• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  *
9  */
10 
11 #ifndef __UBOOT__
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/ptrace.h>
15 #include <linux/seq_file.h>
16 #include <linux/string.h>
17 #include <linux/timer.h>
18 #include <linux/major.h>
19 #include <linux/fs.h>
20 #include <linux/err.h>
21 #include <linux/ioctl.h>
22 #include <linux/init.h>
23 #include <linux/proc_fs.h>
24 #include <linux/idr.h>
25 #include <linux/backing-dev.h>
26 #include <linux/gfp.h>
27 #include <linux/slab.h>
28 #else
29 #include <linux/err.h>
30 #include <ubi_uboot.h>
31 #endif
32 
33 #include <linux/log2.h>
34 #include <linux/mtd/mtd.h>
35 #include <linux/mtd/partitions.h>
36 
37 #include "mtdcore.h"
38 
39 #ifndef __UBOOT__
40 /*
41  * backing device capabilities for non-mappable devices (such as NAND flash)
42  * - permits private mappings, copies are taken of the data
43  */
44 static struct backing_dev_info mtd_bdi_unmappable = {
45 	.capabilities	= BDI_CAP_MAP_COPY,
46 };
47 
48 /*
49  * backing device capabilities for R/O mappable devices (such as ROM)
50  * - permits private mappings, copies are taken of the data
51  * - permits non-writable shared mappings
52  */
53 static struct backing_dev_info mtd_bdi_ro_mappable = {
54 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
55 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
56 };
57 
58 /*
59  * backing device capabilities for writable mappable devices (such as RAM)
60  * - permits private mappings, copies are taken of the data
61  * - permits non-writable shared mappings
62  */
63 static struct backing_dev_info mtd_bdi_rw_mappable = {
64 	.capabilities	= (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
65 			   BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
66 			   BDI_CAP_WRITE_MAP),
67 };
68 
69 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
70 static int mtd_cls_resume(struct device *dev);
71 
72 static struct class mtd_class = {
73 	.name = "mtd",
74 	.owner = THIS_MODULE,
75 	.suspend = mtd_cls_suspend,
76 	.resume = mtd_cls_resume,
77 };
78 #else
79 #define MAX_IDR_ID	64
80 
81 struct idr_layer {
82 	int	used;
83 	void	*ptr;
84 };
85 
86 struct idr {
87 	struct idr_layer id[MAX_IDR_ID];
88 	bool updated;
89 };
90 
91 #define DEFINE_IDR(name)	struct idr name;
92 
idr_remove(struct idr * idp,int id)93 void idr_remove(struct idr *idp, int id)
94 {
95 	if (idp->id[id].used) {
96 		idp->id[id].used = 0;
97 		idp->updated = true;
98 	}
99 
100 	return;
101 }
idr_find(struct idr * idp,int id)102 void *idr_find(struct idr *idp, int id)
103 {
104 	if (idp->id[id].used)
105 		return idp->id[id].ptr;
106 
107 	return NULL;
108 }
109 
idr_get_next(struct idr * idp,int * next)110 void *idr_get_next(struct idr *idp, int *next)
111 {
112 	void *ret;
113 	int id = *next;
114 
115 	ret = idr_find(idp, id);
116 	if (ret) {
117 		id ++;
118 		if (!idp->id[id].used)
119 			id = 0;
120 		*next = id;
121 	} else {
122 		*next = 0;
123 	}
124 
125 	return ret;
126 }
127 
idr_alloc(struct idr * idp,void * ptr,int start,int end,gfp_t gfp_mask)128 int idr_alloc(struct idr *idp, void *ptr, int start, int end, gfp_t gfp_mask)
129 {
130 	struct idr_layer *idl;
131 	int i = 0;
132 
133 	while (i < MAX_IDR_ID) {
134 		idl = &idp->id[i];
135 		if (idl->used == 0) {
136 			idl->used = 1;
137 			idl->ptr = ptr;
138 			idp->updated = true;
139 			return i;
140 		}
141 		i++;
142 	}
143 	return -ENOSPC;
144 }
145 #endif
146 
147 static DEFINE_IDR(mtd_idr);
148 
149 /* These are exported solely for the purpose of mtd_blkdevs.c. You
150    should not use them for _anything_ else */
151 DEFINE_MUTEX(mtd_table_mutex);
152 EXPORT_SYMBOL_GPL(mtd_table_mutex);
153 
__mtd_next_device(int i)154 struct mtd_info *__mtd_next_device(int i)
155 {
156 	return idr_get_next(&mtd_idr, &i);
157 }
158 EXPORT_SYMBOL_GPL(__mtd_next_device);
159 
mtd_dev_list_updated(void)160 bool mtd_dev_list_updated(void)
161 {
162 	if (mtd_idr.updated) {
163 		mtd_idr.updated = false;
164 		return true;
165 	}
166 
167 	return false;
168 }
169 
170 #ifndef __UBOOT__
171 static LIST_HEAD(mtd_notifiers);
172 
173 
174 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
175 
176 /* REVISIT once MTD uses the driver model better, whoever allocates
177  * the mtd_info will probably want to use the release() hook...
178  */
mtd_release(struct device * dev)179 static void mtd_release(struct device *dev)
180 {
181 	struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
182 	dev_t index = MTD_DEVT(mtd->index);
183 
184 	/* remove /dev/mtdXro node if needed */
185 	if (index)
186 		device_destroy(&mtd_class, index + 1);
187 }
188 
mtd_cls_suspend(struct device * dev,pm_message_t state)189 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
190 {
191 	struct mtd_info *mtd = dev_get_drvdata(dev);
192 
193 	return mtd ? mtd_suspend(mtd) : 0;
194 }
195 
mtd_cls_resume(struct device * dev)196 static int mtd_cls_resume(struct device *dev)
197 {
198 	struct mtd_info *mtd = dev_get_drvdata(dev);
199 
200 	if (mtd)
201 		mtd_resume(mtd);
202 	return 0;
203 }
204 
mtd_type_show(struct device * dev,struct device_attribute * attr,char * buf)205 static ssize_t mtd_type_show(struct device *dev,
206 		struct device_attribute *attr, char *buf)
207 {
208 	struct mtd_info *mtd = dev_get_drvdata(dev);
209 	char *type;
210 
211 	switch (mtd->type) {
212 	case MTD_ABSENT:
213 		type = "absent";
214 		break;
215 	case MTD_RAM:
216 		type = "ram";
217 		break;
218 	case MTD_ROM:
219 		type = "rom";
220 		break;
221 	case MTD_NORFLASH:
222 		type = "nor";
223 		break;
224 	case MTD_NANDFLASH:
225 		type = "nand";
226 		break;
227 	case MTD_DATAFLASH:
228 		type = "dataflash";
229 		break;
230 	case MTD_UBIVOLUME:
231 		type = "ubi";
232 		break;
233 	case MTD_MLCNANDFLASH:
234 		type = "mlc-nand";
235 		break;
236 	default:
237 		type = "unknown";
238 	}
239 
240 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
241 }
242 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
243 
mtd_flags_show(struct device * dev,struct device_attribute * attr,char * buf)244 static ssize_t mtd_flags_show(struct device *dev,
245 		struct device_attribute *attr, char *buf)
246 {
247 	struct mtd_info *mtd = dev_get_drvdata(dev);
248 
249 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
250 
251 }
252 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
253 
mtd_size_show(struct device * dev,struct device_attribute * attr,char * buf)254 static ssize_t mtd_size_show(struct device *dev,
255 		struct device_attribute *attr, char *buf)
256 {
257 	struct mtd_info *mtd = dev_get_drvdata(dev);
258 
259 	return snprintf(buf, PAGE_SIZE, "%llu\n",
260 		(unsigned long long)mtd->size);
261 
262 }
263 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
264 
mtd_erasesize_show(struct device * dev,struct device_attribute * attr,char * buf)265 static ssize_t mtd_erasesize_show(struct device *dev,
