• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #if V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64
6 
7 #include "src/regexp/ppc/regexp-macro-assembler-ppc.h"
8 
9 #include "src/base/bits.h"
10 #include "src/codegen/assembler-inl.h"
11 #include "src/codegen/macro-assembler.h"
12 #include "src/logging/log.h"
13 #include "src/regexp/regexp-macro-assembler.h"
14 #include "src/regexp/regexp-stack.h"
15 #include "src/snapshot/embedded/embedded-data.h"
16 #include "src/strings/unicode.h"
17 
18 namespace v8 {
19 namespace internal {
20 
21 /*
22  * This assembler uses the following register assignment convention
23  * - r25: Temporarily stores the index of capture start after a matching pass
24  *        for a global regexp.
25  * - r26: Pointer to current Code object including heap object tag.
26  * - r27: Current position in input, as negative offset from end of string.
27  *        Please notice that this is the byte offset, not the character offset!
28  * - r28: Currently loaded character. Must be loaded using
29  *        LoadCurrentCharacter before using any of the dispatch methods.
30  * - r29: Points to tip of backtrack stack
31  * - r30: End of input (points to byte after last character in input).
32  * - r31: Frame pointer. Used to access arguments, local variables and
33  *         RegExp registers.
34  * - r12: IP register, used by assembler. Very volatile.
35  * - r1/sp : Points to tip of C stack.
36  *
37  * The remaining registers are free for computations.
38  * Each call to a public method should retain this convention.
39  *
40  * The stack will have the following structure
41  *  - fp[44]  Address regexp     (address of the JSRegExp object; unused in
42  *                                native code, passed to match signature of
43  *                                the interpreter):
44  *  - fp[40]  Isolate* isolate   (address of the current isolate)
45  *  - fp[36]  lr save area (currently unused)
46  *  - fp[32]  backchain    (currently unused)
47  *  --- sp when called ---
48  *  - fp[28]  return address     (lr).
49  *  - fp[24]  old frame pointer  (r31).
50  *  - fp[0..20]  backup of registers r25..r30
51  *  --- frame pointer ----
52  *  - fp[-4]  direct_call        (if 1, direct call from JavaScript code,
53  *                                if 0, call through the runtime system).
54  *  - fp[-8]  stack_area_base    (high end of the memory area to use as
55  *                                backtracking stack).
56  *  - fp[-12] capture array size (may fit multiple sets of matches)
57  *  - fp[-16] int* capture_array (int[num_saved_registers_], for output).
58  *  - fp[-20] end of input       (address of end of string).
59  *  - fp[-24] start of input     (address of first character in string).
60  *  - fp[-28] start index        (character index of start).
61  *  - fp[-32] void* input_string (location of a handle containing the string).
62  *  - fp[-36] success counter    (only for global regexps to count matches).
63  *  - fp[-40] Offset of location before start of input (effectively character
64  *            string start - 1). Used to initialize capture registers to a
65  *            non-position.
66  *  - fp[-44] At start (if 1, we are starting at the start of the
67  *    string, otherwise 0)
68  *  - fp[-48] register 0         (Only positions must be stored in the first
69  *  -         register 1          num_saved_registers_ registers)
70  *  -         ...
71  *  -         register num_registers-1
72  *  --- sp ---
73  *
74  * The first num_saved_registers_ registers are initialized to point to
75  * "character -1" in the string (i.e., char_size() bytes before the first
76  * character of the string). The remaining registers start out as garbage.
77  *
78  * The data up to the return address must be placed there by the calling
79  * code and the remaining arguments are passed in registers, e.g. by calling the
80  * code entry as cast to a function with the signature:
81  * int (*match)(String input_string,
82  *              int start_index,
83  *              Address start,
84  *              Address end,
85  *              int* capture_output_array,
86  *              int num_capture_registers,
87  *              byte* stack_area_base,
88  *              bool direct_call = false,
89  *              Isolate* isolate,
90  *              Address regexp);
91  * The call is performed by NativeRegExpMacroAssembler::Execute()
92  * (in regexp-macro-assembler.cc) via the GeneratedCode wrapper.
93  */
94 
95 #define __ ACCESS_MASM(masm_)
96 
97 const int RegExpMacroAssemblerPPC::kRegExpCodeSize;
98 
RegExpMacroAssemblerPPC(Isolate * isolate,Zone * zone,Mode mode,int registers_to_save)99 RegExpMacroAssemblerPPC::RegExpMacroAssemblerPPC(Isolate* isolate, Zone* zone,
100                                                  Mode mode,
101                                                  int registers_to_save)
102     : NativeRegExpMacroAssembler(isolate, zone),
103       masm_(new MacroAssembler(isolate, CodeObjectRequired::kYes,
104                                NewAssemblerBuffer(kRegExpCodeSize))),
105       mode_(mode),
106       num_registers_(registers_to_save),
107       num_saved_registers_(registers_to_save),
108       entry_label_(),
109       start_label_(),
110       success_label_(),
111       backtrack_label_(),
112       exit_label_(),
113       internal_failure_label_() {
114   masm_->set_root_array_available(false);
115 
116   DCHECK_EQ(0, registers_to_save % 2);
117 
118 
119   __ b(&entry_label_);  // We'll write the entry code later.
120   // If the code gets too big or corrupted, an internal exception will be
121   // raised, and we will exit right away.
122   __ bind(&internal_failure_label_);
123   __ li(r3, Operand(FAILURE));
124   __ Ret();
125   __ bind(&start_label_);  // And then continue from here.
126 }
127 
~RegExpMacroAssemblerPPC()128 RegExpMacroAssemblerPPC::~RegExpMacroAssemblerPPC() {
129   delete masm_;
130   // Unuse labels in case we throw away the assembler without calling GetCode.
131   entry_label_.Unuse();
132   start_label_.Unuse();
133   success_label_.Unuse();
134   backtrack_label_.Unuse();
135   exit_label_.Unuse();
136   check_preempt_label_.Unuse();
137   stack_overflow_label_.Unuse();
138   internal_failure_label_.Unuse();
139   fallback_label_.Unuse();
140 }
141 
142 
stack_limit_slack()143 int RegExpMacroAssemblerPPC::stack_limit_slack() {
144   return RegExpStack::kStackLimitSlack;
145 }
146 
147 
AdvanceCurrentPosition(int by)148 void RegExpMacroAssemblerPPC::AdvanceCurrentPosition(int by) {
149   if (by != 0) {
150     if (is_int16(by * char_size())) {
151       __ addi(current_input_offset(), current_input_offset(),
152               Operand(by * char_size()));
153     } else {
154       __ mov(r0, Operand(by * char_size()));
155       __ add(current_input_offset(), r0, current_input_offset());
156     }
157   }
158 }
159 
160 
AdvanceRegister(int reg,int by)161 void RegExpMacroAssemblerPPC::AdvanceRegister(int reg, int by) {
162   DCHECK_LE(0, reg);
163   DCHECK_GT(num_registers_, reg);
164   if (by != 0) {
165     __ LoadP(r3, register_location(reg), r0);
166     __ mov(r0, Operand(by));
167     __ add(r3, r3, r0);
168     __ StoreP(r3, register_location(reg), r0);
169   }
170 }
171 
172 
Backtrack()173 void RegExpMacroAssemblerPPC::Backtrack() {
174   CheckPreemption();
175   if (has_backtrack_limit()) {
176     Label next;
177     __ LoadP(r3, MemOperand(frame_pointer(), kBacktrackCount), r0);
178     __ addi(r3, r3, Operand(1));
179     __ StoreP(r3, MemOperand(frame_pointer(), kBacktrackCount), r0);
180     __ mov(r0, Operand(backtrack_limit()));
181     __ cmp(r3, r0);
182     __ bne(&next);
183 
184     // Backtrack limit exceeded.
