment / 2);
2113       src->offset_ -= kMinOffsetForMediumAdjustment;
2114     } else if (-kMaxOffsetForMediumAdjustment <= src->offset() &&
2115                src->offset() < 0) {
2116       daddiu(scratch, src->rm(), -kMinOffsetForMediumAdjustment / 2);
2117       daddiu(scratch, scratch, -kMinOffsetForMediumAdjustment / 2);
2118       src->offset_ += kMinOffsetForMediumAdjustment;
2119     } else {
2120       // Now that all shorter options have been exhausted, load the full 32-bit
2121       // offset.
2122       int32_t loaded_offset = RoundDown(src->offset(), kDoubleSize);
2123       lui(scratch, (loaded_offset >> kLuiShift) & kImm16Mask);
2124       ori(scratch, scratch, loaded_offset & kImm16Mask);  // Load 32-bit offset.
2125       daddu(scratch, scratch, src->rm());
2126       src->offset_ -= loaded_offset;
2127     }
2128   }
2129   src->rm_ = scratch;
2130 
2131   DCHECK(is_int16(src->offset()));
2132   if (two_accesses) {
2133     DCHECK(is_int16(
2134         static_cast<int32_t>(src->offset() + second_access_add_to_offset)));
2135   }
2136   DCHECK(misalignment == (src->offset() & (kDoubleSize - 1)));
2137 }
2138 
lb(Register rd,const MemOperand & rs)2139 void Assembler::lb(Register rd, const MemOperand& rs) {
2140   GenInstrImmediate(LB, rs.rm(), rd, rs.offset_);
2141 }
2142 
lbu(Register rd,const MemOperand & rs)2143 void Assembler::lbu(Register rd, const MemOperand& rs) {
2144   GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_);
2145 }
2146 
lh(Register rd,const MemOperand & rs)2147 void Assembler::lh(Register rd, const MemOperand& rs) {
2148   GenInstrImmediate(LH, rs.rm(), rd, rs.offset_);
2149 }
2150 
lhu(Register rd,const MemOperand & rs)2151 void Assembler::lhu(Register rd, const MemOperand& rs) {
2152   GenInstrImmediate(LHU, rs.rm(), rd, rs.offset_);
2153 }
2154 
lw(Register rd,const MemOperand & rs)2155 void Assembler::lw(Register rd, const MemOperand& rs) {
2156   GenInstrImmediate(LW, rs.rm(), rd, rs.offset_);
2157 }
2158 
lwu(Register rd,const MemOperand & rs)2159 void Assembler::lwu(Register rd, const MemOperand& rs) {
2160   GenInstrImmediate(LWU, rs.rm(), rd, rs.offset_);
2161 }
2162 
lwl(Register rd,const MemOperand & rs)2163 void Assembler::lwl(Register rd, const MemOperand& rs) {
2164   DCHECK(is_int16(rs.offset_));
2165   DCHECK_EQ(kArchVariant, kMips64r2);
2166   GenInstrImmediate(LWL, rs.rm(), rd, rs.offset_);
2167 }
2168 
lwr(Register rd,const MemOperand & rs)2169 void Assembler::lwr(Register rd, const MemOperand& rs) {
2170   DCHECK(is_int16(rs.offset_));
2171   DCHECK_EQ(kArchVariant, kMips64r2);
2172   GenInstrImmediate(LWR, rs.rm(), rd, rs.offset_);
2173 }
2174 
sb(Register rd,const MemOperand & rs)2175 void Assembler::sb(Register rd, const MemOperand& rs) {
2176   GenInstrImmediate(SB, rs.rm(), rd, rs.offset_);
2177 }
2178 
sh(Register rd,const MemOperand & rs)2179 void Assembler::sh(Register rd, const MemOperand& rs) {
2180   GenInstrImmediate(SH, rs.rm(), rd, rs.offset_);
2181 }
2182 
sw(Register rd,const MemOperand & rs)2183 void Assembler::sw(Register rd, const MemOperand& rs) {
2184   GenInstrImmediate(SW, rs.rm(), rd, rs.offset_);
2185 }
2186 
swl(Register rd,const MemOperand & rs)2187 void Assembler::swl(Register rd, const MemOperand& rs) {
2188   DCHECK(is_int16(rs.offset_));
2189   DCHECK_EQ(kArchVariant, kMips64r2);
2190   GenInstrImmediate(SWL, rs.rm(), rd, rs.offset_);
2191 }
2192 
swr(Register rd,const MemOperand & rs)2193 void Assembler::swr(Register rd, const MemOperand& rs) {
2194   DCHECK(is_int16(rs.offset_));
2195   DCHECK_EQ(kArchVariant, kMips64r2);
2196   GenInstrImmediate(SWR, rs.rm(), rd, rs.offset_);
2197 }
2198 
ll(Register rd,const MemOperand & rs)2199 void Assembler::ll(Register rd, const MemOperand& rs) {
2200   if (kArchVariant == kMips64r6) {
2201     DCHECK(is_int9(rs.offset_));
2202     GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, LL_R6);
2203   } else {
2204     DCHECK_EQ(kArchVariant, kMips64r2);
2205     DCHECK(is_int16(rs.offset_));
2206     GenInstrImmediate(LL, rs.rm(), rd, rs.offset_);
2207   }
2208 }
2209 
lld(Register rd,const MemOperand & rs)2210 void Assembler::lld(Register rd, const MemOperand& rs) {
2211   if (kArchVariant == kMips64r6) {
2212     DCHECK(is_int9(rs.offset_));
2213     GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, LLD_R6);
2214   } else {
2215     DCHECK_EQ(kArchVariant, kMips64r2);
2216     DCHECK(is_int16(rs.offset_));
2217     GenInstrImmediate(LLD, rs.rm(), rd, rs.offset_);
2218   }
2219 }
2220 
sc(Register rd,const MemOperand & rs)2221 void Assembler::sc(Register rd, const MemOperand& rs) {
2222   if (kArchVariant == kMips64r6) {
2223     DCHECK(is_int9(rs.offset_));
2224     GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, SC_R6);
2225   } else {
2226     DCHECK_EQ(kArchVariant, kMips64r2);
2227     GenInstrImmediate(SC, rs.rm(), rd, rs.offset_);
2228   }
2229 }
2230 
scd(Register rd,const MemOperand & rs)2231 void Assembler::scd(Register rd, const MemOperand& rs) {
2232   if (kArchVariant == kMips64r6) {
2233     DCHECK(is_int9(rs.offset_));
2234     GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, SCD_R6);
2235   } else {
2236     DCHECK_EQ(kArchVariant, kMips64r2);
2237     GenInstrImmediate(SCD, rs.rm(), rd, rs.offset_);
2238   }
2239 }
2240 
lui(Register rd,int32_t j)2241 void Assembler::lui(Register rd, int32_t j) {
2242   DCHECK(is_uint16(j) || is_int16(j));
2243   GenInstrImmediate(LUI, zero_reg, rd, j);
2244 }
2245 
aui(Register rt,Register rs,int32_t j)2246 void Assembler::aui(Register rt, Register rs, int32_t j) {
2247   // This instruction uses same opcode as 'lui'. The difference in encoding is
2248   // 'lui' has zero reg. for rs field.
2249   DCHECK(is_uint16(j));
2250   GenInstrImmediate(LUI, rs, rt, j);
2251 }
2252 
daui(Register rt,Register rs,int32_t j)2253 void Assembler::daui(Register rt, Register rs, int32_t j) {
2254   DCHECK(is_uint16(j));
2255   DCHECK(rs != zero_reg);
2256   GenInstrImmediate(DAUI, rs, rt, j);
2257 }
2258 
dahi(Register rs,int32_t j)2259 void Assembler::dahi(Register rs, int32_t j) {
2260   DCHECK(is_uint16(j));
2261   GenInstrImmediate(REGIMM, rs, DAHI, j);
2262 }
2263 
dati(Register rs,int32_t j)2264 void Assembler::dati(Register rs, int32_t j) {
2265   DCHECK(is_uint16(j));
2266   GenInstrImmediate(REGIMM, rs, DATI, j);
2267 }
2268 
ldl(Register rd,const MemOperand & rs)2269 void Assembler::ldl(Register rd, const MemOperand& rs) {
2270   DCHECK(is_int16(rs.offset_));
2271   DCHECK_EQ(kArchVariant, kMips64r2);
2272   GenInstrImmediate(LDL, rs.rm(), rd, rs.offset_);
2273 }
2274 
ldr(Register rd,const MemOperand & rs)2275 void Assembler::ldr(Register rd, const MemOperand& rs) {
2276   DCHECK(is_int16(rs.offset_));
2277   DCHECK_EQ(kArchVariant, kMips64r2);
2278   GenInstrImmediate(LDR, rs.rm(), rd, rs.offset_);
2279 }
2280 
sdl(Register rd,const MemOperand & rs)2281 void Assembler::sdl(Register rd, const MemOperand& rs) {
2282   DCHECK(is_int16(rs.offset_));
2283   DCHECK_EQ(kArchVariant, kMips64r2);
2284   GenInstrImmediate(SDL, rs.rm(), rd, rs.offset_);
2285 }
2286 
sdr(Register rd,const MemOperand & rs)2287 void Assembler::sdr(Register rd, const MemOperand& rs) {
2288   DCHECK(is_int16(rs.offset_));
2289   DCHECK_EQ(kArchVariant, kMips64r2);
2290   GenInstrImmediate(SDR, rs.rm(), rd, rs.offset_);
2291 }
2292 
ld(Register rd,const MemOperand & rs)2293 void Assembler::ld(Register rd, const MemOperand& rs) {
2294   GenInstrImmediate(LD, rs.rm(), rd, rs.offset_);
2295 }
2296 
sd(Register rd,const MemOperand & rs)2297 void Assembler::sd(Register rd, const MemOperand& rs) {
2298   GenInstrImmediate(SD, rs.rm(), rd, rs.offset_);
2299 }
2300 
2301 // ---------PC-Relative instructions-----------
2302 
addiupc(Register rs,int32_t imm19)2303 void Assembler::addiupc(Register rs, int32_t imm19) {
2304   DCHECK_EQ(kArchVariant, kMips64r6);
2305   DCHECK(rs.is_valid() && is_int19(imm19));
2306   uint32_t imm21 = ADDIUPC << kImm19Bits | (imm19 & kImm19Mask);
2307   GenInstrImmediate(PCREL, rs, imm21);
2308 }
2309 
lwpc(Register rs,int32_t offset19)2310 void Assembler::lwpc(Register rs, int32_t offset19) {
2311   DCHECK_EQ(kArchVariant, kMips64r6);
2312   DCHECK(rs.is_valid() && is_int19(offset19));
2313   uint32_t imm21 = LWPC << kImm19Bits | (offset19 & kImm19Mask);
2314   GenInstrImmediate(PCREL, rs, imm21);
2315 }
2316 
lwupc(Register rs,int32_t offset19)2317 void Assembler::lwupc(Register rs, int32_t offset19) {
2318   DCHECK_EQ(kArchVariant, kMips64r6);
2319   DCHECK(rs.is_valid() && is_int19(offset19));
2320   uint32_t imm21 = LWUPC << kImm19Bits | (offset19 & kImm19Mask);
2321   GenInstrImmediate(PCREL, rs, imm21);
2322 }
2323 
ldpc(Register rs,int32_t offset18)2324 void Assembler::ldpc(Register rs, int32_t offset18) {
2325   DCHECK_EQ(kArchVariant, kMips64r6);
2326   DCHECK(rs.is_valid() && is_int18(offset18));
2327   uint32_t imm21 = LDPC << kImm18Bits | (offset18 & kImm18Mask);
2328   GenInstrImmediate(PCREL, rs, imm21);
2329 }
2330 
auipc(Register rs,int16_t imm16)2331 void Assembler::auipc(Register rs, int16_t imm16) {
2332   DCHECK_EQ(kArchVariant, kMips64r6);
2333   DCHECK(rs.is_valid());
2334   uint32_t imm21 = AUIPC << kImm16Bits | (imm16 & kImm16Mask);
2335   GenInstrImmediate(PCREL, rs, imm21);
2336 }
2337 
aluipc(Register rs,int16_t imm16)2338 void Assembler::aluipc(Register rs, int16_t imm16) {
2339   DCHECK_EQ(kArchVariant, kMips64r6);
2340   DCHECK(rs.is_valid());
2341   uint32_t imm21 = ALUIPC << kImm16Bits | (imm16 & kImm16Mask);
2342   GenInstrImmediate(PCREL, rs, imm21);
2343 }
2344 
2345 // -------------Misc-instructions--------------
2346 
2347 // Break / Trap instructions.
break_(uint32_t code,bool break_as_stop)2348 void Assembler::break_(uint32_t code, bool break_as_stop) {
2349   DCHECK_EQ(code & ~0xFFFFF, 0);
2350   // We need to invalidate breaks that could be stops as well because the
2351   // simulator expects a char pointer after the stop instruction.
