• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #if V8_TARGET_ARCH_ARM64
6 
7 #include "src/codegen/arm64/instructions-arm64.h"
8 #include "src/codegen/arm64/assembler-arm64-inl.h"
9 
10 namespace v8 {
11 namespace internal {
12 
IsLoad() const13 bool Instruction::IsLoad() const {
14   if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
15     return false;
16   }
17 
18   if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
19     return Mask(LoadStorePairLBit) != 0;
20   } else {
21     LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
22     switch (op) {
23       case LDRB_w:
24       case LDRH_w:
25       case LDR_w:
26       case LDR_x:
27       case LDRSB_w:
28       case LDRSB_x:
29       case LDRSH_w:
30       case LDRSH_x:
31       case LDRSW_x:
32       case LDR_b:
33       case LDR_h:
34       case LDR_s:
35       case LDR_d:
36       case LDR_q:
37         return true;
38       default:
39         return false;
40     }
41   }
42 }
43 
IsStore() const44 bool Instruction::IsStore() const {
45   if (Mask(LoadStoreAnyFMask) != LoadStoreAnyFixed) {
46     return false;
47   }
48 
49   if (Mask(LoadStorePairAnyFMask) == LoadStorePairAnyFixed) {
50     return Mask(LoadStorePairLBit) == 0;
51   } else {
52     LoadStoreOp op = static_cast<LoadStoreOp>(Mask(LoadStoreMask));
53     switch (op) {
54       case STRB_w:
55       case STRH_w:
56       case STR_w:
57       case STR_x:
58       case STR_b:
59       case STR_h:
60       case STR_s:
61       case STR_d:
62       case STR_q:
63         return true;
64       default:
65         return false;
66     }
67   }
68 }
69 
RotateRight(uint64_t value,unsigned int rotate,unsigned int width)70 static uint64_t RotateRight(uint64_t value, unsigned int rotate,
71                             unsigned int width) {
72   DCHECK_LE(width, 64);
73   rotate &= 63;
74   if (rotate == 0) return value;
75   return ((value & ((1ULL << rotate) - 1ULL)) << (width - rotate)) |
76          (value >> rotate);
77 }
78 
RepeatBitsAcrossReg(unsigned reg_size,uint64_t value,unsigned width)79 static uint64_t RepeatBitsAcrossReg(unsigned reg_size, uint64_t value,
80                                     unsigned width) {
81   DCHECK((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
82          (width == 32));
83   DCHECK((reg_size == kWRegSizeInBits) || (reg_size == kXRegSizeInBits));
84   uint64_t result = value & ((1ULL << width) - 1ULL);
85   for (unsigned i = width; i < reg_size; i *= 2) {
86     result |= (result << i);
87   }
88   return result;
89 }
90 
91 // Logical immediates can't encode zero, so a return value of zero is used to
92 // indicate a failure case. Specifically, where the constraints on imm_s are not
93 // met.
ImmLogical()94 uint64_t Instruction::ImmLogical() {
95   unsigned reg_size = SixtyFourBits() ? kXRegSizeInBits : kWRegSizeInBits;
96   int32_t n = BitN();
97   int32_t imm_s = ImmSetBits();
98   int32_t imm_r = ImmRotate();
99 
100   // An integer is constructed from the n, imm_s and imm_r bits according to
101   // the following table:
102   //
103   //  N   imms    immr    size        S             R
104   //  1  ssssss  rrrrrr    64    UInt(ssssss)  UInt(rrrrrr)
105   //  0  0sssss  xrrrrr    32    UInt(sssss)   UInt(rrrrr)
106   //  0  10ssss  xxrrrr    16    UInt(ssss)    UInt(rrrr)
107   //  0  110sss  xxxrrr     8    UInt(sss)     UInt(rrr)
108   //  0  1110ss  xxxxrr     4    UInt(ss)      UInt(rr)
109   //  0  11110s  xxxxxr     2    UInt(s)       UInt(r)
110   // (s bits must not be all set)
111   //
112   // A pattern is constructed of size bits, where the least significant S+1
113   // bits are set. The pattern is rotated right by R, and repeated across a
114   // 32 or 64-bit value, depending on destination register width.