185     if (can_fallback()) {
186       __ b(&fallback_label_);
187     } else {
188       // Can't fallback, so we treat it as a failed match.
189       Fail();
190     }
191 
192     __ bind(&next);
193   }
194   // Pop Code offset from backtrack stack, add Code and jump to location.
195   Pop(r3);
196   __ add(r3, r3, code_pointer());
197   __ Jump(r3);
198 }
199 
200 
Bind(Label * label)201 void RegExpMacroAssemblerPPC::Bind(Label* label) { __ bind(label); }
202 
203 
CheckCharacter(uint32_t c,Label * on_equal)204 void RegExpMacroAssemblerPPC::CheckCharacter(uint32_t c, Label* on_equal) {
205   __ Cmpli(current_character(), Operand(c), r0);
206   BranchOrBacktrack(eq, on_equal);
207 }
208 
209 
CheckCharacterGT(uc16 limit,Label * on_greater)210 void RegExpMacroAssemblerPPC::CheckCharacterGT(uc16 limit, Label* on_greater) {
211   __ Cmpli(current_character(), Operand(limit), r0);
212   BranchOrBacktrack(gt, on_greater);
213 }
214 
CheckAtStart(int cp_offset,Label * on_at_start)215 void RegExpMacroAssemblerPPC::CheckAtStart(int cp_offset, Label* on_at_start) {
216   __ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne));
217   __ addi(r3, current_input_offset(),
218           Operand(-char_size() + cp_offset * char_size()));
219   __ cmp(r3, r4);
220   BranchOrBacktrack(eq, on_at_start);
221 }
222 
CheckNotAtStart(int cp_offset,Label * on_not_at_start)223 void RegExpMacroAssemblerPPC::CheckNotAtStart(int cp_offset,
224                                               Label* on_not_at_start) {
225   __ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne));
226   __ addi(r3, current_input_offset(),
227           Operand(-char_size() + cp_offset * char_size()));
228   __ cmp(r3, r4);
229   BranchOrBacktrack(ne, on_not_at_start);
230 }
231 
232 
CheckCharacterLT(uc16 limit,Label * on_less)233 void RegExpMacroAssemblerPPC::CheckCharacterLT(uc16 limit, Label* on_less) {
234   __ Cmpli(current_character(), Operand(limit), r0);
235   BranchOrBacktrack(lt, on_less);
236 }
237 
238 
CheckGreedyLoop(Label * on_equal)239 void RegExpMacroAssemblerPPC::CheckGreedyLoop(Label* on_equal) {
240   Label backtrack_non_equal;
241   __ LoadP(r3, MemOperand(backtrack_stackpointer(), 0));
242   __ cmp(current_input_offset(), r3);
243   __ bne(&backtrack_non_equal);
244   __ addi(backtrack_stackpointer(), backtrack_stackpointer(),
245           Operand(kSystemPointerSize));
246 
247   __ bind(&backtrack_non_equal);
248   BranchOrBacktrack(eq, on_equal);
249 }
250 
CheckNotBackReferenceIgnoreCase(int start_reg,bool read_backward,bool unicode,Label * on_no_match)251 void RegExpMacroAssemblerPPC::CheckNotBackReferenceIgnoreCase(
252     int start_reg, bool read_backward, bool unicode, Label* on_no_match) {
253   Label fallthrough;
254   __ LoadP(r3, register_location(start_reg), r0);  // Index of start of capture
255   __ LoadP(r4, register_location(start_reg + 1), r0);  // Index of end
256   __ sub(r4, r4, r3, LeaveOE, SetRC);                  // Length of capture.
257 
258   // At this point, the capture registers are either both set or both cleared.
259   // If the capture length is zero, then the capture is either empty or cleared.
260   // Fall through in both cases.
261   __ beq(&fallthrough, cr0);
262 
263   // Check that there are enough characters left in the input.
264   if (read_backward) {
265     __ LoadP(r6, MemOperand(frame_pointer(), kStringStartMinusOne));
266     __ add(r6, r6, r4);
267     __ cmp(current_input_offset(), r6);
268     BranchOrBacktrack(le, on_no_match);
269   } else {
270     __ add(r0, r4, current_input_offset(), LeaveOE, SetRC);
271     BranchOrBacktrack(gt, on_no_match, cr0);
272   }
273 
274   if (mode_ == LATIN1) {
275     Label success;
276     Label fail;
277     Label loop_check;
278 
279     // r3 - offset of start of capture
280     // r4 - length of capture
281     __ add(r3, r3, end_of_input_address());
282     __ add(r5, end_of_input_address(), current_input_offset());
283     if (read_backward) {
284       __ sub(r5, r5, r4);  // Offset by length when matching backwards.
285     }
286     __ add(r4, r3, r4);
287 
288     // r3 - Address of start of capture.
289     // r4 - Address of end of capture
290     // r5 - Address of current input position.
291 
292     Label loop;
293     __ bind(&loop);
294     __ lbz(r6, MemOperand(r3));
295     __ addi(r3, r3, Operand(char_size()));
296     __ lbz(r25, MemOperand(r5));
297     __ addi(r5, r5, Operand(char_size()));
298     __ cmp(r25, r6);
299     __ beq(&loop_check);
300 
301     // Mismatch, try case-insensitive match (converting letters to lower-case).
302     __ ori(r6, r6, Operand(0x20));  // Convert capture character to lower-case.
303     __ ori(r25, r25, Operand(0x20));  // Also convert input character.
304     __ cmp(r25, r6);
305     __ bne(&fail);
306     __ subi(r6, r6, Operand('a'));
307     __ cmpli(r6, Operand('z' - 'a'));  // Is r6 a lowercase letter?
308     __ ble(&loop_check);               // In range 'a'-'z'.
309     // Latin-1: Check for values in range [224,254] but not 247.
310     __ subi(r6, r6, Operand(224 - 'a'));
311     __ cmpli(r6, Operand(254 - 224));
312     __ bgt(&fail);                    // Weren't Latin-1 letters.
313     __ cmpi(r6, Operand(247 - 224));  // Check for 247.
314     __ beq(&fail);
315 
316     __ bind(&loop_check);
317     __ cmp(r3, r4);
318     __ blt(&loop);
319     __ b(&success);
320 
321     __ bind(&fail);
322     BranchOrBacktrack(al, on_no_match);
323 
324     __ bind(&success);
325     // Compute new value of character position after the matched part.
326     __ sub(current_input_offset(), r5, end_of_input_address());
327     if (read_backward) {
328       __ LoadP(r3, register_location(start_reg));  // Index of start of capture
329       __ LoadP(r4,
330                register_location(start_reg + 1));  // Index of end of capture
331       __ add(current_input_offset(), current_input_offset(), r3);
332       __ sub(current_input_offset(), current_input_offset(), r4);
333     }
334   } else {
335     DCHECK(mode_ == UC16);
336     int argument_count = 4;
337     __ PrepareCallCFunction(argument_count, r5);
338 
339     // r3 - offset of start of capture
340     // r4 - length of capture
341 
342     // Put arguments into arguments registers.