266 		struct device_attribute *attr, char *buf)
267 {
268 	struct mtd_info *mtd = dev_get_drvdata(dev);
269 
270 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
271 
272 }
273 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
274 
mtd_writesize_show(struct device * dev,struct device_attribute * attr,char * buf)275 static ssize_t mtd_writesize_show(struct device *dev,
276 		struct device_attribute *attr, char *buf)
277 {
278 	struct mtd_info *mtd = dev_get_drvdata(dev);
279 
280 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
281 
282 }
283 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
284 
mtd_subpagesize_show(struct device * dev,struct device_attribute * attr,char * buf)285 static ssize_t mtd_subpagesize_show(struct device *dev,
286 		struct device_attribute *attr, char *buf)
287 {
288 	struct mtd_info *mtd = dev_get_drvdata(dev);
289 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
290 
291 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
292 
293 }
294 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
295 
mtd_oobsize_show(struct device * dev,struct device_attribute * attr,char * buf)296 static ssize_t mtd_oobsize_show(struct device *dev,
297 		struct device_attribute *attr, char *buf)
298 {
299 	struct mtd_info *mtd = dev_get_drvdata(dev);
300 
301 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
302 
303 }
304 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
305 
mtd_numeraseregions_show(struct device * dev,struct device_attribute * attr,char * buf)306 static ssize_t mtd_numeraseregions_show(struct device *dev,
307 		struct device_attribute *attr, char *buf)
308 {
309 	struct mtd_info *mtd = dev_get_drvdata(dev);
310 
311 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
312 
313 }
314 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
315 	NULL);
316 
mtd_name_show(struct device * dev,struct device_attribute * attr,char * buf)317 static ssize_t mtd_name_show(struct device *dev,
318 		struct device_attribute *attr, char *buf)
319 {
320 	struct mtd_info *mtd = dev_get_drvdata(dev);
321 
322 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
323 
324 }
325 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
326 
mtd_ecc_strength_show(struct device * dev,struct device_attribute * attr,char * buf)327 static ssize_t mtd_ecc_strength_show(struct device *dev,
328 				     struct device_attribute *attr, char *buf)
329 {
330 	struct mtd_info *mtd = dev_get_drvdata(dev);
331 
332 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
333 }
334 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
335 
mtd_bitflip_threshold_show(struct device * dev,struct device_attribute * attr,char * buf)336 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
337 					  struct device_attribute *attr,
338 					  char *buf)
339 {
340 	struct mtd_info *mtd = dev_get_drvdata(dev);
341 
342 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
343 }
344 
mtd_bitflip_threshold_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)345 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
346 					   struct device_attribute *attr,
347 					   const char *buf, size_t count)
348 {
349 	struct mtd_info *mtd = dev_get_drvdata(dev);
350 	unsigned int bitflip_threshold;
351 	int retval;
352 
353 	retval = kstrtouint(buf, 0, &bitflip_threshold);
354 	if (retval)
355 		return retval;
356 
357 	mtd->bitflip_threshold = bitflip_threshold;
358 	return count;
359 }
360 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
361 		   mtd_bitflip_threshold_show,
362 		   mtd_bitflip_threshold_store);
363 
mtd_ecc_step_size_show(struct device * dev,struct device_attribute * attr,char * buf)364 static ssize_t mtd_ecc_step_size_show(struct device *dev,
365 		struct device_attribute *attr, char *buf)
366 {
367 	struct mtd_info *mtd = dev_get_drvdata(dev);
368 
369 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
370 
371 }
372 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
373 
374 static struct attribute *mtd_attrs[] = {
375 	&dev_attr_type.attr,
376 	&dev_attr_flags.attr,
377 	&dev_attr_size.attr,
378 	&dev_attr_erasesize.attr,
379 	&dev_attr_writesize.attr,
380 	&dev_attr_subpagesize.attr,
381 	&dev_attr_oobsize.attr,
382 	&dev_attr_numeraseregions.attr,
383 	&dev_attr_name.attr,
384 	&dev_attr_ecc_strength.attr,
385 	&dev_attr_ecc_step_size.attr,
386 	&dev_attr_bitflip_threshold.attr,
387 	NULL,
388 };
389 ATTRIBUTE_GROUPS(mtd);
390 
391 static struct device_type mtd_devtype = {
392 	.name		= "mtd",
393 	.groups		= mtd_groups,
394 	.release	= mtd_release,
395 };
396 #endif
397 
398 /**
399  *	add_mtd_device - register an MTD device
400  *	@mtd: pointer to new MTD device info structure
401  *
402  *	Add a device to the list of MTD devices present in the system, and
403  *	notify each currently active MTD 'user' of its arrival. Returns
404  *	zero on success or 1 on failure, which currently will only happen
405  *	if there is insufficient memory or a sysfs error.
406  */
407 
add_mtd_device(struct mtd_info * mtd)408 int add_mtd_device(struct mtd_info *mtd)
409 {
410 #ifndef __UBOOT__
411 	struct mtd_notifier *not;
412 #endif
413 	int i, error;
414 
415 #ifndef __UBOOT__
416 	if (!mtd->backing_dev_info) {
417 		switch (mtd->type) {
418 		case MTD_RAM:
419 			mtd->backing_dev_info = &mtd_bdi_rw_mappable;
420 			break;
421 		case MTD_ROM:
422 			mtd->backing_dev_info = &mtd_bdi_ro_mappable;
423 			break;
424 		default:
425 			mtd->backing_dev_info = &mtd_bdi_unmappable;
426 			break;
427 		}
428 	}
429 #endif
430 
431 	BUG_ON(mtd->writesize == 0);
432 	mutex_lock(&mtd_table_mutex);
433 
434 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
435 	if (i < 0)
436 		goto fail_locked;
437 
438 	mtd->index = i;
439 	mtd->usecount = 0;
440 
441 	INIT_LIST_HEAD(&mtd->partitions);
442 
443 	/* default value if not set by driver */
444 	if (mtd->bitflip_threshold == 0)
445 		mtd->bitflip_threshold = mtd->ecc_strength;
446 
447 	if (is_power_of_2(mtd->erasesize))
448 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
449 	else
450 		mtd->erasesize_shift = 0;
451 
452 	if (is_power_of_2(mtd->writesize))
453 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
454 	else
455 		mtd->writesize_shift = 0;
456 
457 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
458 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
459 
460 	/* Some chips always power up locked. Unlock them now */
461 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
462 		error = mtd_unlock(mtd, 0, mtd->size);
463 		if (error && error != -EOPNOTSUPP)
464 			printk(KERN_WARNING
465 			       "%s: unlock failed, writes may not work\n",
466 			       mtd->name);
467 	}
468 
469 #ifndef __UBOOT__
470 	/* Caller should have set dev.parent to match the
471 	 * physical device.
