• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /*
2   * Copyright © 2014 Connor Abbott
3   *
4   * Permission is hereby granted, free of charge, to any person obtaining a
5   * copy of this software and associated documentation files (the "Software"),
6   * to deal in the Software without restriction, including without limitation
7   * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8   * and/or sell copies of the Software, and to permit persons to whom the
9   * Software is furnished to do so, subject to the following conditions:
10   *
11   * The above copyright notice and this permission notice (including the next
12   * paragraph) shall be included in all copies or substantial portions of the
13   * Software.
14   *
15   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18   * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19   * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20   * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21   * IN THE SOFTWARE.
22   *
23   * Authors:
24   *    Connor Abbott (cwabbott0@gmail.com)
25   *
26   */
27  
28  #ifndef NIR_H
29  #define NIR_H
30  
31  #include "util/hash_table.h"
32  #include "compiler/glsl/list.h"
33  #include "GL/gl.h" /* GLenum */
34  #include "util/list.h"
35  #include "util/ralloc.h"
36  #include "util/set.h"
37  #include "util/bitscan.h"
38  #include "util/bitset.h"
39  #include "util/enum_operators.h"
40  #include "util/macros.h"
41  #include "util/format/u_format.h"
42  #include "compiler/nir_types.h"
43  #include "compiler/shader_enums.h"
44  #include "compiler/shader_info.h"
45  #define XXH_INLINE_ALL
46  #include "util/xxhash.h"
47  #include <stdio.h>
48  
49  #ifndef NDEBUG
50  #include "util/debug.h"
51  #endif /* NDEBUG */
52  
53  #include "nir_opcodes.h"
54  
55  #if defined(_WIN32) && !defined(snprintf)
56  #define snprintf _snprintf
57  #endif
58  
59  #ifdef __cplusplus
60  extern "C" {
61  #endif
62  
63  #define NIR_FALSE 0u
64  #define NIR_TRUE (~0u)
65  #define NIR_MAX_VEC_COMPONENTS 16
66  #define NIR_MAX_MATRIX_COLUMNS 4
67  #define NIR_STREAM_PACKED (1 << 8)
68  typedef uint16_t nir_component_mask_t;
69  
70  static inline bool
nir_num_components_valid(unsigned num_components)71  nir_num_components_valid(unsigned num_components)
72  {
73     return (num_components >= 1  &&
74             num_components <= 4) ||
75             num_components == 8  ||
76             num_components == 16;
77  }
78  
79  bool nir_component_mask_can_reinterpret(nir_component_mask_t mask,
80                                          unsigned old_bit_size,
81                                          unsigned new_bit_size);
82  nir_component_mask_t
83  nir_component_mask_reinterpret(nir_component_mask_t mask,
84                                 unsigned old_bit_size,
85                                 unsigned new_bit_size);
86  
87  /** Defines a cast function
88   *
89   * This macro defines a cast function from in_type to out_type where
90   * out_type is some structure type that contains a field of type out_type.
91   *
92   * Note that you have to be a bit careful as the generated cast function
93   * destroys constness.
94   */
95  #define NIR_DEFINE_CAST(name, in_type, out_type, field, \
96                          type_field, type_value)         \
97  static inline out_type *                                \
98  name(const in_type *parent)                             \
99  {                                                       \
100     assert(parent && parent->type_field == type_value);  \
101     return exec_node_data(out_type, parent, field);      \
102  }
103  
104  struct nir_function;
105  struct nir_shader;
106  struct nir_instr;
107  struct nir_builder;
108  
109  
110  /**
111   * Description of built-in state associated with a uniform
112   *
113   * \sa nir_variable::state_slots
114   */
115  typedef struct {
116     gl_state_index16 tokens[STATE_LENGTH];
117     uint16_t swizzle;
118  } nir_state_slot;
119  
120  typedef enum {
121     nir_var_shader_in       = (1 << 0),
122     nir_var_shader_out      = (1 << 1),
123     nir_var_shader_temp     = (1 << 2),
124     nir_var_function_temp   = (1 << 3),
125     nir_var_uniform         = (1 << 4),
126     nir_var_mem_ubo         = (1 << 5),
127     nir_var_system_value    = (1 << 6),
128     nir_var_mem_ssbo        = (1 << 7),
129     nir_var_mem_shared      = (1 << 8),
130     nir_var_mem_global      = (1 << 9),
131     nir_var_mem_generic     = (nir_var_shader_temp |
132                                nir_var_function_temp |
133                                nir_var_mem_shared |
134                                nir_var_mem_global),
135     nir_var_mem_push_const  = (1 << 10), /* not actually used for variables */
136     nir_var_mem_constant    = (1 << 11),
137     /** Incoming call or ray payload data for ray-tracing shaders */
138     nir_var_shader_call_data = (1 << 12),
139     /** Ray hit attributes */
140     nir_var_ray_hit_attrib  = (1 << 13),
141     nir_var_read_only_modes = nir_var_shader_in | nir_var_uniform |
142                               nir_var_system_value | nir_var_mem_constant,
143     nir_num_variable_modes  = 14,
144     nir_var_all             = (1 << nir_num_variable_modes) - 1,
145  } nir_variable_mode;
146  MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(nir_variable_mode)
147  
148  /**
149   * Rounding modes.
150   */
151  typedef enum {
152     nir_rounding_mode_undef = 0,
153     nir_rounding_mode_rtne  = 1, /* round to nearest even */
154     nir_rounding_mode_ru    = 2, /* round up */
155     nir_rounding_mode_rd    = 3, /* round down */
156     nir_rounding_mode_rtz   = 4, /* round towards zero */
157  } nir_rounding_mode;
158  
159  typedef union {
160     bool b;
161     float f32;
162     double f64;
163     int8_t i8;
164     uint8_t u8;
165     int16_t i16;
166     uint16_t u16;
167     int32_t i32;
168     uint32_t u32;
169     int64_t i64;
170     uint64_t u64;
171  } nir_const_value;
172  
173  #define nir_const_value_to_array(arr, c, components, m) \
174  { \
175     for (unsigned i = 0; i < components; ++i) \
176        arr[i] = c[i].m; \
177  } while (false)
178  
179  static inline nir_const_value
nir_const_value_for_raw_uint(uint64_t x,unsigned bit_size)180  nir_const_value_for_raw_uint(uint64_t x, unsigned bit_size)
181  {
182     nir_const_value v;
183     memset(&v, 0, sizeof(v));
184  
185     switch (bit_size) {
186     case 1:  v.b   = x;  break;
187     case 8:  v.u8  = x;  break;
188     case 16: v.u16 = x;  break;
189     case 32: v.u32 = x;  break;
190     case 64: v.u64 = x;  break;
191     default:
192        unreachable("Invalid bit size");
193     }
194  
195     return v;
196  }
197  
198  static inline nir_const_value
nir_const_value_for_int(int64_t i,unsigned bit_size)199  nir_const_value_for_int(int64_t i, unsigned bit_size)
200  {
201     nir_const_value v;
202     memset(&v, 0, sizeof(v));
203  
204     assert(bit_size <= 64);
205     if (bit_size < 64) {
206        assert(i >= (-(1ll << (bit_size - 1))));
207        assert(i < (1ll << (bit_size - 1)));
208     }
209  
210     return nir_const_value_for_raw_uint(i, bit_size);
211  }
212  
213  static inline nir_const_value
nir_const_value_for_uint(uint64_t u,unsigned bit_size)214  nir_const_value_for_uint(uint64_t u, unsigned bit_size)
215  {
216     nir_const_value v;
217     memset(&v, 0, sizeof(v));
218  
219     assert(bit_size <= 64);
220     if (bit_size < 64)
221        assert(u < (1ull << bit_size));
222  
223     return nir_const_value_for_raw_uint(u, bit_size);
224  }
225  
226  static inline nir_const_value
nir_const_value_for_bool(bool b,unsigned bit_size)227  nir_const_value_for_bool(bool b, unsigned bit_size)
228  {
229     /* Booleans use a 0/-1 convention */
230     return nir_const_value_for_int(-(int)b, bit_size);
231  }
232  
233  /* This one isn't inline because it requires half-float conversion */
234  nir_const_value nir_const_value_for_float(double b, unsigned bit_size);
235  
236  static inline int64_t
nir_const_value_as_int(nir_const_value value,unsigned bit_size)237  nir_const_value_as_int(nir_const_value value, unsigned bit_size)
238  {
239     switch (bit_size) {
240     /* int1_t uses 0/-1 convention */
241     case 1:  return -(int)value.b;
242     case 8:  return value.i8;
243     case 16: return value.i16;
244     case 32: return value.i32;
245     case 64: return value.i64;
246     default:
247        unreachable("Invalid bit size");
248     }
249  }
250  
251  static inline uint64_t
nir_const_value_as_uint(nir_const_value value,unsigned bit_size)252  nir_const_value_as_uint(nir_const_value value, unsigned bit_size)
253  {
254     switch (bit_size) {
255     case 1:  return value.b;
256     case 8:  return value.u8;
257     case 16: return value.u16;
258     case 32: return value.u32;
259     case 64: return value.u64;
260     default:
261        unreachable("Invalid bit size");
262     }
263  }
264  
265  static inline bool
nir_const_value_as_bool(nir_const_value value,unsigned bit_size)266  nir_const_value_as_bool(nir_const_value value, unsigned bit_size)
267  {
268     int64_t i = nir_const_value_as_int(value, bit_size);
269  
270     /* Booleans of any size use 0/-1 convention */
271     assert(i == 0 || i == -1);
272  
273     return i;
274  }
275  
276  /* This one isn't inline because it requires half-float conversion */
277  double nir_const_value_as_float(nir_const_value value, unsigned bit_size);
278  
279  typedef struct nir_constant {
280     /**
281      * Value of the constant.
282      *
283      * The field used to back the values supplied by the constant is determined
284      * by the type associated with the \c nir_variable.  Constants may be
285      * scalars, vectors, or matrices.
286      */
287     nir_const_value values[NIR_MAX_VEC_COMPONENTS];
288  
289     /* we could get this from the var->type but makes clone *much* easier to
290      * not have to care about the type.
291      */
292     unsigned num_elements;
293  
294     /* Array elements / Structure Fields */
295     struct nir_constant **elements;
296  } nir_constant;
297  
298  /**
299   * \brief Layout qualifiers for gl_FragDepth.
300   *
301   * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
302   * with a layout qualifier.
303   */
304  typedef enum {
305      nir_depth_layout_none, /**< No depth layout is specified. */
306      nir_depth_layout_any,
307      nir_depth_layout_greater,
308      nir_depth_layout_less,
309      nir_depth_layout_unchanged
310  } nir_depth_layout;
311  
312  /**
313   * Enum keeping track of how a variable was declared.
314   */
315  typedef enum {
316     /**
317      * Normal declaration.
318      */
319     nir_var_declared_normally = 0,
320  
321     /**
322      * Variable is implicitly generated by the compiler and should not be
323      * visible via the API.
324      */
325     nir_var_hidden,
326  } nir_var_declaration_type;
327  
328  /**
329   * Either a uniform, global variable, shader input, or shader output. Based on
330   * ir_variable - it should be easy to translate between the two.
331   */
332  
333  typedef struct nir_variable {
334     struct exec_node node;
335  
336     /**
337      * Declared type of the variable
338      */
339     const struct glsl_type *type;
340  
341     /**
342      * Declared name of the variable
343      */
344     char *name;
345  
346     struct nir_variable_data {
347        /**
348         * Storage class of the variable.
349         *
350         * \sa nir_variable_mode
351         */
352        unsigned mode:14;
353  
354        /**
355         * Is the variable read-only?
356         *
357         * This is set for variables declared as \c const, shader inputs,
358         * and uniforms.
359         */
360        unsigned read_only:1;
361        unsigned centroid:1;
362        unsigned sample:1;
363        unsigned patch:1;
364        unsigned invariant:1;
365  
366       /**
367         * Precision qualifier.
368         *
369         * In desktop GLSL we do not care about precision qualifiers at all, in
370         * fact, the spec says that precision qualifiers are ignored.
371         *
372         * To make things easy, we make it so that this field is always
373         * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
374         * have the same precision value and the checks we add in the compiler
375         * for this field will never break a desktop shader compile.
376         */
377        unsigned precision:2;
378  
379        /**
380         * Can this variable be coalesced with another?
381         *
382         * This is set by nir_lower_io_to_temporaries to say that any
383         * copies involving this variable should stay put. Propagating it can
384         * duplicate the resulting load/store, which is not wanted, and may
385         * result in a load/store of the variable with an indirect offset which
386         * the backend may not be able to handle.
387         */
388        unsigned cannot_coalesce:1;
389  
390        /**
391         * When separate shader programs are enabled, only input/outputs between
392         * the stages of a multi-stage separate program can be safely removed
393         * from the shader interface. Other input/outputs must remains active.
394         *
395         * This is also used to make sure xfb varyings that are unused by the
396         * fragment shader are not removed.
397         */
398        unsigned always_active_io:1;
399  
400        /**
401         * Interpolation mode for shader inputs / outputs
402         *
403         * \sa glsl_interp_mode
404         */
405        unsigned interpolation:3;
406  
407        /**
408         * If non-zero, then this variable may be packed along with other variables
409         * into a single varying slot, so this offset should be applied when
410         * accessing components.  For example, an offset of 1 means that the x
411         * component of this variable is actually stored in component y of the
412         * location specified by \c location.
413         */
414        unsigned location_frac:2;
415  
416        /**
417         * If true, this variable represents an array of scalars that should
418         * be tightly packed.  In other words, consecutive array elements
419         * should be stored one component apart, rather than one slot apart.
420         */
421        unsigned compact:1;
422  
423        /**
424         * Whether this is a fragment shader output implicitly initialized with
425         * the previous contents of the specified render target at the
426         * framebuffer location corresponding to this shader invocation.
427         */
428        unsigned fb_fetch_output:1;
429  
430        /**
431         * Non-zero if this variable is considered bindless as defined by
432         * ARB_bindless_texture.
433         */
434        unsigned bindless:1;
435  
436        /**
437         * Was an explicit binding set in the shader?