2352   // See constants-mips.h for explanation.
2353   DCHECK(
2354       (break_as_stop && code <= kMaxStopCode && code > kMaxWatchpointCode) ||
2355       (!break_as_stop && (code > kMaxStopCode || code <= kMaxWatchpointCode)));
2356   Instr break_instr = SPECIAL | BREAK | (code << 6);
2357   emit(break_instr);
2358 }
2359 
stop(uint32_t code)2360 void Assembler::stop(uint32_t code) {
2361   DCHECK_GT(code, kMaxWatchpointCode);
2362   DCHECK_LE(code, kMaxStopCode);
2363 #if defined(V8_HOST_ARCH_MIPS) || defined(V8_HOST_ARCH_MIPS64)
2364   break_(0x54321);
2365 #else  // V8_HOST_ARCH_MIPS
2366   break_(code, true);
2367 #endif
2368 }
2369 
tge(Register rs,Register rt,uint16_t code)2370 void Assembler::tge(Register rs, Register rt, uint16_t code) {
2371   DCHECK(is_uint10(code));
2372   Instr instr =
2373       SPECIAL | TGE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2374   emit(instr);
2375 }
2376 
tgeu(Register rs,Register rt,uint16_t code)2377 void Assembler::tgeu(Register rs, Register rt, uint16_t code) {
2378   DCHECK(is_uint10(code));
2379   Instr instr = SPECIAL | TGEU | rs.code() << kRsShift | rt.code() << kRtShift |
2380                 code << 6;
2381   emit(instr);
2382 }
2383 
tlt(Register rs,Register rt,uint16_t code)2384 void Assembler::tlt(Register rs, Register rt, uint16_t code) {
2385   DCHECK(is_uint10(code));
2386   Instr instr =
2387       SPECIAL | TLT | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2388   emit(instr);
2389 }
2390 
tltu(Register rs,Register rt,uint16_t code)2391 void Assembler::tltu(Register rs, Register rt, uint16_t code) {
2392   DCHECK(is_uint10(code));
2393   Instr instr = SPECIAL | TLTU | rs.code() << kRsShift | rt.code() << kRtShift |
2394                 code << 6;
2395   emit(instr);
2396 }
2397 
teq(Register rs,Register rt,uint16_t code)2398 void Assembler::teq(Register rs, Register rt, uint16_t code) {
2399   DCHECK(is_uint10(code));
2400   Instr instr =
2401       SPECIAL | TEQ | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2402   emit(instr);
2403 }
2404 
tne(Register rs,Register rt,uint16_t code)2405 void Assembler::tne(Register rs, Register rt, uint16_t code) {
2406   DCHECK(is_uint10(code));
2407   Instr instr =
2408       SPECIAL | TNE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2409   emit(instr);
2410 }
2411 
sync()2412 void Assembler::sync() {
2413   Instr sync_instr = SPECIAL | SYNC;
2414   emit(sync_instr);
2415 }
2416 
2417 // Move from HI/LO register.
2418 
mfhi(Register rd)2419 void Assembler::mfhi(Register rd) {
2420   GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFHI);
2421 }
2422 
mflo(Register rd)2423 void Assembler::mflo(Register rd) {
2424   GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFLO);
2425 }
2426 
2427 // Set on less than instructions.
slt(Register rd,Register rs,Register rt)2428 void Assembler::slt(Register rd, Register rs, Register rt) {
2429   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLT);
2430 }
2431 
sltu(Register rd,Register rs,Register rt)2432 void Assembler::sltu(Register rd, Register rs, Register rt) {
2433   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLTU);
2434 }
2435 
slti(Register rt,Register rs,int32_t j)2436 void Assembler::slti(Register rt, Register rs, int32_t j) {
2437   GenInstrImmediate(SLTI, rs, rt, j);
2438 }
2439 
sltiu(Register rt,Register rs,int32_t j)2440 void Assembler::sltiu(Register rt, Register rs, int32_t j) {
2441   GenInstrImmediate(SLTIU, rs, rt, j);
2442 }
2443 
2444 // Conditional move.
movz(Register rd,Register rs,Register rt)2445 void Assembler::movz(Register rd, Register rs, Register rt) {
2446   GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVZ);
2447 }
2448 
movn(Register rd,Register rs,Register rt)2449 void Assembler::movn(Register rd, Register rs, Register rt) {
2450   GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVN);
2451 }
2452 
movt(Register rd,Register rs,uint16_t cc)2453 void Assembler::movt(Register rd, Register rs, uint16_t cc) {
2454   Register rt = Register::from_code((cc & 0x0007) << 2 | 1);
2455   GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
2456 }
2457 
movf(Register rd,Register rs,uint16_t cc)2458 void Assembler::movf(Register rd, Register rs, uint16_t cc) {
2459   Register rt = Register::from_code((cc & 0x0007) << 2 | 0);
2460   GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
2461 }
2462 
min_s(FPURegister fd,FPURegister fs,FPURegister ft)2463 void Assembler::min_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2464   min(S, fd, fs, ft);
2465 }
2466 
min_d(FPURegister fd,FPURegister fs,FPURegister ft)2467 void Assembler::min_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2468   min(D, fd, fs, ft);
2469 }
2470 
max_s(FPURegister fd,FPURegister fs,FPURegister ft)2471 void Assembler::max_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2472   max(S, fd, fs, ft);
2473 }
2474 
max_d(FPURegister fd,FPURegister fs,FPURegister ft)2475 void Assembler::max_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2476   max(D, fd, fs, ft);
2477 }
2478 
mina_s(FPURegister fd,FPURegister fs,FPURegister ft)2479 void Assembler::mina_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2480   mina(S, fd, fs, ft);
2481 }
2482 
mina_d(FPURegister fd,FPURegister fs,FPURegister ft)2483 void Assembler::mina_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2484   mina(D, fd, fs, ft);
2485 }
2486 
maxa_s(FPURegister fd,FPURegister fs,FPURegister ft)2487 void Assembler::maxa_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2488   maxa(S, fd, fs, ft);
2489 }
2490 
maxa_d(FPURegister fd,FPURegister fs,FPURegister ft)2491 void Assembler::maxa_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2492   maxa(D, fd, fs, ft);
2493 }
2494 
max(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2495 void Assembler::max(SecondaryField fmt, FPURegister fd, FPURegister fs,
2496                     FPURegister ft) {
2497   DCHECK_EQ(kArchVariant, kMips64r6);
2498   DCHECK((fmt == D) || (fmt == S));
2499   GenInstrRegister(COP1, fmt, ft, fs, fd, MAX);
2500 }
2501 
min(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2502 void Assembler::min(SecondaryField fmt, FPURegister fd, FPURegister fs,
2503                     FPURegister ft) {
2504   DCHECK_EQ(kArchVariant, kMips64r6);
2505   DCHECK((fmt == D) || (fmt == S));
2506   GenInstrRegister(COP1, fmt, ft, fs, fd, MIN);
2507 }
2508 
2509 // GPR.
seleqz(Register rd,Register rs,Register rt)2510 void Assembler::seleqz(Register rd, Register rs, Register rt) {
2511   DCHECK_EQ(kArchVariant, kMips64r6);
2512   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELEQZ_S);
2513 }
2514 
2515 // GPR.
selnez(Register rd,Register rs,Register rt)2516 void Assembler::selnez(Register rd, Register rs, Register rt) {
2517   DCHECK_EQ(kArchVariant, kMips64r6);
2518   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELNEZ_S);
2519 }
2520 
2521 // Bit twiddling.
clz(Register rd,Register rs)2522 void Assembler::clz(Register rd, Register rs) {
2523   if (kArchVariant != kMips64r6) {
2524     // clz instr requires same GPR number in 'rd' and 'rt' fields.
2525     GenInstrRegister(SPECIAL2, rs, rd, rd, 0, CLZ);
2526   } else {
2527     GenInstrRegister(SPECIAL, rs, zero_reg, rd, 1, CLZ_R6);
2528   }
2529 }
2530 
dclz(Register rd,Register rs)2531 void Assembler::dclz(Register rd, Register rs) {
2532   if (kArchVariant != kMips64r6) {
2533     // dclz instr requires same GPR number in 'rd' and 'rt' fields.
2534     GenInstrRegister(SPECIAL2, rs, rd, rd, 0, DCLZ);
2535   } else {
2536     GenInstrRegister(SPECIAL, rs, zero_reg, rd, 1, DCLZ_R6);
2537   }
2538 }
2539 
ins_(Register rt,Register rs,uint16_t pos,uint16_t size)2540 void Assembler::ins_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2541   // Should be called via MacroAssembler::Ins.
2542   // ins instr has 'rt' field as dest, and two uint5: msb, lsb.
2543   DCHECK((kArchVariant == kMips64r2) || (kArchVariant == kMips64r6));
2544   GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, INS);
2545 }
2546 
dins_(Register rt,Register rs,uint16_t pos,uint16_t size)2547 void Assembler::dins_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2548   // Should be called via MacroAssembler::Dins.
2549   // dins instr has 'rt' field as dest, and two uint5: msb, lsb.
2550   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2551   GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, DINS);
2552 }
2553 
dinsm_(Register rt,Register rs,uint16_t pos,uint16_t size)2554 void Assembler::dinsm_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2555   // Should be called via MacroAssembler::Dins.
2556   // dinsm instr has 'rt' field as dest, and two uint5: msbminus32, lsb.
2557   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2558   GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1 - 32, pos, DINSM);
2559 }
2560 
dinsu_(Register rt,Register rs,uint16_t pos,uint16_t size)2561 void Assembler::dinsu_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2562   // Should be called via MacroAssembler::Dins.
2563   // dinsu instr has 'rt' field as dest, and two uint5: msbminus32, lsbminus32.
2564   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2565   GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1 - 32, pos - 32, DINSU);
2566 }
2567 
ext_(Register rt,Register rs,uint16_t pos,uint16_t size)2568 void Assembler::ext_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2569   // Should be called via MacroAssembler::Ext.
2570   // ext instr has 'rt' field as dest, and two uint5: msbd, lsb.
2571   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2572   GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, EXT);
2573 }
2574 
dext_(Register rt,Register rs,uint16_t pos,uint16_t size)2575 void Assembler::dext_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2576   // Should be called via MacroAssembler::Dext.
2577   // dext instr has 'rt' field as dest, and two uint5: msbd, lsb.
2578   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2579   GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, DEXT);
2580 }
2581 
dextm_(Register rt,Register rs,uint16_t pos,uint16_t size)2582 void Assembler::dextm_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2583   // Should be called via MacroAssembler::Dextm.
2584   // dextm instr has 'rt' field as dest, and two uint5: msbdminus32, lsb.
2585   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2586   GenInstrRegister(SPECIAL3, rs, rt, size - 1 - 32, pos, DEXTM);
2587 }
2588 
dextu_(Register rt,Register rs,uint16_t pos,uint16_t size)2589 void Assembler::dextu_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2590   // Should be called via MacroAssembler::Dextu.