472 	 */
473 	mtd->dev.type = &mtd_devtype;
474 	mtd->dev.class = &mtd_class;
475 	mtd->dev.devt = MTD_DEVT(i);
476 	dev_set_name(&mtd->dev, "mtd%d", i);
477 	dev_set_drvdata(&mtd->dev, mtd);
478 	if (device_register(&mtd->dev) != 0)
479 		goto fail_added;
480 
481 	if (MTD_DEVT(i))
482 		device_create(&mtd_class, mtd->dev.parent,
483 			      MTD_DEVT(i) + 1,
484 			      NULL, "mtd%dro", i);
485 
486 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
487 	/* No need to get a refcount on the module containing
488 	   the notifier, since we hold the mtd_table_mutex */
489 	list_for_each_entry(not, &mtd_notifiers, list)
490 		not->add(mtd);
491 #else
492 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
493 #endif
494 
495 	mutex_unlock(&mtd_table_mutex);
496 	/* We _know_ we aren't being removed, because
497 	   our caller is still holding us here. So none
498 	   of this try_ nonsense, and no bitching about it
499 	   either. :) */
500 	__module_get(THIS_MODULE);
501 	return 0;
502 
503 #ifndef __UBOOT__
504 fail_added:
505 	idr_remove(&mtd_idr, i);
506 #endif
507 fail_locked:
508 	mutex_unlock(&mtd_table_mutex);
509 	return 1;
510 }
511 
512 /**
513  *	del_mtd_device - unregister an MTD device
514  *	@mtd: pointer to MTD device info structure
515  *
516  *	Remove a device from the list of MTD devices present in the system,
517  *	and notify each currently active MTD 'user' of its departure.
518  *	Returns zero on success or 1 on failure, which currently will happen
519  *	if the requested device does not appear to be present in the list.
520  */
521 
del_mtd_device(struct mtd_info * mtd)522 int del_mtd_device(struct mtd_info *mtd)
523 {
524 	int ret;
525 #ifndef __UBOOT__
526 	struct mtd_notifier *not;
527 #endif
528 
529 	ret = del_mtd_partitions(mtd);
530 	if (ret) {
531 		debug("Failed to delete MTD partitions attached to %s (err %d)\n",
532 		      mtd->name, ret);
533 		return ret;
534 	}
535 
536 	mutex_lock(&mtd_table_mutex);
537 
538 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
539 		ret = -ENODEV;
540 		goto out_error;
541 	}
542 
543 #ifndef __UBOOT__
544 	/* No need to get a refcount on the module containing
545 		the notifier, since we hold the mtd_table_mutex */
546 	list_for_each_entry(not, &mtd_notifiers, list)
547 		not->remove(mtd);
548 #endif
549 
550 	if (mtd->usecount) {
551 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
552 		       mtd->index, mtd->name, mtd->usecount);
553 		ret = -EBUSY;
554 	} else {
555 #ifndef __UBOOT__
556 		device_unregister(&mtd->dev);
557 #endif
558 
559 		idr_remove(&mtd_idr, mtd->index);
560 
561 		module_put(THIS_MODULE);
562 		ret = 0;
563 	}
564 
565 out_error:
566 	mutex_unlock(&mtd_table_mutex);
567 	return ret;
568 }
569 
570 #ifndef __UBOOT__
571 /**
572  * mtd_device_parse_register - parse partitions and register an MTD device.
573  *
574  * @mtd: the MTD device to register
575  * @types: the list of MTD partition probes to try, see
576  *         'parse_mtd_partitions()' for more information
577  * @parser_data: MTD partition parser-specific data
578  * @parts: fallback partition information to register, if parsing fails;
579  *         only valid if %nr_parts > %0
580  * @nr_parts: the number of partitions in parts, if zero then the full
581  *            MTD device is registered if no partition info is found
582  *
583  * This function aggregates MTD partitions parsing (done by
584  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
585  * basically follows the most common pattern found in many MTD drivers:
586  *
587  * * It first tries to probe partitions on MTD device @mtd using parsers
588  *   specified in @types (if @types is %NULL, then the default list of parsers
589  *   is used, see 'parse_mtd_partitions()' for more information). If none are
590  *   found this functions tries to fallback to information specified in
591  *   @parts/@nr_parts.
592  * * If any partitioning info was found, this function registers the found
593  *   partitions.
594  * * If no partitions were found this function just registers the MTD device
595  *   @mtd and exits.
596  *
597  * Returns zero in case of success and a negative error code in case of failure.
598  */
mtd_device_parse_register(struct mtd_info * mtd,const char * const * types,struct mtd_part_parser_data * parser_data,const struct mtd_partition * parts,int nr_parts)599 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
600 			      struct mtd_part_parser_data *parser_data,
601 			      const struct mtd_partition *parts,
602 			      int nr_parts)
603 {
604 	int err;
605 	struct mtd_partition *real_parts;
606 
607 	err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
608 	if (err <= 0 && nr_parts && parts) {
609 		real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
610 				     GFP_KERNEL);
611 		if (!real_parts)
612 			err = -ENOMEM;
613 		else
614 			err = nr_parts;
615 	}
616 
617 	if (err > 0) {
618 		err = add_mtd_partitions(mtd, real_parts, err);
619 		kfree(real_parts);
620 	} else if (err == 0) {
621 		err = add_mtd_device(mtd);
622 		if (err == 1)
623 			err = -ENODEV;
624 	}
625 
626 	return err;
627 }
628 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
629 
630 /**
631  * mtd_device_unregister - unregister an existing MTD device.
632  *
633  * @master: the MTD device to unregister.  This will unregister both the master
634  *          and any partitions if registered.
635  */
mtd_device_unregister(struct mtd_info * master)636 int mtd_device_unregister(struct mtd_info *master)
637 {
638 	int err;
639 
640 	err = del_mtd_partitions(master);
641 	if (err)
642 		return err;
643 
644 	if (!device_is_registered(&master->dev))
645 		return 0;
646 
647 	return del_mtd_device(master);
648 }
649 EXPORT_SYMBOL_GPL(mtd_device_unregister);
650 
651 /**
652  *	register_mtd_user - register a 'user' of MTD devices.
653  *	@new: pointer to notifier info structure
654  *
655  *	Registers a pair of callbacks function to be called upon addition
656  *	or removal of MTD devices. Causes the 'add' callback to be immediately
657  *	invoked for each MTD device currently present in the system.
658  */
register_mtd_user(struct mtd_notifier * new)659 void register_mtd_user (struct mtd_notifier *new)
660 {
661 	struct mtd_info *mtd;
662 
663 	mutex_lock(&mtd_table_mutex);
664 
665 	list_add(&new->list, &mtd_notifiers);
666 
667 	__module_get(THIS_MODULE);
668 
669 	mtd_for_each_device(mtd)
670 		new->add(mtd);
671 
672 	mutex_unlock(&mtd_table_mutex);
673 }
674 EXPORT_SYMBOL_GPL(register_mtd_user);
675 
676 /**
677  *	unregister_mtd_user - unregister a 'user' of MTD devices.
678  *	@old: pointer to notifier info structure
679  *
680  *	Removes a callback function pair from the list of 'users' to be
681  *	notified upon addition or removal of MTD devices. Causes the
682  *	'remove' callback to be immediately invoked for each MTD device
683  *	currently present in the system.