115   //
116 
117   if (n == 1) {
118     if (imm_s == 0x3F) {
119       return 0;
120     }
121     uint64_t bits = (1ULL << (imm_s + 1)) - 1;
122     return RotateRight(bits, imm_r, 64);
123   } else {
124     if ((imm_s >> 1) == 0x1F) {
125       return 0;
126     }
127     for (int width = 0x20; width >= 0x2; width >>= 1) {
128       if ((imm_s & width) == 0) {
129         int mask = width - 1;
130         if ((imm_s & mask) == mask) {
131           return 0;
132         }
133         uint64_t bits = (1ULL << ((imm_s & mask) + 1)) - 1;
134         return RepeatBitsAcrossReg(
135             reg_size, RotateRight(bits, imm_r & mask, width), width);
136       }
137     }
138   }
139   UNREACHABLE();
140 }
141 
ImmNEONabcdefgh() const142 uint32_t Instruction::ImmNEONabcdefgh() const {
143   return ImmNEONabc() << 5 | ImmNEONdefgh();
144 }
145 
ImmFP32()146 float Instruction::ImmFP32() { return Imm8ToFP32(ImmFP()); }
147 
ImmFP64()148 double Instruction::ImmFP64() { return Imm8ToFP64(ImmFP()); }
149 
ImmNEONFP32() const150 float Instruction::ImmNEONFP32() const { return Imm8ToFP32(ImmNEONabcdefgh()); }
151 
ImmNEONFP64() const152 double Instruction::ImmNEONFP64() const {
153   return Imm8ToFP64(ImmNEONabcdefgh());
154 }
155 
CalcLSDataSize(LoadStoreOp op)156 unsigned CalcLSDataSize(LoadStoreOp op) {
157   DCHECK_EQ(static_cast<unsigned>(LSSize_offset + LSSize_width),
158             kInstrSize * 8);
159   unsigned size = static_cast<Instr>(op) >> LSSize_offset;
160   if ((op & LSVector_mask) != 0) {
161     // Vector register memory operations encode the access size in the "size"
162     // and "opc" fields.
163     if ((size == 0) && ((op & LSOpc_mask) >> LSOpc_offset) >= 2) {
164       size = kQRegSizeLog2;
165     }
166   }
167   return size;
168 }
169 
CalcLSPairDataSize(LoadStorePairOp op)170 unsigned CalcLSPairDataSize(LoadStorePairOp op) {
171   static_assert(kXRegSize == kDRegSize, "X and D registers must be same size.");
172   static_assert(kWRegSize == kSRegSize, "W and S registers must be same size.");
173   switch (op) {
174     case STP_q:
175     case LDP_q:
176       return kQRegSizeLog2;
177     case STP_x:
178     case LDP_x:
179     case STP_d:
180     case LDP_d:
181       return kXRegSizeLog2;
182     default:
183       return kWRegSizeLog2;
184   }
185 }
186 
ImmPCOffset()187 int64_t Instruction::ImmPCOffset() {
188   int64_t offset;
189   if (IsPCRelAddressing()) {
190     // PC-relative addressing. Only ADR is supported.
191     offset = ImmPCRel();
192   } else if (BranchType() != UnknownBranchType) {
193     // All PC-relative branches.
194     // Relative branch offsets are instruction-size-aligned.
195     offset = ImmBranch() * kInstrSize;
196   } else if (IsUnresolvedInternalReference()) {
197     // Internal references are always word-aligned.
198     offset = ImmUnresolvedInternalReference() * kInstrSize;
199   } else {
200     // Load literal (offset from PC).
201     DCHECK(IsLdrLiteral());
202     // The offset is always shifted by 2 bits, even for loads to 64-bits
203     // registers.