343     // Parameters are
344     //   r3: Address byte_offset1 - Address captured substring's start.
345     //   r4: Address byte_offset2 - Address of current character position.
346     //   r5: size_t byte_length - length of capture in bytes(!)
347     //   r6: Isolate* isolate.
348 
349     // Address of start of capture.
350     __ add(r3, r3, end_of_input_address());
351     // Length of capture.
352     __ mr(r5, r4);
353     // Save length in callee-save register for use on return.
354     __ mr(r25, r4);
355     // Address of current input position.
356     __ add(r4, current_input_offset(), end_of_input_address());
357     if (read_backward) {
358       __ sub(r4, r4, r25);
359     }
360     // Isolate.
361     __ mov(r6, Operand(ExternalReference::isolate_address(isolate())));
362 
363     {
364       AllowExternalCallThatCantCauseGC scope(masm_);
365       ExternalReference function =
366           unicode ? ExternalReference::re_case_insensitive_compare_unicode(
367                         isolate())
368                   : ExternalReference::re_case_insensitive_compare_non_unicode(
369                         isolate());
370       __ CallCFunction(function, argument_count);
371     }
372 
373     // Check if function returned non-zero for success or zero for failure.
374     __ cmpi(r3, Operand::Zero());
375     BranchOrBacktrack(eq, on_no_match);
376 
377     // On success, advance position by length of capture.
378     if (read_backward) {
379       __ sub(current_input_offset(), current_input_offset(), r25);
380     } else {
381       __ add(current_input_offset(), current_input_offset(), r25);
382     }
383   }
384 
385   __ bind(&fallthrough);
386 }
387 
CheckNotBackReference(int start_reg,bool read_backward,Label * on_no_match)388 void RegExpMacroAssemblerPPC::CheckNotBackReference(int start_reg,
389                                                     bool read_backward,
390                                                     Label* on_no_match) {
391   Label fallthrough;
392 
393   // Find length of back-referenced capture.
394   __ LoadP(r3, register_location(start_reg), r0);
395   __ LoadP(r4, register_location(start_reg + 1), r0);
396   __ sub(r4, r4, r3, LeaveOE, SetRC);  // Length to check.
397 
398   // At this point, the capture registers are either both set or both cleared.
399   // If the capture length is zero, then the capture is either empty or cleared.
400   // Fall through in both cases.
401   __ beq(&fallthrough, cr0);
402 
403   // Check that there are enough characters left in the input.
404   if (read_backward) {
405     __ LoadP(r6, MemOperand(frame_pointer(), kStringStartMinusOne));
406     __ add(r6, r6, r4);
407     __ cmp(current_input_offset(), r6);
408     BranchOrBacktrack(le, on_no_match);
409   } else {
410     __ add(r0, r4, current_input_offset(), LeaveOE, SetRC);
411     BranchOrBacktrack(gt, on_no_match, cr0);
412   }
413 
414   // r3 - offset of start of capture
415   // r4 - length of capture
416   __ add(r3, r3, end_of_input_address());
417   __ add(r5, end_of_input_address(), current_input_offset());
418   if (read_backward) {
419     __ sub(r5, r5, r4);  // Offset by length when matching backwards.
420   }
421   __ add(r4, r4, r3);
422 
423   Label loop;
424   __ bind(&loop);
425   if (mode_ == LATIN1) {
426     __ lbz(r6, MemOperand(r3));
427     __ addi(r3, r3, Operand(char_size()));
428     __ lbz(r25, MemOperand(r5));
429     __ addi(r5, r5, Operand(char_size()));
430   } else {
431     DCHECK(mode_ == UC16);
432     __ lhz(r6, MemOperand(r3));
433     __ addi(r3, r3, Operand(char_size()));
434     __ lhz(r25, MemOperand(r5));
435     __ addi(r5, r5, Operand(char_size()));
436   }
437   __ cmp(r6, r25);
438   BranchOrBacktrack(ne, on_no_match);
439   __ cmp(r3, r4);
440   __ blt(&loop);
441 
442   // Move current character position to position after match.
443   __ sub(current_input_offset(), r5, end_of_input_address());
444   if (read_backward) {
445     __ LoadP(r3, register_location(start_reg));  // Index of start of capture
446     __ LoadP(r4, register_location(start_reg + 1));  // Index of end of capture
447     __ add(current_input_offset(), current_input_offset(), r3);
448     __ sub(current_input_offset(), current_input_offset(), r4);
449   }
450 
451   __ bind(&fallthrough);
452 }
453 
454 
CheckNotCharacter(unsigned c,Label * on_not_equal)455 void RegExpMacroAssemblerPPC::CheckNotCharacter(unsigned c,
456                                                 Label* on_not_equal) {
457   __ Cmpli(current_character(), Operand(c), r0);
458   BranchOrBacktrack(ne, on_not_equal);
459 }
460 
461 
CheckCharacterAfterAnd(uint32_t c,uint32_t mask,Label * on_equal)462 void RegExpMacroAssemblerPPC::CheckCharacterAfterAnd(uint32_t c, uint32_t mask,
463                                                      Label* on_equal) {
464   __ mov(r0, Operand(mask));
465   if (c == 0) {
466     __ and_(r3, current_character(), r0, SetRC);
467   } else {
468     __ and_(r3, current_character(), r0);
469     __ Cmpli(r3, Operand(c), r0, cr0);
470   }
471   BranchOrBacktrack(eq, on_equal, cr0);
472 }
473 
474 
CheckNotCharacterAfterAnd(unsigned c,unsigned mask,Label * on_not_equal)475 void RegExpMacroAssemblerPPC::CheckNotCharacterAfterAnd(unsigned c,
476                                                         unsigned mask,
477                                                         Label* on_not_equal) {
478   __ mov(r0, Operand(mask));
479   if (c == 0) {
480     __ and_(r3, current_character(), r0, SetRC);
481   } else {
482     __ and_(r3, current_character(), r0);
483     __ Cmpli(r3, Operand(c), r0, cr0);
484   }
485   BranchOrBacktrack(ne, on_not_equal, cr0);
486 }
487 
488 
CheckNotCharacterAfterMinusAnd(uc16 c,uc16 minus,uc16 mask,Label * on_not_equal)489 void RegExpMacroAssemblerPPC::CheckNotCharacterAfterMinusAnd(
490     uc16 c, uc16 minus, uc16 mask, Label* on_not_equal) {
491   DCHECK_GT(String::kMaxUtf16CodeUnit, minus);
492   __ subi(r3, current_character(), Operand(minus));
493   __ mov(r0, Operand(mask));
494   __ and_(r3, r3, r0);
495   __ Cmpli(r3, Operand(c), r0);
496   BranchOrBacktrack(ne, on_not_equal);
497 }
498 
499 
CheckCharacterInRange(uc16 from,uc16 to,Label * on_in_range)500 void RegExpMacroAssemblerPPC::CheckCharacterInRange(uc16 from, uc16 to,
501                                                     Label* on_in_range) {
502   __ mov(r0, Operand(from));
503   __ sub(r3, current_character(), r0);
504   __ Cmpli(r3, Operand(to - from), r0);
505   BranchOrBacktrack(le, on_in_range);  // Unsigned lower-or-same condition.
506 }
507 
508 
CheckCharacterNotInRange(uc16 from,uc16 to,Label * on_not_in_range)509 void RegExpMacroAssemblerPPC::CheckCharacterNotInRange(uc16 from, uc16 to,
510                                                        Label* on_not_in_range) {
511   __ mov(r0, Operand(from));
512   __ sub(r3, current_character(), r0);
513   __ Cmpli(r3, Operand(to - from), r0);