684  */
unregister_mtd_user(struct mtd_notifier * old)685 int unregister_mtd_user (struct mtd_notifier *old)
686 {
687 	struct mtd_info *mtd;
688 
689 	mutex_lock(&mtd_table_mutex);
690 
691 	module_put(THIS_MODULE);
692 
693 	mtd_for_each_device(mtd)
694 		old->remove(mtd);
695 
696 	list_del(&old->list);
697 	mutex_unlock(&mtd_table_mutex);
698 	return 0;
699 }
700 EXPORT_SYMBOL_GPL(unregister_mtd_user);
701 #endif
702 
703 /**
704  *	get_mtd_device - obtain a validated handle for an MTD device
705  *	@mtd: last known address of the required MTD device
706  *	@num: internal device number of the required MTD device
707  *
708  *	Given a number and NULL address, return the num'th entry in the device
709  *	table, if any.	Given an address and num == -1, search the device table
710  *	for a device with that address and return if it's still present. Given
711  *	both, return the num'th driver only if its address matches. Return
712  *	error code if not.
713  */
get_mtd_device(struct mtd_info * mtd,int num)714 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
715 {
716 	struct mtd_info *ret = NULL, *other;
717 	int err = -ENODEV;
718 
719 	mutex_lock(&mtd_table_mutex);
720 
721 	if (num == -1) {
722 		mtd_for_each_device(other) {
723 			if (other == mtd) {
724 				ret = mtd;
725 				break;
726 			}
727 		}
728 	} else if (num >= 0) {
729 		ret = idr_find(&mtd_idr, num);
730 		if (mtd && mtd != ret)
731 			ret = NULL;
732 	}
733 
734 	if (!ret) {
735 		ret = ERR_PTR(err);
736 		goto out;
737 	}
738 
739 	err = __get_mtd_device(ret);
740 	if (err)
741 		ret = ERR_PTR(err);
742 out:
743 	mutex_unlock(&mtd_table_mutex);
744 	return ret;
745 }
746 EXPORT_SYMBOL_GPL(get_mtd_device);
747 
748 
__get_mtd_device(struct mtd_info * mtd)749 int __get_mtd_device(struct mtd_info *mtd)
750 {
751 	int err;
752 
753 	if (!try_module_get(mtd->owner))
754 		return -ENODEV;
755 
756 	if (mtd->_get_device) {
757 		err = mtd->_get_device(mtd);
758 
759 		if (err) {
760 			module_put(mtd->owner);
761 			return err;
762 		}
763 	}
764 	mtd->usecount++;
765 	return 0;
766 }
767 EXPORT_SYMBOL_GPL(__get_mtd_device);
768 
769 /**
770  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
771  *	device name
772  *	@name: MTD device name to open
773  *
774  * 	This function returns MTD device description structure in case of
775  * 	success and an error code in case of failure.
776  */
get_mtd_device_nm(const char * name)777 struct mtd_info *get_mtd_device_nm(const char *name)
778 {
779 	int err = -ENODEV;
780 	struct mtd_info *mtd = NULL, *other;
781 
782 	mutex_lock(&mtd_table_mutex);
783 
784 	mtd_for_each_device(other) {
785 		if (!strcmp(name, other->name)) {
786 			mtd = other;
787 			break;
788 		}
789 	}
790 
791 	if (!mtd)
792 		goto out_unlock;
793 
794 	err = __get_mtd_device(mtd);
795 	if (err)
796 		goto out_unlock;
797 
798 	mutex_unlock(&mtd_table_mutex);
799 	return mtd;
800 
801 out_unlock:
802 	mutex_unlock(&mtd_table_mutex);
803 	return ERR_PTR(err);
804 }
805 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
806 
807 #if defined(CONFIG_CMD_MTDPARTS_SPREAD)
808 /**
809  * mtd_get_len_incl_bad
810  *
811  * Check if length including bad blocks fits into device.
812  *
813  * @param mtd an MTD device
814  * @param offset offset in flash
815  * @param length image length
816  * @return image length including bad blocks in *len_incl_bad and whether or not
817  *         the length returned was truncated in *truncated
818  */
mtd_get_len_incl_bad(struct mtd_info * mtd,uint64_t offset,const uint64_t length,uint64_t * len_incl_bad,int * truncated)819 void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset,
820 			  const uint64_t length, uint64_t *len_incl_bad,
821 			  int *truncated)
822 {
823 	*truncated = 0;
824 	*len_incl_bad = 0;
825 
826 	if (!mtd->_block_isbad) {
827 		*len_incl_bad = length;
828 		return;
829 	}
830 
831 	uint64_t len_excl_bad = 0;
832 	uint64_t block_len;
833 
834 	while (len_excl_bad < length) {
835 		if (offset >= mtd->size) {
836 			*truncated = 1;
837 			return;
838 		}
839 
840 		block_len = mtd->erasesize - (offset & (mtd->erasesize - 1));
841 
842 		if (!mtd->_block_isbad(mtd, offset & ~(mtd->erasesize - 1)))
843 			len_excl_bad += block_len;
844 
845 		*len_incl_bad += block_len;
846 		offset       += block_len;
847 	}
848 }
849 #endif /* defined(CONFIG_CMD_MTDPARTS_SPREAD) */
850 
put_mtd_device(struct mtd_info * mtd)851 void put_mtd_device(struct mtd_info *mtd)
852 {
853 	mutex_lock(&mtd_table_mutex);
854 	__put_mtd_device(mtd);
855 	mutex_unlock(&mtd_table_mutex);
856 
857 }
858 EXPORT_SYMBOL_GPL(put_mtd_device);
859 
__put_mtd_device(struct mtd_info * mtd)860 void __put_mtd_device(struct mtd_info *mtd)
861 {
862 	--mtd->usecount;
863 	BUG_ON(mtd->usecount < 0);
864 
865 	if (mtd->_put_device)
866 		mtd->_put_device(mtd);
867 
868 	module_put(mtd->owner);
869 }
870 EXPORT_SYMBOL_GPL(__put_mtd_device);
871 
872 /*
873  * Erase is an asynchronous operation.  Device drivers are supposed
874  * to call instr->callback() whenever the operation completes, even
875  * if it completes with a failure.
876  * Callers are supposed to pass a callback function and wait for it
877  * to be called before writing to the block.
878  */
mtd_erase(struct mtd_info * mtd,struct erase_info * instr)879 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
880 {
881 	if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
882 		return -EINVAL;
883 	if (!(mtd->flags & MTD_WRITEABLE))
884 		return -EROFS;
885 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
886 	if (!instr->len) {
887 		instr->state = MTD_ERASE_DONE;
888 		mtd_erase_callback(instr);
889 		return 0;
890 	}
891 	return mtd->_erase(mtd, instr);
892 }
893 EXPORT_SYMBOL_GPL(mtd_erase);
894 
895 #ifndef __UBOOT__
896 /*
897  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
898  */
mtd_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)899 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
900 	      void **virt, resource_size_t *phys)
901 {
902 	*retlen = 0;
903 	*virt = NULL;
904 	if (phys)
905 		*phys = 0;
906 	if (!mtd->_point)
907 		return -EOPNOTSUPP;
908 	if (from < 0 || from > mtd->size || len > mtd->size - from)
909 		return -EINVAL;
910 	if (!len)
911 		return 0;
912 	return mtd->_point(mtd, from, len, retlen, virt, phys);
913 }
914 EXPORT_SYMBOL_GPL(mtd_point);
915 
916 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
mtd_unpoint(struct mtd_info * mtd,loff_t from,size_t len)917 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
918 {
919 	if (!mtd->_point)
920 		return -EOPNOTSUPP;
921 	if (from < 0 || from > mtd->size || len > mtd->size - from)
922 		return -EINVAL;
923 	if (!len)
924 		return 0;
925 	return mtd->_unpoint(mtd, from, len);
926 }
927 EXPORT_SYMBOL_GPL(mtd_unpoint);
928 #endif
929 
930 /*
931  * Allow NOMMU mmap() to directly map the device (if not NULL)
932  * - return the address to which the offset maps
933  * - return -ENOSYS to indicate refusal to do the mapping
934  */
mtd_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)935 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
936 				    unsigned long offset, unsigned long flags)
937 {
938 	if (!mtd->_get_unmapped_area)
939 		return -EOPNOTSUPP;
940 	if (offset > mtd->size || len > mtd->size - offset)
941 		return -EINVAL;
942 	return mtd->_get_unmapped_area(mtd, len, offset, flags);
943 }
944 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
945 
mtd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)946 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
947 	     u_char *buf)
948 {
949 	int ret_code;
950 	*retlen = 0;
951 	if (from < 0 || from > mtd->size || len > mtd->size - from)
952 		return -EINVAL;
953 	if (!len)
954 		return 0;
955 
956 	/*
957 	 * In the absence of an error, drivers return a non-negative integer
958 	 * representing the maximum number of bitflips that were corrected on
959 	 * any one ecc region (if applicable; zero otherwise).