204     offset = ImmLLiteral() * kInstrSize;
205   }
206   return offset;
207 }
208 
ImmPCOffsetTarget()209 Instruction* Instruction::ImmPCOffsetTarget() {
210   return InstructionAtOffset(ImmPCOffset());
211 }
212 
IsValidImmPCOffset(ImmBranchType branch_type,ptrdiff_t offset)213 bool Instruction::IsValidImmPCOffset(ImmBranchType branch_type,
214                                      ptrdiff_t offset) {
215   DCHECK_EQ(offset % kInstrSize, 0);
216   return is_intn(offset / kInstrSize, ImmBranchRangeBitwidth(branch_type));
217 }
218 
IsTargetInImmPCOffsetRange(Instruction * target)219 bool Instruction::IsTargetInImmPCOffsetRange(Instruction* target) {
220   return IsValidImmPCOffset(BranchType(), DistanceTo(target));
221 }
222 
SetImmPCOffsetTarget(const AssemblerOptions & options,Instruction * target)223 void Instruction::SetImmPCOffsetTarget(const AssemblerOptions& options,
224                                        Instruction* target) {
225   if (IsPCRelAddressing()) {
226     SetPCRelImmTarget(options, target);
227   } else if (BranchType() != UnknownBranchType) {
228     SetBranchImmTarget(target);
229   } else if (IsUnresolvedInternalReference()) {
230     SetUnresolvedInternalReferenceImmTarget(options, target);
231   } else {
232     // Load literal (offset from PC).
233     SetImmLLiteral(target);
234   }
235 }
236 
SetPCRelImmTarget(const AssemblerOptions & options,Instruction * target)237 void Instruction::SetPCRelImmTarget(const AssemblerOptions& options,
238                                     Instruction* target) {
239   // ADRP is not supported, so 'this' must point to an ADR instruction.
240   DCHECK(IsAdr());
241 
242   ptrdiff_t target_offset = DistanceTo(target);
243   Instr imm;
244   if (Instruction::IsValidPCRelOffset(target_offset)) {
245     imm = Assembler::ImmPCRelAddress(static_cast<int>(target_offset));
246     SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
247   } else {
248     PatchingAssembler patcher(options, reinterpret_cast<byte*>(this),
249                               PatchingAssembler::kAdrFarPatchableNInstrs);
250     patcher.PatchAdrFar(target_offset);
251   }
252 }
253 
SetBranchImmTarget(Instruction * target)254 void Instruction::SetBranchImmTarget(Instruction* target) {
255   DCHECK(IsAligned(DistanceTo(target), kInstrSize));
256   DCHECK(IsValidImmPCOffset(BranchType(), DistanceTo(target)));
257   int offset = static_cast<int>(DistanceTo(target) >> kInstrSizeLog2);
258   Instr branch_imm = 0;
259   uint32_t imm_mask = 0;
260   switch (BranchType()) {
261     case CondBranchType: {
262       branch_imm = Assembler::ImmCondBranch(offset);
263       imm_mask = ImmCondBranch_mask;
264       break;
265     }
266     case UncondBranchType: {
267       branch_imm = Assembler::ImmUncondBranch(offset);
268       imm_mask = ImmUncondBranch_mask;
269       break;
270     }
271     case CompareBranchType: {
272       branch_imm = Assembler::ImmCmpBranch(offset);
273       imm_mask = ImmCmpBranch_mask;
274       break;
275     }
276     case TestBranchType: {
277       branch_imm = Assembler::ImmTestBranch(offset);
278       imm_mask = ImmTestBranch_mask;
279       break;
280     }
281     default:
282       UNREACHABLE();
283   }
284   SetInstructionBits(Mask(~imm_mask) | branch_imm);
285 }
286 