438         */
439        unsigned explicit_binding:1;
440  
441        /**
442         * Was the location explicitly set in the shader?
443         *
444         * If the location is explicitly set in the shader, it \b cannot be changed
445         * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
446         * no effect).
447         */
448        unsigned explicit_location:1;
449  
450        /**
451         * Was a transfer feedback buffer set in the shader?
452         */
453        unsigned explicit_xfb_buffer:1;
454  
455        /**
456         * Was a transfer feedback stride set in the shader?
457         */
458        unsigned explicit_xfb_stride:1;
459  
460        /**
461         * Was an explicit offset set in the shader?
462         */
463        unsigned explicit_offset:1;
464  
465        /**
466         * Layout of the matrix.  Uses glsl_matrix_layout values.
467         */
468        unsigned matrix_layout:2;
469  
470        /**
471         * Non-zero if this variable was created by lowering a named interface
472         * block.
473         */
474        unsigned from_named_ifc_block:1;
475  
476        /**
477         * How the variable was declared.  See nir_var_declaration_type.
478         *
479         * This is used to detect variables generated by the compiler, so should
480         * not be visible via the API.
481         */
482        unsigned how_declared:2;
483  
484        /**
485         * Is this variable per-view?  If so, we know it must be an array with
486         * size corresponding to the number of views.
487         */
488        unsigned per_view:1;
489  
490        /**
491         * \brief Layout qualifier for gl_FragDepth. See nir_depth_layout.
492         *
493         * This is not equal to \c ir_depth_layout_none if and only if this
494         * variable is \c gl_FragDepth and a layout qualifier is specified.
495         */
496        unsigned depth_layout:3;
497  
498        /**
499         * Vertex stream output identifier.
500         *
501         * For packed outputs, NIR_STREAM_PACKED is set and bits [2*i+1,2*i]
502         * indicate the stream of the i-th component.
503         */
504        unsigned stream:9;
505  
506        /**
507         * See gl_access_qualifier.
508         *
509         * Access flags for memory variables (SSBO/global), image uniforms, and
510         * bindless images in uniforms/inputs/outputs.
511         */
512        unsigned access:8;
513  
514        /**
515         * Descriptor set binding for sampler or UBO.
516         */
517        unsigned descriptor_set:5;
518  
519        /**
520         * output index for dual source blending.
521         */
522        unsigned index;
523  
524        /**
525         * Initial binding point for a sampler or UBO.
526         *
527         * For array types, this represents the binding point for the first element.
528         */
529        unsigned binding;
530  
531        /**
532         * Storage location of the base of this variable
533         *
534         * The precise meaning of this field depends on the nature of the variable.
535         *
536         *   - Vertex shader input: one of the values from \c gl_vert_attrib.
537         *   - Vertex shader output: one of the values from \c gl_varying_slot.
538         *   - Geometry shader input: one of the values from \c gl_varying_slot.
539         *   - Geometry shader output: one of the values from \c gl_varying_slot.
540         *   - Fragment shader input: one of the values from \c gl_varying_slot.
541         *   - Fragment shader output: one of the values from \c gl_frag_result.
542         *   - Uniforms: Per-stage uniform slot number for default uniform block.
543         *   - Uniforms: Index within the uniform block definition for UBO members.
544         *   - Non-UBO Uniforms: uniform slot number.
545         *   - Other: This field is not currently used.
546         *
547         * If the variable is a uniform, shader input, or shader output, and the
548         * slot has not been assigned, the value will be -1.
549         */
550        int location;
551  
552        /**
553         * The actual location of the variable in the IR. Only valid for inputs,
554         * outputs, and uniforms (including samplers and images).
555         */
556        unsigned driver_location;
557  
558        /**
559         * Location an atomic counter or transform feedback is stored at.
560         */
561        unsigned offset;
562  
563        union {
564           struct {
565              /** Image internal format if specified explicitly, otherwise PIPE_FORMAT_NONE. */
566              enum pipe_format format;
567           } image;
568  
569           struct {
570              /**
571               * For OpenCL inline samplers. See cl_sampler_addressing_mode and cl_sampler_filter_mode
572               */
573              unsigned is_inline_sampler : 1;
574              unsigned addressing_mode : 3;
575              unsigned normalized_coordinates : 1;
576              unsigned filter_mode : 1;
577           } sampler;
578  
579           struct {
580              /**
581               * Transform feedback buffer.
582               */
583              uint16_t buffer:2;
584  
585              /**
586               * Transform feedback stride.
587               */
588              uint16_t stride;
589           } xfb;
590        };
591     } data;
592  
593     /**
594      * Identifier for this variable generated by nir_index_vars() that is unique
595      * among other variables in the same exec_list.
596      */
597     unsigned index;
598  
599     /* Number of nir_variable_data members */
600     uint16_t num_members;
601  
602     /**
603      * Built-in state that backs this uniform
604      *
605      * Once set at variable creation, \c state_slots must remain invariant.
606      * This is because, ideally, this array would be shared by all clones of
607      * this variable in the IR tree.  In other words, we'd really like for it
608      * to be a fly-weight.
609      *
610      * If the variable is not a uniform, \c num_state_slots will be zero and
611      * \c state_slots will be \c NULL.
612      */
613     /*@{*/
614     uint16_t num_state_slots;    /**< Number of state slots used */
615     nir_state_slot *state_slots;  /**< State descriptors. */
616     /*@}*/
617  
618     /**
619      * Constant expression assigned in the initializer of the variable
620      *
621      * This field should only be used temporarily by creators of NIR shaders
622      * and then lower_constant_initializers can be used to get rid of them.
623      * Most of the rest of NIR ignores this field or asserts that it's NULL.
624      */
625     nir_constant *constant_initializer;
626  
627     /**
628      * Global variable assigned in the initializer of the variable
629      * This field should only be used temporarily by creators of NIR shaders
630      * and then lower_constant_initializers can be used to get rid of them.
631      * Most of the rest of NIR ignores this field or asserts that it's NULL.
632      */
633     struct nir_variable *pointer_initializer;
634  
635     /**
636      * For variables that are in an interface block or are an instance of an
637      * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
638      *
639      * \sa ir_variable::location
640      */
641     const struct glsl_type *interface_type;
642  
643     /**
644      * Description of per-member data for per-member struct variables
645      *
646      * This is used for variables which are actually an amalgamation of
647      * multiple entities such as a struct of built-in values or a struct of
648      * inputs each with their own layout specifier.  This is only allowed on
649      * variables with a struct or array of array of struct type.
650      */
651     struct nir_variable_data *members;
652  } nir_variable;
653  
654  static inline bool
_nir_shader_variable_has_mode(nir_variable * var,unsigned modes)655  _nir_shader_variable_has_mode(nir_variable *var, unsigned modes)
656  {
657     /* This isn't a shader variable */
658     assert(!(modes & nir_var_function_temp));
659     return var->data.mode & modes;
660  }
661  
662  #define nir_foreach_variable_in_list(var, var_list) \
663     foreach_list_typed(nir_variable, var, node, var_list)
664  
665  #define nir_foreach_variable_in_list_safe(var, var_list) \
666     foreach_list_typed_safe(nir_variable, var, node, var_list)
667  
668  #define nir_foreach_variable_in_shader(var, shader) \
669     nir_foreach_variable_in_list(var, &(shader)->variables)
670  
671  #define nir_foreach_variable_in_shader_safe(var, shader) \
672     nir_foreach_variable_in_list_safe(var, &(shader)->variables)
673  
674  #define nir_foreach_variable_with_modes(var, shader, modes) \
675     nir_foreach_variable_in_shader(var, shader) \
676        if (_nir_shader_variable_has_mode(var, modes))
677  
678  #define nir_foreach_variable_with_modes_safe(var, shader, modes) \
679     nir_foreach_variable_in_shader_safe(var, shader) \
680        if (_nir_shader_variable_has_mode(var, modes))
681  
682  #define nir_foreach_shader_in_variable(var, shader) \
683     nir_foreach_variable_with_modes(var, shader, nir_var_shader_in)
684  
685  #define nir_foreach_shader_in_variable_safe(var, shader) \
686     nir_foreach_variable_with_modes_safe(var, shader, nir_var_shader_in)
687  
688  #define nir_foreach_shader_out_variable(var, shader) \
689     nir_foreach_variable_with_modes(var, shader, nir_var_shader_out)
690  
691  #define nir_foreach_shader_out_variable_safe(var, shader) \
692     nir_foreach_variable_with_modes_safe(var, shader, nir_var_shader_out)
693  
694  #define nir_foreach_uniform_variable(var, shader) \
695     nir_foreach_variable_with_modes(var, shader, nir_var_uniform)
696  
697  #define nir_foreach_uniform_variable_safe(var, shader) \
698     nir_foreach_variable_with_modes_safe(var, shader, nir_var_uniform)
699  
700  static inline bool
nir_variable_is_global(const nir_variable * var)701  nir_variable_is_global(const nir_variable *var)
702  {
703     return var->data.mode != nir_var_function_temp;
704  }
705  
706  typedef struct nir_register {
707     struct exec_node node;
708  
709     unsigned num_components; /** < number of vector components */
710     unsigned num_array_elems; /** < size of array (0 for no array) */
711  
712     /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
713     uint8_t bit_size;
714  
715     /** generic register index. */
716     unsigned index;
717  
718     /** only for debug purposes, can be NULL */
719     const char *name;
720  
721     /** set of nir_srcs where this register is used (read from) */
722     struct list_head uses;
723  
724     /** set of nir_dests where this register is defined (written to) */
725     struct list_head defs;
726  
727     /** set of nir_ifs where this register is used as a condition */
728     struct list_head if_uses;
729  } nir_register;
730  
731  #define nir_foreach_register(reg, reg_list) \
732     foreach_list_typed(nir_register, reg, node, reg_list)
733  #define nir_foreach_register_safe(reg, reg_list) \
734     foreach_list_typed_safe(nir_register, reg, node, reg_list)
735  
736  typedef enum PACKED {
737     nir_instr_type_alu,
738     nir_instr_type_deref,
739     nir_instr_type_call,
740     nir_instr_type_tex,
741     nir_instr_type_intrinsic,
742     nir_instr_type_load_const,
743     nir_instr_type_jump,
744     nir_instr_type_ssa_undef,
745     nir_instr_type_phi,
746     nir_instr_type_parallel_copy,
747  } nir_instr_type;
748  
749  typedef struct nir_instr {
750     struct exec_node node;
751     struct nir_block *block;
752     nir_instr_type type;
753  
754     /* A temporary for optimization and analysis passes to use for storing
755      * flags.  For instance, DCE uses this to store the "dead/live" info.
756      */
757     uint8_t pass_flags;
758  
759     /** generic instruction index. */
760     uint32_t index;
761  } nir_instr;
762  
763  static inline nir_instr *
nir_instr_next(nir_instr * instr)764  nir_instr_next(nir_instr *instr)
765  {
766     struct exec_node *next = exec_node_get_next(&instr->node);
767     if (exec_node_is_tail_sentinel(next))
768        return NULL;
769     else
770        return exec_node_data(nir_instr, next, node);
771  }
772  
773  static inline nir_instr *
nir_instr_prev(nir_instr * instr)774  nir_instr_prev(nir_instr *instr)
775  {
776     struct exec_node *prev = exec_node_get_prev(&instr->node);
777     if (exec_node_is_head_sentinel(prev))
778        return NULL;
779     else
780        return exec_node_data(nir_instr, prev, node);
781  }
782  
783  static inline bool
nir_instr_is_first(const nir_instr * instr)784  nir_instr_is_first(const nir_instr *instr)
785  {
786     return exec_node_is_head_sentinel(exec_node_get_prev_const(&instr->node));
787  }
788  
789  static inline bool
nir_instr_is_last(const nir_instr * instr)790  nir_instr_is_last(const nir_instr *instr)
791  {
792     return exec_node_is_tail_sentinel(exec_node_get_next_const(&instr->node));
793  }
794  
795  typedef struct nir_ssa_def {
796     /** for debugging only, can be NULL */
797     const char* name;
798  
799     /** Instruction which produces this SSA value. */
800     nir_instr *parent_instr;
801  
802     /** set of nir_instrs where this register is used (read from) */
803     struct list_head uses;
804  
805     /** set of nir_ifs where this register is used as a condition */
806     struct list_head if_uses;
807  
808     /** generic SSA definition index. */
809     unsigned index;
810  
811     uint8_t num_components;
812  
813     /* The bit-size of each channel; must be one of 8, 16, 32, or 64 */
814     uint8_t bit_size;
815  
816     /**
817      * True if this SSA value may have different values in different SIMD
818      * invocations of the shader.  This is set by nir_divergence_analysis.