960 	 */
961 	if (mtd->_read) {
962 		ret_code = mtd->_read(mtd, from, len, retlen, buf);
963 	} else if (mtd->_read_oob) {
964 		struct mtd_oob_ops ops = {
965 			.len = len,
966 			.datbuf = buf,
967 		};
968 
969 		ret_code = mtd->_read_oob(mtd, from, &ops);
970 		*retlen = ops.retlen;
971 	} else {
972 		return -ENOTSUPP;
973 	}
974 
975 	if (unlikely(ret_code < 0))
976 		return ret_code;
977 	if (mtd->ecc_strength == 0)
978 		return 0;	/* device lacks ecc */
979 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
980 }
981 EXPORT_SYMBOL_GPL(mtd_read);
982 
mtd_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)983 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
984 	      const u_char *buf)
985 {
986 	*retlen = 0;
987 	if (to < 0 || to > mtd->size || len > mtd->size - to)
988 		return -EINVAL;
989 	if ((!mtd->_write && !mtd->_write_oob) ||
990 	    !(mtd->flags & MTD_WRITEABLE))
991 		return -EROFS;
992 	if (!len)
993 		return 0;
994 
995 	if (!mtd->_write) {
996 		struct mtd_oob_ops ops = {
997 			.len = len,
998 			.datbuf = (u8 *)buf,
999 		};
1000 		int ret;
1001 
1002 		ret = mtd->_write_oob(mtd, to, &ops);
1003 		*retlen = ops.retlen;
1004 		return ret;
1005 	}
1006 
1007 	return mtd->_write(mtd, to, len, retlen, buf);
1008 }
1009 EXPORT_SYMBOL_GPL(mtd_write);
1010 
1011 /*
1012  * In blackbox flight recorder like scenarios we want to make successful writes
1013  * in interrupt context. panic_write() is only intended to be called when its
1014  * known the kernel is about to panic and we need the write to succeed. Since
1015  * the kernel is not going to be running for much longer, this function can
1016  * break locks and delay to ensure the write succeeds (but not sleep).
1017  */
mtd_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1018 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1019 		    const u_char *buf)
1020 {
1021 	*retlen = 0;
1022 	if (!mtd->_panic_write)
1023 		return -EOPNOTSUPP;
1024 	if (to < 0 || to > mtd->size || len > mtd->size - to)
1025 		return -EINVAL;
1026 	if (!(mtd->flags & MTD_WRITEABLE))
1027 		return -EROFS;
1028 	if (!len)
1029 		return 0;
1030 	return mtd->_panic_write(mtd, to, len, retlen, buf);
1031 }
1032 EXPORT_SYMBOL_GPL(mtd_panic_write);
1033 
mtd_check_oob_ops(struct mtd_info * mtd,loff_t offs,struct mtd_oob_ops * ops)1034 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1035 			     struct mtd_oob_ops *ops)
1036 {
1037 	/*
1038 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1039 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1040 	 *  this case.
1041 	 */
1042 	if (!ops->datbuf)
1043 		ops->len = 0;
1044 
1045 	if (!ops->oobbuf)
1046 		ops->ooblen = 0;
1047 
1048 	if (offs < 0 || offs + ops->len > mtd->size)
1049 		return -EINVAL;
1050 
1051 	if (ops->ooblen) {
1052 		size_t maxooblen;
1053 
1054 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1055 			return -EINVAL;
1056 
1057 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1058 				      mtd_div_by_ws(offs, mtd)) *
1059 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1060 		if (ops->ooblen > maxooblen)
1061 			return -EINVAL;
1062 	}
1063 
1064 	return 0;
1065 }
1066 
mtd_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1067 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1068 {
1069 	int ret_code;
1070 	ops->retlen = ops->oobretlen = 0;
1071 
1072 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1073 	if (ret_code)
1074 		return ret_code;
1075 
1076 	/* Check the validity of a potential fallback on mtd->_read */
1077 	if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf))
1078 		return -EOPNOTSUPP;
1079 
1080 	if (mtd->_read_oob)
1081 		ret_code = mtd->_read_oob(mtd, from, ops);
1082 	else
1083 		ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen,
1084 				      ops->datbuf);
1085 
1086 	/*
1087 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1088 	 * similar to mtd->_read(), returning a non-negative integer
1089 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1090 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1091 	 */
1092 	if (unlikely(ret_code < 0))
1093 		return ret_code;
1094 	if (mtd->ecc_strength == 0)
1095 		return 0;	/* device lacks ecc */
1096 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1097 }
1098 EXPORT_SYMBOL_GPL(mtd_read_oob);
1099 
mtd_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1100 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1101 				struct mtd_oob_ops *ops)
1102 {
1103 	int ret;
1104 
1105 	ops->retlen = ops->oobretlen = 0;
1106 
1107 	if (!(mtd->flags & MTD_WRITEABLE))
1108 		return -EROFS;
1109 
1110 	ret = mtd_check_oob_ops(mtd, to, ops);
1111 	if (ret)
1112 		return ret;
1113 
1114 	/* Check the validity of a potential fallback on mtd->_write */
1115 	if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf))
1116 		return -EOPNOTSUPP;
1117 
1118 	if (mtd->_write_oob)
1119 		return mtd->_write_oob(mtd, to, ops);
1120 	else
1121 		return mtd->_write(mtd, to, ops->len, &ops->retlen,
1122 				   ops->datbuf);
1123 }
1124 EXPORT_SYMBOL_GPL(mtd_write_oob);
1125 
1126 /**
1127  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1128  * @mtd: MTD device structure
1129  * @section: ECC section. Depending on the layout you may have all the ECC
1130  *	     bytes stored in a single contiguous section, or one section
1131  *	     per ECC chunk (and sometime several sections for a single ECC
1132  *	     ECC chunk)
1133  * @oobecc: OOB region struct filled with the appropriate ECC position
1134  *	    information
1135  *
1136  * This function returns ECC section information in the OOB area. If you want
1137  * to get all the ECC bytes information, then you should call
1138  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1139  *
1140  * Returns zero on success, a negative error code otherwise.
1141  */
mtd_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobecc)1142 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1143 		      struct mtd_oob_region *oobecc)
1144 {
1145 	memset(oobecc, 0, sizeof(*oobecc));
1146 
1147 	if (!mtd || section < 0)
1148 		return -EINVAL;
1149 
1150 	if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1151 		return -ENOTSUPP;
1152 
1153 	return mtd->ooblayout->ecc(mtd, section, oobecc);
1154 }
1155 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1156 
1157 /**
1158  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1159  *			section
1160  * @mtd: MTD device structure
1161  * @section: Free section you are interested in. Depending on the layout
1162  *	     you may have all the free bytes stored in a single contiguous
1163  *	     section, or one section per ECC chunk plus an extra section
1164  *	     for the remaining bytes (or other funky layout).