SetUnresolvedInternalReferenceImmTarget(const AssemblerOptions & options,Instruction * target)287 void Instruction::SetUnresolvedInternalReferenceImmTarget(
288     const AssemblerOptions& options, Instruction* target) {
289   DCHECK(IsUnresolvedInternalReference());
290   DCHECK(IsAligned(DistanceTo(target), kInstrSize));
291   DCHECK(is_int32(DistanceTo(target) >> kInstrSizeLog2));
292   int32_t target_offset =
293       static_cast<int32_t>(DistanceTo(target) >> kInstrSizeLog2);
294   uint32_t high16 = unsigned_bitextract_32(31, 16, target_offset);
295   uint32_t low16 = unsigned_bitextract_32(15, 0, target_offset);
296 
297   PatchingAssembler patcher(options, reinterpret_cast<byte*>(this), 2);
298   patcher.brk(high16);
299   patcher.brk(low16);
300 }
301 
SetImmLLiteral(Instruction * source)302 void Instruction::SetImmLLiteral(Instruction* source) {
303   DCHECK(IsLdrLiteral());
304   DCHECK(IsAligned(DistanceTo(source), kInstrSize));
305   DCHECK(Assembler::IsImmLLiteral(DistanceTo(source)));
306   Instr imm = Assembler::ImmLLiteral(
307       static_cast<int>(DistanceTo(source) >> kLoadLiteralScaleLog2));
308   Instr mask = ImmLLiteral_mask;
309 
310   SetInstructionBits(Mask(~mask) | imm);
311 }
312 
NEONFormatDecoder(const Instruction * instr)313 NEONFormatDecoder::NEONFormatDecoder(const Instruction* instr) {
314   instrbits_ = instr->InstructionBits();
315   SetFormatMaps(IntegerFormatMap());
316 }
317 
NEONFormatDecoder(const Instruction * instr,const NEONFormatMap * format)318 NEONFormatDecoder::NEONFormatDecoder(const Instruction* instr,
319                                      const NEONFormatMap* format) {
320   instrbits_ = instr->InstructionBits();
321   SetFormatMaps(format);
322 }
323 
NEONFormatDecoder(const Instruction * instr,const NEONFormatMap * format0,const NEONFormatMap * format1)324 NEONFormatDecoder::NEONFormatDecoder(const Instruction* instr,
325                                      const NEONFormatMap* format0,
326                                      const NEONFormatMap* format1) {
327   instrbits_ = instr->InstructionBits();
328   SetFormatMaps(format0, format1);
329 }
330 
NEONFormatDecoder(const Instruction * instr,const NEONFormatMap * format0,const NEONFormatMap * format1,const NEONFormatMap * format2)331 NEONFormatDecoder::NEONFormatDecoder(const Instruction* instr,
332                                      const NEONFormatMap* format0,
333                                      const NEONFormatMap* format1,
334                                      const NEONFormatMap* format2) {
335   instrbits_ = instr->InstructionBits();
336   SetFormatMaps(format0, format1, format2);
337 }
338 
SetFormatMaps(const NEONFormatMap * format0,const NEONFormatMap * format1,const NEONFormatMap * format2)339 void NEONFormatDecoder::SetFormatMaps(const NEONFormatMap* format0,
340                                       const NEONFormatMap* format1,
341                                       const NEONFormatMap* format2) {
342   DCHECK_NOT_NULL(format0);
343   formats_[0] = format0;
344   formats_[1] = (format1 == nullptr) ? formats_[0] : format1;
345   formats_[2] = (format2 == nullptr) ? formats_[1] : format2;
346   // Support four parameters form (e.i. ld4r)
347   // to avoid using positional arguments in DisassemblingDecoder.