819      */
820     bool divergent;
821  } nir_ssa_def;
822  
823  struct nir_src;
824  
825  typedef struct {
826     nir_register *reg;
827     struct nir_src *indirect; /** < NULL for no indirect offset */
828     unsigned base_offset;
829  
830     /* TODO use-def chain goes here */
831  } nir_reg_src;
832  
833  typedef struct {
834     nir_instr *parent_instr;
835     struct list_head def_link;
836  
837     nir_register *reg;
838     struct nir_src *indirect; /** < NULL for no indirect offset */
839     unsigned base_offset;
840  
841     /* TODO def-use chain goes here */
842  } nir_reg_dest;
843  
844  struct nir_if;
845  
846  typedef struct nir_src {
847     union {
848        /** Instruction that consumes this value as a source. */
849        nir_instr *parent_instr;
850        struct nir_if *parent_if;
851     };
852  
853     struct list_head use_link;
854  
855     union {
856        nir_reg_src reg;
857        nir_ssa_def *ssa;
858     };
859  
860     bool is_ssa;
861  } nir_src;
862  
863  static inline nir_src
nir_src_init(void)864  nir_src_init(void)
865  {
866     nir_src src = { { NULL } };
867     return src;
868  }
869  
870  #define NIR_SRC_INIT nir_src_init()
871  
872  #define nir_foreach_use(src, reg_or_ssa_def) \
873     list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
874  
875  #define nir_foreach_use_safe(src, reg_or_ssa_def) \
876     list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->uses, use_link)
877  
878  #define nir_foreach_if_use(src, reg_or_ssa_def) \
879     list_for_each_entry(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
880  
881  #define nir_foreach_if_use_safe(src, reg_or_ssa_def) \
882     list_for_each_entry_safe(nir_src, src, &(reg_or_ssa_def)->if_uses, use_link)
883  
884  typedef struct {
885     union {
886        nir_reg_dest reg;
887        nir_ssa_def ssa;
888     };
889  
890     bool is_ssa;
891  } nir_dest;
892  
893  static inline nir_dest
nir_dest_init(void)894  nir_dest_init(void)
895  {
896     nir_dest dest = { { { NULL } } };
897     return dest;
898  }
899  
900  #define NIR_DEST_INIT nir_dest_init()
901  
902  #define nir_foreach_def(dest, reg) \
903     list_for_each_entry(nir_dest, dest, &(reg)->defs, reg.def_link)
904  
905  #define nir_foreach_def_safe(dest, reg) \
906     list_for_each_entry_safe(nir_dest, dest, &(reg)->defs, reg.def_link)
907  
908  static inline nir_src
nir_src_for_ssa(nir_ssa_def * def)909  nir_src_for_ssa(nir_ssa_def *def)
910  {
911     nir_src src = NIR_SRC_INIT;
912  
913     src.is_ssa = true;
914     src.ssa = def;
915  
916     return src;
917  }
918  
919  static inline nir_src
nir_src_for_reg(nir_register * reg)920  nir_src_for_reg(nir_register *reg)
921  {
922     nir_src src = NIR_SRC_INIT;
923  
924     src.is_ssa = false;
925     src.reg.reg = reg;
926     src.reg.indirect = NULL;
927     src.reg.base_offset = 0;
928  
929     return src;
930  }
931  
932  static inline nir_dest
nir_dest_for_reg(nir_register * reg)933  nir_dest_for_reg(nir_register *reg)
934  {
935     nir_dest dest = NIR_DEST_INIT;
936  
937     dest.reg.reg = reg;
938  
939     return dest;
940  }
941  
942  static inline unsigned
nir_src_bit_size(nir_src src)943  nir_src_bit_size(nir_src src)
944  {
945     return src.is_ssa ? src.ssa->bit_size : src.reg.reg->bit_size;
946  }
947  
948  static inline unsigned
nir_src_num_components(nir_src src)949  nir_src_num_components(nir_src src)
950  {
951     return src.is_ssa ? src.ssa->num_components : src.reg.reg->num_components;
952  }
953  
954  static inline bool
nir_src_is_const(nir_src src)955  nir_src_is_const(nir_src src)
956  {
957     return src.is_ssa &&
958            src.ssa->parent_instr->type == nir_instr_type_load_const;
959  }
960  
961  static inline bool
nir_src_is_divergent(nir_src src)962  nir_src_is_divergent(nir_src src)
963  {
964     assert(src.is_ssa);
965     return src.ssa->divergent;
966  }
967  
968  static inline unsigned
nir_dest_bit_size(nir_dest dest)969  nir_dest_bit_size(nir_dest dest)
970  {
971     return dest.is_ssa ? dest.ssa.bit_size : dest.reg.reg->bit_size;
972  }
973  
974  static inline unsigned
nir_dest_num_components(nir_dest dest)975  nir_dest_num_components(nir_dest dest)
976  {
977     return dest.is_ssa ? dest.ssa.num_components : dest.reg.reg->num_components;
978  }
979  
980  static inline bool
nir_dest_is_divergent(nir_dest dest)981  nir_dest_is_divergent(nir_dest dest)
982  {
983     assert(dest.is_ssa);
984     return dest.ssa.divergent;
985  }
986  
987  /* Are all components the same, ie. .xxxx */
988  static inline bool
nir_is_same_comp_swizzle(uint8_t * swiz,unsigned nr_comp)989  nir_is_same_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
990  {
991     for (unsigned i = 1; i < nr_comp; i++)
992        if (swiz[i] != swiz[0])
993           return false;
994     return true;
995  }
996  
997  /* Are all components sequential, ie. .yzw */
998  static inline bool
nir_is_sequential_comp_swizzle(uint8_t * swiz,unsigned nr_comp)999  nir_is_sequential_comp_swizzle(uint8_t *swiz, unsigned nr_comp)
1000  {
1001     for (unsigned i = 1; i < nr_comp; i++)
1002        if (swiz[i] != (swiz[0] + i))
1003           return false;
1004     return true;
1005  }
1006  
1007  void nir_src_copy(nir_src *dest, const nir_src *src, void *instr_or_if);
1008  void nir_dest_copy(nir_dest *dest, const nir_dest *src, nir_instr *instr);
1009  
1010  typedef struct {
1011     nir_src src;
1012  
1013     /**
1014      * \name input modifiers
1015      */
1016     /*@{*/
1017     /**
1018      * For inputs interpreted as floating point, flips the sign bit. For
1019      * inputs interpreted as integers, performs the two's complement negation.
1020      */
1021     bool negate;
1022  
1023     /**
1024      * Clears the sign bit for floating point values, and computes the integer
1025      * absolute value for integers. Note that the negate modifier acts after
1026      * the absolute value modifier, therefore if both are set then all inputs
1027      * will become negative.
1028      */
1029     bool abs;
1030     /*@}*/
1031  
1032     /**
1033      * For each input component, says which component of the register it is
1034      * chosen from. Note that which elements of the swizzle are used and which
1035      * are ignored are based on the write mask for most opcodes - for example,
1036      * a statement like "foo.xzw = bar.zyx" would have a writemask of 1101b and
1037      * a swizzle of {2, x, 1, 0} where x means "don't care."
1038      */
1039     uint8_t swizzle[NIR_MAX_VEC_COMPONENTS];
1040  } nir_alu_src;
1041  
1042  typedef struct {
1043     nir_dest dest;
1044  
1045     /**
1046      * \name saturate output modifier
1047      *
1048      * Only valid for opcodes that output floating-point numbers. Clamps the
1049      * output to between 0.0 and 1.0 inclusive.
1050      */
1051  
1052     bool saturate;
1053  
1054     unsigned write_mask : NIR_MAX_VEC_COMPONENTS; /* ignored if dest.is_ssa is true */
1055  } nir_alu_dest;
1056  
1057  /** NIR sized and unsized types
1058   *
1059   * The values in this enum are carefully chosen so that the sized type is
1060   * just the unsized type OR the number of bits.
1061   */
1062  typedef enum PACKED {
1063     nir_type_invalid = 0, /* Not a valid type */
1064     nir_type_int =       2,
1065     nir_type_uint =      4,
1066     nir_type_bool =      6,
1067     nir_type_float =     128,
1068     nir_type_bool1 =     1  | nir_type_bool,
1069     nir_type_bool8 =     8  | nir_type_bool,
1070     nir_type_bool16 =    16 | nir_type_bool,
1071     nir_type_bool32 =    32 | nir_type_bool,
1072     nir_type_int1 =      1  | nir_type_int,
1073     nir_type_int8 =      8  | nir_type_int,
1074     nir_type_int16 =     16 | nir_type_int,
1075     nir_type_int32 =     32 | nir_type_int,
1076     nir_type_int64 =     64 | nir_type_int,
1077     nir_type_uint1 =     1  | nir_type_uint,
1078     nir_type_uint8 =     8  | nir_type_uint,
1079     nir_type_uint16 =    16 | nir_type_uint,
1080     nir_type_uint32 =    32 | nir_type_uint,
1081     nir_type_uint64 =    64 | nir_type_uint,
1082     nir_type_float16 =   16 | nir_type_float,
1083     nir_type_float32 =   32 | nir_type_float,
1084     nir_type_float64 =   64 | nir_type_float,
1085  } nir_alu_type;
1086  
1087  #define NIR_ALU_TYPE_SIZE_MASK 0x79
1088  #define NIR_ALU_TYPE_BASE_TYPE_MASK 0x86
1089  
1090  static inline unsigned
nir_alu_type_get_type_size(nir_alu_type type)1091  nir_alu_type_get_type_size(nir_alu_type type)
1092  {
1093     return type & NIR_ALU_TYPE_SIZE_MASK;
1094  }
1095  
1096  static inline nir_alu_type
nir_alu_type_get_base_type(nir_alu_type type)1097  nir_alu_type_get_base_type(nir_alu_type type)
1098  {
1099     return (nir_alu_type)(type & NIR_ALU_TYPE_BASE_TYPE_MASK);
1100  }
1101  
1102  static inline nir_alu_type
nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)1103  nir_get_nir_type_for_glsl_base_type(enum glsl_base_type base_type)
1104  {
1105     switch (base_type) {
1106     case GLSL_TYPE_BOOL:
1107        return nir_type_bool1;
1108        break;
1109     case GLSL_TYPE_UINT:
1110        return nir_type_uint32;
1111        break;
1112     case GLSL_TYPE_INT:
1113        return nir_type_int32;
1114        break;
1115     case GLSL_TYPE_UINT16:
1116        return nir_type_uint16;
1117        break;
1118     case GLSL_TYPE_INT16:
1119        return nir_type_int16;
1120        break;
1121     case GLSL_TYPE_UINT8:
1122        return nir_type_uint8;
1123     case GLSL_TYPE_INT8:
1124        return nir_type_int8;
1125     case GLSL_TYPE_UINT64:
1126        return nir_type_uint64;
1127        break;
1128     case GLSL_TYPE_INT64:
1129        return nir_type_int64;
1130        break;
1131     case GLSL_TYPE_FLOAT:
1132        return nir_type_float32;
1133        break;
1134     case GLSL_TYPE_FLOAT16:
1135        return nir_type_float16;
1136        break;
1137     case GLSL_TYPE_DOUBLE:
1138        return nir_type_float64;
1139        break;
1140  
1141     case GLSL_TYPE_SAMPLER:
1142     case GLSL_TYPE_IMAGE:
1143     case GLSL_TYPE_ATOMIC_UINT:
1144     case GLSL_TYPE_STRUCT:
1145     case GLSL_TYPE_INTERFACE:
1146     case GLSL_TYPE_ARRAY:
1147     case GLSL_TYPE_VOID:
1148     case GLSL_TYPE_SUBROUTINE:
1149     case GLSL_TYPE_FUNCTION:
1150     case GLSL_TYPE_ERROR:
1151        return nir_type_invalid;
1152     }
1153  
1154     unreachable("unknown type");
1155  }
1156  
1157  static inline nir_alu_type
nir_get_nir_type_for_glsl_type(const struct glsl_type * type)1158  nir_get_nir_type_for_glsl_type(const struct glsl_type *type)
1159  {
1160     return nir_get_nir_type_for_glsl_base_type(glsl_get_base_type(type));
1161  }
1162  
1163  nir_op nir_type_conversion_op(nir_alu_type src, nir_alu_type dst,
1164                                nir_rounding_mode rnd);
1165  
1166  static inline nir_op
nir_op_vec(unsigned components)1167  nir_op_vec(unsigned components)
1168  {
1169     switch (components) {
1170     case  1: return nir_op_mov;
1171     case  2: return nir_op_vec2;
1172     case  3: return nir_op_vec3;
1173     case  4: return nir_op_vec4;
1174     case  8: return nir_op_vec8;
1175     case 16: return nir_op_vec16;
1176     default: unreachable("bad component count");
1177     }
1178  }
1179  
1180  static inline bool
nir_op_is_vec(nir_op op)1181  nir_op_is_vec(nir_op op)
1182  {
1183     switch (op) {
1184     case nir_op_mov:
1185     case nir_op_vec2:
1186     case nir_op_vec3:
1187     case nir_op_vec4:
1188     case nir_op_vec8:
1189     case nir_op_vec16:
1190        return true;
1191     default:
1192        return false;
1193     }
1194  }
1195  
1196  static inline bool
nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode,unsigned bit_size)1197  nir_is_float_control_signed_zero_inf_nan_preserve(unsigned execution_mode, unsigned bit_size)
1198  {
1199      return (16 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP16) ||
1200          (32 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP32) ||
1201          (64 == bit_size && execution_mode & FLOAT_CONTROLS_SIGNED_ZERO_INF_NAN_PRESERVE_FP64);
1202  }
1203  
1204  static inline bool
nir_is_denorm_flush_to_zero(unsigned execution_mode,unsigned bit_size)1205  nir_is_denorm_flush_to_zero(unsigned execution_mode, unsigned bit_size)
1206  {
1207      return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16) ||
1208          (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP32) ||
1209          (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP64);
1210  }
1211  
1212  static inline bool
nir_is_denorm_preserve(unsigned execution_mode,unsigned bit_size)1213  nir_is_denorm_preserve(unsigned execution_mode, unsigned bit_size)
1214  {
1215      return (16 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP16) ||
1216          (32 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP32) ||
1217          (64 == bit_size && execution_mode & FLOAT_CONTROLS_DENORM_PRESERVE_FP64);
1218  }
1219  
1220  static inline bool
nir_is_rounding_mode_rtne(unsigned execution_mode,unsigned bit_size)1221  nir_is_rounding_mode_rtne(unsigned execution_mode, unsigned bit_size)
1222  {
1223      return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1224          (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1225          (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1226  }
1227  
1228  static inline bool
nir_is_rounding_mode_rtz(unsigned execution_mode,unsigned bit_size)1229  nir_is_rounding_mode_rtz(unsigned execution_mode, unsigned bit_size)
1230  {
1231      return (16 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1232          (32 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1233          (64 == bit_size && execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1234  }
1235  
1236  static inline bool
nir_has_any_rounding_mode_rtz(unsigned execution_mode)1237  nir_has_any_rounding_mode_rtz(unsigned execution_mode)
1238  {
1239      return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP16) ||
1240          (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP32) ||
1241          (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTZ_FP64);
1242  }
1243  
1244  static inline bool
nir_has_any_rounding_mode_rtne(unsigned execution_mode)1245  nir_has_any_rounding_mode_rtne(unsigned execution_mode)
1246  {
1247      return (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP16) ||
1248          (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP32) ||
1249          (execution_mode & FLOAT_CONTROLS_ROUNDING_MODE_RTE_FP64);
1250  }
1251  
1252  static inline nir_rounding_mode
nir_get_rounding_mode_from_float_controls(unsigned execution_mode,nir_alu_type type)1253  nir_get_rounding_mode_from_float_controls(unsigned execution_mode,
1254                                            nir_alu_type type)
1255  {
1256     if (nir_alu_type_get_base_type(type) != nir_type_float)
1257        return nir_rounding_mode_undef;
1258  
1259     unsigned bit_size = nir_alu_type_get_type_size(type);
1260  
1261     if (nir_is_rounding_mode_rtz(execution_mode, bit_size))
1262        return nir_rounding_mode_rtz;
1263     if (nir_is_rounding_mode_rtne(execution_mode, bit_size))
1264        return nir_rounding_mode_rtne;
1265     return nir_rounding_mode_undef;
1266  }
1267  
1268  static inline bool
nir_has_any_rounding_mode_enabled(unsigned execution_mode)1269  nir_has_any_rounding_mode_enabled(unsigned execution_mode)
1270  {
1271     bool result =
1272        nir_has_any_rounding_mode_rtne(execution_mode) ||
1273        nir_has_any_rounding_mode_rtz(execution_mode);
1274     return result;
1275  }
1276  
1277  typedef enum {
1278     /**
1279      * Operation where the first two sources are commutative.