514   BranchOrBacktrack(gt, on_not_in_range);  // Unsigned higher condition.
515 }
516 
517 
CheckBitInTable(Handle<ByteArray> table,Label * on_bit_set)518 void RegExpMacroAssemblerPPC::CheckBitInTable(Handle<ByteArray> table,
519                                               Label* on_bit_set) {
520   __ mov(r3, Operand(table));
521   if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
522     __ andi(r4, current_character(), Operand(kTableSize - 1));
523     __ addi(r4, r4, Operand(ByteArray::kHeaderSize - kHeapObjectTag));
524   } else {
525     __ addi(r4, current_character(),
526             Operand(ByteArray::kHeaderSize - kHeapObjectTag));
527   }
528   __ lbzx(r3, MemOperand(r3, r4));
529   __ cmpi(r3, Operand::Zero());
530   BranchOrBacktrack(ne, on_bit_set);
531 }
532 
533 
CheckSpecialCharacterClass(uc16 type,Label * on_no_match)534 bool RegExpMacroAssemblerPPC::CheckSpecialCharacterClass(uc16 type,
535                                                          Label* on_no_match) {
536   // Range checks (c in min..max) are generally implemented by an unsigned
537   // (c - min) <= (max - min) check
538   switch (type) {
539     case 's':
540       // Match space-characters
541       if (mode_ == LATIN1) {
542         // One byte space characters are '\t'..'\r', ' ' and \u00a0.
543         Label success;
544         __ cmpi(current_character(), Operand(' '));
545         __ beq(&success);
546         // Check range 0x09..0x0D
547         __ subi(r3, current_character(), Operand('\t'));
548         __ cmpli(r3, Operand('\r' - '\t'));
549         __ ble(&success);
550         // \u00a0 (NBSP).
551         __ cmpi(r3, Operand(0x00A0 - '\t'));
552         BranchOrBacktrack(ne, on_no_match);
553         __ bind(&success);
554         return true;
555       }
556       return false;
557     case 'S':
558       // The emitted code for generic character classes is good enough.
559       return false;
560     case 'd':
561       // Match ASCII digits ('0'..'9')
562       __ subi(r3, current_character(), Operand('0'));
563       __ cmpli(r3, Operand('9' - '0'));
564       BranchOrBacktrack(gt, on_no_match);
565       return true;
566     case 'D':
567       // Match non ASCII-digits
568       __ subi(r3, current_character(), Operand('0'));
569       __ cmpli(r3, Operand('9' - '0'));
570       BranchOrBacktrack(le, on_no_match);
571       return true;
572     case '.': {
573       // Match non-newlines (not 0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029)
574       __ xori(r3, current_character(), Operand(0x01));
575       // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C
576       __ subi(r3, r3, Operand(0x0B));
577       __ cmpli(r3, Operand(0x0C - 0x0B));
578       BranchOrBacktrack(le, on_no_match);
579       if (mode_ == UC16) {
580         // Compare original value to 0x2028 and 0x2029, using the already
581         // computed (current_char ^ 0x01 - 0x0B). I.e., check for
582         // 0x201D (0x2028 - 0x0B) or 0x201E.
583         __ subi(r3, r3, Operand(0x2028 - 0x0B));
584         __ cmpli(r3, Operand(1));
585         BranchOrBacktrack(le, on_no_match);
586       }
587       return true;
588     }
589     case 'n': {
590       // Match newlines (0x0A('\n'), 0x0D('\r'), 0x2028 and 0x2029)
591       __ xori(r3, current_character(), Operand(0x01));
592       // See if current character is '\n'^1 or '\r'^1, i.e., 0x0B or 0x0C
593       __ subi(r3, r3, Operand(0x0B));
594       __ cmpli(r3, Operand(0x0C - 0x0B));
595       if (mode_ == LATIN1) {
596         BranchOrBacktrack(gt, on_no_match);
597       } else {
598         Label done;
599         __ ble(&done);
600         // Compare original value to 0x2028 and 0x2029, using the already
601         // computed (current_char ^ 0x01 - 0x0B). I.e., check for
602         // 0x201D (0x2028 - 0x0B) or 0x201E.
603         __ subi(r3, r3, Operand(0x2028 - 0x0B));
604         __ cmpli(r3, Operand(1));
605         BranchOrBacktrack(gt, on_no_match);
606         __ bind(&done);
607       }
608       return true;
609     }
610     case 'w': {
611       if (mode_ != LATIN1) {
612         // Table is 256 entries, so all Latin1 characters can be tested.
613         __ cmpi(current_character(), Operand('z'));
614         BranchOrBacktrack(gt, on_no_match);
615       }
616       ExternalReference map =
617           ExternalReference::re_word_character_map(isolate());
618       __ mov(r3, Operand(map));
619       __ lbzx(r3, MemOperand(r3, current_character()));
620       __ cmpli(r3, Operand::Zero());
621       BranchOrBacktrack(eq, on_no_match);
622       return true;
623     }
624     case 'W': {
625       Label done;
626       if (mode_ != LATIN1) {
627         // Table is 256 entries, so all Latin1 characters can be tested.
628         __ cmpli(current_character(), Operand('z'));
629         __ bgt(&done);
630       }
631       ExternalReference map =
632           ExternalReference::re_word_character_map(isolate());
633       __ mov(r3, Operand(map));
634       __ lbzx(r3, MemOperand(r3, current_character()));
635       __ cmpli(r3, Operand::Zero());
636       BranchOrBacktrack(ne, on_no_match);
637       if (mode_ != LATIN1) {
638         __ bind(&done);
639       }
640       return true;
641     }
642     case '*':
643       // Match any character.
644       return true;
645     // No custom implementation (yet): s(UC16), S(UC16).
646     default:
647       return false;
648   }
649 }
650 
651 
Fail()652 void RegExpMacroAssemblerPPC::Fail() {
653   __ li(r3, Operand(FAILURE));
654   __ b(&exit_label_);
655 }
656 
657 
GetCode(Handle<String> source)658 Handle<HeapObject> RegExpMacroAssemblerPPC::GetCode(Handle<String> source) {
659   Label return_r3;
660 
661   if (masm_->has_exception()) {
662     // If the code gets corrupted due to long regular expressions and lack of
663     // space on trampolines, an internal exception flag is set. If this case
664     // is detected, we will jump into exit sequence right away.
665     __ bind_to(&entry_label_, internal_failure_label_.pos());
666   } else {
667     // Finalize code - write the entry point code now we know how many
668     // registers we need.
669 
670     // Entry code:
671     __ bind(&entry_label_);
672 
673     // Tell the system that we have a stack frame.  Because the type
674     // is MANUAL, no is generated.
675     FrameScope scope(masm_, StackFrame::MANUAL);
676 
677     // Ensure register assigments are consistent with callee save mask
678     DCHECK(r25.bit() & kRegExpCalleeSaved);
679     DCHECK(code_pointer().bit() & kRegExpCalleeSaved);
680     DCHECK(current_input_offset().bit() & kRegExpCalleeSaved);
681     DCHECK(current_character().bit() & kRegExpCalleeSaved);
682     DCHECK(backtrack_stackpointer().bit() & kRegExpCalleeSaved);
683     DCHECK(end_of_input_address().bit() & kRegExpCalleeSaved);
684     DCHECK(frame_pointer().bit() & kRegExpCalleeSaved);
685 
686     // Actually emit code to start a new stack frame.