2591   // dextu instr has 'rt' field as dest, and two uint5: msbd, lsbminus32.
2592   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2593   GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos - 32, DEXTU);
2594 }
2595 
bitswap(Register rd,Register rt)2596 void Assembler::bitswap(Register rd, Register rt) {
2597   DCHECK_EQ(kArchVariant, kMips64r6);
2598   GenInstrRegister(SPECIAL3, zero_reg, rt, rd, 0, BSHFL);
2599 }
2600 
dbitswap(Register rd,Register rt)2601 void Assembler::dbitswap(Register rd, Register rt) {
2602   DCHECK_EQ(kArchVariant, kMips64r6);
2603   GenInstrRegister(SPECIAL3, zero_reg, rt, rd, 0, DBSHFL);
2604 }
2605 
pref(int32_t hint,const MemOperand & rs)2606 void Assembler::pref(int32_t hint, const MemOperand& rs) {
2607   DCHECK(is_uint5(hint) && is_uint16(rs.offset_));
2608   Instr instr =
2609       PREF | (rs.rm().code() << kRsShift) | (hint << kRtShift) | (rs.offset_);
2610   emit(instr);
2611 }
2612 
align(Register rd,Register rs,Register rt,uint8_t bp)2613 void Assembler::align(Register rd, Register rs, Register rt, uint8_t bp) {
2614   DCHECK_EQ(kArchVariant, kMips64r6);
2615   DCHECK(is_uint3(bp));
2616   uint16_t sa = (ALIGN << kBp2Bits) | bp;
2617   GenInstrRegister(SPECIAL3, rs, rt, rd, sa, BSHFL);
2618 }
2619 
dalign(Register rd,Register rs,Register rt,uint8_t bp)2620 void Assembler::dalign(Register rd, Register rs, Register rt, uint8_t bp) {
2621   DCHECK_EQ(kArchVariant, kMips64r6);
2622   DCHECK(is_uint3(bp));
2623   uint16_t sa = (DALIGN << kBp3Bits) | bp;
2624   GenInstrRegister(SPECIAL3, rs, rt, rd, sa, DBSHFL);
2625 }
2626 
wsbh(Register rd,Register rt)2627 void Assembler::wsbh(Register rd, Register rt) {
2628   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2629   GenInstrRegister(SPECIAL3, zero_reg, rt, rd, WSBH, BSHFL);
2630 }
2631 
dsbh(Register rd,Register rt)2632 void Assembler::dsbh(Register rd, Register rt) {
2633   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2634   GenInstrRegister(SPECIAL3, zero_reg, rt, rd, DSBH, DBSHFL);
2635 }
2636 
dshd(Register rd,Register rt)2637 void Assembler::dshd(Register rd, Register rt) {
2638   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2639   GenInstrRegister(SPECIAL3, zero_reg, rt, rd, DSHD, DBSHFL);
2640 }
2641 
seh(Register rd,Register rt)2642 void Assembler::seh(Register rd, Register rt) {
2643   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2644   GenInstrRegister(SPECIAL3, zero_reg, rt, rd, SEH, BSHFL);
2645 }
2646 
seb(Register rd,Register rt)2647 void Assembler::seb(Register rd, Register rt) {
2648   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2649   GenInstrRegister(SPECIAL3, zero_reg, rt, rd, SEB, BSHFL);
2650 }
2651 
2652 // --------Coprocessor-instructions----------------
2653 
2654 // Load, store, move.
lwc1(FPURegister fd,const MemOperand & src)2655 void Assembler::lwc1(FPURegister fd, const MemOperand& src) {
2656   GenInstrImmediate(LWC1, src.rm(), fd, src.offset_);
2657 }
2658 
ldc1(FPURegister fd,const MemOperand & src)2659 void Assembler::ldc1(FPURegister fd, const MemOperand& src) {
2660   GenInstrImmediate(LDC1, src.rm(), fd, src.offset_);
2661 }
2662 
swc1(FPURegister fs,const MemOperand & src)2663 void Assembler::swc1(FPURegister fs, const MemOperand& src) {
2664   GenInstrImmediate(SWC1, src.rm(), fs, src.offset_);
2665 }
2666 
sdc1(FPURegister fs,const MemOperand & src)2667 void Assembler::sdc1(FPURegister fs, const MemOperand& src) {
2668   GenInstrImmediate(SDC1, src.rm(), fs, src.offset_);
2669 }
2670 
mtc1(Register rt,FPURegister fs)2671 void Assembler::mtc1(Register rt, FPURegister fs) {
2672   GenInstrRegister(COP1, MTC1, rt, fs, f0);
2673 }
2674 
mthc1(Register rt,FPURegister fs)2675 void Assembler::mthc1(Register rt, FPURegister fs) {
2676   GenInstrRegister(COP1, MTHC1, rt, fs, f0);
2677 }
2678 
dmtc1(Register rt,FPURegister fs)2679 void Assembler::dmtc1(Register rt, FPURegister fs) {
2680   GenInstrRegister(COP1, DMTC1, rt, fs, f0);
2681 }
2682 
mfc1(Register rt,FPURegister fs)2683 void Assembler::mfc1(Register rt, FPURegister fs) {
2684   GenInstrRegister(COP1, MFC1, rt, fs, f0);
2685 }
2686 
mfhc1(Register rt,FPURegister fs)2687 void Assembler::mfhc1(Register rt, FPURegister fs) {
2688   GenInstrRegister(COP1, MFHC1, rt, fs, f0);
2689 }
2690 
dmfc1(Register rt,FPURegister fs)2691 void Assembler::dmfc1(Register rt, FPURegister fs) {
2692   GenInstrRegister(COP1, DMFC1, rt, fs, f0);
2693 }
2694 
ctc1(Register rt,FPUControlRegister fs)2695 void Assembler::ctc1(Register rt, FPUControlRegister fs) {
2696   GenInstrRegister(COP1, CTC1, rt, fs);
2697 }
2698 
cfc1(Register rt,FPUControlRegister fs)2699 void Assembler::cfc1(Register rt, FPUControlRegister fs) {
2700   GenInstrRegister(COP1, CFC1, rt, fs);
2701 }
2702 
sel(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2703 void Assembler::sel(SecondaryField fmt, FPURegister fd, FPURegister fs,
2704                     FPURegister ft) {
2705   DCHECK_EQ(kArchVariant, kMips64r6);
2706   DCHECK((fmt == D) || (fmt == S));
2707 
2708   GenInstrRegister(COP1, fmt, ft, fs, fd, SEL);
2709 }
2710 
sel_s(FPURegister fd,FPURegister fs,FPURegister ft)2711 void Assembler::sel_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2712   sel(S, fd, fs, ft);
2713 }
2714 
sel_d(FPURegister fd,FPURegister fs,FPURegister ft)2715 void Assembler::sel_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2716   sel(D, fd, fs, ft);
2717 }
2718 
2719 // FPR.
seleqz(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2720 void Assembler::seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
2721                        FPURegister ft) {
2722   DCHECK((fmt == D) || (fmt == S));
2723   GenInstrRegister(COP1, fmt, ft, fs, fd, SELEQZ_C);
2724 }
2725 
seleqz_d(FPURegister fd,FPURegister fs,FPURegister ft)2726 void Assembler::seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2727   seleqz(D, fd, fs, ft);
2728 }
2729 
seleqz_s(FPURegister fd,FPURegister fs,FPURegister ft)2730 void Assembler::seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2731   seleqz(S, fd, fs, ft);
2732 }
2733 
selnez_d(FPURegister fd,FPURegister fs,FPURegister ft)2734 void Assembler::selnez_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2735   selnez(D, fd, fs, ft);
2736 }
2737 
selnez_s(FPURegister fd,FPURegister fs,FPURegister ft)2738 void Assembler::selnez_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2739   selnez(S, fd, fs, ft);
2740 }
2741 
movz_s(FPURegister fd,FPURegister fs,Register rt)2742 void Assembler::movz_s(FPURegister fd, FPURegister fs, Register rt) {
2743   DCHECK_EQ(kArchVariant, kMips64r2);
2744   GenInstrRegister(COP1, S, rt, fs, fd, MOVZ_C);
2745 }
2746 
movz_d(FPURegister fd,FPURegister fs,Register rt)2747 void Assembler::movz_d(FPURegister fd, FPURegister fs, Register rt) {
2748   DCHECK_EQ(kArchVariant, kMips64r2);
2749   GenInstrRegister(COP1, D, rt, fs, fd, MOVZ_C);
2750 }
2751 
movt_s(FPURegister fd,FPURegister fs,uint16_t cc)2752 void Assembler::movt_s(FPURegister fd, FPURegister fs, uint16_t cc) {
2753   DCHECK_EQ(kArchVariant, kMips64r2);
2754   FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 1);
2755   GenInstrRegister(COP1, S, ft, fs, fd, MOVF);
2756 }
2757 
movt_d(FPURegister fd,FPURegister fs,uint16_t cc)2758 void Assembler::movt_d(FPURegister fd, FPURegister fs, uint16_t cc) {
2759   DCHECK_EQ(kArchVariant, kMips64r2);
2760   FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 1);
2761   GenInstrRegister(COP1, D, ft, fs, fd, MOVF);
2762 }
2763 
movf_s(FPURegister fd,FPURegister fs,uint16_t cc)2764 void Assembler::movf_s(FPURegister fd, FPURegister fs, uint16_t cc) {
2765   DCHECK_EQ(kArchVariant, kMips64r2);
2766   FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 0);
2767   GenInstrRegister(COP1, S, ft, fs, fd, MOVF);
2768 }
2769 
movf_d(FPURegister fd,FPURegister fs,uint16_t cc)2770 void Assembler::movf_d(FPURegister fd, FPURegister fs, uint16_t cc) {
2771   DCHECK_EQ(kArchVariant, kMips64r2);
2772   FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 0);
2773   GenInstrRegister(COP1, D, ft, fs, fd, MOVF);
2774 }
2775 
movn_s(FPURegister fd,FPURegister fs,Register rt)2776 void Assembler::movn_s(FPURegister fd, FPURegister fs, Register rt) {
2777   DCHECK_EQ(kArchVariant, kMips64r2);
2778   GenInstrRegister(COP1, S, rt, fs, fd, MOVN_C);
2779 }
2780 
movn_d(FPURegister fd,FPURegister fs,Register rt)2781 void Assembler::movn_d(FPURegister fd, FPURegister fs, Register rt) {
2782   DCHECK_EQ(kArchVariant, kMips64r2);
2783   GenInstrRegister(COP1, D, rt, fs, fd, MOVN_C);
2784 }
2785 
2786 // FPR.
selnez(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2787 void Assembler::selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
2788                        FPURegister ft) {
2789   DCHECK_EQ(kArchVariant, kMips64r6);
2790   DCHECK((fmt == D) || (fmt == S));
2791   GenInstrRegister(COP1, fmt, ft, fs, fd, SELNEZ_C);
2792 }
2793 
2794 // Arithmetic.
2795 
add_s(FPURegister fd,FPURegister fs,FPURegister ft)2796 void Assembler::add_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2797   GenInstrRegister(COP1, S, ft, fs, fd, ADD_D);
2798 }
2799 
add_d(FPURegister fd,FPURegister fs,FPURegister ft)2800 void Assembler::add_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2801   GenInstrRegister(COP1, D, ft, fs, fd, ADD_D);
2802 }
2803 
sub_s(FPURegister fd,FPURegister fs,FPURegister ft)2804 void Assembler::sub_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2805   GenInstrRegister(COP1, S, ft, fs, fd, SUB_D);
2806 }
2807 
sub_d(FPURegister fd,FPURegister fs,FPURegister ft)2808 void Assembler::sub_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2809   GenInstrRegister(COP1, D, ft, fs, fd, SUB_D);
2810 }
2811 
mul_s(FPURegister fd,FPURegister fs,FPURegister ft)2812 void Assembler::mul_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2813   GenInstrRegister(COP1, S, ft, fs, fd, MUL_D);
2814 }
2815 
mul_d(FPURegister fd,FPURegister fs,FPURegister ft)2816 void Assembler::mul_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2817   GenInstrRegister(COP1, D, ft, fs, fd, MUL_D);
2818 }
2819 
madd_s(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2820 void Assembler::madd_s(FPURegister fd, FPURegister fr, FPURegister fs,
2821                        FPURegister ft) {
2822   // On Loongson 3A (MIPS64R2), MADD.S instruction is actually fused MADD.S and
2823   // this causes failure in some of the tests. Since this optimization is rarely
2824   // used, and not used at all on MIPS64R6, this isntruction is removed.