1280      *
1281      * For 2-source operations, this just mathematical commutativity.  Some
1282      * 3-source operations, like ffma, are only commutative in the first two
1283      * sources.
1284      */
1285     NIR_OP_IS_2SRC_COMMUTATIVE = (1 << 0),
1286     NIR_OP_IS_ASSOCIATIVE = (1 << 1),
1287  } nir_op_algebraic_property;
1288  
1289  typedef struct {
1290     const char *name;
1291  
1292     uint8_t num_inputs;
1293  
1294     /**
1295      * The number of components in the output
1296      *
1297      * If non-zero, this is the size of the output and input sizes are
1298      * explicitly given; swizzle and writemask are still in effect, but if
1299      * the output component is masked out, then the input component may
1300      * still be in use.
1301      *
1302      * If zero, the opcode acts in the standard, per-component manner; the
1303      * operation is performed on each component (except the ones that are
1304      * masked out) with the input being taken from the input swizzle for
1305      * that component.
1306      *
1307      * The size of some of the inputs may be given (i.e. non-zero) even
1308      * though output_size is zero; in that case, the inputs with a zero
1309      * size act per-component, while the inputs with non-zero size don't.
1310      */
1311     uint8_t output_size;
1312  
1313     /**
1314      * The type of vector that the instruction outputs. Note that the
1315      * staurate modifier is only allowed on outputs with the float type.
1316      */
1317  
1318     nir_alu_type output_type;
1319  
1320     /**
1321      * The number of components in each input
1322      */
1323     uint8_t input_sizes[NIR_MAX_VEC_COMPONENTS];
1324  
1325     /**
1326      * The type of vector that each input takes. Note that negate and
1327      * absolute value are only allowed on inputs with int or float type and
1328      * behave differently on the two.
1329      */
1330     nir_alu_type input_types[NIR_MAX_VEC_COMPONENTS];
1331  
1332     nir_op_algebraic_property algebraic_properties;
1333  
1334     /* Whether this represents a numeric conversion opcode */
1335     bool is_conversion;
1336  } nir_op_info;
1337  
1338  extern const nir_op_info nir_op_infos[nir_num_opcodes];
1339  
1340  typedef struct nir_alu_instr {
1341     nir_instr instr;
1342     nir_op op;
1343  
1344     /** Indicates that this ALU instruction generates an exact value
1345      *
1346      * This is kind of a mixture of GLSL "precise" and "invariant" and not
1347      * really equivalent to either.  This indicates that the value generated by
1348      * this operation is high-precision and any code transformations that touch
1349      * it must ensure that the resulting value is bit-for-bit identical to the
1350      * original.
1351      */
1352     bool exact:1;
1353  
1354     /**
1355      * Indicates that this instruction do not cause wrapping to occur, in the
1356      * form of overflow or underflow.
1357      */
1358     bool no_signed_wrap:1;
1359     bool no_unsigned_wrap:1;
1360  
1361     nir_alu_dest dest;
1362     nir_alu_src src[];
1363  } nir_alu_instr;
1364  
1365  void nir_alu_src_copy(nir_alu_src *dest, const nir_alu_src *src,
1366                        nir_alu_instr *instr);
1367  void nir_alu_dest_copy(nir_alu_dest *dest, const nir_alu_dest *src,
1368                         nir_alu_instr *instr);
1369  
1370  /* is this source channel used? */
1371  static inline bool
nir_alu_instr_channel_used(const nir_alu_instr * instr,unsigned src,unsigned channel)1372  nir_alu_instr_channel_used(const nir_alu_instr *instr, unsigned src,
1373                             unsigned channel)
1374  {
1375     if (nir_op_infos[instr->op].input_sizes[src] > 0)
1376        return channel < nir_op_infos[instr->op].input_sizes[src];
1377  
1378     return (instr->dest.write_mask >> channel) & 1;
1379  }
1380  
1381  static inline nir_component_mask_t
nir_alu_instr_src_read_mask(const nir_alu_instr * instr,unsigned src)1382  nir_alu_instr_src_read_mask(const nir_alu_instr *instr, unsigned src)
1383  {
1384     nir_component_mask_t read_mask = 0;
1385     for (unsigned c = 0; c < NIR_MAX_VEC_COMPONENTS; c++) {
1386        if (!nir_alu_instr_channel_used(instr, src, c))
1387           continue;
1388  
1389        read_mask |= (1 << instr->src[src].swizzle[c]);
1390     }
1391     return read_mask;
1392  }
1393  
1394  /**
1395   * Get the number of channels used for a source
1396   */
1397  static inline unsigned
nir_ssa_alu_instr_src_components(const nir_alu_instr * instr,unsigned src)1398  nir_ssa_alu_instr_src_components(const nir_alu_instr *instr, unsigned src)
1399  {
1400     if (nir_op_infos[instr->op].input_sizes[src] > 0)
1401        return nir_op_infos[instr->op].input_sizes[src];
1402  
1403     return nir_dest_num_components(instr->dest.dest);
1404  }
1405  
1406  static inline bool
nir_alu_instr_is_comparison(const nir_alu_instr * instr)1407  nir_alu_instr_is_comparison(const nir_alu_instr *instr)
1408  {
1409     switch (instr->op) {
1410     case nir_op_flt:
1411     case nir_op_fge:
1412     case nir_op_feq:
1413     case nir_op_fneu:
1414     case nir_op_ilt:
1415     case nir_op_ult:
1416     case nir_op_ige:
1417     case nir_op_uge:
1418     case nir_op_ieq:
1419     case nir_op_ine:
1420     case nir_op_i2b1:
1421     case nir_op_f2b1:
1422     case nir_op_inot:
1423        return true;
1424     default:
1425        return false;
1426     }
1427  }
1428  
1429  bool nir_const_value_negative_equal(nir_const_value c1, nir_const_value c2,
1430                                      nir_alu_type full_type);
1431  
1432  bool nir_alu_srcs_equal(const nir_alu_instr *alu1, const nir_alu_instr *alu2,
1433                          unsigned src1, unsigned src2);
1434  
1435  bool nir_alu_srcs_negative_equal(const nir_alu_instr *alu1,
1436                                   const nir_alu_instr *alu2,
1437                                   unsigned src1, unsigned src2);
1438  
1439  bool nir_alu_src_is_trivial_ssa(const nir_alu_instr *alu, unsigned srcn);
1440  
1441  typedef enum {
1442     nir_deref_type_var,
1443     nir_deref_type_array,
1444     nir_deref_type_array_wildcard,
1445     nir_deref_type_ptr_as_array,
1446     nir_deref_type_struct,
1447     nir_deref_type_cast,
1448  } nir_deref_type;
1449  
1450  typedef struct {
1451     nir_instr instr;
1452  
1453     /** The type of this deref instruction */
1454     nir_deref_type deref_type;
1455  
1456     /** Bitmask what modes the underlying variable might be
1457      *
1458      * For OpenCL-style generic pointers, we may not know exactly what mode it
1459      * is at any given point in time in the compile process.  This bitfield
1460      * contains the set of modes which it MAY be.
1461      *
1462      * Generally, this field should not be accessed directly.  Use one of the
1463      * nir_deref_mode_ helpers instead.
1464      */
1465     nir_variable_mode modes;
1466  
1467     /** The dereferenced type of the resulting pointer value */
1468     const struct glsl_type *type;
1469  
1470     union {
1471        /** Variable being dereferenced if deref_type is a deref_var */
1472        nir_variable *var;
1473  
1474        /** Parent deref if deref_type is not deref_var */
1475        nir_src parent;
1476     };
1477  
1478     /** Additional deref parameters */
1479     union {
1480        struct {
1481           nir_src index;
1482        } arr;
1483  
1484        struct {
1485           unsigned index;
1486        } strct;
1487  
1488        struct {
1489           unsigned ptr_stride;
1490           unsigned align_mul;
1491           unsigned align_offset;
1492        } cast;
1493     };
1494  
1495     /** Destination to store the resulting "pointer" */
1496     nir_dest dest;
1497  } nir_deref_instr;
1498  
1499  /** Returns true if deref might have one of the given modes
1500   *
1501   * For multi-mode derefs, this returns true if any of the possible modes for
1502   * the deref to have any of the specified modes.  This function returning true
1503   * does NOT mean that the deref definitely has one of those modes.  It simply
1504   * means that, with the best information we have at the time, it might.
1505   */
1506  static inline bool
nir_deref_mode_may_be(const nir_deref_instr * deref,nir_variable_mode modes)1507  nir_deref_mode_may_be(const nir_deref_instr *deref, nir_variable_mode modes)
1508  {
1509     assert(!(modes & ~nir_var_all));
1510     assert(deref->modes != 0);
1511     return deref->modes & modes;
1512  }
1513  
1514  /** Returns true if deref must have one of the given modes
1515   *
1516   * For multi-mode derefs, this returns true if NIR can prove that the given
1517   * deref has one of the specified modes.  This function returning false does
1518   * NOT mean that deref doesn't have one of the given mode.  It very well may
1519   * have one of those modes, we just don't have enough information to prove
1520   * that it does for sure.
1521   */
1522  static inline bool
nir_deref_mode_must_be(const nir_deref_instr * deref,nir_variable_mode modes)1523  nir_deref_mode_must_be(const nir_deref_instr *deref, nir_variable_mode modes)
1524  {
1525     assert(!(modes & ~nir_var_all));
1526     assert(deref->modes != 0);
1527     return !(deref->modes & ~modes);
1528  }
1529  
1530  /** Returns true if deref has the given mode
1531   *
1532   * This returns true if the deref has exactly the mode specified.  If the
1533   * deref may have that mode but may also have a different mode (i.e. modes has
1534   * multiple bits set), this will assert-fail.
1535   *
1536   * If you're confused about which nir_deref_mode_ helper to use, use this one
1537   * or nir_deref_mode_is_one_of below.
1538   */
1539  static inline bool
nir_deref_mode_is(const nir_deref_instr * deref,nir_variable_mode mode)1540  nir_deref_mode_is(const nir_deref_instr *deref, nir_variable_mode mode)
1541  {
1542     assert(util_bitcount(mode) == 1 && (mode & nir_var_all));
1543     assert(deref->modes != 0);
1544  
1545     /* This is only for "simple" cases so, if modes might interact with this
1546      * deref then the deref has to have a single mode.
1547      */
1548     if (nir_deref_mode_may_be(deref, mode)) {
1549        assert(util_bitcount(deref->modes) == 1);
1550        assert(deref->modes == mode);
1551     }
1552  
1553     return deref->modes == mode;
1554  }
1555  
1556  /** Returns true if deref has one of the given modes
1557   *
1558   * This returns true if the deref has exactly one possible mode and that mode
1559   * is one of the modes specified.  If the deref may have one of those modes
1560   * but may also have a different mode (i.e. modes has multiple bits set), this
1561   * will assert-fail.
1562   */
1563  static inline bool
nir_deref_mode_is_one_of(const nir_deref_instr * deref,nir_variable_mode modes)1564  nir_deref_mode_is_one_of(const nir_deref_instr *deref, nir_variable_mode modes)
1565  {
1566     /* This is only for "simple" cases so, if modes might interact with this
1567      * deref then the deref has to have a single mode.
1568      */
1569     if (nir_deref_mode_may_be(deref, modes)) {
1570        assert(util_bitcount(deref->modes) == 1);
1571        assert(nir_deref_mode_must_be(deref, modes));
1572     }
1573  
1574     return nir_deref_mode_may_be(deref, modes);
1575  }
1576  
1577  /** Returns true if deref's possible modes lie in the given set of modes
1578   *
1579   * This returns true if the deref's modes lie in the given set of modes.  If
1580   * the deref's modes overlap with the specified modes but aren't entirely
1581   * contained in the specified set of modes, this will assert-fail.  In
1582   * particular, if this is used in a generic pointers scenario, the specified
1583   * modes has to contain all or none of the possible generic pointer modes.
1584   *
1585   * This is intended mostly for mass-lowering of derefs which might have
1586   * generic pointers.