687     // Push arguments
688     // Save callee-save registers.
689     // Start new stack frame.
690     // Store link register in existing stack-cell.
691     // Order here should correspond to order of offset constants in header file.
692     RegList registers_to_retain = kRegExpCalleeSaved;
693     RegList argument_registers = r3.bit() | r4.bit() | r5.bit() | r6.bit() |
694                                  r7.bit() | r8.bit() | r9.bit() | r10.bit();
695     __ mflr(r0);
696     __ push(r0);
697     __ MultiPush(argument_registers | registers_to_retain);
698     // Set frame pointer in space for it if this is not a direct call
699     // from generated code.
700     __ addi(frame_pointer(), sp, Operand(8 * kSystemPointerSize));
701 
702     STATIC_ASSERT(kSuccessfulCaptures == kInputString - kSystemPointerSize);
703     __ li(r3, Operand::Zero());
704     __ push(r3);  // Make room for success counter and initialize it to 0.
705     STATIC_ASSERT(kStringStartMinusOne ==
706                   kSuccessfulCaptures - kSystemPointerSize);
707     __ push(r3);  // Make room for "string start - 1" constant.
708     STATIC_ASSERT(kBacktrackCount == kStringStartMinusOne - kSystemPointerSize);
709     __ push(r3);  // The backtrack counter.
710 
711     // Check if we have space on the stack for registers.
712     Label stack_limit_hit;
713     Label stack_ok;
714 
715     ExternalReference stack_limit =
716         ExternalReference::address_of_jslimit(isolate());
717     __ mov(r3, Operand(stack_limit));
718     __ LoadP(r3, MemOperand(r3));
719     __ sub(r3, sp, r3, LeaveOE, SetRC);
720     // Handle it if the stack pointer is already below the stack limit.
721     __ ble(&stack_limit_hit, cr0);
722     // Check if there is room for the variable number of registers above
723     // the stack limit.
724     __ Cmpli(r3, Operand(num_registers_ * kSystemPointerSize), r0);
725     __ bge(&stack_ok);
726     // Exit with OutOfMemory exception. There is not enough space on the stack
727     // for our working registers.
728     __ li(r3, Operand(EXCEPTION));
729     __ b(&return_r3);
730 
731     __ bind(&stack_limit_hit);
732     CallCheckStackGuardState(r3);
733     __ cmpi(r3, Operand::Zero());
734     // If returned value is non-zero, we exit with the returned value as result.
735     __ bne(&return_r3);
736 
737     __ bind(&stack_ok);
738 
739     // Allocate space on stack for registers.
740     __ Add(sp, sp, -num_registers_ * kSystemPointerSize, r0);
741     // Load string end.
742     __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
743     // Load input start.
744     __ LoadP(r3, MemOperand(frame_pointer(), kInputStart));
745     // Find negative length (offset of start relative to end).
746     __ sub(current_input_offset(), r3, end_of_input_address());
747     // Set r3 to address of char before start of the input string
748     // (effectively string position -1).
749     __ LoadP(r4, MemOperand(frame_pointer(), kStartIndex));
750     __ subi(r3, current_input_offset(), Operand(char_size()));
751     if (mode_ == UC16) {
752       __ ShiftLeftImm(r0, r4, Operand(1));
753       __ sub(r3, r3, r0);
754     } else {
755       __ sub(r3, r3, r4);
756     }
757     // Store this value in a local variable, for use when clearing
758     // position registers.
759     __ StoreP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
760 
761     // Initialize code pointer register
762     __ mov(code_pointer(), Operand(masm_->CodeObject()));
763 
764     Label load_char_start_regexp, start_regexp;
765     // Load newline if index is at start, previous character otherwise.
766     __ cmpi(r4, Operand::Zero());
767     __ bne(&load_char_start_regexp);
768     __ li(current_character(), Operand('\n'));
769     __ b(&start_regexp);
770 
771     // Global regexp restarts matching here.
772     __ bind(&load_char_start_regexp);
773     // Load previous char as initial value of current character register.
774     LoadCurrentCharacterUnchecked(-1, 1);
775     __ bind(&start_regexp);
776 
777     // Initialize on-stack registers.
778     if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
779       // Fill saved registers with initial value = start offset - 1
780       if (num_saved_registers_ > 8) {
781         // One slot beyond address of register 0.
782         __ addi(r4, frame_pointer(),
783                 Operand(kRegisterZero + kSystemPointerSize));
784         __ mov(r5, Operand(num_saved_registers_));
785         __ mtctr(r5);
786         Label init_loop;
787         __ bind(&init_loop);
788         __ StorePU(r3, MemOperand(r4, -kSystemPointerSize));
789         __ bdnz(&init_loop);
790       } else {
791         for (int i = 0; i < num_saved_registers_; i++) {
792           __ StoreP(r3, register_location(i), r0);
793         }
794       }
795     }
796 
797     // Initialize backtrack stack pointer.
798     __ LoadP(backtrack_stackpointer(),
799              MemOperand(frame_pointer(), kStackHighEnd));
800 
801     __ b(&start_label_);
802 
803     // Exit code:
804     if (success_label_.is_linked()) {
805       // Save captures when successful.
806       __ bind(&success_label_);
807       if (num_saved_registers_ > 0) {
808         // copy captures to output
809         __ LoadP(r4, MemOperand(frame_pointer(), kInputStart));
810         __ LoadP(r3, MemOperand(frame_pointer(), kRegisterOutput));
811         __ LoadP(r5, MemOperand(frame_pointer(), kStartIndex));
812         __ sub(r4, end_of_input_address(), r4);
813         // r4 is length of input in bytes.
814         if (mode_ == UC16) {
815           __ ShiftRightImm(r4, r4, Operand(1));
816         }
817         // r4 is length of input in characters.
818         __ add(r4, r4, r5);
819         // r4 is length of string in characters.
820 
821         DCHECK_EQ(0, num_saved_registers_ % 2);
822         // Always an even number of capture registers. This allows us to
823         // unroll the loop once to add an operation between a load of a register
824         // and the following use of that register.
825         for (int i = 0; i < num_saved_registers_; i += 2) {
826           __ LoadP(r5, register_location(i), r0);
827           __ LoadP(r6, register_location(i + 1), r0);
828           if (i == 0 && global_with_zero_length_check()) {
829             // Keep capture start in r25 for the zero-length check later.
830             __ mr(r25, r5);
831           }
832           if (mode_ == UC16) {
833             __ ShiftRightArithImm(r5, r5, 1);
834             __ add(r5, r4, r5);
835             __ ShiftRightArithImm(r6, r6, 1);
836             __ add(r6, r4, r6);
837           } else {
838             __ add(r5, r4, r5);
839             __ add(r6, r4, r6);
840           }
841           __ stw(r5, MemOperand(r3));
842           __ addi(r3, r3, Operand(kIntSize));
843           __ stw(r6, MemOperand(r3));
844           __ addi(r3, r3, Operand(kIntSize));
845         }
846       }
847 
848       if (global()) {
849         // Restart matching if the regular expression is flagged as global.
850         __ LoadP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
851         __ LoadP(r4, MemOperand(frame_pointer(), kNumOutputRegisters));
852         __ LoadP(r5, MemOperand(frame_pointer(), kRegisterOutput));
853         // Increment success counter.