2825   UNREACHABLE();
2826 }
2827 
madd_d(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2828 void Assembler::madd_d(FPURegister fd, FPURegister fr, FPURegister fs,
2829                        FPURegister ft) {
2830   // On Loongson 3A (MIPS64R2), MADD.D instruction is actually fused MADD.D and
2831   // this causes failure in some of the tests. Since this optimization is rarely
2832   // used, and not used at all on MIPS64R6, this isntruction is removed.
2833   UNREACHABLE();
2834 }
2835 
msub_s(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2836 void Assembler::msub_s(FPURegister fd, FPURegister fr, FPURegister fs,
2837                        FPURegister ft) {
2838   // See explanation for instruction madd_s.
2839   UNREACHABLE();
2840 }
2841 
msub_d(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2842 void Assembler::msub_d(FPURegister fd, FPURegister fr, FPURegister fs,
2843                        FPURegister ft) {
2844   // See explanation for instruction madd_d.
2845   UNREACHABLE();
2846 }
2847 
maddf_s(FPURegister fd,FPURegister fs,FPURegister ft)2848 void Assembler::maddf_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2849   DCHECK_EQ(kArchVariant, kMips64r6);
2850   GenInstrRegister(COP1, S, ft, fs, fd, MADDF_S);
2851 }
2852 
maddf_d(FPURegister fd,FPURegister fs,FPURegister ft)2853 void Assembler::maddf_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2854   DCHECK_EQ(kArchVariant, kMips64r6);
2855   GenInstrRegister(COP1, D, ft, fs, fd, MADDF_D);
2856 }
2857 
msubf_s(FPURegister fd,FPURegister fs,FPURegister ft)2858 void Assembler::msubf_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2859   DCHECK_EQ(kArchVariant, kMips64r6);
2860   GenInstrRegister(COP1, S, ft, fs, fd, MSUBF_S);
2861 }
2862 
msubf_d(FPURegister fd,FPURegister fs,FPURegister ft)2863 void Assembler::msubf_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2864   DCHECK_EQ(kArchVariant, kMips64r6);
2865   GenInstrRegister(COP1, D, ft, fs, fd, MSUBF_D);
2866 }
2867 
div_s(FPURegister fd,FPURegister fs,FPURegister ft)2868 void Assembler::div_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2869   GenInstrRegister(COP1, S, ft, fs, fd, DIV_D);
2870 }
2871 
div_d(FPURegister fd,FPURegister fs,FPURegister ft)2872 void Assembler::div_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2873   GenInstrRegister(COP1, D, ft, fs, fd, DIV_D);
2874 }
2875 
abs_s(FPURegister fd,FPURegister fs)2876 void Assembler::abs_s(FPURegister fd, FPURegister fs) {
2877   GenInstrRegister(COP1, S, f0, fs, fd, ABS_D);
2878 }
2879 
abs_d(FPURegister fd,FPURegister fs)2880 void Assembler::abs_d(FPURegister fd, FPURegister fs) {
2881   GenInstrRegister(COP1, D, f0, fs, fd, ABS_D);
2882 }
2883 
mov_d(FPURegister fd,FPURegister fs)2884 void Assembler::mov_d(FPURegister fd, FPURegister fs) {
2885   GenInstrRegister(COP1, D, f0, fs, fd, MOV_D);
2886 }
2887 
mov_s(FPURegister fd,FPURegister fs)2888 void Assembler::mov_s(FPURegister fd, FPURegister fs) {
2889   GenInstrRegister(COP1, S, f0, fs, fd, MOV_S);
2890 }
2891 
neg_s(FPURegister fd,FPURegister fs)2892 void Assembler::neg_s(FPURegister fd, FPURegister fs) {
2893   GenInstrRegister(COP1, S, f0, fs, fd, NEG_D);
2894 }
2895 
neg_d(FPURegister fd,FPURegister fs)2896 void Assembler::neg_d(FPURegister fd, FPURegister fs) {
2897   GenInstrRegister(COP1, D, f0, fs, fd, NEG_D);
2898 }
2899 
sqrt_s(FPURegister fd,FPURegister fs)2900 void Assembler::sqrt_s(FPURegister fd, FPURegister fs) {
2901   GenInstrRegister(COP1, S, f0, fs, fd, SQRT_D);
2902 }
2903 
sqrt_d(FPURegister fd,FPURegister fs)2904 void Assembler::sqrt_d(FPURegister fd, FPURegister fs) {
2905   GenInstrRegister(COP1, D, f0, fs, fd, SQRT_D);
2906 }
2907 
rsqrt_s(FPURegister fd,FPURegister fs)2908 void Assembler::rsqrt_s(FPURegister fd, FPURegister fs) {
2909   GenInstrRegister(COP1, S, f0, fs, fd, RSQRT_S);
2910 }
2911 
rsqrt_d(FPURegister fd,FPURegister fs)2912 void Assembler::rsqrt_d(FPURegister fd, FPURegister fs) {
2913   GenInstrRegister(COP1, D, f0, fs, fd, RSQRT_D);
2914 }
2915 
recip_d(FPURegister fd,FPURegister fs)2916 void Assembler::recip_d(FPURegister fd, FPURegister fs) {
2917   GenInstrRegister(COP1, D, f0, fs, fd, RECIP_D);
2918 }
2919 
recip_s(FPURegister fd,FPURegister fs)2920 void Assembler::recip_s(FPURegister fd, FPURegister fs) {
2921   GenInstrRegister(COP1, S, f0, fs, fd, RECIP_S);
2922 }
2923 
2924 // Conversions.
cvt_w_s(FPURegister fd,FPURegister fs)2925 void Assembler::cvt_w_s(FPURegister fd, FPURegister fs) {
2926   GenInstrRegister(COP1, S, f0, fs, fd, CVT_W_S);
2927 }
2928 
cvt_w_d(FPURegister fd,FPURegister fs)2929 void Assembler::cvt_w_d(FPURegister fd, FPURegister fs) {
2930   GenInstrRegister(COP1, D, f0, fs, fd, CVT_W_D);
2931 }
2932 
trunc_w_s(FPURegister fd,FPURegister fs)2933 void Assembler::trunc_w_s(FPURegister fd, FPURegister fs) {
2934   GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_W_S);
2935 }
2936 
trunc_w_d(FPURegister fd,FPURegister fs)2937 void Assembler::trunc_w_d(FPURegister fd, FPURegister fs) {
2938   GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_W_D);
2939 }
2940 
round_w_s(FPURegister fd,FPURegister fs)2941 void Assembler::round_w_s(FPURegister fd, FPURegister fs) {
2942   GenInstrRegister(COP1, S, f0, fs, fd, ROUND_W_S);
2943 }
2944 
round_w_d(FPURegister fd,FPURegister fs)2945 void Assembler::round_w_d(FPURegister fd, FPURegister fs) {
2946   GenInstrRegister(COP1, D, f0, fs, fd, ROUND_W_D);
2947 }
2948 
floor_w_s(FPURegister fd,FPURegister fs)2949 void Assembler::floor_w_s(FPURegister fd, FPURegister fs) {
2950   GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_W_S);
2951 }
2952 
floor_w_d(FPURegister fd,FPURegister fs)2953 void Assembler::floor_w_d(FPURegister fd, FPURegister fs) {
2954   GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_W_D);
2955 }
2956 
ceil_w_s(FPURegister fd,FPURegister fs)2957 void Assembler::ceil_w_s(FPURegister fd, FPURegister fs) {
2958   GenInstrRegister(COP1, S, f0, fs, fd, CEIL_W_S);
2959 }
2960 
ceil_w_d(FPURegister fd,FPURegister fs)2961 void Assembler::ceil_w_d(FPURegister fd, FPURegister fs) {
2962   GenInstrRegister(COP1, D, f0, fs, fd, CEIL_W_D);
2963 }
2964 
rint_s(FPURegister fd,FPURegister fs)2965 void Assembler::rint_s(FPURegister fd, FPURegister fs) { rint(S, fd, fs); }
2966 
rint_d(FPURegister fd,FPURegister fs)2967 void Assembler::rint_d(FPURegister fd, FPURegister fs) { rint(D, fd, fs); }
2968 
rint(SecondaryField fmt,FPURegister fd,FPURegister fs)2969 void Assembler::rint(SecondaryField fmt, FPURegister fd, FPURegister fs) {
2970   DCHECK_EQ(kArchVariant, kMips64r6);
2971   GenInstrRegister(COP1, fmt, f0, fs, fd, RINT);
2972 }
2973 
cvt_l_s(FPURegister fd,FPURegister fs)2974 void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) {
2975   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2976   GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S);
2977 }
2978 
cvt_l_d(FPURegister fd,FPURegister fs)2979 void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) {
2980   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2981   GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D);
2982 }
2983 
trunc_l_s(FPURegister fd,FPURegister fs)2984 void Assembler::trunc_l_s(FPURegister fd, FPURegister fs) {
2985   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2986   GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_L_S);
2987 }
2988 
trunc_l_d(FPURegister fd,FPURegister fs)2989 void Assembler::trunc_l_d(FPURegister fd, FPURegister fs) {
2990   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2991   GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_L_D);
2992 }
2993 
round_l_s(FPURegister fd,FPURegister fs)2994 void Assembler::round_l_s(FPURegister fd, FPURegister fs) {
2995   GenInstrRegister(COP1, S, f0, fs, fd, ROUND_L_S);
2996 }
2997 
round_l_d(FPURegister fd,FPURegister fs)2998 void Assembler::round_l_d(FPURegister fd, FPURegister fs) {
2999   GenInstrRegister(COP1, D, f0, fs, fd, ROUND_L_D);
3000 }
3001 
floor_l_s(FPURegister fd,FPURegister fs)3002 void Assembler::floor_l_s(FPURegister fd, FPURegister fs) {
3003   GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_L_S);
3004 }
3005 
floor_l_d(FPURegister fd,FPURegister fs)3006 void Assembler::floor_l_d(FPURegister fd, FPURegister fs) {
3007   GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_L_D);
3008 }
3009 
ceil_l_s(FPURegister fd,FPURegister fs)3010 void Assembler::ceil_l_s(FPURegister fd, FPURegister fs) {
3011   GenInstrRegister(COP1, S, f0, fs, fd, CEIL_L_S);
3012 }
3013 
ceil_l_d(FPURegister fd,FPURegister fs)3014 void Assembler::ceil_l_d(FPURegister fd, FPURegister fs) {
3015   GenInstrRegister(COP1, D, f0, fs, fd, CEIL_L_D);
3016 }
3017 
class_s(FPURegister fd,FPURegister fs)3018 void Assembler::class_s(FPURegister fd, FPURegister fs) {
3019   DCHECK_EQ(kArchVariant, kMips64r6);
3020   GenInstrRegister(COP1, S, f0, fs, fd, CLASS_S);
3021 }
3022 
class_d(FPURegister fd,FPURegister fs)3023 void Assembler::class_d(FPURegister fd, FPURegister fs) {
3024   DCHECK_EQ(kArchVariant, kMips64r6);
3025   GenInstrRegister(COP1, D, f0, fs, fd, CLASS_D);
3026 }
3027 
mina(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)3028 void Assembler::mina(SecondaryField fmt, FPURegister fd, FPURegister fs,
3029                      FPURegister ft) {
3030   DCHECK_EQ(kArchVariant, kMips64r6);
3031   DCHECK((fmt == D) || (fmt == S));
3032   GenInstrRegister(COP1, fmt, ft, fs, fd, MINA);
3033 }
3034 
maxa(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)3035 void Assembler::maxa(SecondaryField fmt, FPURegister fd, FPURegister fs,
3036                      FPURegister ft) {
3037   DCHECK_EQ(kArchVariant, kMips64r6);
3038   DCHECK((fmt == D) || (fmt == S));
3039   GenInstrRegister(COP1, fmt, ft, fs, fd, MAXA);
3040 }
3041 
cvt_s_w(FPURegister fd,FPURegister fs)3042 void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) {
3043   GenInstrRegister(COP1, W, f0, fs, fd, CVT_S_W);
3044 }
3045 
cvt_s_l(FPURegister fd,FPURegister fs)3046 void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) {
3047   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
3048   GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L);
3049 }
3050 
cvt_s_d(FPURegister fd,FPURegister fs)3051 void Assembler::cvt_s_d(FPURegister fd, FPURegister fs) {
3052   GenInstrRegister(COP1, D, f0, fs, fd, CVT_S_D);
3053 }
3054 
cvt_d_w(FPURegister fd,FPURegister fs)3055 void Assembler::cvt_d_w(FPURegister fd, FPURegister fs) {
3056   GenInstrRegister(COP1, W, f0, fs, fd, CVT_D_W);
3057 }
3058 
cvt_d_l(FPURegister fd,FPURegister fs)3059 void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) {
3060   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
3061   GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L);
3062 }
3063 
cvt_d_s(FPURegister fd,FPURegister fs)3064 void Assembler::cvt_d_s(FPURegister fd, FPURegister fs) {
3065   GenInstrRegister(COP1, S, f0, fs, fd, CVT_D_S);
3066 }
3067 
3068 // Conditions for >= MIPSr6.