1165  * @oobfree: OOB region struct filled with the appropriate free position
1166  *	     information
1167  *
1168  * This function returns free bytes position in the OOB area. If you want
1169  * to get all the free bytes information, then you should call
1170  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1171  *
1172  * Returns zero on success, a negative error code otherwise.
1173  */
mtd_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobfree)1174 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1175 		       struct mtd_oob_region *oobfree)
1176 {
1177 	memset(oobfree, 0, sizeof(*oobfree));
1178 
1179 	if (!mtd || section < 0)
1180 		return -EINVAL;
1181 
1182 	if (!mtd->ooblayout || !mtd->ooblayout->free)
1183 		return -ENOTSUPP;
1184 
1185 	return mtd->ooblayout->free(mtd, section, oobfree);
1186 }
1187 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1188 
1189 /**
1190  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1191  * @mtd: mtd info structure
1192  * @byte: the byte we are searching for
1193  * @sectionp: pointer where the section id will be stored
1194  * @oobregion: used to retrieve the ECC position
1195  * @iter: iterator function. Should be either mtd_ooblayout_free or
1196  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1197  *
1198  * This function returns the section id and oobregion information of a
1199  * specific byte. For example, say you want to know where the 4th ECC byte is
1200  * stored, you'll use:
1201  *
1202  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1203  *
1204  * Returns zero on success, a negative error code otherwise.
1205  */
mtd_ooblayout_find_region(struct mtd_info * mtd,int byte,int * sectionp,struct mtd_oob_region * oobregion,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1206 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1207 				int *sectionp, struct mtd_oob_region *oobregion,
1208 				int (*iter)(struct mtd_info *,
1209 					    int section,
1210 					    struct mtd_oob_region *oobregion))
1211 {
1212 	int pos = 0, ret, section = 0;
1213 
1214 	memset(oobregion, 0, sizeof(*oobregion));
1215 
1216 	while (1) {
1217 		ret = iter(mtd, section, oobregion);
1218 		if (ret)
1219 			return ret;
1220 
1221 		if (pos + oobregion->length > byte)
1222 			break;
1223 
1224 		pos += oobregion->length;
1225 		section++;
1226 	}
1227 
1228 	/*
1229 	 * Adjust region info to make it start at the beginning at the
1230 	 * 'start' ECC byte.
1231 	 */
1232 	oobregion->offset += byte - pos;
1233 	oobregion->length -= byte - pos;
1234 	*sectionp = section;
1235 
1236 	return 0;
1237 }
1238 
1239 /**
1240  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1241  *				  ECC byte
1242  * @mtd: mtd info structure
1243  * @eccbyte: the byte we are searching for
1244  * @sectionp: pointer where the section id will be stored
1245  * @oobregion: OOB region information
1246  *
1247  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1248  * byte.
1249  *
1250  * Returns zero on success, a negative error code otherwise.
1251  */
mtd_ooblayout_find_eccregion(struct mtd_info * mtd,int eccbyte,int * section,struct mtd_oob_region * oobregion)1252 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1253 				 int *section,
1254 				 struct mtd_oob_region *oobregion)
1255 {
1256 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1257 					 mtd_ooblayout_ecc);
1258 }
1259 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1260 
1261 /**
1262  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1263  * @mtd: mtd info structure
1264  * @buf: destination buffer to store OOB bytes
1265  * @oobbuf: OOB buffer
1266  * @start: first byte to retrieve
1267  * @nbytes: number of bytes to retrieve
1268  * @iter: section iterator
1269  *
1270  * Extract bytes attached to a specific category (ECC or free)
1271  * from the OOB buffer and copy them into buf.
1272  *
1273  * Returns zero on success, a negative error code otherwise.
1274  */
mtd_ooblayout_get_bytes(struct mtd_info * mtd,u8 * buf,const u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1275 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1276 				const u8 *oobbuf, int start, int nbytes,
1277 				int (*iter)(struct mtd_info *,
1278 					    int section,
1279 					    struct mtd_oob_region *oobregion))
1280 {
1281 	struct mtd_oob_region oobregion;
1282 	int section, ret;
1283 
1284 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1285 					&oobregion, iter);
1286 
1287 	while (!ret) {
1288 		int cnt;
1289 
1290 		cnt = min_t(int, nbytes, oobregion.length);
1291 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1292 		buf += cnt;
1293 		nbytes -= cnt;
1294 
1295 		if (!nbytes)
1296 			break;
1297 
1298 		ret = iter(mtd, ++section, &oobregion);
1299 	}
1300 
1301 	return ret;
1302 }
1303 
1304 /**
1305  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1306  * @mtd: mtd info structure
1307  * @buf: source buffer to get OOB bytes from
1308  * @oobbuf: OOB buffer
1309  * @start: first OOB byte to set
1310  * @nbytes: number of OOB bytes to set
1311  * @iter: section iterator
1312  *
1313  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1314  * is selected by passing the appropriate iterator.
1315  *
1316  * Returns zero on success, a negative error code otherwise.
1317  */
mtd_ooblayout_set_bytes(struct mtd_info * mtd,const u8 * buf,u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1318 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1319 				u8 *oobbuf, int start, int nbytes,
1320 				int (*iter)(struct mtd_info *,
1321 					    int section,
1322 					    struct mtd_oob_region *oobregion))
1323 {
1324 	struct mtd_oob_region oobregion;
1325 	int section, ret;
1326 
1327 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1328 					&oobregion, iter);
1329 
1330 	while (!ret) {
1331 		int cnt;
1332 
1333 		cnt = min_t(int, nbytes, oobregion.length);
1334 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1335 		buf += cnt;
1336 		nbytes -= cnt;
1337 
1338 		if (!nbytes)
1339 			break;
1340 
1341 		ret = iter(mtd, ++section, &oobregion);
1342 	}
1343 
1344 	return ret;
1345 }
1346 
1347 /**
1348  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1349  * @mtd: mtd info structure
1350  * @iter: category iterator
1351  *
1352  * Count the number of bytes in a given category.
1353  *
1354  * Returns a positive value on success, a negative error code otherwise.
1355  */
mtd_ooblayout_count_bytes(struct mtd_info * mtd,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1356 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1357 				int (*iter)(struct mtd_info *,
1358 					    int section,
1359 					    struct mtd_oob_region *oobregion))
1360 {
1361 	struct mtd_oob_region oobregion;
1362 	int section = 0, ret, nbytes = 0;
1363 
1364 	while (1) {
1365 		ret = iter(mtd, section++, &oobregion);
1366 		if (ret) {
1367 			if (ret == -ERANGE)
1368 				ret = nbytes;
1369 			break;
1370 		}
1371 
1372 		nbytes += oobregion.length;
1373 	}
1374 
1375 	return ret;
1376 }
1377 
1378 /**
1379  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1380  * @mtd: mtd info structure
1381  * @eccbuf: destination buffer to store ECC bytes
1382  * @oobbuf: OOB buffer
1383  * @start: first ECC byte to retrieve
1384  * @nbytes: number of ECC bytes to retrieve
1385  *
1386  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1387  *
1388  * Returns zero on success, a negative error code otherwise.