854         __ addi(r3, r3, Operand(1));
855         __ StoreP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
856         // Capture results have been stored, so the number of remaining global
857         // output registers is reduced by the number of stored captures.
858         __ subi(r4, r4, Operand(num_saved_registers_));
859         // Check whether we have enough room for another set of capture results.
860         __ cmpi(r4, Operand(num_saved_registers_));
861         __ blt(&return_r3);
862 
863         __ StoreP(r4, MemOperand(frame_pointer(), kNumOutputRegisters));
864         // Advance the location for output.
865         __ addi(r5, r5, Operand(num_saved_registers_ * kIntSize));
866         __ StoreP(r5, MemOperand(frame_pointer(), kRegisterOutput));
867 
868         // Prepare r3 to initialize registers with its value in the next run.
869         __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
870 
871         if (global_with_zero_length_check()) {
872           // Special case for zero-length matches.
873           // r25: capture start index
874           __ cmp(current_input_offset(), r25);
875           // Not a zero-length match, restart.
876           __ bne(&load_char_start_regexp);
877           // Offset from the end is zero if we already reached the end.
878           __ cmpi(current_input_offset(), Operand::Zero());
879           __ beq(&exit_label_);
880           // Advance current position after a zero-length match.
881           Label advance;
882           __ bind(&advance);
883           __ addi(current_input_offset(), current_input_offset(),
884                   Operand((mode_ == UC16) ? 2 : 1));
885           if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
886         }
887 
888         __ b(&load_char_start_regexp);
889       } else {
890         __ li(r3, Operand(SUCCESS));
891       }
892     }
893 
894     // Exit and return r3
895     __ bind(&exit_label_);
896     if (global()) {
897       __ LoadP(r3, MemOperand(frame_pointer(), kSuccessfulCaptures));
898     }
899 
900     __ bind(&return_r3);
901     // Skip sp past regexp registers and local variables..
902     __ mr(sp, frame_pointer());
903     // Restore registers r25..r31 and return (restoring lr to pc).
904     __ MultiPop(registers_to_retain);
905     __ pop(r0);
906     __ mtlr(r0);
907     __ blr();
908 
909     // Backtrack code (branch target for conditional backtracks).
910     if (backtrack_label_.is_linked()) {
911       __ bind(&backtrack_label_);
912       Backtrack();
913     }
914 
915     Label exit_with_exception;
916 
917     // Preempt-code
918     if (check_preempt_label_.is_linked()) {
919       SafeCallTarget(&check_preempt_label_);
920 
921       CallCheckStackGuardState(r3);
922       __ cmpi(r3, Operand::Zero());
923       // If returning non-zero, we should end execution with the given
924       // result as return value.
925       __ bne(&return_r3);
926 
927       // String might have moved: Reload end of string from frame.
928       __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
929       SafeReturn();
930     }
931 
932     // Backtrack stack overflow code.
933     if (stack_overflow_label_.is_linked()) {
934       SafeCallTarget(&stack_overflow_label_);
935 
936       // Call GrowStack(backtrack_stackpointer(), &stack_base)
937       static const int num_arguments = 3;
938       __ PrepareCallCFunction(num_arguments, r3);
939       __ mr(r3, backtrack_stackpointer());
940       __ addi(r4, frame_pointer(), Operand(kStackHighEnd));
941       __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));
942       ExternalReference grow_stack =
943           ExternalReference::re_grow_stack(isolate());
944       __ CallCFunction(grow_stack, num_arguments);
945       // If return nullptr, we have failed to grow the stack, and
946       // must exit with a stack-overflow exception.
947       __ cmpi(r3, Operand::Zero());
948       __ beq(&exit_with_exception);
949       // Otherwise use return value as new stack pointer.
950       __ mr(backtrack_stackpointer(), r3);
951       // Restore saved registers and continue.
952       SafeReturn();
953     }
954 
955     if (exit_with_exception.is_linked()) {
956       // If any of the code above needed to exit with an exception.
957       __ bind(&exit_with_exception);
958       // Exit with Result EXCEPTION(-1) to signal thrown exception.
959       __ li(r3, Operand(EXCEPTION));
960       __ b(&return_r3);
961     }
962 
963     if (fallback_label_.is_linked()) {
964       __ bind(&fallback_label_);
965       __ li(r3, Operand(FALLBACK_TO_EXPERIMENTAL));
966       __ b(&return_r3);
967     }
968   }
969 
970   CodeDesc code_desc;
971   masm_->GetCode(isolate(), &code_desc);
972   Handle<Code> code =
973       Factory::CodeBuilder(isolate(), code_desc, CodeKind::REGEXP)
974           .set_self_reference(masm_->CodeObject())
975           .Build();
976   PROFILE(masm_->isolate(),
977           RegExpCodeCreateEvent(Handle<AbstractCode>::cast(code), source));
978   return Handle<HeapObject>::cast(code);
979 }
980 
981 
GoTo(Label * to)982 void RegExpMacroAssemblerPPC::GoTo(Label* to) { BranchOrBacktrack(al, to); }
983 
984 
IfRegisterGE(int reg,int comparand,Label * if_ge)985 void RegExpMacroAssemblerPPC::IfRegisterGE(int reg, int comparand,
986                                            Label* if_ge) {
987   __ LoadP(r3, register_location(reg), r0);
988   __ Cmpi(r3, Operand(comparand), r0);
989   BranchOrBacktrack(ge, if_ge);
990 }
991 
992 
IfRegisterLT(int reg,int comparand,Label * if_lt)993 void RegExpMacroAssemblerPPC::IfRegisterLT(int reg, int comparand,
994                                            Label* if_lt) {
995   __ LoadP(r3, register_location(reg), r0);
996   __ Cmpi(r3, Operand(comparand), r0);
997   BranchOrBacktrack(lt, if_lt);
998 }
999 
1000 
IfRegisterEqPos(int reg,Label * if_eq)1001 void RegExpMacroAssemblerPPC::IfRegisterEqPos(int reg, Label* if_eq) {
1002   __ LoadP(r3, register_location(reg), r0);
1003   __ cmp(r3, current_input_offset());
1004   BranchOrBacktrack(eq, if_eq);
1005 }
1006 
1007 
1008 RegExpMacroAssembler::IrregexpImplementation
Implementation()1009 RegExpMacroAssemblerPPC::Implementation() {
1010   return kPPCImplementation;
1011 }
1012 
1013 
PopCurrentPosition()1014 void RegExpMacroAssemblerPPC::PopCurrentPosition() {
1015   Pop(current_input_offset());
1016 }
1017 
1018 
PopRegister(int register_index)1019 void RegExpMacroAssemblerPPC::PopRegister(int register_index) {
1020   Pop(r3);
1021   __ StoreP(r3, register_location(register_index), r0);
1022 }
1023 
1024 
PushBacktrack(Label * label)1025 void RegExpMacroAssemblerPPC::PushBacktrack(Label* label) {
1026   __ mov_label_offset(r3, label);
1027   Push(r3);
1028   CheckStackLimit();
1029 }
1030 
1031 
PushCurrentPosition()1032 void RegExpMacroAssemblerPPC::PushCurrentPosition() {
1033   Push(current_input_offset());
1034 }
1035 
1036 
PushRegister(int register_index,StackCheckFlag check_stack_limit)1037 void RegExpMacroAssemblerPPC::PushRegister(int register_index,
1038                                            StackCheckFlag check_stack_limit) {
1039   __ LoadP(r3, register_location(register_index), r0);
1040   Push(r3);
1041   if (check_stack_limit) CheckStackLimit();
1042 }
1043 
1044 
ReadCurrentPositionFromRegister(int reg)1045 void RegExpMacroAssemblerPPC::ReadCurrentPositionFromRegister(int reg) {
1046   __ LoadP(current_input_offset(), register_location(reg), r0);
1047 }
1048 
1049 
ReadStackPointerFromRegister(int reg)1050 void RegExpMacroAssemblerPPC::ReadStackPointerFromRegister(int reg) {
1051   __ LoadP(backtrack_stackpointer(), register_location(reg), r0);
1052   __ LoadP(r3, MemOperand(frame_pointer(), kStackHighEnd));
1053   __ add(backtrack_stackpointer(), backtrack_stackpointer(), r3);
1054 }
1055 
1056 
SetCurrentPositionFromEnd(int by)1057 void RegExpMacroAssemblerPPC::SetCurrentPositionFromEnd(int by) {
1058   Label after_position;
1059   __ Cmpi(current_input_offset(), Operand(-by * char_size()), r0);
1060   __ bge(&after_position);
1061   __ mov(current_input_offset(), Operand(-by * char_size()));
1062   // On RegExp code entry (where this operation is used), the character before
1063   // the current position is expected to be already loaded.