cmp(FPUCondition cond,SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)3069 void Assembler::cmp(FPUCondition cond, SecondaryField fmt, FPURegister fd,
3070                     FPURegister fs, FPURegister ft) {
3071   DCHECK_EQ(kArchVariant, kMips64r6);
3072   DCHECK_EQ(fmt & ~(31 << kRsShift), 0);
3073   Instr instr = COP1 | fmt | ft.code() << kFtShift | fs.code() << kFsShift |
3074                 fd.code() << kFdShift | (0 << 5) | cond;
3075   emit(instr);
3076 }
3077 
cmp_s(FPUCondition cond,FPURegister fd,FPURegister fs,FPURegister ft)3078 void Assembler::cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs,
3079                       FPURegister ft) {
3080   cmp(cond, W, fd, fs, ft);
3081 }
3082 
cmp_d(FPUCondition cond,FPURegister fd,FPURegister fs,FPURegister ft)3083 void Assembler::cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs,
3084                       FPURegister ft) {
3085   cmp(cond, L, fd, fs, ft);
3086 }
3087 
bc1eqz(int16_t offset,FPURegister ft)3088 void Assembler::bc1eqz(int16_t offset, FPURegister ft) {
3089   DCHECK_EQ(kArchVariant, kMips64r6);
3090   BlockTrampolinePoolScope block_trampoline_pool(this);
3091   Instr instr = COP1 | BC1EQZ | ft.code() << kFtShift | (offset & kImm16Mask);
3092   emit(instr);
3093   BlockTrampolinePoolFor(1);  // For associated delay slot.
3094 }
3095 
bc1nez(int16_t offset,FPURegister ft)3096 void Assembler::bc1nez(int16_t offset, FPURegister ft) {
3097   DCHECK_EQ(kArchVariant, kMips64r6);
3098   BlockTrampolinePoolScope block_trampoline_pool(this);
3099   Instr instr = COP1 | BC1NEZ | ft.code() << kFtShift | (offset & kImm16Mask);
3100   emit(instr);
3101   BlockTrampolinePoolFor(1);  // For associated delay slot.
3102 }
3103 
3104 // Conditions for < MIPSr6.
c(FPUCondition cond,SecondaryField fmt,FPURegister fs,FPURegister ft,uint16_t cc)3105 void Assembler::c(FPUCondition cond, SecondaryField fmt, FPURegister fs,
3106                   FPURegister ft, uint16_t cc) {
3107   DCHECK_NE(kArchVariant, kMips64r6);
3108   DCHECK(is_uint3(cc));
3109   DCHECK(fmt == S || fmt == D);
3110   DCHECK_EQ(fmt & ~(31 << kRsShift), 0);
3111   Instr instr = COP1 | fmt | ft.code() << kFtShift | fs.code() << kFsShift |
3112                 cc << 8 | 3 << 4 | cond;
3113   emit(instr);
3114 }
3115 
c_s(FPUCondition cond,FPURegister fs,FPURegister ft,uint16_t cc)3116 void Assembler::c_s(FPUCondition cond, FPURegister fs, FPURegister ft,
3117                     uint16_t cc) {
3118   c(cond, S, fs, ft, cc);
3119 }
3120 
c_d(FPUCondition cond,FPURegister fs,FPURegister ft,uint16_t cc)3121 void Assembler::c_d(FPUCondition cond, FPURegister fs, FPURegister ft,
3122                     uint16_t cc) {
3123   c(cond, D, fs, ft, cc);
3124 }
3125 
fcmp(FPURegister src1,const double src2,FPUCondition cond)3126 void Assembler::fcmp(FPURegister src1, const double src2, FPUCondition cond) {
3127   DCHECK_EQ(src2, 0.0);
3128   mtc1(zero_reg, f14);
3129   cvt_d_w(f14, f14);
3130   c(cond, D, src1, f14, 0);
3131 }
3132 
bc1f(int16_t offset,uint16_t cc)3133 void Assembler::bc1f(int16_t offset, uint16_t cc) {
3134   BlockTrampolinePoolScope block_trampoline_pool(this);
3135   DCHECK(is_uint3(cc));
3136   Instr instr = COP1 | BC1 | cc << 18 | 0 << 16 | (offset & kImm16Mask);
3137   emit(instr);
3138   BlockTrampolinePoolFor(1);  // For associated delay slot.
3139 }
3140 
bc1t(int16_t offset,uint16_t cc)3141 void Assembler::bc1t(int16_t offset, uint16_t cc) {
3142   BlockTrampolinePoolScope block_trampoline_pool(this);
3143   DCHECK(is_uint3(cc));
3144   Instr instr = COP1 | BC1 | cc << 18 | 1 << 16 | (offset & kImm16Mask);
3145   emit(instr);
3146   BlockTrampolinePoolFor(1);  // For associated delay slot.
3147 }
3148 
3149 // ---------- MSA instructions ------------
3150 #define MSA_BRANCH_LIST(V) \
3151   V(bz_v, BZ_V)            \
3152   V(bz_b, BZ_B)            \
3153   V(bz_h, BZ_H)            \
3154   V(bz_w, BZ_W)            \
3155   V(bz_d, BZ_D)            \
3156   V(bnz_v, BNZ_V)          \
3157   V(bnz_b, BNZ_B)          \
3158   V(bnz_h, BNZ_H)          \
3159   V(bnz_w, BNZ_W)          \
3160   V(bnz_d, BNZ_D)
3161 
3162 #define MSA_BRANCH(name, opcode)                         \
3163   void Assembler::name(MSARegister wt, int16_t offset) { \
3164     GenInstrMsaBranch(opcode, wt, offset);               \
3165   }
3166 
3167 MSA_BRANCH_LIST(MSA_BRANCH)
3168 #undef MSA_BRANCH
3169 #undef MSA_BRANCH_LIST
3170 
3171 #define MSA_LD_ST_LIST(V) \
3172   V(ld_b, LD_B, 1)        \
3173   V(ld_h, LD_H, 2)        \
3174   V(ld_w, LD_W, 4)        \
3175   V(ld_d, LD_D, 8)        \
3176   V(st_b, ST_B, 1)        \
3177   V(st_h, ST_H, 2)        \
3178   V(st_w, ST_W, 4)        \
3179   V(st_d, ST_D, 8)
3180 
3181 #define MSA_LD_ST(name, opcode, b)                                   \
3182   void Assembler::name(MSARegister wd, const MemOperand& rs) {       \
3183     MemOperand source = rs;                                          \
3184     AdjustBaseAndOffset(&source);                                    \
3185     if (is_int10(source.offset())) {                                 \
3186       DCHECK_EQ(source.offset() % b, 0);                             \
3187       GenInstrMsaMI10(opcode, source.offset() / b, source.rm(), wd); \
3188     } else {                                                         \
3189       UseScratchRegisterScope temps(this);                           \
3190       Register scratch = temps.Acquire();                            \
3191       DCHECK_NE(rs.rm(), scratch);                                   \
3192       daddiu(scratch, source.rm(), source.offset());                 \
3193       GenInstrMsaMI10(opcode, 0, scratch, wd);                       \
3194     }                                                                \
3195   }
3196 
MSA_LD_ST_LIST(MSA_LD_ST)3197 MSA_LD_ST_LIST(MSA_LD_ST)
3198 #undef MSA_LD_ST
3199 #undef MSA_LD_ST_LIST
3200 
3201 #define MSA_I10_LIST(V) \
3202   V(ldi_b, I5_DF_b)     \
3203   V(ldi_h, I5_DF_h)     \
3204   V(ldi_w, I5_DF_w)     \
3205   V(ldi_d, I5_DF_d)
3206 
3207 #define MSA_I10(name, format)                           \
3208   void Assembler::name(MSARegister wd, int32_t imm10) { \
3209     GenInstrMsaI10(LDI, format, imm10, wd);             \
3210   }
3211 MSA_I10_LIST(MSA_I10)
3212 #undef MSA_I10
3213 #undef MSA_I10_LIST
3214 
3215 #define MSA_I5_LIST(V) \
3216   V(addvi, ADDVI)      \
3217   V(subvi, SUBVI)      \
3218   V(maxi_s, MAXI_S)    \
3219   V(maxi_u, MAXI_U)    \
3220   V(mini_s, MINI_S)    \
3221   V(mini_u, MINI_U)    \
3222   V(ceqi, CEQI)        \
3223   V(clti_s, CLTI_S)    \
3224   V(clti_u, CLTI_U)    \
3225   V(clei_s, CLEI_S)    \
3226   V(clei_u, CLEI_U)
3227 
3228 #define MSA_I5_FORMAT(name, opcode, format)                       \
3229   void Assembler::name##_##format(MSARegister wd, MSARegister ws, \
3230                                   uint32_t imm5) {                \
3231     GenInstrMsaI5(opcode, I5_DF_##format, imm5, ws, wd);          \
3232   }
3233 
3234 #define MSA_I5(name, opcode)     \
3235   MSA_I5_FORMAT(name, opcode, b) \
3236   MSA_I5_FORMAT(name, opcode, h) \
3237   MSA_I5_FORMAT(name, opcode, w) \
3238   MSA_I5_FORMAT(name, opcode, d)
3239 
3240 MSA_I5_LIST(MSA_I5)
3241 #undef MSA_I5
3242 #undef MSA_I5_FORMAT
3243 #undef MSA_I5_LIST
3244 
3245 #define MSA_I8_LIST(V) \
3246   V(andi_b, ANDI_B)    \
3247   V(ori_b, ORI_B)      \
3248   V(nori_b, NORI_B)    \
3249   V(xori_b, XORI_B)    \
3250   V(bmnzi_b, BMNZI_B)  \
3251   V(bmzi_b, BMZI_B)    \
3252   V(bseli_b, BSELI_B)  \
3253   V(shf_b, SHF_B)      \
3254   V(shf_h, SHF_H)      \
3255   V(shf_w, SHF_W)
3256 
3257 #define MSA_I8(name, opcode)                                            \
3258   void Assembler::name(MSARegister wd, MSARegister ws, uint32_t imm8) { \
3259     GenInstrMsaI8(opcode, imm8, ws, wd);                                \
3260   }
3261 
3262 MSA_I8_LIST(MSA_I8)
3263 #undef MSA_I8
3264 #undef MSA_I8_LIST
3265 
3266 #define MSA_VEC_LIST(V) \
3267   V(and_v, AND_V)       \
3268   V(or_v, OR_V)         \
3269   V(nor_v, NOR_V)       \
3270   V(xor_v, XOR_V)       \
3271   V(bmnz_v, BMNZ_V)     \
3272   V(bmz_v, BMZ_V)       \
3273   V(bsel_v, BSEL_V)
3274 
3275 #define MSA_VEC(name, opcode)                                            \
3276   void Assembler::name(MSARegister wd, MSARegister ws, MSARegister wt) { \
3277     GenInstrMsaVec(opcode, wt, ws, wd);                                  \
3278   }
3279 
3280 MSA_VEC_LIST(MSA_VEC)
3281 #undef MSA_VEC
3282 #undef MSA_VEC_LIST
3283 
3284 #define MSA_2R_LIST(V) \
3285   V(pcnt, PCNT)        \
3286   V(nloc, NLOC)        \
3287   V(nlzc, NLZC)
3288 