1587   */
1588  static inline bool
nir_deref_mode_is_in_set(const nir_deref_instr * deref,nir_variable_mode modes)1589  nir_deref_mode_is_in_set(const nir_deref_instr *deref, nir_variable_mode modes)
1590  {
1591     if (nir_deref_mode_may_be(deref, modes))
1592        assert(nir_deref_mode_must_be(deref, modes));
1593  
1594     return nir_deref_mode_may_be(deref, modes);
1595  }
1596  
1597  static inline nir_deref_instr *nir_src_as_deref(nir_src src);
1598  
1599  static inline nir_deref_instr *
nir_deref_instr_parent(const nir_deref_instr * instr)1600  nir_deref_instr_parent(const nir_deref_instr *instr)
1601  {
1602     if (instr->deref_type == nir_deref_type_var)
1603        return NULL;
1604     else
1605        return nir_src_as_deref(instr->parent);
1606  }
1607  
1608  static inline nir_variable *
nir_deref_instr_get_variable(const nir_deref_instr * instr)1609  nir_deref_instr_get_variable(const nir_deref_instr *instr)
1610  {
1611     while (instr->deref_type != nir_deref_type_var) {
1612        if (instr->deref_type == nir_deref_type_cast)
1613           return NULL;
1614  
1615        instr = nir_deref_instr_parent(instr);
1616     }
1617  
1618     return instr->var;
1619  }
1620  
1621  bool nir_deref_instr_has_indirect(nir_deref_instr *instr);
1622  bool nir_deref_instr_is_known_out_of_bounds(nir_deref_instr *instr);
1623  bool nir_deref_instr_has_complex_use(nir_deref_instr *instr);
1624  
1625  bool nir_deref_instr_remove_if_unused(nir_deref_instr *instr);
1626  
1627  unsigned nir_deref_instr_array_stride(nir_deref_instr *instr);
1628  
1629  typedef struct {
1630     nir_instr instr;
1631  
1632     struct nir_function *callee;
1633  
1634     unsigned num_params;
1635     nir_src params[];
1636  } nir_call_instr;
1637  
1638  #include "nir_intrinsics.h"
1639  
1640  #define NIR_INTRINSIC_MAX_CONST_INDEX 5
1641  
1642  /** Represents an intrinsic
1643   *
1644   * An intrinsic is an instruction type for handling things that are
1645   * more-or-less regular operations but don't just consume and produce SSA
1646   * values like ALU operations do.  Intrinsics are not for things that have
1647   * special semantic meaning such as phi nodes and parallel copies.
1648   * Examples of intrinsics include variable load/store operations, system
1649   * value loads, and the like.  Even though texturing more-or-less falls
1650   * under this category, texturing is its own instruction type because
1651   * trying to represent texturing with intrinsics would lead to a
1652   * combinatorial explosion of intrinsic opcodes.
1653   *
1654   * By having a single instruction type for handling a lot of different
1655   * cases, optimization passes can look for intrinsics and, for the most
1656   * part, completely ignore them.  Each intrinsic type also has a few
1657   * possible flags that govern whether or not they can be reordered or
1658   * eliminated.  That way passes like dead code elimination can still work
1659   * on intrisics without understanding the meaning of each.
1660   *
1661   * Each intrinsic has some number of constant indices, some number of
1662   * variables, and some number of sources.  What these sources, variables,
1663   * and indices mean depends on the intrinsic and is documented with the
1664   * intrinsic declaration in nir_intrinsics.h.  Intrinsics and texture
1665   * instructions are the only types of instruction that can operate on
1666   * variables.
1667   */
1668  typedef struct {
1669     nir_instr instr;
1670  
1671     nir_intrinsic_op intrinsic;
1672  
1673     nir_dest dest;
1674  
1675     /** number of components if this is a vectorized intrinsic
1676      *
1677      * Similarly to ALU operations, some intrinsics are vectorized.
1678      * An intrinsic is vectorized if nir_intrinsic_infos.dest_components == 0.
1679      * For vectorized intrinsics, the num_components field specifies the
1680      * number of destination components and the number of source components
1681      * for all sources with nir_intrinsic_infos.src_components[i] == 0.
1682      */
1683     uint8_t num_components;
1684  
1685     int const_index[NIR_INTRINSIC_MAX_CONST_INDEX];
1686  
1687     nir_src src[];
1688  } nir_intrinsic_instr;
1689  
1690  static inline nir_variable *
nir_intrinsic_get_var(nir_intrinsic_instr * intrin,unsigned i)1691  nir_intrinsic_get_var(nir_intrinsic_instr *intrin, unsigned i)
1692  {
1693     return nir_deref_instr_get_variable(nir_src_as_deref(intrin->src[i]));
1694  }
1695  
1696  typedef enum {
1697     /* Memory ordering. */
1698     NIR_MEMORY_ACQUIRE        = 1 << 0,
1699     NIR_MEMORY_RELEASE        = 1 << 1,
1700     NIR_MEMORY_ACQ_REL        = NIR_MEMORY_ACQUIRE | NIR_MEMORY_RELEASE,
1701  
1702     /* Memory visibility operations. */
1703     NIR_MEMORY_MAKE_AVAILABLE = 1 << 2,
1704     NIR_MEMORY_MAKE_VISIBLE   = 1 << 3,
1705  } nir_memory_semantics;
1706  
1707  typedef enum {
1708     NIR_SCOPE_NONE,
1709     NIR_SCOPE_INVOCATION,
1710     NIR_SCOPE_SUBGROUP,
1711     NIR_SCOPE_SHADER_CALL,
1712     NIR_SCOPE_WORKGROUP,
1713     NIR_SCOPE_QUEUE_FAMILY,
1714     NIR_SCOPE_DEVICE,
1715  } nir_scope;
1716  
1717  /**
1718   * \name NIR intrinsics semantic flags
1719   *
1720   * information about what the compiler can do with the intrinsics.
1721   *
1722   * \sa nir_intrinsic_info::flags
1723   */
1724  typedef enum {
1725     /**
1726      * whether the intrinsic can be safely eliminated if none of its output
1727      * value is not being used.
1728      */
1729     NIR_INTRINSIC_CAN_ELIMINATE = (1 << 0),
1730  
1731     /**
1732      * Whether the intrinsic can be reordered with respect to any other
1733      * intrinsic, i.e. whether the only reordering dependencies of the
1734      * intrinsic are due to the register reads/writes.
1735      */
1736     NIR_INTRINSIC_CAN_REORDER = (1 << 1),
1737  } nir_intrinsic_semantic_flag;
1738  
1739  /**
1740   * \name NIR intrinsics const-index flag
1741   *
1742   * Indicates the usage of a const_index slot.
1743   *
1744   * \sa nir_intrinsic_info::index_map
1745   */
1746  typedef enum {
1747     /**
1748      * Generally instructions that take a offset src argument, can encode
1749      * a constant 'base' value which is added to the offset.
1750      */
1751     NIR_INTRINSIC_BASE = 1,
1752  
1753     /**
1754      * For store instructions, a writemask for the store.
1755      */
1756     NIR_INTRINSIC_WRMASK,
1757  
1758     /**
1759      * The stream-id for GS emit_vertex/end_primitive intrinsics.
1760      */
1761     NIR_INTRINSIC_STREAM_ID,
1762  
1763     /**
1764      * The clip-plane id for load_user_clip_plane intrinsic.
1765      */
1766     NIR_INTRINSIC_UCP_ID,
1767  
1768     /**
1769      * The start of NIR_INTRINSIC_RANGE.  Only present on instructions that
1770      * don't have NIR_INTRINSIC_BASE.
1771      *
1772      * If the [range_base, range] is [0, ~0], then we don't know the possible
1773      * range of the access.
1774      */
1775     NIR_INTRINSIC_RANGE_BASE,
1776  
1777     /**
1778      * The amount of data, starting from BASE or RANGE_BASE, that this
1779      * instruction may access.  This is used to provide bounds if the offset is
1780      * not constant.
1781      */
1782     NIR_INTRINSIC_RANGE,
1783  
1784     /**
1785      * The Vulkan descriptor set for vulkan_resource_index intrinsic.
1786      */
1787     NIR_INTRINSIC_DESC_SET,
1788  
1789     /**
1790      * The Vulkan descriptor set binding for vulkan_resource_index intrinsic.
1791      */
1792     NIR_INTRINSIC_BINDING,
1793  
1794     /**
1795      * Component offset.
1796      */
1797     NIR_INTRINSIC_COMPONENT,
1798  
1799     /**
1800      * Column index for matrix intrinsics.
1801      */
1802     NIR_INTRINSIC_COLUMN,
1803  
1804     /**
1805      * Interpolation mode (only meaningful for FS inputs).
1806      */
1807     NIR_INTRINSIC_INTERP_MODE,
1808  
1809     /**
1810      * A binary nir_op to use when performing a reduction or scan operation
1811      */
1812     NIR_INTRINSIC_REDUCTION_OP,
1813  
1814     /**
1815      * Cluster size for reduction operations
1816      */
1817     NIR_INTRINSIC_CLUSTER_SIZE,
1818  
1819     /**
1820      * Parameter index for a load_param intrinsic
1821      */
1822     NIR_INTRINSIC_PARAM_IDX,
1823  
1824     /**
1825      * Image dimensionality for image intrinsics
1826      *
1827      * One of GLSL_SAMPLER_DIM_*
1828      */
1829     NIR_INTRINSIC_IMAGE_DIM,
1830  
1831     /**
1832      * Non-zero if we are accessing an array image
1833      */
1834     NIR_INTRINSIC_IMAGE_ARRAY,
1835  
1836     /**
1837      * Image format for image intrinsics
1838      */
1839     NIR_INTRINSIC_FORMAT,
1840  
1841     /**
1842      * Access qualifiers for image and memory access intrinsics
1843      */
1844     NIR_INTRINSIC_ACCESS,
1845  
1846     /**
1847      * Alignment for offsets and addresses
1848      *
1849      * These two parameters, specify an alignment in terms of a multiplier and
1850      * an offset.  The multiplier is always a power of two.  The offset or
1851      * address parameter X of the intrinsic is guaranteed to satisfy the
1852      * following:
1853      *
1854      *                (X - align_offset) % align_mul == 0
1855      *
1856      * For constant offset values, align_mul will be NIR_ALIGN_MUL_MAX and the
1857      * align_offset will be modulo that.
1858      */
1859     NIR_INTRINSIC_ALIGN_MUL,
1860     NIR_INTRINSIC_ALIGN_OFFSET,
1861  
1862     /**
1863      * The Vulkan descriptor type for a vulkan_resource_[re]index intrinsic.
1864      */
1865     NIR_INTRINSIC_DESC_TYPE,
1866  
1867     /**
1868      * The nir_alu_type of input data to a store or conversion
1869      */
1870     NIR_INTRINSIC_SRC_TYPE,
1871  
1872     /**
1873      * The nir_alu_type of the data output from a load or conversion
1874      */
1875     NIR_INTRINSIC_DEST_TYPE,
1876  
1877     /**
1878      * The swizzle mask for the instructions
1879      * SwizzleInvocationsAMD and SwizzleInvocationsMaskedAMD
1880      */
1881     NIR_INTRINSIC_SWIZZLE_MASK,
1882  
1883     /* Separate source/dest access flags for copies */
1884     NIR_INTRINSIC_SRC_ACCESS,
1885     NIR_INTRINSIC_DST_ACCESS,
1886  
1887     /* Driver location for nir_load_patch_location_ir3 */
1888     NIR_INTRINSIC_DRIVER_LOCATION,
1889  
1890     /**
1891      * Mask of nir_memory_semantics, includes ordering and visibility.
1892      */
1893     NIR_INTRINSIC_MEMORY_SEMANTICS,
1894  
1895     /**
1896      * Mask of nir_variable_modes affected by the memory operation.
1897      */
1898     NIR_INTRINSIC_MEMORY_MODES,
1899  
1900     /**
1901      * Value of nir_scope.
1902      */
1903     NIR_INTRINSIC_MEMORY_SCOPE,
1904  
1905     /**
1906      * Value of nir_scope.
1907      */
1908     NIR_INTRINSIC_EXECUTION_SCOPE,
1909  
1910     /**
1911      * Value of nir_io_semantics.
1912      */
1913     NIR_INTRINSIC_IO_SEMANTICS,
1914  
1915     /**
1916      * The rounding mode of a conversion
1917      */
1918     NIR_INTRINSIC_ROUNDING_MODE,
1919  
1920     /**
1921      * Whether or not to saturate in conversions
1922      */
1923     NIR_INTRINSIC_SATURATE,
1924  
1925     NIR_INTRINSIC_NUM_INDEX_FLAGS,
1926  
1927  } nir_intrinsic_index_flag;
1928  
1929  /**
1930   * Maximum valid value for a nir align_mul value (in intrinsics or derefs).
1931   *
1932   * Offsets can be signed, so this is the largest power of two in int32_t.
1933   */
1934  #define NIR_ALIGN_MUL_MAX 0x40000000
1935  
1936  typedef struct {
1937     unsigned location:7; /* gl_vert_attrib, gl_varying_slot, or gl_frag_result */
1938     unsigned num_slots:6;  /* max 32, may be pessimistic with const indexing */
1939     unsigned dual_source_blend_index:1;
1940     unsigned fb_fetch_output:1; /* for GL_KHR_blend_equation_advanced */
1941     unsigned gs_streams:8; /* xxyyzzww: 2-bit stream index for each component */
1942     unsigned medium_precision:1; /* GLSL mediump qualifier */
1943     unsigned per_view:1;
1944     unsigned _pad:7;
1945  } nir_io_semantics;
1946  
1947  #define NIR_INTRINSIC_MAX_INPUTS 11
1948  
1949  typedef struct {
1950     const char *name;
1951  
1952     uint8_t num_srcs; /** < number of register/SSA inputs */
1953  
1954     /** number of components of each input register
1955      *
1956      * If this value is 0, the number of components is given by the
1957      * num_components field of nir_intrinsic_instr.  If this value is -1, the
1958      * intrinsic consumes however many components are provided and it is not
1959      * validated at all.
1960      */
1961     int8_t src_components[NIR_INTRINSIC_MAX_INPUTS];
1962  
1963     bool has_dest;
1964  
1965     /** number of components of the output register
1966      *
1967      * If this value is 0, the number of components is given by the
1968      * num_components field of nir_intrinsic_instr.