1389  */
mtd_ooblayout_get_eccbytes(struct mtd_info * mtd,u8 * eccbuf,const u8 * oobbuf,int start,int nbytes)1390 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1391 			       const u8 *oobbuf, int start, int nbytes)
1392 {
1393 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1394 				       mtd_ooblayout_ecc);
1395 }
1396 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1397 
1398 /**
1399  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1400  * @mtd: mtd info structure
1401  * @eccbuf: source buffer to get ECC bytes from
1402  * @oobbuf: OOB buffer
1403  * @start: first ECC byte to set
1404  * @nbytes: number of ECC bytes to set
1405  *
1406  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1407  *
1408  * Returns zero on success, a negative error code otherwise.
1409  */
mtd_ooblayout_set_eccbytes(struct mtd_info * mtd,const u8 * eccbuf,u8 * oobbuf,int start,int nbytes)1410 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1411 			       u8 *oobbuf, int start, int nbytes)
1412 {
1413 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1414 				       mtd_ooblayout_ecc);
1415 }
1416 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1417 
1418 /**
1419  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1420  * @mtd: mtd info structure
1421  * @databuf: destination buffer to store ECC bytes
1422  * @oobbuf: OOB buffer
1423  * @start: first ECC byte to retrieve
1424  * @nbytes: number of ECC bytes to retrieve
1425  *
1426  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1427  *
1428  * Returns zero on success, a negative error code otherwise.
1429  */
mtd_ooblayout_get_databytes(struct mtd_info * mtd,u8 * databuf,const u8 * oobbuf,int start,int nbytes)1430 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1431 				const u8 *oobbuf, int start, int nbytes)
1432 {
1433 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1434 				       mtd_ooblayout_free);
1435 }
1436 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1437 
1438 /**
1439  * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
1440  * @mtd: mtd info structure
1441  * @eccbuf: source buffer to get data bytes from
1442  * @oobbuf: OOB buffer
1443  * @start: first ECC byte to set
1444  * @nbytes: number of ECC bytes to set
1445  *
1446  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1447  *
1448  * Returns zero on success, a negative error code otherwise.
1449  */
mtd_ooblayout_set_databytes(struct mtd_info * mtd,const u8 * databuf,u8 * oobbuf,int start,int nbytes)1450 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1451 				u8 *oobbuf, int start, int nbytes)
1452 {
1453 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1454 				       mtd_ooblayout_free);
1455 }
1456 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1457 
1458 /**
1459  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1460  * @mtd: mtd info structure
1461  *
1462  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1463  *
1464  * Returns zero on success, a negative error code otherwise.
1465  */
mtd_ooblayout_count_freebytes(struct mtd_info * mtd)1466 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1467 {
1468 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1469 }
1470 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1471 
1472 /**
1473  * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
1474  * @mtd: mtd info structure
1475  *
1476  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1477  *
1478  * Returns zero on success, a negative error code otherwise.
1479  */
mtd_ooblayout_count_eccbytes(struct mtd_info * mtd)1480 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1481 {
1482 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1483 }
1484 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1485 
1486 /*
1487  * Method to access the protection register area, present in some flash
1488  * devices. The user data is one time programmable but the factory data is read
1489  * only.
1490  */
mtd_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1491 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1492 			   struct otp_info *buf)
1493 {
1494 	if (!mtd->_get_fact_prot_info)
1495 		return -EOPNOTSUPP;
1496 	if (!len)
1497 		return 0;
1498 	return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1499 }
1500 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1501 
mtd_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1502 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1503 			   size_t *retlen, u_char *buf)
1504 {
1505 	*retlen = 0;
1506 	if (!mtd->_read_fact_prot_reg)
1507 		return -EOPNOTSUPP;
1508 	if (!len)
1509 		return 0;
1510 	return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1511 }
1512 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1513 
mtd_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1514 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1515 			   struct otp_info *buf)
1516 {
1517 	if (!mtd->_get_user_prot_info)
1518 		return -EOPNOTSUPP;
1519 	if (!len)
1520 		return 0;
1521 	return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1522 }
1523 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1524 
mtd_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1525 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1526 			   size_t *retlen, u_char *buf)
1527 {
1528 	*retlen = 0;
1529 	if (!mtd->_read_user_prot_reg)
1530 		return -EOPNOTSUPP;
1531 	if (!len)
1532 		return 0;
1533 	return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1534 }
1535 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1536 
mtd_write_user_prot_reg(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,u_char * buf)1537 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1538 			    size_t *retlen, u_char *buf)
1539 {
1540 	int ret;
1541 
1542 	*retlen = 0;
1543 	if (!mtd->_write_user_prot_reg)
1544 		return -EOPNOTSUPP;
1545 	if (!len)
1546 		return 0;
1547 	ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1548 	if (ret)
1549 		return ret;
1550 
1551 	/*
1552 	 * If no data could be written at all, we are out of memory and
1553 	 * must return -ENOSPC.
1554 	 */
1555 	return (*retlen) ? 0 : -ENOSPC;
1556 }
1557 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1558 
mtd_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)1559 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1560 {
1561 	if (!mtd->_lock_user_prot_reg)
1562 		return -EOPNOTSUPP;
1563 	if (!len)
1564 		return 0;
1565 	return mtd->_lock_user_prot_reg(mtd, from, len);
1566 }
1567 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1568 
1569 /* Chip-supported device locking */
mtd_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1570 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1571 {
1572 	if (!mtd->_lock)
1573 		return -EOPNOTSUPP;
1574 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1575 		return -EINVAL;
1576 	if (!len)
1577 		return 0;
1578 	return mtd->_lock(mtd, ofs, len);
1579 }
1580 EXPORT_SYMBOL_GPL(mtd_lock);
1581 
mtd_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1582 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1583 {
1584 	if (!mtd->_unlock)
1585 		return -EOPNOTSUPP;
1586 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1587 		return -EINVAL;
1588 	if (!len)
1589 		return 0;
1590 	return mtd->_unlock(mtd, ofs, len);
1591 }
1592 EXPORT_SYMBOL_GPL(mtd_unlock);
1593 
mtd_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)1594 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1595 {
1596 	if (!mtd->_is_locked)
1597 		return -EOPNOTSUPP;
1598 	if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1599 		return -EINVAL;
1600 	if (!len)
1601 		return 0;
1602 	return mtd->_is_locked(mtd, ofs, len);
1603 }
1604 EXPORT_SYMBOL_GPL(mtd_is_locked);
1605 
mtd_block_isreserved(struct mtd_info * mtd,loff_t ofs)1606 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1607 {
1608 	if (ofs < 0 || ofs > mtd->size)
1609 		return -EINVAL;
1610 	if (!mtd->_block_isreserved)
1611 		return 0;
1612 	return mtd->_block_isreserved(mtd, ofs);
1613 }
1614 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1615 
mtd_block_isbad(struct mtd_info * mtd,loff_t ofs)1616 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1617 {
1618 	if (ofs < 0 || ofs > mtd->size)
1619 		return -EINVAL;
1620 	if (!mtd->_block_isbad)
1621 		return 0;
1622 	return mtd->_block_isbad(mtd, ofs);
1623 }
1624 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1625 
mtd_block_markbad(struct mtd_info * mtd,loff_t ofs)1626 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1627 {
1628 	if (!mtd->_block_markbad)
1629 		return -EOPNOTSUPP;
1630 	if (ofs < 0 || ofs > mtd->size)
1631 		return -EINVAL;
1632 	if (!(mtd->flags & MTD_WRITEABLE))
1633 		return -EROFS;
1634 	return mtd->_block_markbad(mtd, ofs);
1635 }
1636 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1637 
1638 #ifndef __UBOOT__
1639 /*
1640  * default_mtd_writev - the default writev method
1641  * @mtd: mtd device description object pointer
1642  * @vecs: the vectors to write
1643  * @count: count of vectors in @vecs
1644  * @to: the MTD device offset to write to
1645  * @retlen: on exit contains the count of bytes written to the MTD device.