3289 #define MSA_2R_FORMAT(name, opcode, format)                         \
3290   void Assembler::name##_##format(MSARegister wd, MSARegister ws) { \
3291     GenInstrMsa2R(opcode, MSA_2R_DF_##format, ws, wd);              \
3292   }
3293 
3294 #define MSA_2R(name, opcode)     \
3295   MSA_2R_FORMAT(name, opcode, b) \
3296   MSA_2R_FORMAT(name, opcode, h) \
3297   MSA_2R_FORMAT(name, opcode, w) \
3298   MSA_2R_FORMAT(name, opcode, d)
3299 
3300 MSA_2R_LIST(MSA_2R)
3301 #undef MSA_2R
3302 #undef MSA_2R_FORMAT
3303 #undef MSA_2R_LIST
3304 
3305 #define MSA_FILL(format)                                              \
3306   void Assembler::fill_##format(MSARegister wd, Register rs) {        \
3307     DCHECK(IsEnabled(MIPS_SIMD));                                     \
3308     DCHECK(rs.is_valid() && wd.is_valid());                           \
3309     Instr instr = MSA | MSA_2R_FORMAT | FILL | MSA_2R_DF_##format |   \
3310                   (rs.code() << kWsShift) | (wd.code() << kWdShift) | \
3311                   MSA_VEC_2R_2RF_MINOR;                               \
3312     emit(instr);                                                      \
3313   }
3314 
3315 MSA_FILL(b)
3316 MSA_FILL(h)
3317 MSA_FILL(w)
3318 MSA_FILL(d)
3319 #undef MSA_FILL
3320 
3321 #define MSA_2RF_LIST(V) \
3322   V(fclass, FCLASS)     \
3323   V(ftrunc_s, FTRUNC_S) \
3324   V(ftrunc_u, FTRUNC_U) \
3325   V(fsqrt, FSQRT)       \
3326   V(frsqrt, FRSQRT)     \
3327   V(frcp, FRCP)         \
3328   V(frint, FRINT)       \
3329   V(flog2, FLOG2)       \
3330   V(fexupl, FEXUPL)     \
3331   V(fexupr, FEXUPR)     \
3332   V(ffql, FFQL)         \
3333   V(ffqr, FFQR)         \
3334   V(ftint_s, FTINT_S)   \
3335   V(ftint_u, FTINT_U)   \
3336   V(ffint_s, FFINT_S)   \
3337   V(ffint_u, FFINT_U)
3338 
3339 #define MSA_2RF_FORMAT(name, opcode, format)                        \
3340   void Assembler::name##_##format(MSARegister wd, MSARegister ws) { \
3341     GenInstrMsa2RF(opcode, MSA_2RF_DF_##format, ws, wd);            \
3342   }
3343 
3344 #define MSA_2RF(name, opcode)     \
3345   MSA_2RF_FORMAT(name, opcode, w) \
3346   MSA_2RF_FORMAT(name, opcode, d)
3347 
3348 MSA_2RF_LIST(MSA_2RF)
3349 #undef MSA_2RF
3350 #undef MSA_2RF_FORMAT
3351 #undef MSA_2RF_LIST
3352 
3353 #define MSA_3R_LIST(V)  \
3354   V(sll, SLL_MSA)       \
3355   V(sra, SRA_MSA)       \
3356   V(srl, SRL_MSA)       \
3357   V(bclr, BCLR)         \
3358   V(bset, BSET)         \
3359   V(bneg, BNEG)         \
3360   V(binsl, BINSL)       \
3361   V(binsr, BINSR)       \
3362   V(addv, ADDV)         \
3363   V(subv, SUBV)         \
3364   V(max_s, MAX_S)       \
3365   V(max_u, MAX_U)       \
3366   V(min_s, MIN_S)       \
3367   V(min_u, MIN_U)       \
3368   V(max_a, MAX_A)       \
3369   V(min_a, MIN_A)       \
3370   V(ceq, CEQ)           \
3371   V(clt_s, CLT_S)       \
3372   V(clt_u, CLT_U)       \
3373   V(cle_s, CLE_S)       \
3374   V(cle_u, CLE_U)       \
3375   V(add_a, ADD_A)       \
3376   V(adds_a, ADDS_A)     \
3377   V(adds_s, ADDS_S)     \
3378   V(adds_u, ADDS_U)     \
3379   V(ave_s, AVE_S)       \
3380   V(ave_u, AVE_U)       \
3381   V(aver_s, AVER_S)     \
3382   V(aver_u, AVER_U)     \
3383   V(subs_s, SUBS_S)     \
3384   V(subs_u, SUBS_U)     \
3385   V(subsus_u, SUBSUS_U) \
3386   V(subsuu_s, SUBSUU_S) \
3387   V(asub_s, ASUB_S)     \
3388   V(asub_u, ASUB_U)     \
3389   V(mulv, MULV)         \
3390   V(maddv, MADDV)       \
3391   V(msubv, MSUBV)       \
3392   V(div_s, DIV_S_MSA)   \
3393   V(div_u, DIV_U)       \
3394   V(mod_s, MOD_S)       \
3395   V(mod_u, MOD_U)       \
3396   V(dotp_s, DOTP_S)     \
3397   V(dotp_u, DOTP_U)     \
3398   V(dpadd_s, DPADD_S)   \
3399   V(dpadd_u, DPADD_U)   \
3400   V(dpsub_s, DPSUB_S)   \
3401   V(dpsub_u, DPSUB_U)   \
3402   V(pckev, PCKEV)       \
3403   V(pckod, PCKOD)       \
3404   V(ilvl, ILVL)         \
3405   V(ilvr, ILVR)         \
3406   V(ilvev, ILVEV)       \
3407   V(ilvod, ILVOD)       \
3408   V(vshf, VSHF)         \
3409   V(srar, SRAR)         \
3410   V(srlr, SRLR)         \
3411   V(hadd_s, HADD_S)     \
3412   V(hadd_u, HADD_U)     \
3413   V(hsub_s, HSUB_S)     \
3414   V(hsub_u, HSUB_U)
3415 
3416 #define MSA_3R_FORMAT(name, opcode, format)                             \
3417   void Assembler::name##_##format(MSARegister wd, MSARegister ws,       \
3418                                   MSARegister wt) {                     \
3419     GenInstrMsa3R<MSARegister>(opcode, MSA_3R_DF_##format, wt, ws, wd); \
3420   }
3421 
3422 #define MSA_3R_FORMAT_SLD_SPLAT(name, opcode, format)                \
3423   void Assembler::name##_##format(MSARegister wd, MSARegister ws,    \
3424                                   Register rt) {                     \
3425     GenInstrMsa3R<Register>(opcode, MSA_3R_DF_##format, rt, ws, wd); \
3426   }
3427 
3428 #define MSA_3R(name, opcode)     \
3429   MSA_3R_FORMAT(name, opcode, b) \
3430   MSA_3R_FORMAT(name, opcode, h) \
3431   MSA_3R_FORMAT(name, opcode, w) \
3432   MSA_3R_FORMAT(name, opcode, d)
3433 
3434 #define MSA_3R_SLD_SPLAT(name, opcode)     \
3435   MSA_3R_FORMAT_SLD_SPLAT(name, opcode, b) \
3436   MSA_3R_FORMAT_SLD_SPLAT(name, opcode, h) \
3437   MSA_3R_FORMAT_SLD_SPLAT(name, opcode, w) \
3438   MSA_3R_FORMAT_SLD_SPLAT(name, opcode, d)
3439 
3440 MSA_3R_LIST(MSA_3R)
3441 MSA_3R_SLD_SPLAT(sld, SLD)
3442 MSA_3R_SLD_SPLAT(splat, SPLAT)
3443 
3444 #undef MSA_3R
3445 #undef MSA_3R_FORMAT
3446 #undef MSA_3R_FORMAT_SLD_SPLAT
3447 #undef MSA_3R_SLD_SPLAT
3448 #undef MSA_3R_LIST
3449 
3450 #define MSA_3RF_LIST1(V) \
3451   V(fcaf, FCAF)          \
3452   V(fcun, FCUN)          \
3453   V(fceq, FCEQ)          \
3454   V(fcueq, FCUEQ)        \
3455   V(fclt, FCLT)          \
3456   V(fcult, FCULT)        \
3457   V(fcle, FCLE)          \
3458   V(fcule, FCULE)        \
3459   V(fsaf, FSAF)          \
3460   V(fsun, FSUN)          \
3461   V(fseq, FSEQ)          \
3462   V(fsueq, FSUEQ)        \
3463   V(fslt, FSLT)          \
3464   V(fsult, FSULT)        \
3465   V(fsle, FSLE)          \
3466   V(fsule, FSULE)        \
3467   V(fadd, FADD)          \
3468   V(fsub, FSUB)          \
3469   V(fmul, FMUL)          \
3470   V(fdiv, FDIV)          \
3471   V(fmadd, FMADD)        \
3472   V(fmsub, FMSUB)        \
3473   V(fexp2, FEXP2)        \
3474   V(fmin, FMIN)          \
3475   V(fmin_a, FMIN_A)      \
3476   V(fmax, FMAX)          \
3477   V(fmax_a, FMAX_A)      \
3478   V(fcor, FCOR)          \
3479   V(fcune, FCUNE)        \
3480   V(fcne, FCNE)          \
3481   V(fsor, FSOR)          \
3482   V(fsune, FSUNE)        \
3483   V(fsne, FSNE)
3484 
3485 #define MSA_3RF_LIST2(V) \
3486   V(fexdo, FEXDO)        \
3487   V(ftq, FTQ)            \
3488   V(mul_q, MUL_Q)        \
3489   V(madd_q, MADD_Q)      \
3490   V(msub_q, MSUB_Q)      \
3491   V(mulr_q, MULR_Q)      \
3492   V(maddr_q, MADDR_Q)    \
3493   V(msubr_q, MSUBR_Q)
3494 
3495 #define MSA_3RF_FORMAT(name, opcode, df, df_c)                \
3496   void Assembler::name##_##df(MSARegister wd, MSARegister ws, \
3497                               MSARegister wt) {               \
3498     GenInstrMsa3RF(opcode, df_c, wt, ws, wd);                 \
3499   }
3500 
3501 #define MSA_3RF_1(name, opcode)      \
3502   MSA_3RF_FORMAT(name, opcode, w, 0) \
3503   MSA_3RF_FORMAT(name, opcode, d, 1)
3504 
3505 #define MSA_3RF_2(name, opcode)      \
3506   MSA_3RF_FORMAT(name, opcode, h, 0) \
3507   MSA_3RF_FORMAT(name, opcode, w, 1)
3508 
3509 MSA_3RF_LIST1(MSA_3RF_1)
3510 MSA_3RF_LIST2(MSA_3RF_2)
3511 #undef MSA_3RF_1
3512 #undef MSA_3RF_2
3513 #undef MSA_3RF_FORMAT
3514 #undef MSA_3RF_LIST1
3515 #undef MSA_3RF_LIST2
3516 
3517 void Assembler::sldi_b(MSARegister wd, MSARegister ws, uint32_t n) {
3518   GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_B, n, ws, wd);
3519 }
3520 
sldi_h(MSARegister wd,MSARegister ws,uint32_t n)3521 void Assembler::sldi_h(MSARegister wd, MSARegister ws, uint32_t n) {
3522   GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_H, n, ws, wd);
3523 }
3524 
sldi_w(MSARegister wd,MSARegister ws,uint32_t n)3525 void Assembler::sldi_w(MSARegister wd, MSARegister ws, uint32_t n) {
3526   GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_W, n, ws, wd);
3527 }
3528 
sldi_d(MSARegister wd,MSARegister ws,uint32_t n)3529 void Assembler::sldi_d(MSARegister wd, MSARegister ws, uint32_t n) {
3530   GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_D, n, ws, wd);
3531 }
3532 
splati_b(MSARegister wd,MSARegister ws,uint32_t n)3533 void Assembler::splati_b(MSARegister wd, MSARegister ws, uint32_t n) {
3534   GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_B, n, ws, wd);
3535 }
3536 