1969      */
1970     uint8_t dest_components;
1971  
1972     /** bitfield of legal bit sizes */
1973     uint8_t dest_bit_sizes;
1974  
1975     /** the number of constant indices used by the intrinsic */
1976     uint8_t num_indices;
1977  
1978     /** indicates the usage of intr->const_index[n] */
1979     uint8_t index_map[NIR_INTRINSIC_NUM_INDEX_FLAGS];
1980  
1981     /** semantic flags for calls to this intrinsic */
1982     nir_intrinsic_semantic_flag flags;
1983  } nir_intrinsic_info;
1984  
1985  extern const nir_intrinsic_info nir_intrinsic_infos[nir_num_intrinsics];
1986  
1987  static inline unsigned
nir_intrinsic_src_components(const nir_intrinsic_instr * intr,unsigned srcn)1988  nir_intrinsic_src_components(const nir_intrinsic_instr *intr, unsigned srcn)
1989  {
1990     const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1991     assert(srcn < info->num_srcs);
1992     if (info->src_components[srcn] > 0)
1993        return info->src_components[srcn];
1994     else if (info->src_components[srcn] == 0)
1995        return intr->num_components;
1996     else
1997        return nir_src_num_components(intr->src[srcn]);
1998  }
1999  
2000  static inline unsigned
nir_intrinsic_dest_components(nir_intrinsic_instr * intr)2001  nir_intrinsic_dest_components(nir_intrinsic_instr *intr)
2002  {
2003     const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
2004     if (!info->has_dest)
2005        return 0;
2006     else if (info->dest_components)
2007        return info->dest_components;
2008     else
2009        return intr->num_components;
2010  }
2011  
2012  /**
2013   * Helper to copy const_index[] from src to dst, without assuming they
2014   * match in order.
2015   */
2016  static inline void
nir_intrinsic_copy_const_indices(nir_intrinsic_instr * dst,nir_intrinsic_instr * src)2017  nir_intrinsic_copy_const_indices(nir_intrinsic_instr *dst, nir_intrinsic_instr *src)
2018  {
2019     if (src->intrinsic == dst->intrinsic) {
2020        memcpy(dst->const_index, src->const_index, sizeof(dst->const_index));
2021        return;
2022     }
2023  
2024     const nir_intrinsic_info *src_info = &nir_intrinsic_infos[src->intrinsic];
2025     const nir_intrinsic_info *dst_info = &nir_intrinsic_infos[dst->intrinsic];
2026  
2027     for (unsigned i = 0; i < NIR_INTRINSIC_NUM_INDEX_FLAGS; i++) {
2028        if (src_info->index_map[i] == 0)
2029           continue;
2030  
2031        /* require that dst instruction also uses the same const_index[]: */
2032        assert(dst_info->index_map[i] > 0);
2033  
2034        dst->const_index[dst_info->index_map[i] - 1] =
2035              src->const_index[src_info->index_map[i] - 1];
2036     }
2037  }
2038  
2039  #define INTRINSIC_IDX_ACCESSORS(name, flag, type)                             \
2040  static inline type                                                            \
2041  nir_intrinsic_##name(const nir_intrinsic_instr *instr)                        \
2042  {                                                                             \
2043     const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];   \
2044     assert(info->index_map[NIR_INTRINSIC_##flag] > 0);                         \
2045     return (type)instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1]; \
2046  }                                                                             \
2047  static inline void                                                            \
2048  nir_intrinsic_set_##name(nir_intrinsic_instr *instr, type val)                \
2049  {                                                                             \
2050     const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];   \
2051     assert(info->index_map[NIR_INTRINSIC_##flag] > 0);                         \
2052     instr->const_index[info->index_map[NIR_INTRINSIC_##flag] - 1] = val;       \
2053  }                                                                             \
2054  static inline bool                                                            \
2055  nir_intrinsic_has_##name(const nir_intrinsic_instr *instr)                    \
2056  {                                                                             \
2057     const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];   \
2058     return info->index_map[NIR_INTRINSIC_##flag] > 0;                          \
2059  }
2060  
INTRINSIC_IDX_ACCESSORS(write_mask,WRMASK,unsigned)2061  INTRINSIC_IDX_ACCESSORS(write_mask, WRMASK, unsigned)
2062  INTRINSIC_IDX_ACCESSORS(base, BASE, int)
2063  INTRINSIC_IDX_ACCESSORS(stream_id, STREAM_ID, unsigned)
2064  INTRINSIC_IDX_ACCESSORS(ucp_id, UCP_ID, unsigned)
2065  INTRINSIC_IDX_ACCESSORS(range, RANGE, unsigned)
2066  INTRINSIC_IDX_ACCESSORS(range_base, RANGE_BASE, unsigned)
2067  INTRINSIC_IDX_ACCESSORS(desc_set, DESC_SET, unsigned)
2068  INTRINSIC_IDX_ACCESSORS(binding, BINDING, unsigned)
2069  INTRINSIC_IDX_ACCESSORS(component, COMPONENT, unsigned)
2070  INTRINSIC_IDX_ACCESSORS(column, COLUMN, unsigned)
2071  INTRINSIC_IDX_ACCESSORS(interp_mode, INTERP_MODE, unsigned)
2072  INTRINSIC_IDX_ACCESSORS(reduction_op, REDUCTION_OP, unsigned)
2073  INTRINSIC_IDX_ACCESSORS(cluster_size, CLUSTER_SIZE, unsigned)
2074  INTRINSIC_IDX_ACCESSORS(param_idx, PARAM_IDX, unsigned)
2075  INTRINSIC_IDX_ACCESSORS(image_dim, IMAGE_DIM, enum glsl_sampler_dim)
2076  INTRINSIC_IDX_ACCESSORS(image_array, IMAGE_ARRAY, bool)
2077  INTRINSIC_IDX_ACCESSORS(access, ACCESS, enum gl_access_qualifier)
2078  INTRINSIC_IDX_ACCESSORS(src_access, SRC_ACCESS, enum gl_access_qualifier)
2079  INTRINSIC_IDX_ACCESSORS(dst_access, DST_ACCESS, enum gl_access_qualifier)
2080  INTRINSIC_IDX_ACCESSORS(format, FORMAT, enum pipe_format)
2081  INTRINSIC_IDX_ACCESSORS(align_mul, ALIGN_MUL, unsigned)
2082  INTRINSIC_IDX_ACCESSORS(align_offset, ALIGN_OFFSET, unsigned)
2083  INTRINSIC_IDX_ACCESSORS(desc_type, DESC_TYPE, unsigned)
2084  INTRINSIC_IDX_ACCESSORS(src_type, SRC_TYPE, nir_alu_type)
2085  INTRINSIC_IDX_ACCESSORS(dest_type, DEST_TYPE, nir_alu_type)
2086  INTRINSIC_IDX_ACCESSORS(swizzle_mask, SWIZZLE_MASK, unsigned)
2087  INTRINSIC_IDX_ACCESSORS(driver_location, DRIVER_LOCATION, unsigned)
2088  INTRINSIC_IDX_ACCESSORS(memory_semantics, MEMORY_SEMANTICS, nir_memory_semantics)
2089  INTRINSIC_IDX_ACCESSORS(memory_modes, MEMORY_MODES, nir_variable_mode)
2090  INTRINSIC_IDX_ACCESSORS(memory_scope, MEMORY_SCOPE, nir_scope)
2091  INTRINSIC_IDX_ACCESSORS(execution_scope, EXECUTION_SCOPE, nir_scope)
2092  INTRINSIC_IDX_ACCESSORS(rounding_mode, ROUNDING_MODE, nir_rounding_mode)
2093  INTRINSIC_IDX_ACCESSORS(saturate, SATURATE, bool)
2094  
2095  static inline void
2096  nir_intrinsic_set_align(nir_intrinsic_instr *intrin,
2097                          unsigned align_mul, unsigned align_offset)
2098  {
2099     assert(util_is_power_of_two_nonzero(align_mul));
2100     assert(align_offset < align_mul);
2101     nir_intrinsic_set_align_mul(intrin, align_mul);
2102     nir_intrinsic_set_align_offset(intrin, align_offset);
2103  }
2104  
2105  /** Returns a simple alignment for a load/store intrinsic offset
2106   *
2107   * Instead of the full mul+offset alignment scheme provided by the ALIGN_MUL
2108   * and ALIGN_OFFSET parameters, this helper takes both into account and
2109   * provides a single simple alignment parameter.  The offset X is guaranteed
2110   * to satisfy X % align == 0.
2111   */
2112  static inline unsigned
nir_intrinsic_align(const nir_intrinsic_instr * intrin)2113  nir_intrinsic_align(const nir_intrinsic_instr *intrin)
2114  {
2115     const unsigned align_mul = nir_intrinsic_align_mul(intrin);
2116     const unsigned align_offset = nir_intrinsic_align_offset(intrin);
2117     assert(align_offset < align_mul);
2118     return align_offset ? 1 << (ffs(align_offset) - 1) : align_mul;
2119  }
2120  
2121  static inline bool
nir_intrinsic_has_align(const nir_intrinsic_instr * intrin)2122  nir_intrinsic_has_align(const nir_intrinsic_instr *intrin)
2123  {
2124     return nir_intrinsic_has_align_mul(intrin) &&
2125            nir_intrinsic_has_align_offset(intrin);
2126  }
2127  
2128  static inline void
nir_intrinsic_set_io_semantics(nir_intrinsic_instr * intrin,nir_io_semantics semantics)2129  nir_intrinsic_set_io_semantics(nir_intrinsic_instr *intrin,
2130                                 nir_io_semantics semantics)
2131  {
2132     const nir_intrinsic_info *info = &nir_intrinsic_infos[intrin->intrinsic];
2133     assert(info->index_map[NIR_INTRINSIC_IO_SEMANTICS] > 0);
2134     STATIC_ASSERT(sizeof(nir_io_semantics) == sizeof(intrin->const_index[0]));
2135     semantics._pad = 0; /* clear padding bits */
2136     memcpy(&intrin->const_index[info->index_map[NIR_INTRINSIC_IO_SEMANTICS] - 1],
2137            &semantics, sizeof(semantics));
2138  }
2139  
2140  static inline nir_io_semantics
nir_intrinsic_io_semantics(const nir_intrinsic_instr * intrin)2141  nir_intrinsic_io_semantics(const nir_intrinsic_instr *intrin)
2142  {
2143     const nir_intrinsic_info *info = &nir_intrinsic_infos[intrin->intrinsic];
2144     assert(info->index_map[NIR_INTRINSIC_IO_SEMANTICS] > 0);
2145     nir_io_semantics semantics;
2146     memcpy(&semantics,
2147            &intrin->const_index[info->index_map[NIR_INTRINSIC_IO_SEMANTICS] - 1],
2148            sizeof(semantics));
2149     return semantics;
2150  }
2151  
2152  unsigned
2153  nir_image_intrinsic_coord_components(const nir_intrinsic_instr *instr);
2154  
2155  /* Converts a image_deref_* intrinsic into a image_* one */
2156  void nir_rewrite_image_intrinsic(nir_intrinsic_instr *instr,
2157                                   nir_ssa_def *handle, bool bindless);
2158  
2159  /* Determine if an intrinsic can be arbitrarily reordered and eliminated. */
2160  static inline bool
nir_intrinsic_can_reorder(nir_intrinsic_instr * instr)2161  nir_intrinsic_can_reorder(nir_intrinsic_instr *instr)
2162  {
2163     if (instr->intrinsic == nir_intrinsic_load_deref ||
2164         instr->intrinsic == nir_intrinsic_load_ssbo ||
2165         instr->intrinsic == nir_intrinsic_bindless_image_load ||
2166         instr->intrinsic == nir_intrinsic_image_deref_load ||
2167         instr->intrinsic == nir_intrinsic_image_load) {
2168        return nir_intrinsic_access(instr) & ACCESS_CAN_REORDER;
2169     } else {
2170        const nir_intrinsic_info *info =
2171           &nir_intrinsic_infos[instr->intrinsic];
2172        return (info->flags & NIR_INTRINSIC_CAN_ELIMINATE) &&
2173               (info->flags & NIR_INTRINSIC_CAN_REORDER);
2174     }
2175  }
2176  
2177  /**
2178   * \group texture information
2179   *
2180   * This gives semantic information about textures which is useful to the
2181   * frontend, the backend, and lowering passes, but not the optimizer.
2182   */
2183  
2184  typedef enum {
2185     nir_tex_src_coord,
2186     nir_tex_src_projector,
2187     nir_tex_src_comparator, /* shadow comparator */
2188     nir_tex_src_offset,
2189     nir_tex_src_bias,
2190     nir_tex_src_lod,
2191     nir_tex_src_min_lod,
2192     nir_tex_src_ms_index, /* MSAA sample index */
2193     nir_tex_src_ms_mcs, /* MSAA compression value */
2194     nir_tex_src_ddx,
2195     nir_tex_src_ddy,
2196     nir_tex_src_texture_deref, /* < deref pointing to the texture */
2197     nir_tex_src_sampler_deref, /* < deref pointing to the sampler */
2198     nir_tex_src_texture_offset, /* < dynamically uniform indirect offset */
2199     nir_tex_src_sampler_offset, /* < dynamically uniform indirect offset */
2200     nir_tex_src_texture_handle, /* < bindless texture handle */
2201     nir_tex_src_sampler_handle, /* < bindless sampler handle */
2202     nir_tex_src_plane,          /* < selects plane for planar textures */
2203     nir_num_tex_src_types
2204  } nir_tex_src_type;
2205  
2206  typedef struct {
2207     nir_src src;
2208     nir_tex_src_type src_type;
2209  } nir_tex_src;
2210  
2211  typedef enum {
2212     nir_texop_tex,                /**< Regular texture look-up */
2213     nir_texop_txb,                /**< Texture look-up with LOD bias */
2214     nir_texop_txl,                /**< Texture look-up with explicit LOD */
2215     nir_texop_txd,                /**< Texture look-up with partial derivatives */
2216     nir_texop_txf,                /**< Texel fetch with explicit LOD */
2217     nir_texop_txf_ms,             /**< Multisample texture fetch */
2218     nir_texop_txf_ms_fb,          /**< Multisample texture fetch from framebuffer */
2219     nir_texop_txf_ms_mcs,         /**< Multisample compression value fetch */
2220     nir_texop_txs,                /**< Texture size */
2221     nir_texop_lod,                /**< Texture lod query */
2222     nir_texop_tg4,                /**< Texture gather */
2223     nir_texop_query_levels,       /**< Texture levels query */
2224     nir_texop_texture_samples,    /**< Texture samples query */
2225     nir_texop_samples_identical,  /**< Query whether all samples are definitely
2226                                    * identical.