1646  *
1647  * This function returns zero in case of success and a negative error code in
1648  * case of failure.
1649  */
default_mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)1650 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1651 			      unsigned long count, loff_t to, size_t *retlen)
1652 {
1653 	unsigned long i;
1654 	size_t totlen = 0, thislen;
1655 	int ret = 0;
1656 
1657 	for (i = 0; i < count; i++) {
1658 		if (!vecs[i].iov_len)
1659 			continue;
1660 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1661 				vecs[i].iov_base);
1662 		totlen += thislen;
1663 		if (ret || thislen != vecs[i].iov_len)
1664 			break;
1665 		to += vecs[i].iov_len;
1666 	}
1667 	*retlen = totlen;
1668 	return ret;
1669 }
1670 
1671 /*
1672  * mtd_writev - the vector-based MTD write method
1673  * @mtd: mtd device description object pointer
1674  * @vecs: the vectors to write
1675  * @count: count of vectors in @vecs
1676  * @to: the MTD device offset to write to
1677  * @retlen: on exit contains the count of bytes written to the MTD device.
1678  *
1679  * This function returns zero in case of success and a negative error code in
1680  * case of failure.
1681  */
mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)1682 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1683 	       unsigned long count, loff_t to, size_t *retlen)
1684 {
1685 	*retlen = 0;
1686 	if (!(mtd->flags & MTD_WRITEABLE))
1687 		return -EROFS;
1688 	if (!mtd->_writev)
1689 		return default_mtd_writev(mtd, vecs, count, to, retlen);
1690 	return mtd->_writev(mtd, vecs, count, to, retlen);
1691 }
1692 EXPORT_SYMBOL_GPL(mtd_writev);
1693 
1694 /**
1695  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1696  * @mtd: mtd device description object pointer
1697  * @size: a pointer to the ideal or maximum size of the allocation, points
1698  *        to the actual allocation size on success.
1699  *
1700  * This routine attempts to allocate a contiguous kernel buffer up to
1701  * the specified size, backing off the size of the request exponentially
1702  * until the request succeeds or until the allocation size falls below
1703  * the system page size. This attempts to make sure it does not adversely
1704  * impact system performance, so when allocating more than one page, we
1705  * ask the memory allocator to avoid re-trying, swapping, writing back
1706  * or performing I/O.
1707  *
1708  * Note, this function also makes sure that the allocated buffer is aligned to
1709  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1710  *
1711  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1712  * to handle smaller (i.e. degraded) buffer allocations under low- or
1713  * fragmented-memory situations where such reduced allocations, from a
1714  * requested ideal, are allowed.
1715  *
1716  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1717  */
mtd_kmalloc_up_to(const struct mtd_info * mtd,size_t * size)1718 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1719 {
1720 	gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1721 		       __GFP_NORETRY | __GFP_NO_KSWAPD;
1722 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1723 	void *kbuf;
1724 
1725 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1726 
1727 	while (*size > min_alloc) {
1728 		kbuf = kmalloc(*size, flags);
1729 		if (kbuf)
1730 			return kbuf;
1731 
1732 		*size >>= 1;
1733 		*size = ALIGN(*size, mtd->writesize);
1734 	}
1735 
1736 	/*
1737 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1738 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1739 	 */
1740 	return kmalloc(*size, GFP_KERNEL);
1741 }
1742 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1743 #endif
1744 
1745 #ifdef CONFIG_PROC_FS
1746 
1747 /*====================================================================*/
1748 /* Support for /proc/mtd */
1749 
mtd_proc_show(struct seq_file * m,void * v)1750 static int mtd_proc_show(struct seq_file *m, void *v)
1751 {
1752 	struct mtd_info *mtd;
1753 
1754 	seq_puts(m, "dev:    size   erasesize  name\n");
1755 	mutex_lock(&mtd_table_mutex);
1756 	mtd_for_each_device(mtd) {
1757 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1758 			   mtd->index, (unsigned long long)mtd->size,
1759 			   mtd->erasesize, mtd->name);
1760 	}
1761 	mutex_unlock(&mtd_table_mutex);
1762 	return 0;
1763 }
1764 
mtd_proc_open(struct inode * inode,struct file * file)1765 static int mtd_proc_open(struct inode *inode, struct file *file)
1766 {
1767 	return single_open(file, mtd_proc_show, NULL);
1768 }
1769 
1770 static const struct file_operations mtd_proc_ops = {
1771 	.open		= mtd_proc_open,
1772 	.read		= seq_read,
1773 	.llseek		= seq_lseek,
1774 	.release	= single_release,
1775 };
1776 #endif /* CONFIG_PROC_FS */
1777 
1778 /*====================================================================*/
1779 /* Init code */
1780 
1781 #ifndef __UBOOT__
mtd_bdi_init(struct backing_dev_info * bdi,const char * name)1782 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1783 {
1784 	int ret;
1785 
1786 	ret = bdi_init(bdi);
1787 	if (!ret)
1788 		ret = bdi_register(bdi, NULL, "%s", name);
1789 
1790 	if (ret)
1791 		bdi_destroy(bdi);
1792 
1793 	return ret;
1794 }
1795 
1796 static struct proc_dir_entry *proc_mtd;
1797 
init_mtd(void)1798 static int __init init_mtd(void)
1799 {
1800 	int ret;
1801 
1802 	ret = class_register(&mtd_class);
1803 	if (ret)
1804 		goto err_reg;
1805 
1806 	ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1807 	if (ret)
1808 		goto err_bdi1;
1809 
1810 	ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1811 	if (ret)
1812 		goto err_bdi2;
1813 
1814 	ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1815 	if (ret)
1816 		goto err_bdi3;
1817 
1818 	proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1819 
1820 	ret = init_mtdchar();
1821 	if (ret)
1822 		goto out_procfs;
1823 
1824 	return 0;
1825 
1826 out_procfs:
1827 	if (proc_mtd)
1828 		remove_proc_entry("mtd", NULL);
1829 err_bdi3:
1830 	bdi_destroy(&mtd_bdi_ro_mappable);
1831 err_bdi2:
1832 	bdi_destroy(&mtd_bdi_unmappable);
1833 err_bdi1:
1834 	class_unregister(&mtd_class);
1835 err_reg:
1836 	pr_err("Error registering mtd class or bdi: %d\n", ret);
1837 	return ret;
1838 }
1839 
cleanup_mtd(void)1840 static void __exit cleanup_mtd(void)
1841 {
1842 	cleanup_mtdchar();
1843 	if (proc_mtd)
1844 		remove_proc_entry("mtd", NULL);
1845 	class_unregister(&mtd_class);
1846 	bdi_destroy(&mtd_bdi_unmappable);
1847 	bdi_destroy(&mtd_bdi_ro_mappable);
1848 	bdi_destroy(&mtd_bdi_rw_mappable);
1849 }
1850 
1851 module_init(init_mtd);
1852 module_exit(cleanup_mtd);
1853 #endif
1854 
1855 MODULE_LICENSE("GPL");
1856 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1857 MODULE_DESCRIPTION("Core MTD registration and access routines");
1858