splati_h(MSARegister wd,MSARegister ws,uint32_t n)3537 void Assembler::splati_h(MSARegister wd, MSARegister ws, uint32_t n) {
3538   GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_H, n, ws, wd);
3539 }
3540 
splati_w(MSARegister wd,MSARegister ws,uint32_t n)3541 void Assembler::splati_w(MSARegister wd, MSARegister ws, uint32_t n) {
3542   GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_W, n, ws, wd);
3543 }
3544 
splati_d(MSARegister wd,MSARegister ws,uint32_t n)3545 void Assembler::splati_d(MSARegister wd, MSARegister ws, uint32_t n) {
3546   GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_D, n, ws, wd);
3547 }
3548 
copy_s_b(Register rd,MSARegister ws,uint32_t n)3549 void Assembler::copy_s_b(Register rd, MSARegister ws, uint32_t n) {
3550   GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_B, n, ws, rd);
3551 }
3552 
copy_s_h(Register rd,MSARegister ws,uint32_t n)3553 void Assembler::copy_s_h(Register rd, MSARegister ws, uint32_t n) {
3554   GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_H, n, ws, rd);
3555 }
3556 
copy_s_w(Register rd,MSARegister ws,uint32_t n)3557 void Assembler::copy_s_w(Register rd, MSARegister ws, uint32_t n) {
3558   GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_W, n, ws, rd);
3559 }
3560 
copy_s_d(Register rd,MSARegister ws,uint32_t n)3561 void Assembler::copy_s_d(Register rd, MSARegister ws, uint32_t n) {
3562   GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_D, n, ws, rd);
3563 }
3564 
copy_u_b(Register rd,MSARegister ws,uint32_t n)3565 void Assembler::copy_u_b(Register rd, MSARegister ws, uint32_t n) {
3566   GenInstrMsaElm<Register, MSARegister>(COPY_U, ELM_DF_B, n, ws, rd);
3567 }
3568 
copy_u_h(Register rd,MSARegister ws,uint32_t n)3569 void Assembler::copy_u_h(Register rd, MSARegister ws, uint32_t n) {
3570   GenInstrMsaElm<Register, MSARegister>(COPY_U, ELM_DF_H, n, ws, rd);
3571 }
3572 
copy_u_w(Register rd,MSARegister ws,uint32_t n)3573 void Assembler::copy_u_w(Register rd, MSARegister ws, uint32_t n) {
3574   GenInstrMsaElm<Register, MSARegister>(COPY_U, ELM_DF_W, n, ws, rd);
3575 }
3576 
insert_b(MSARegister wd,uint32_t n,Register rs)3577 void Assembler::insert_b(MSARegister wd, uint32_t n, Register rs) {
3578   GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_B, n, rs, wd);
3579 }
3580 
insert_h(MSARegister wd,uint32_t n,Register rs)3581 void Assembler::insert_h(MSARegister wd, uint32_t n, Register rs) {
3582   GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_H, n, rs, wd);
3583 }
3584 
insert_w(MSARegister wd,uint32_t n,Register rs)3585 void Assembler::insert_w(MSARegister wd, uint32_t n, Register rs) {
3586   GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_W, n, rs, wd);
3587 }
3588 
insert_d(MSARegister wd,uint32_t n,Register rs)3589 void Assembler::insert_d(MSARegister wd, uint32_t n, Register rs) {
3590   GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_D, n, rs, wd);
3591 }
3592 
insve_b(MSARegister wd,uint32_t n,MSARegister ws)3593 void Assembler::insve_b(MSARegister wd, uint32_t n, MSARegister ws) {
3594   GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_B, n, ws, wd);
3595 }
3596 
insve_h(MSARegister wd,uint32_t n,MSARegister ws)3597 void Assembler::insve_h(MSARegister wd, uint32_t n, MSARegister ws) {
3598   GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_H, n, ws, wd);
3599 }
3600 
insve_w(MSARegister wd,uint32_t n,MSARegister ws)3601 void Assembler::insve_w(MSARegister wd, uint32_t n, MSARegister ws) {
3602   GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_W, n, ws, wd);
3603 }
3604 
insve_d(MSARegister wd,uint32_t n,MSARegister ws)3605 void Assembler::insve_d(MSARegister wd, uint32_t n, MSARegister ws) {
3606   GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_D, n, ws, wd);
3607 }
3608 
move_v(MSARegister wd,MSARegister ws)3609 void Assembler::move_v(MSARegister wd, MSARegister ws) {
3610   DCHECK(IsEnabled(MIPS_SIMD));
3611   DCHECK(ws.is_valid() && wd.is_valid());
3612   Instr instr = MSA | MOVE_V | (ws.code() << kWsShift) |
3613                 (wd.code() << kWdShift) | MSA_ELM_MINOR;
3614   emit(instr);
3615 }
3616 
ctcmsa(MSAControlRegister cd,Register rs)3617 void Assembler::ctcmsa(MSAControlRegister cd, Register rs) {
3618   DCHECK(IsEnabled(MIPS_SIMD));
3619   DCHECK(cd.is_valid() && rs.is_valid());
3620   Instr instr = MSA | CTCMSA | (rs.code() << kWsShift) |
3621                 (cd.code() << kWdShift) | MSA_ELM_MINOR;
3622   emit(instr);
3623 }
3624 
cfcmsa(Register rd,MSAControlRegister cs)3625 void Assembler::cfcmsa(Register rd, MSAControlRegister cs) {
3626   DCHECK(IsEnabled(MIPS_SIMD));
3627   DCHECK(rd.is_valid() && cs.is_valid());
3628   Instr instr = MSA | CFCMSA | (cs.code() << kWsShift) |
3629                 (rd.code() << kWdShift) | MSA_ELM_MINOR;
3630   emit(instr);
3631 }
3632 
3633 #define MSA_BIT_LIST(V) \
3634   V(slli, SLLI)         \
3635   V(srai, SRAI)         \
3636   V(srli, SRLI)         \
3637   V(bclri, BCLRI)       \
3638   V(bseti, BSETI)       \
3639   V(bnegi, BNEGI)       \
3640   V(binsli, BINSLI)     \
3641   V(binsri, BINSRI)     \
3642   V(sat_s, SAT_S)       \
3643   V(sat_u, SAT_U)       \
3644   V(srari, SRARI)       \
3645   V(srlri, SRLRI)
3646 
3647 #define MSA_BIT_FORMAT(name, opcode, format)                      \
3648   void Assembler::name##_##format(MSARegister wd, MSARegister ws, \
3649                                   uint32_t m) {                   \
3650     GenInstrMsaBit(opcode, BIT_DF_##format, m, ws, wd);           \
3651   }
3652 
3653 #define MSA_BIT(name, opcode)     \
3654   MSA_BIT_FORMAT(name, opcode, b) \
3655   MSA_BIT_FORMAT(name, opcode, h) \
3656   MSA_BIT_FORMAT(name, opcode, w) \
3657   MSA_BIT_FORMAT(name, opcode, d)
3658 
MSA_BIT_LIST(MSA_BIT)3659 MSA_BIT_LIST(MSA_BIT)
3660 #undef MSA_BIT
3661 #undef MSA_BIT_FORMAT
3662 #undef MSA_BIT_LIST
3663 
3664 int Assembler::RelocateInternalReference(RelocInfo::Mode rmode, Address pc,
3665                                          intptr_t pc_delta) {
3666   if (RelocInfo::IsInternalReference(rmode)) {
3667     int64_t* p = reinterpret_cast<int64_t*>(pc);
3668     if (*p == kEndOfJumpChain) {
3669       return 0;  // Number of instructions patched.
3670     }
3671     *p += pc_delta;
3672     return 2;  // Number of instructions patched.
3673   }
3674   Instr instr = instr_at(pc);
3675   DCHECK(RelocInfo::IsInternalReferenceEncoded(rmode));
3676   if (IsLui(instr)) {
3677     Instr instr_lui = instr_at(pc + 0 * kInstrSize);
3678     Instr instr_ori = instr_at(pc + 1 * kInstrSize);
3679     Instr instr_ori2 = instr_at(pc + 3 * kInstrSize);
3680     DCHECK(IsOri(instr_ori));
3681     DCHECK(IsOri(instr_ori2));
3682     // TODO(plind): symbolic names for the shifts.
3683     int64_t imm = (instr_lui & static_cast<int64_t>(kImm16Mask)) << 48;
3684     imm |= (instr_ori & static_cast<int64_t>(kImm16Mask)) << 32;
3685     imm |= (instr_ori2 & static_cast<int64_t>(kImm16Mask)) << 16;
3686     // Sign extend address.
3687     imm >>= 16;
3688 
3689     if (imm == kEndOfJumpChain) {
3690       return 0;  // Number of instructions patched.
3691     }
3692     imm += pc_delta;
3693     DCHECK_EQ(imm & 3, 0);
3694 
3695     instr_lui &= ~kImm16Mask;
3696     instr_ori &= ~kImm16Mask;
3697     instr_ori2 &= ~kImm16Mask;
3698 
3699     instr_at_put(pc + 0 * kInstrSize, instr_lui | ((imm >> 32) & kImm16Mask));
3700     instr_at_put(pc + 1 * kInstrSize, instr_ori | (imm >> 16 & kImm16Mask));
3701     instr_at_put(pc + 3 * kInstrSize, instr_ori2 | (imm & kImm16Mask));
3702     return 4;  // Number of instructions patched.
3703   } else if (IsJ(instr) || IsJal(instr)) {
3704     // Regular j/jal relocation.
3705     uint32_t imm28 = (instr & static_cast<int32_t>(kImm26Mask)) << 2;
3706     imm28 += pc_delta;
3707     imm28 &= kImm28Mask;
3708     instr &= ~kImm26Mask;
3709     DCHECK_EQ(imm28 & 3, 0);
3710     uint32_t imm26 = static_cast<uint32_t>(imm28 >> 2);
3711     instr_at_put(pc, instr | (imm26 & kImm26Mask));
3712     return 1;  // Number of instructions patched.
3713   } else {
3714     DCHECK(((instr & kJumpRawMask) == kJRawMark) ||
3715            ((instr & kJumpRawMask) == kJalRawMark));
3716     // Unbox raw offset and emit j/jal.
3717     int32_t imm28 = (instr & static_cast<int32_t>(kImm26Mask)) << 2;
3718     // Sign extend 28-bit offset to 32-bit.
3719     imm28 = (imm28 << 4) >> 4;
3720     uint64_t target =
3721         static_cast<int64_t>(imm28) + reinterpret_cast<uint64_t>(pc);
3722     target &= kImm28Mask;
3723     DCHECK_EQ(imm28 & 3, 0);
3724     uint32_t imm26 = static_cast<uint32_t>(target >> 2);
3725     // Check markings whether to emit j or jal.