2227                                    */
2228     nir_texop_tex_prefetch,       /**< Regular texture look-up, eligible for pre-dispatch */
2229     nir_texop_fragment_fetch,     /**< Multisample fragment color texture fetch */
2230     nir_texop_fragment_mask_fetch,/**< Multisample fragment mask texture fetch */
2231  } nir_texop;
2232  
2233  typedef struct {
2234     nir_instr instr;
2235  
2236     enum glsl_sampler_dim sampler_dim;
2237     nir_alu_type dest_type;
2238  
2239     nir_texop op;
2240     nir_dest dest;
2241     nir_tex_src *src;
2242     unsigned num_srcs, coord_components;
2243     bool is_array, is_shadow;
2244  
2245     /**
2246      * If is_shadow is true, whether this is the old-style shadow that outputs 4
2247      * components or the new-style shadow that outputs 1 component.
2248      */
2249     bool is_new_style_shadow;
2250  
2251     /* gather component selector */
2252     unsigned component : 2;
2253  
2254     /* gather offsets */
2255     int8_t tg4_offsets[4][2];
2256  
2257     /* True if the texture index or handle is not dynamically uniform */
2258     bool texture_non_uniform;
2259  
2260     /* True if the sampler index or handle is not dynamically uniform */
2261     bool sampler_non_uniform;
2262  
2263     /** The texture index
2264      *
2265      * If this texture instruction has a nir_tex_src_texture_offset source,
2266      * then the texture index is given by texture_index + texture_offset.
2267      */
2268     unsigned texture_index;
2269  
2270     /** The sampler index
2271      *
2272      * The following operations do not require a sampler and, as such, this
2273      * field should be ignored:
2274      *    - nir_texop_txf
2275      *    - nir_texop_txf_ms
2276      *    - nir_texop_txs
2277      *    - nir_texop_query_levels
2278      *    - nir_texop_texture_samples
2279      *    - nir_texop_samples_identical
2280      *
2281      * If this texture instruction has a nir_tex_src_sampler_offset source,
2282      * then the sampler index is given by sampler_index + sampler_offset.
2283      */
2284     unsigned sampler_index;
2285  } nir_tex_instr;
2286  
2287  /*
2288   * Returns true if the texture operation requires a sampler as a general rule,
2289   * see the documentation of sampler_index.
2290   *
2291   * Note that the specific hw/driver backend could require to a sampler
2292   * object/configuration packet in any case, for some other reason.
2293   */
2294  static inline bool
nir_tex_instr_need_sampler(const nir_tex_instr * instr)2295  nir_tex_instr_need_sampler(const nir_tex_instr *instr)
2296  {
2297     switch (instr->op) {
2298     case nir_texop_txf:
2299     case nir_texop_txf_ms:
2300     case nir_texop_txs:
2301     case nir_texop_query_levels:
2302     case nir_texop_texture_samples:
2303     case nir_texop_samples_identical:
2304        return false;
2305     default:
2306        return true;
2307     }
2308  }
2309  
2310  static inline unsigned
nir_tex_instr_dest_size(const nir_tex_instr * instr)2311  nir_tex_instr_dest_size(const nir_tex_instr *instr)
2312  {
2313     switch (instr->op) {
2314     case nir_texop_txs: {
2315        unsigned ret;
2316        switch (instr->sampler_dim) {
2317           case GLSL_SAMPLER_DIM_1D:
2318           case GLSL_SAMPLER_DIM_BUF:
2319              ret = 1;
2320              break;
2321           case GLSL_SAMPLER_DIM_2D:
2322           case GLSL_SAMPLER_DIM_CUBE:
2323           case GLSL_SAMPLER_DIM_MS:
2324           case GLSL_SAMPLER_DIM_RECT:
2325           case GLSL_SAMPLER_DIM_EXTERNAL:
2326           case GLSL_SAMPLER_DIM_SUBPASS:
2327              ret = 2;
2328              break;
2329           case GLSL_SAMPLER_DIM_3D:
2330              ret = 3;
2331              break;
2332           default:
2333              unreachable("not reached");
2334        }
2335        if (instr->is_array)
2336           ret++;
2337        return ret;
2338     }
2339  
2340     case nir_texop_lod:
2341        return 2;
2342  
2343     case nir_texop_texture_samples:
2344     case nir_texop_query_levels:
2345     case nir_texop_samples_identical:
2346     case nir_texop_fragment_mask_fetch:
2347        return 1;
2348  
2349     default:
2350        if (instr->is_shadow && instr->is_new_style_shadow)
2351           return 1;
2352  
2353        return 4;
2354     }
2355  }
2356  
2357  /* Returns true if this texture operation queries something about the texture
2358   * rather than actually sampling it.
2359   */
2360  static inline bool
nir_tex_instr_is_query(const nir_tex_instr * instr)2361  nir_tex_instr_is_query(const nir_tex_instr *instr)
2362  {
2363     switch (instr->op) {
2364     case nir_texop_txs:
2365     case nir_texop_lod:
2366     case nir_texop_texture_samples:
2367     case nir_texop_query_levels:
2368     case nir_texop_txf_ms_mcs:
2369        return true;
2370     case nir_texop_tex:
2371     case nir_texop_txb:
2372     case nir_texop_txl:
2373     case nir_texop_txd:
2374     case nir_texop_txf:
2375     case nir_texop_txf_ms:
2376     case nir_texop_txf_ms_fb:
2377     case nir_texop_tg4:
2378        return false;
2379     default:
2380        unreachable("Invalid texture opcode");
2381     }
2382  }
2383  
2384  static inline bool
nir_tex_instr_has_implicit_derivative(const nir_tex_instr * instr)2385  nir_tex_instr_has_implicit_derivative(const nir_tex_instr *instr)
2386  {
2387     switch (instr->op) {
2388     case nir_texop_tex:
2389     case nir_texop_txb:
2390     case nir_texop_lod:
2391        return true;
2392     default:
2393        return false;
2394     }
2395  }
2396  
2397  static inline nir_alu_type
nir_tex_instr_src_type(const nir_tex_instr * instr,unsigned src)2398  nir_tex_instr_src_type(const nir_tex_instr *instr, unsigned src)
2399  {
2400     switch (instr->src[src].src_type) {
2401     case nir_tex_src_coord:
2402        switch (instr->op) {
2403        case nir_texop_txf:
2404        case nir_texop_txf_ms:
2405        case nir_texop_txf_ms_fb:
2406        case nir_texop_txf_ms_mcs:
2407        case nir_texop_samples_identical:
2408           return nir_type_int;
2409  
2410        default:
2411           return nir_type_float;
2412        }
2413  
2414     case nir_tex_src_lod:
2415        switch (instr->op) {
2416        case nir_texop_txs:
2417        case nir_texop_txf:
2418           return nir_type_int;
2419  
2420        default:
2421           return nir_type_float;
2422        }
2423  
2424     case nir_tex_src_projector:
2425     case nir_tex_src_comparator:
2426     case nir_tex_src_bias:
2427     case nir_tex_src_min_lod:
2428     case nir_tex_src_ddx:
2429     case nir_tex_src_ddy:
2430        return nir_type_float;
2431  
2432     case nir_tex_src_offset:
2433     case nir_tex_src_ms_index:
2434     case nir_tex_src_plane:
2435        return nir_type_int;
2436  
2437     case nir_tex_src_ms_mcs:
2438     case nir_tex_src_texture_deref:
2439     case nir_tex_src_sampler_deref:
2440     case nir_tex_src_texture_offset:
2441     case nir_tex_src_sampler_offset:
2442     case nir_tex_src_texture_handle:
2443     case nir_tex_src_sampler_handle:
2444        return nir_type_uint;
2445  
2446     case nir_num_tex_src_types:
2447        unreachable("nir_num_tex_src_types is not a valid source type");
2448     }
2449  
2450     unreachable("Invalid texture source type");
2451  }
2452  
2453  static inline unsigned
nir_tex_instr_src_size(const nir_tex_instr * instr,unsigned src)2454  nir_tex_instr_src_size(const nir_tex_instr *instr, unsigned src)
2455  {
2456     if (instr->src[src].src_type == nir_tex_src_coord)
2457        return instr->coord_components;
2458  
2459     /* The MCS value is expected to be a vec4 returned by a txf_ms_mcs */
2460     if (instr->src[src].src_type == nir_tex_src_ms_mcs)
2461        return 4;
2462  
2463     if (instr->src[src].src_type == nir_tex_src_ddx ||
2464         instr->src[src].src_type == nir_tex_src_ddy) {
2465        if (instr->is_array)
2466           return instr->coord_components - 1;
2467        else
2468           return instr->coord_components;
2469     }
2470  
2471     /* Usual APIs don't allow cube + offset, but we allow it, with 2 coords for
2472      * the offset, since a cube maps to a single face.
2473      */
2474     if (instr->src[src].src_type == nir_tex_src_offset) {
2475        if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2476           return 2;
2477        else if (instr->is_array)
2478           return instr->coord_components - 1;
2479        else
2480           return instr->coord_components;
2481     }
2482  
2483     return 1;
2484  }
2485  
2486  static inline int
nir_tex_instr_src_index(const nir_tex_instr * instr,nir_tex_src_type type)2487  nir_tex_instr_src_index(const nir_tex_instr *instr, nir_tex_src_type type)
2488  {
2489     for (unsigned i = 0; i < instr->num_srcs; i++)
2490        if (instr->src[i].src_type == type)
2491           return (int) i;
2492  
2493     return -1;
2494  }
2495  
2496  void nir_tex_instr_add_src(nir_tex_instr *tex,
2497                             nir_tex_src_type src_type,
2498                             nir_src src);
2499  
2500  void nir_tex_instr_remove_src(nir_tex_instr *tex, unsigned src_idx);
2501  
2502  bool nir_tex_instr_has_explicit_tg4_offsets(nir_tex_instr *tex);
2503  
2504  typedef struct {
2505     nir_instr instr;
2506  
2507     nir_ssa_def def;
2508  
2509     nir_const_value value[];
2510  } nir_load_const_instr;
2511  
2512  typedef enum {
2513     /** Return from a function
2514      *
2515      * This instruction is a classic function return.  It jumps to
2516      * nir_function_impl::end_block.  No return value is provided in this
2517      * instruction.  Instead, the function is expected to write any return
2518      * data to a deref passed in from the caller.
2519      */
2520     nir_jump_return,
2521  
2522     /** Break out of the inner-most loop
2523      *
2524      * This has the same semantics as C's "break" statement.
2525      */
2526     nir_jump_break,
2527  
2528     /** Jump back to the top of the inner-most loop
2529      *
2530      * This has the same semantics as C's "continue" statement assuming that a
2531      * NIR loop is implemented as "while (1) { body }".
2532      */
2533     nir_jump_continue,
2534  
2535     /** Jumps for unstructured CFG.
2536      *
2537      * As within an unstructured CFG we can't rely on block ordering we need to
2538      * place explicit jumps at the end of every block.
2539      */
2540     nir_jump_goto,
2541     nir_jump_goto_if,
2542  } nir_jump_type;
2543  
2544  typedef struct {
2545     nir_instr instr;
2546     nir_jump_type type;
2547     nir_src condition;
2548     struct nir_block *target;
2549     struct nir_block *else_target;
2550  } nir_jump_instr;
2551  
2552  /* creates a new SSA variable in an undefined state */
2553  
2554  typedef struct {
2555     nir_instr instr;
2556     nir_ssa_def def;
2557  } nir_ssa_undef_instr;
2558  
2559  typedef struct {
2560     struct exec_node node;
2561  
2562     /* The predecessor block corresponding to this source */
2563     struct nir_block *pred;
2564  
2565     nir_src src;
2566  } nir_phi_src;
2567  
2568  #define nir_foreach_phi_src(phi_src, phi) \
2569     foreach_list_typed(nir_phi_src, phi_src, node, &(phi)->srcs)
2570  #define nir_foreach_phi_src_safe(phi_src, phi) \
2571     foreach_list_typed_safe(nir_phi_src, phi_src, node, &(phi)->srcs)
2572  
2573  typedef struct {
2574     nir_instr instr;
2575  
2576     struct exec_list srcs; /** < list of nir_phi_src */
2577  
2578     nir_dest dest;
2579  } nir_phi_instr;
2580  
2581  typedef struct {
2582     struct exec_node node;
2583     nir_src src;
2584     nir_dest dest;
2585  } nir_parallel_copy_entry;
2586  
2587  #define nir_foreach_parallel_copy_entry(entry, pcopy) \
2588     foreach_list_typed(nir_parallel_copy_entry, entry, node, &(pcopy)->entries)
2589  
2590  typedef struct {
2591     nir_instr instr;
2592  
2593     /* A list of nir_parallel_copy_entrys.  The sources of all of the
2594      * entries are copied to the corresponding destinations "in parallel".
2595      * In other words, if we have two entries: a -> b and b -> a, the values
2596      * get swapped.