348   // See: https://crbug.com/v8/10365
349   formats_[3] = formats_[2];
350 }
351 
SetFormatMap(unsigned index,const NEONFormatMap * format)352 void NEONFormatDecoder::SetFormatMap(unsigned index,
353                                      const NEONFormatMap* format) {
354   DCHECK_LT(index, arraysize(formats_));
355   DCHECK_NOT_NULL(format);
356   formats_[index] = format;
357 }
358 
SubstitutePlaceholders(const char * string)359 const char* NEONFormatDecoder::SubstitutePlaceholders(const char* string) {
360   return Substitute(string, kPlaceholder, kPlaceholder, kPlaceholder,
361                     kPlaceholder);
362 }
363 
Substitute(const char * string,SubstitutionMode mode0,SubstitutionMode mode1,SubstitutionMode mode2,SubstitutionMode mode3)364 const char* NEONFormatDecoder::Substitute(const char* string,
365                                           SubstitutionMode mode0,
366                                           SubstitutionMode mode1,
367                                           SubstitutionMode mode2,
368                                           SubstitutionMode mode3) {
369   snprintf(form_buffer_, sizeof(form_buffer_), string, GetSubstitute(0, mode0),
370            GetSubstitute(1, mode1), GetSubstitute(2, mode2),
371            GetSubstitute(3, mode3));
372   return form_buffer_;
373 }
374 
Mnemonic(const char * mnemonic)375 const char* NEONFormatDecoder::Mnemonic(const char* mnemonic) {
376   if ((instrbits_ & NEON_Q) != 0) {
377     snprintf(mne_buffer_, sizeof(mne_buffer_), "%s2", mnemonic);
378     return mne_buffer_;
379   }
380   return mnemonic;
381 }
382 
GetVectorFormat(int format_index)383 VectorFormat NEONFormatDecoder::GetVectorFormat(int format_index) {
384   return GetVectorFormat(formats_[format_index]);
385 }
386 
GetVectorFormat(const NEONFormatMap * format_map)387 VectorFormat NEONFormatDecoder::GetVectorFormat(
388     const NEONFormatMap* format_map) {
389   static const VectorFormat vform[] = {
390       kFormatUndefined, kFormat8B, kFormat16B, kFormat4H, kFormat8H,
391       kFormat2S,        kFormat4S, kFormat1D,  kFormat2D, kFormatB,
392       kFormatH,         kFormatS,  kFormatD};
393   DCHECK_LT(GetNEONFormat(format_map), arraysize(vform));
394   return vform[GetNEONFormat(format_map)];
395 }
396 
GetSubstitute(int index,SubstitutionMode mode)397 const char* NEONFormatDecoder::GetSubstitute(int index, SubstitutionMode mode) {
398   if (mode == kFormat) {
399     return NEONFormatAsString(GetNEONFormat(formats_[index]));
400   }
401   DCHECK_EQ(mode, kPlaceholder);
402   return NEONFormatAsPlaceholder(GetNEONFormat(formats_[index]));
403 }
404 
GetNEONFormat(const NEONFormatMap * format_map)405 NEONFormat NEONFormatDecoder::GetNEONFormat(const NEONFormatMap* format_map) {
406   return format_map->map[PickBits(format_map->bits)];
407 }
408 
NEONFormatAsString(NEONFormat format)409 const char* NEONFormatDecoder::NEONFormatAsString(NEONFormat format) {
410   static const char* formats[] = {"undefined", "8b", "16b", "4h", "8h",
411                                   "2s",        "4s", "1d",  "2d", "b",
412                                   "h",         "s",  "d"};
413   DCHECK_LT(format, arraysize(formats));
414   return formats[format];
415 }
416 
NEONFormatAsPlaceholder(NEONFormat format)417 const char* NEONFormatDecoder::NEONFormatAsPlaceholder(NEONFormat format) {
418   DCHECK((format == NF_B) || (format == NF_H) || (format == NF_S) ||
419          (format == NF_D) || (format == NF_UNDEF));
420   static const char* formats[] = {
421       "undefined", "undefined", "undefined", "undefined", "undefined",
422       "undefined", "undefined", "undefined", "undefined", "'B",
423       "'H",        "'S",        "'D"};
424   return formats[format];
425 }
426 
PickBits(const uint8_t bits[])427 uint8_t NEONFormatDecoder::PickBits(const uint8_t bits[]) {
428   uint8_t result = 0;
429   for (unsigned b = 0; b < kNEONFormatMaxBits; b++) {
430     if (bits[b] == 0) break;
431     result <<= 1;
432     result |= ((instrbits_ & (1 << bits[b])) == 0) ? 0 : 1;
433   }
434   return result;
435 }
436 }  // namespace internal
437 }  // namespace v8
438 
439 #endif  // V8_TARGET_ARCH_ARM64
440