1064   // We have advanced the position, so it's safe to read backwards.
1065   LoadCurrentCharacterUnchecked(-1, 1);
1066   __ bind(&after_position);
1067 }
1068 
1069 
SetRegister(int register_index,int to)1070 void RegExpMacroAssemblerPPC::SetRegister(int register_index, int to) {
1071   DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
1072   __ mov(r3, Operand(to));
1073   __ StoreP(r3, register_location(register_index), r0);
1074 }
1075 
1076 
Succeed()1077 bool RegExpMacroAssemblerPPC::Succeed() {
1078   __ b(&success_label_);
1079   return global();
1080 }
1081 
1082 
WriteCurrentPositionToRegister(int reg,int cp_offset)1083 void RegExpMacroAssemblerPPC::WriteCurrentPositionToRegister(int reg,
1084                                                              int cp_offset) {
1085   if (cp_offset == 0) {
1086     __ StoreP(current_input_offset(), register_location(reg), r0);
1087   } else {
1088     __ mov(r0, Operand(cp_offset * char_size()));
1089     __ add(r3, current_input_offset(), r0);
1090     __ StoreP(r3, register_location(reg), r0);
1091   }
1092 }
1093 
1094 
ClearRegisters(int reg_from,int reg_to)1095 void RegExpMacroAssemblerPPC::ClearRegisters(int reg_from, int reg_to) {
1096   DCHECK(reg_from <= reg_to);
1097   __ LoadP(r3, MemOperand(frame_pointer(), kStringStartMinusOne));
1098   for (int reg = reg_from; reg <= reg_to; reg++) {
1099     __ StoreP(r3, register_location(reg), r0);
1100   }
1101 }
1102 
1103 
WriteStackPointerToRegister(int reg)1104 void RegExpMacroAssemblerPPC::WriteStackPointerToRegister(int reg) {
1105   __ LoadP(r4, MemOperand(frame_pointer(), kStackHighEnd));
1106   __ sub(r3, backtrack_stackpointer(), r4);
1107   __ StoreP(r3, register_location(reg), r0);
1108 }
1109 
1110 
1111 // Private methods:
1112 
CallCheckStackGuardState(Register scratch)1113 void RegExpMacroAssemblerPPC::CallCheckStackGuardState(Register scratch) {
1114   DCHECK(!isolate()->IsGeneratingEmbeddedBuiltins());
1115   DCHECK(!masm_->options().isolate_independent_code);
1116 
1117   int frame_alignment = masm_->ActivationFrameAlignment();
1118   int stack_space = kNumRequiredStackFrameSlots;
1119   int stack_passed_arguments = 1;  // space for return address pointer
1120 
1121   // The following stack manipulation logic is similar to
1122   // PrepareCallCFunction.  However, we need an extra slot on the
1123   // stack to house the return address parameter.
1124   if (frame_alignment > kSystemPointerSize) {
1125     // Make stack end at alignment and make room for stack arguments
1126     // -- preserving original value of sp.
1127     __ mr(scratch, sp);
1128     __ addi(sp, sp,
1129             Operand(-(stack_passed_arguments + 1) * kSystemPointerSize));
1130     DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
1131     __ ClearRightImm(sp, sp,
1132                      Operand(base::bits::WhichPowerOfTwo(frame_alignment)));
1133     __ StoreP(scratch,
1134               MemOperand(sp, stack_passed_arguments * kSystemPointerSize));
1135   } else {
1136     // Make room for stack arguments
1137     stack_space += stack_passed_arguments;
1138   }
1139 
1140   // Allocate frame with required slots to make ABI work.
1141   __ li(r0, Operand::Zero());
1142   __ StorePU(r0, MemOperand(sp, -stack_space * kSystemPointerSize));
1143 
1144   // RegExp code frame pointer.
1145   __ mr(r5, frame_pointer());
1146   // Code of self.
1147   __ mov(r4, Operand(masm_->CodeObject()));
1148   // r3 will point to the return address, placed by DirectCEntry.
1149   __ addi(r3, sp, Operand(kStackFrameExtraParamSlot * kSystemPointerSize));
1150 
1151   ExternalReference stack_guard_check =
1152       ExternalReference::re_check_stack_guard_state(isolate());
1153   __ mov(ip, Operand(stack_guard_check));
1154 
1155   EmbeddedData d = EmbeddedData::FromBlob();
1156   Address entry = d.InstructionStartOfBuiltin(Builtins::kDirectCEntry);
1157   __ mov(r0, Operand(entry, RelocInfo::OFF_HEAP_TARGET));
1158   __ Call(r0);
1159 
1160   // Restore the stack pointer
1161   stack_space = kNumRequiredStackFrameSlots + stack_passed_arguments;
1162   if (frame_alignment > kSystemPointerSize) {
1163     __ LoadP(sp, MemOperand(sp, stack_space * kSystemPointerSize));
1164   } else {
1165     __ addi(sp, sp, Operand(stack_space * kSystemPointerSize));
1166   }
1167 
1168   __ mov(code_pointer(), Operand(masm_->CodeObject()));
1169 }
1170 
1171 
1172 // Helper function for reading a value out of a stack frame.