3726     uint32_t unbox = (instr & kJRawMark) ? J : JAL;
3727     instr_at_put(pc, unbox | (imm26 & kImm26Mask));
3728     return 1;  // Number of instructions patched.
3729   }
3730 }
3731 
GrowBuffer()3732 void Assembler::GrowBuffer() {
3733   // Compute new buffer size.
3734   int old_size = buffer_->size();
3735   int new_size = std::min(2 * old_size, old_size + 1 * MB);
3736 
3737   // Some internal data structures overflow for very large buffers,
3738   // they must ensure that kMaximalBufferSize is not too large.
3739   if (new_size > kMaximalBufferSize) {
3740     V8::FatalProcessOutOfMemory(nullptr, "Assembler::GrowBuffer");
3741   }
3742 
3743   // Set up new buffer.
3744   std::unique_ptr<AssemblerBuffer> new_buffer = buffer_->Grow(new_size);
3745   DCHECK_EQ(new_size, new_buffer->size());
3746   byte* new_start = new_buffer->start();
3747 
3748   // Copy the data.
3749   intptr_t pc_delta = new_start - buffer_start_;
3750   intptr_t rc_delta = (new_start + new_size) - (buffer_start_ + old_size);
3751   size_t reloc_size = (buffer_start_ + old_size) - reloc_info_writer.pos();
3752   MemMove(new_start, buffer_start_, pc_offset());
3753   MemMove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(),
3754           reloc_size);
3755 
3756   // Switch buffers.
3757   buffer_ = std::move(new_buffer);
3758   buffer_start_ = new_start;
3759   pc_ += pc_delta;
3760   last_call_pc_ += pc_delta;
3761   reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
3762                                reloc_info_writer.last_pc() + pc_delta);
3763 
3764   // Relocate runtime entries.
3765   Vector<byte> instructions{buffer_start_, pc_offset()};
3766   Vector<const byte> reloc_info{reloc_info_writer.pos(), reloc_size};
3767   for (RelocIterator it(instructions, reloc_info, 0); !it.done(); it.next()) {
3768     RelocInfo::Mode rmode = it.rinfo()->rmode();
3769     if (rmode == RelocInfo::INTERNAL_REFERENCE) {
3770       RelocateInternalReference(rmode, it.rinfo()->pc(), pc_delta);
3771     }
3772   }
3773   DCHECK(!overflow());
3774 }
3775 
db(uint8_t data)3776 void Assembler::db(uint8_t data) {
3777   CheckForEmitInForbiddenSlot();
3778   *reinterpret_cast<uint8_t*>(pc_) = data;
3779   pc_ += sizeof(uint8_t);
3780 }
3781 
dd(uint32_t data)3782 void Assembler::dd(uint32_t data) {
3783   CheckForEmitInForbiddenSlot();
3784   *reinterpret_cast<uint32_t*>(pc_) = data;
3785   pc_ += sizeof(uint32_t);
3786 }
3787 
dq(uint64_t data)3788 void Assembler::dq(uint64_t data) {
3789   CheckForEmitInForbiddenSlot();
3790   *reinterpret_cast<uint64_t*>(pc_) = data;
3791   pc_ += sizeof(uint64_t);
3792 }
3793 
dd(Label * label)3794 void Assembler::dd(Label* label) {
3795   uint64_t data;
3796   CheckForEmitInForbiddenSlot();
3797   if (label->is_bound()) {
3798     data = reinterpret_cast<uint64_t>(buffer_start_ + label->pos());
3799   } else {
3800     data = jump_address(label);
3801     unbound_labels_count_++;
3802     internal_reference_positions_.insert(label->pos());
3803   }
3804   RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
3805   EmitHelper(data);
3806 }
3807 
RecordRelocInfo(RelocInfo::Mode rmode,intptr_t data)3808 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
3809   if (!ShouldRecordRelocInfo(rmode)) return;
3810   // We do not try to reuse pool constants.
3811   RelocInfo rinfo(reinterpret_cast<Address>(pc_), rmode, data, Code());
3812   DCHECK_GE(buffer_space(), kMaxRelocSize);  // Too late to grow buffer here.
3813   reloc_info_writer.Write(&rinfo);
3814 }
3815 
BlockTrampolinePoolFor(int instructions)3816 void Assembler::BlockTrampolinePoolFor(int instructions) {
3817   CheckTrampolinePoolQuick(instructions);
3818   BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize);
3819 }
3820 
CheckTrampolinePool()3821 void Assembler::CheckTrampolinePool() {
3822   // Some small sequences of instructions must not be broken up by the
3823   // insertion of a trampoline pool; such sequences are protected by setting
3824   // either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_,
3825   // which are both checked here. Also, recursive calls to CheckTrampolinePool
3826   // are blocked by trampoline_pool_blocked_nesting_.
3827   if ((trampoline_pool_blocked_nesting_ > 0) ||
3828       (pc_offset() < no_trampoline_pool_before_)) {
3829     // Emission is currently blocked; make sure we try again as soon as
3830     // possible.
3831     if (trampoline_pool_blocked_nesting_ > 0) {
3832       next_buffer_check_ = pc_offset() + kInstrSize;
3833     } else {
3834       next_buffer_check_ = no_trampoline_pool_before_;
3835     }
3836     return;
3837   }
3838 
3839   DCHECK(!trampoline_emitted_);
3840   DCHECK_GE(unbound_labels_count_, 0);
3841   if (unbound_labels_count_ > 0) {
3842     // First we emit jump (2 instructions), then we emit trampoline pool.
3843     {
3844       BlockTrampolinePoolScope block_trampoline_pool(this);
3845       Label after_pool;
3846       if (kArchVariant == kMips64r6) {
3847         bc(&after_pool);
3848       } else {
3849         b(&after_pool);
3850       }
3851       nop();
3852 
3853       int pool_start = pc_offset();
3854       for (int i = 0; i < unbound_labels_count_; i++) {
3855         {
3856           if (kArchVariant == kMips64r6) {
3857             bc(&after_pool);
3858             nop();
3859           } else {
3860             or_(t8, ra, zero_reg);
3861             nal();       // Read PC into ra register.
3862             lui(t9, 0);  // Branch delay slot.
3863             ori(t9, t9, 0);
3864             daddu(t9, ra, t9);
3865             or_(ra, t8, zero_reg);
3866             // Instruction jr will take or_ from the next trampoline.
3867             // in its branch delay slot. This is the expected behavior
3868             // in order to decrease size of trampoline pool.
3869             jr(t9);
3870           }
3871         }
3872       }
3873       nop();
3874       // If unbound_labels_count_ is big enough, label after_pool will
3875       // need a trampoline too, so we must create the trampoline before
3876       // the bind operation to make sure function 'bind' can get this
3877       // information.
3878       trampoline_ = Trampoline(pool_start, unbound_labels_count_);
3879       bind(&after_pool);
3880 
3881       trampoline_emitted_ = true;
3882       // As we are only going to emit trampoline once, we need to prevent any
3883       // further emission.
3884       next_buffer_check_ = kMaxInt;
3885     }
3886   } else {
3887     // Number of branches to unbound label at this point is zero, so we can
3888     // move next buffer check to maximum.
3889     next_buffer_check_ =
3890         pc_offset() + kMaxBranchOffset - kTrampolineSlotsSize * 16;
3891   }
3892   return;
3893 }
3894 
target_address_at(Address pc)3895 Address Assembler::target_address_at(Address pc) {
3896   Instr instr0 = instr_at(pc);
3897   Instr instr1 = instr_at(pc + 1 * kInstrSize);
3898   Instr instr3 = instr_at(pc + 3 * kInstrSize);
3899 
3900   // Interpret 4 instructions for address generated by li: See listing in
3901   // Assembler::set_target_address_at() just below.
3902   if ((GetOpcodeField(instr0) == LUI) && (GetOpcodeField(instr1) == ORI) &&
3903       (GetOpcodeField(instr3) == ORI)) {
3904     // Assemble the 48 bit value.
3905     int64_t addr =
3906         static_cast<int64_t>(((uint64_t)(GetImmediate16(instr0)) << 32) |
3907                              ((uint64_t)(GetImmediate16(instr1)) << 16) |
3908                              ((uint64_t)(GetImmediate16(instr3))));
3909 
3910     // Sign extend to get canonical address.
3911     addr = (addr << 16) >> 16;
3912     return static_cast<Address>(addr);
3913   }
3914   // We should never get here, force a bad address if we do.
3915   UNREACHABLE();
3916 }
3917 
3918 // On Mips64, a target address is stored in a 4-instruction sequence:
3919 //    0: lui(rd, (j.imm64_ >> 32) & kImm16Mask);
3920 //    1: ori(rd, rd, (j.imm64_ >> 16) & kImm16Mask);
3921 //    2: dsll(rd, rd, 16);
3922 //    3: ori(rd, rd, j.imm32_ & kImm16Mask);
3923 //
3924 // Patching the address must replace all the lui & ori instructions,
3925 // and flush the i-cache.
3926 //
3927 // There is an optimization below, which emits a nop when the address
3928 // fits in just 16 bits. This is unlikely to help, and should be benchmarked,
3929 // and possibly removed.
set_target_value_at(Address pc,uint64_t target,ICacheFlushMode icache_flush_mode)3930 void Assembler::set_target_value_at(Address pc, uint64_t target,
3931                                     ICacheFlushMode icache_flush_mode) {
3932   // There is an optimization where only 4 instructions are used to load address
3933   // in code on MIP64 because only 48-bits of address is effectively used.
3934   // It relies on fact the upper [63:48] bits are not used for virtual address
3935   // translation and they have to be set according to value of bit 47 in order
3936   // get canonical address.
3937   Instr instr1 = instr_at(pc + kInstrSize);
3938   uint32_t rt_code = GetRt(instr1);
3939   uint32_t* p = reinterpret_cast<uint32_t*>(pc);
3940 
3941 #ifdef DEBUG
3942   // Check we have the result from a li macro-instruction.
3943   Instr instr0 = instr_at(pc);
3944   Instr instr3 = instr_at(pc + kInstrSize * 3);
3945   DCHECK((GetOpcodeField(instr0) == LUI && GetOpcodeField(instr1) == ORI &&
3946           GetOpcodeField(instr3) == ORI));
3947 #endif
3948 
3949   // Must use 4 instructions to insure patchable code.
3950   // lui rt, upper-16.
3951   // ori rt, rt, lower-16.
3952   // dsll rt, rt, 16.
3953   // ori rt rt, lower-16.
3954   *p = LUI | (rt_code << kRtShift) | ((target >> 32) & kImm16Mask);
3955   *(p + 1) = ORI | (rt_code << kRtShift) | (rt_code << kRsShift) |
3956              ((target >> 16) & kImm16Mask);
3957   *(p + 3) = ORI | (rt_code << kRsShift) | (rt_code << kRtShift) |
3958              (target & kImm16Mask);
3959 
3960   if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
3961     FlushInstructionCache(pc, 4 * kInstrSize);
3962   }
3963 }
3964 
UseScratchRegisterScope(Assembler * assembler)3965 UseScratchRegisterScope::UseScratchRegisterScope(Assembler* assembler)
3966     : available_(assembler->GetScratchRegisterList()),
3967       old_available_(*available_) {}
3968 
~UseScratchRegisterScope()3969 UseScratchRegisterScope::~UseScratchRegisterScope() {
3970   *available_ = old_available_;
3971 }
3972 
Acquire()3973 Register UseScratchRegisterScope::Acquire() {
3974   DCHECK_NOT_NULL(available_);
3975   DCHECK_NE(*available_, 0);
3976   int index = static_cast<int>(base::bits::CountTrailingZeros32(*available_));
3977   *available_ &= ~(1UL << index);
3978 
3979   return Register::from_code(index);
3980 }
3981 
hasAvailable() const3982 bool UseScratchRegisterScope::hasAvailable() const { return *available_ != 0; }
3983 
3984 }  // namespace internal
3985 }  // namespace v8
3986 
3987 #endif  // V8_TARGET_ARCH_MIPS64
3988