1173 template <typename T>
frame_entry(Address re_frame,int frame_offset)1174 static T& frame_entry(Address re_frame, int frame_offset) {
1175   return reinterpret_cast<T&>(Memory<int32_t>(re_frame + frame_offset));
1176 }
1177 
1178 
1179 template <typename T>
frame_entry_address(Address re_frame,int frame_offset)1180 static T* frame_entry_address(Address re_frame, int frame_offset) {
1181   return reinterpret_cast<T*>(re_frame + frame_offset);
1182 }
1183 
CheckStackGuardState(Address * return_address,Address raw_code,Address re_frame)1184 int RegExpMacroAssemblerPPC::CheckStackGuardState(Address* return_address,
1185                                                   Address raw_code,
1186                                                   Address re_frame) {
1187   Code re_code = Code::cast(Object(raw_code));
1188   return NativeRegExpMacroAssembler::CheckStackGuardState(
1189       frame_entry<Isolate*>(re_frame, kIsolate),
1190       frame_entry<intptr_t>(re_frame, kStartIndex),
1191       static_cast<RegExp::CallOrigin>(
1192           frame_entry<intptr_t>(re_frame, kDirectCall)),
1193       return_address, re_code,
1194       frame_entry_address<Address>(re_frame, kInputString),
1195       frame_entry_address<const byte*>(re_frame, kInputStart),
1196       frame_entry_address<const byte*>(re_frame, kInputEnd));
1197 }
1198 
1199 
register_location(int register_index)1200 MemOperand RegExpMacroAssemblerPPC::register_location(int register_index) {
1201   DCHECK(register_index < (1 << 30));
1202   if (num_registers_ <= register_index) {
1203     num_registers_ = register_index + 1;
1204   }
1205   return MemOperand(frame_pointer(),
1206                     kRegisterZero - register_index * kSystemPointerSize);
1207 }
1208 
1209 
CheckPosition(int cp_offset,Label * on_outside_input)1210 void RegExpMacroAssemblerPPC::CheckPosition(int cp_offset,
1211                                             Label* on_outside_input) {
1212   if (cp_offset >= 0) {
1213     __ Cmpi(current_input_offset(), Operand(-cp_offset * char_size()), r0);
1214     BranchOrBacktrack(ge, on_outside_input);
1215   } else {
1216     __ LoadP(r4, MemOperand(frame_pointer(), kStringStartMinusOne));
1217     __ addi(r3, current_input_offset(), Operand(cp_offset * char_size()));
1218     __ cmp(r3, r4);
1219     BranchOrBacktrack(le, on_outside_input);
1220   }
1221 }
1222 
1223 
BranchOrBacktrack(Condition condition,Label * to,CRegister cr)1224 void RegExpMacroAssemblerPPC::BranchOrBacktrack(Condition condition, Label* to,
1225                                                 CRegister cr) {
1226   if (condition == al) {  // Unconditional.
1227     if (to == nullptr) {
1228       Backtrack();
1229       return;
1230     }
1231     __ b(to);
1232     return;
1233   }
1234   if (to == nullptr) {
1235     __ b(condition, &backtrack_label_, cr);
1236     return;
1237   }
1238   __ b(condition, to, cr);
1239 }
1240 
1241 
SafeCall(Label * to,Condition cond,CRegister cr)1242 void RegExpMacroAssemblerPPC::SafeCall(Label* to, Condition cond,
1243                                        CRegister cr) {
1244   __ b(cond, to, cr, SetLK);
1245 }
1246 
1247 
SafeReturn()1248 void RegExpMacroAssemblerPPC::SafeReturn() {
1249   __ pop(r0);
1250   __ mov(ip, Operand(masm_->CodeObject()));
1251   __ add(r0, r0, ip);
1252   __ mtlr(r0);
1253   __ blr();
1254 }
1255 
1256 
SafeCallTarget(Label * name)1257 void RegExpMacroAssemblerPPC::SafeCallTarget(Label* name) {
1258   __ bind(name);
1259   __ mflr(r0);
1260   __ mov(ip, Operand(masm_->CodeObject()));
1261   __ sub(r0, r0, ip);
1262   __ push(r0);
1263 }
1264 
1265 
Push(Register source)1266 void RegExpMacroAssemblerPPC::Push(Register source) {
1267   DCHECK(source != backtrack_stackpointer());
1268   __ StorePU(source, MemOperand(backtrack_stackpointer(), -kSystemPointerSize));
1269 }
1270 
1271 
Pop(Register target)1272 void RegExpMacroAssemblerPPC::Pop(Register target) {
1273   DCHECK(target != backtrack_stackpointer());
1274   __ LoadP(target, MemOperand(backtrack_stackpointer()));
1275   __ addi(backtrack_stackpointer(), backtrack_stackpointer(),
1276           Operand(kSystemPointerSize));
1277 }
1278 
1279 
CheckPreemption()1280 void RegExpMacroAssemblerPPC::CheckPreemption() {
1281   // Check for preemption.
1282   ExternalReference stack_limit =
1283       ExternalReference::address_of_jslimit(isolate());
1284   __ mov(r3, Operand(stack_limit));
1285   __ LoadP(r3, MemOperand(r3));
1286   __ cmpl(sp, r3);
1287   SafeCall(&check_preempt_label_, le);
1288 }
1289 
1290 
CheckStackLimit()1291 void RegExpMacroAssemblerPPC::CheckStackLimit() {
1292   ExternalReference stack_limit =
1293       ExternalReference::address_of_regexp_stack_limit_address(isolate());
1294   __ mov(r3, Operand(stack_limit));
1295   __ LoadP(r3, MemOperand(r3));
1296   __ cmpl(backtrack_stackpointer(), r3);
1297   SafeCall(&stack_overflow_label_, le);
1298 }
1299 
1300 
LoadCurrentCharacterUnchecked(int cp_offset,int characters)1301 void RegExpMacroAssemblerPPC::LoadCurrentCharacterUnchecked(int cp_offset,
1302                                                             int characters) {
1303   Register offset = current_input_offset();
1304   if (cp_offset != 0) {
1305     // r25 is not being used to store the capture start index at this point.
1306     if (is_int16(cp_offset * char_size())) {
1307       __ addi(r25, current_input_offset(), Operand(cp_offset * char_size()));
1308     } else {
1309       __ mov(r25, Operand(cp_offset * char_size()));
1310       __ add(r25, r25, current_input_offset());
1311     }
1312     offset = r25;
1313   }
1314   // The lwz, stw, lhz, sth instructions can do unaligned accesses, if the CPU
1315   // and the operating system running on the target allow it.
1316   // We assume we don't want to do unaligned loads on PPC, so this function
1317   // must only be used to load a single character at a time.
1318 
1319   __ add(current_character(), end_of_input_address(), offset);
1320 #if V8_TARGET_LITTLE_ENDIAN
1321   if (mode_ == LATIN1) {
1322     if (characters == 4) {
1323       __ lwz(current_character(), MemOperand(current_character()));
1324     } else if (characters == 2) {
1325       __ lhz(current_character(), MemOperand(current_character()));
1326     } else {
1327       DCHECK_EQ(1, characters);
1328       __ lbz(current_character(), MemOperand(current_character()));
1329     }
1330   } else {
1331     DCHECK(mode_ == UC16);
1332     if (characters == 2) {
1333       __ lwz(current_character(), MemOperand(current_character()));
1334     } else {
1335       DCHECK_EQ(1, characters);
1336       __ lhz(current_character(), MemOperand(current_character()));
1337     }
1338   }
1339 #else
1340   if (mode_ == LATIN1) {
1341     if (characters == 4) {
1342       __ lwbrx(current_character(), MemOperand(r0, current_character()));
1343     } else if (characters == 2) {
1344       __ lhbrx(current_character(), MemOperand(r0, current_character()));
1345     } else {
1346       DCHECK_EQ(1, characters);
1347       __ lbz(current_character(), MemOperand(current_character()));
1348     }
1349   } else {
1350     DCHECK(mode_ == UC16);
1351     if (characters == 2) {
1352       __ lwz(current_character(), MemOperand(current_character()));
1353       __ rlwinm(current_character(), current_character(), 16, 0, 31);
1354     } else {
1355       DCHECK_EQ(1, characters);
1356       __ lhz(current_character(), MemOperand(current_character()));
1357     }
1358   }
1359 #endif
1360 }
1361 
1362 #undef __
1363 
1364 }  // namespace internal
1365 }  // namespace v8
1366 
1367 #endif  //  V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64
1368