2597      */
2598     struct exec_list entries;
2599  } nir_parallel_copy_instr;
2600  
2601  NIR_DEFINE_CAST(nir_instr_as_alu, nir_instr, nir_alu_instr, instr,
2602                  type, nir_instr_type_alu)
2603  NIR_DEFINE_CAST(nir_instr_as_deref, nir_instr, nir_deref_instr, instr,
2604                  type, nir_instr_type_deref)
2605  NIR_DEFINE_CAST(nir_instr_as_call, nir_instr, nir_call_instr, instr,
2606                  type, nir_instr_type_call)
2607  NIR_DEFINE_CAST(nir_instr_as_jump, nir_instr, nir_jump_instr, instr,
2608                  type, nir_instr_type_jump)
2609  NIR_DEFINE_CAST(nir_instr_as_tex, nir_instr, nir_tex_instr, instr,
2610                  type, nir_instr_type_tex)
2611  NIR_DEFINE_CAST(nir_instr_as_intrinsic, nir_instr, nir_intrinsic_instr, instr,
2612                  type, nir_instr_type_intrinsic)
2613  NIR_DEFINE_CAST(nir_instr_as_load_const, nir_instr, nir_load_const_instr, instr,
2614                  type, nir_instr_type_load_const)
2615  NIR_DEFINE_CAST(nir_instr_as_ssa_undef, nir_instr, nir_ssa_undef_instr, instr,
2616                  type, nir_instr_type_ssa_undef)
2617  NIR_DEFINE_CAST(nir_instr_as_phi, nir_instr, nir_phi_instr, instr,
2618                  type, nir_instr_type_phi)
2619  NIR_DEFINE_CAST(nir_instr_as_parallel_copy, nir_instr,
2620                  nir_parallel_copy_instr, instr,
2621                  type, nir_instr_type_parallel_copy)
2622  
2623  
2624  #define NIR_DEFINE_SRC_AS_CONST(type, suffix)               \
2625  static inline type                                          \
2626  nir_src_comp_as_##suffix(nir_src src, unsigned comp)        \
2627  {                                                           \
2628     assert(nir_src_is_const(src));                           \
2629     nir_load_const_instr *load =                             \
2630        nir_instr_as_load_const(src.ssa->parent_instr);       \
2631     assert(comp < load->def.num_components);                 \
2632     return nir_const_value_as_##suffix(load->value[comp],    \
2633                                        load->def.bit_size);  \
2634  }                                                           \
2635                                                              \
2636  static inline type                                          \
2637  nir_src_as_##suffix(nir_src src)                            \
2638  {                                                           \
2639     assert(nir_src_num_components(src) == 1);                \
2640     return nir_src_comp_as_##suffix(src, 0);                 \
2641  }
2642  
2643  NIR_DEFINE_SRC_AS_CONST(int64_t,    int)
2644  NIR_DEFINE_SRC_AS_CONST(uint64_t,   uint)
2645  NIR_DEFINE_SRC_AS_CONST(bool,       bool)
2646  NIR_DEFINE_SRC_AS_CONST(double,     float)
2647  
2648  #undef NIR_DEFINE_SRC_AS_CONST
2649  
2650  
2651  typedef struct {
2652     nir_ssa_def *def;
2653     unsigned comp;
2654  } nir_ssa_scalar;
2655  
2656  static inline bool
nir_ssa_scalar_is_const(nir_ssa_scalar s)2657  nir_ssa_scalar_is_const(nir_ssa_scalar s)
2658  {
2659     return s.def->parent_instr->type == nir_instr_type_load_const;
2660  }
2661  
2662  static inline nir_const_value
nir_ssa_scalar_as_const_value(nir_ssa_scalar s)2663  nir_ssa_scalar_as_const_value(nir_ssa_scalar s)
2664  {
2665     assert(s.comp < s.def->num_components);
2666     nir_load_const_instr *load = nir_instr_as_load_const(s.def->parent_instr);
2667     return load->value[s.comp];
2668  }
2669  
2670  #define NIR_DEFINE_SCALAR_AS_CONST(type, suffix)                     \
2671  static inline type                                                   \
2672  nir_ssa_scalar_as_##suffix(nir_ssa_scalar s)                         \
2673  {                                                                    \
2674     return nir_const_value_as_##suffix(                               \
2675        nir_ssa_scalar_as_const_value(s), s.def->bit_size);            \
2676  }
2677  
NIR_DEFINE_SCALAR_AS_CONST(int64_t,int)2678  NIR_DEFINE_SCALAR_AS_CONST(int64_t,    int)
2679  NIR_DEFINE_SCALAR_AS_CONST(uint64_t,   uint)
2680  NIR_DEFINE_SCALAR_AS_CONST(bool,       bool)
2681  NIR_DEFINE_SCALAR_AS_CONST(double,     float)
2682  
2683  #undef NIR_DEFINE_SCALAR_AS_CONST
2684  
2685  static inline bool
2686  nir_ssa_scalar_is_alu(nir_ssa_scalar s)
2687  {
2688     return s.def->parent_instr->type == nir_instr_type_alu;
2689  }
2690  
2691  static inline nir_op
nir_ssa_scalar_alu_op(nir_ssa_scalar s)2692  nir_ssa_scalar_alu_op(nir_ssa_scalar s)
2693  {
2694     return nir_instr_as_alu(s.def->parent_instr)->op;
2695  }
2696  
2697  static inline nir_ssa_scalar
nir_ssa_scalar_chase_alu_src(nir_ssa_scalar s,unsigned alu_src_idx)2698  nir_ssa_scalar_chase_alu_src(nir_ssa_scalar s, unsigned alu_src_idx)
2699  {
2700     nir_ssa_scalar out = { NULL, 0 };
2701  
2702     nir_alu_instr *alu = nir_instr_as_alu(s.def->parent_instr);
2703     assert(alu_src_idx < nir_op_infos[alu->op].num_inputs);
2704  
2705     /* Our component must be written */
2706     assert(s.comp < s.def->num_components);
2707     assert(alu->dest.write_mask & (1u << s.comp));
2708  
2709     assert(alu->src[alu_src_idx].src.is_ssa);
2710     out.def = alu->src[alu_src_idx].src.ssa;
2711  
2712     if (nir_op_infos[alu->op].input_sizes[alu_src_idx] == 0) {
2713        /* The ALU src is unsized so the source component follows the
2714         * destination component.
2715         */
2716        out.comp = alu->src[alu_src_idx].swizzle[s.comp];
2717     } else {
2718        /* This is a sized source so all source components work together to
2719         * produce all the destination components.  Since we need to return a
2720         * scalar, this only works if the source is a scalar.
2721         */
2722        assert(nir_op_infos[alu->op].input_sizes[alu_src_idx] == 1);
2723        out.comp = alu->src[alu_src_idx].swizzle[0];
2724     }
2725     assert(out.comp < out.def->num_components);
2726  
2727     return out;
2728  }
2729  
2730  
2731  /*
2732   * Control flow
2733   *
2734   * Control flow consists of a tree of control flow nodes, which include
2735   * if-statements and loops. The leaves of the tree are basic blocks, lists of
2736   * instructions that always run start-to-finish. Each basic block also keeps
2737   * track of its successors (blocks which may run immediately after the current
2738   * block) and predecessors (blocks which could have run immediately before the
2739   * current block). Each function also has a start block and an end block which
2740   * all return statements point to (which is always empty). Together, all the
2741   * blocks with their predecessors and successors make up the control flow
2742   * graph (CFG) of the function. There are helpers that modify the tree of
2743   * control flow nodes while modifying the CFG appropriately; these should be
2744   * used instead of modifying the tree directly.
2745   */
2746  
2747  typedef enum {
2748     nir_cf_node_block,
2749     nir_cf_node_if,
2750     nir_cf_node_loop,
2751     nir_cf_node_function
2752  } nir_cf_node_type;
2753  
2754  typedef struct nir_cf_node {
2755     struct exec_node node;
2756     nir_cf_node_type type;
2757     struct nir_cf_node *parent;
2758  } nir_cf_node;
2759  
2760  typedef struct nir_block {
2761     nir_cf_node cf_node;
2762  
2763     struct exec_list instr_list; /** < list of nir_instr */
2764  
2765     /** generic block index; generated by nir_index_blocks */
2766     unsigned index;
2767  
2768     /*
2769      * Each block can only have up to 2 successors, so we put them in a simple
2770      * array - no need for anything more complicated.
2771      */
2772     struct nir_block *successors[2];
2773  
2774     /* Set of nir_block predecessors in the CFG */
2775     struct set *predecessors;
2776  
2777     /*
2778      * this node's immediate dominator in the dominance tree - set to NULL for
2779      * the start block.
2780      */
2781     struct nir_block *imm_dom;
2782  
2783     /* This node's children in the dominance tree */
2784     unsigned num_dom_children;
2785     struct nir_block **dom_children;
2786  
2787     /* Set of nir_blocks on the dominance frontier of this block */
2788     struct set *dom_frontier;
2789  
2790     /*
2791      * These two indices have the property that dom_{pre,post}_index for each
2792      * child of this block in the dominance tree will always be between
2793      * dom_pre_index and dom_post_index for this block, which makes testing if
2794      * a given block is dominated by another block an O(1) operation.
2795      */
2796     uint32_t dom_pre_index, dom_post_index;
2797  
2798     /**
2799      * Value just before the first nir_instr->index in the block, but after
2800      * end_ip that of any predecessor block.
2801      */
2802     uint32_t start_ip;
2803     /**
2804      * Value just after the last nir_instr->index in the block, but before the
2805      * start_ip of any successor block.
2806      */
2807     uint32_t end_ip;
2808  
2809     /* SSA def live in and out for this block; used for liveness analysis.
2810      * Indexed by ssa_def->index
2811      */
2812     BITSET_WORD *live_in;
2813     BITSET_WORD *live_out;
2814  } nir_block;
2815  
2816  static inline bool
nir_block_is_reachable(nir_block * b)2817  nir_block_is_reachable(nir_block *b)
2818  {
2819     /* See also nir_block_dominates */
2820     return b->dom_post_index != 0;
2821  }
2822  
2823  static inline nir_instr *
nir_block_first_instr(nir_block * block)2824  nir_block_first_instr(nir_block *block)
2825  {
2826     struct exec_node *head = exec_list_get_head(&block->instr_list);
2827     return exec_node_data(nir_instr, head, node);
2828  }
2829  
2830  static inline nir_instr *
nir_block_last_instr(nir_block * block)2831  nir_block_last_instr(nir_block *block)
2832  {
2833     struct exec_node *tail = exec_list_get_tail(&block->instr_list);
2834     return exec_node_data(nir_instr, tail, node);
2835  }
2836  
2837  static inline bool
nir_block_ends_in_jump(nir_block * block)2838  nir_block_ends_in_jump(nir_block *block)
2839  {
2840     return !exec_list_is_empty(&block->instr_list) &&
2841            nir_block_last_instr(block)->type == nir_instr_type_jump;
2842  }
2843  
2844  #define nir_foreach_instr(instr, block) \
2845     foreach_list_typed(nir_instr, instr, node, &(block)->instr_list)
2846  #define nir_foreach_instr_reverse(instr, block) \
2847     foreach_list_typed_reverse(nir_instr, instr, node, &(block)->instr_list)
2848  #define nir_foreach_instr_safe(instr, block) \
2849     foreach_list_typed_safe(nir_instr, instr, node, &(block)->instr_list)
2850  #define nir_foreach_instr_reverse_safe(instr, block) \
2851     foreach_list_typed_reverse_safe(nir_instr, instr, node, &(block)->instr_list)
2852  
2853  typedef enum {
2854     nir_selection_control_none = 0x0,
2855     nir_selection_control_flatten = 0x1,
2856     nir_selection_control_dont_flatten = 0x2,
2857  } nir_selection_control;
2858  
2859  typedef struct nir_if {
2860     nir_cf_node cf_node;
2861     nir_src condition;
2862     nir_selection_control control;
2863  
2864     struct exec_list then_list; /** < list of nir_cf_node */
2865     struct exec_list else_list; /** < list of nir_cf_node */
2866  } nir_if;
2867  
2868  typedef struct {
2869     nir_if *nif;
2870  
2871     /** Instruction that generates nif::condition. */
2872     nir_instr *conditional_instr;
2873  
2874     /** Block within ::nif that has the break instruction. */
2875     nir_block *break_block;
2876  
2877     /** Last block for the then- or else-path that does not contain the break. */
2878     nir_block *continue_from_block;
2879  
2880     /** True when ::break_block is in the else-path of ::nif. */
2881     bool continue_from_then;
2882     bool induction_rhs;
2883  
2884     /* This is true if the terminators exact trip count is unknown. For
2885      * example:
2886      *
2887      *    for (int i = 0; i < imin(x, 4); i++)
2888      *       ...
2889      *
2890      * Here loop analysis would have set a max_trip_count of 4 however we dont
2891      * know for sure that this is the exact trip count.
2892      */
2893     bool exact_trip_count_unknown;
2894  
2895     struct list_head loop_terminator_link;
2896  } nir_loop_terminator;
2897  
2898  typedef struct {
2899     /* Estimated cost (in number of instructions) of the loop */
2900     unsigned instr_cost;
2901  
2902     /* Guessed trip count based on array indexing */
2903     unsigned guessed_trip_count;
2904  
2905     /* Maximum number of times the loop is run (if known) */
2906     unsigned max_trip_count;
2907  
2908     /* Do we know the exact number of times the loop will be run */
2909     bool exact_trip_count_known;
2910  
2911     /* Unroll the loop regardless of its size */
2912     bool force_unroll;
2913  
2914     /* Does the loop contain complex loop terminators, continues or other
2915      * complex behaviours? If this is true we can't rely on
2916      * loop_terminator_list to be complete or accurate.
2917      */
2918     bool complex_loop;
2919  
2920     nir_loop_terminator *limiting_terminator;
2921  
2922     /* A list of loop_terminators terminating this loop. */
2923     struct list_head loop_terminator_list;
2924  } nir_loop_info;
2925  
2926  typedef enum {
2927     nir_loop_control_none = 0x0,
2928     nir_loop_control_unroll = 0x1,
2929     nir_loop_control_dont_unroll = 0x2,
2930  } nir_loop_control;
2931  
2932  typedef struct {
2933     nir_cf_node cf_node;
2934  
2935     struct exec_list body; /** < list of nir_cf_node */
2936  
2937     nir_loop_info *info;
2938     nir_loop_control control;
2939     bool partially_unrolled;
2940  } nir_loop;
2941  
2942  /**
2943   * Various bits of metadata that can may be created or required by
2944   * optimization and analysis passes
2945   */
2946  typedef enum {
2947     nir_metadata_none = 0x0,
2948  
2949     /** Indicates that nir_block::index values are valid.
2950      *
2951      * The start block has index 0 and they increase through a natural walk of
2952      * the CFG.  nir_function_impl::num_blocks is the number of blocks and
2953      * every block index is in the range [0, nir_function_impl::num_blocks].
2954      *
2955      * A pass can preserve this metadata type if it doesn't touch the CFG.
2956      */
2957     nir_metadata_block_index = 0x1,
2958  
2959     /** Indicates that block dominance information is valid
2960      *
2961      * This includes:
2962      *
2963      *   - nir_block::num_dom_children
2964      *   - nir_block::dom_children
2965      *   - nir_block::dom_frontier
2966      *   - nir_block::dom_pre_index
2967      *   - nir_block::dom_post_index
2968      *
2969      * A pass can preserve this metadata type if it doesn't touch the CFG.
2970      */
2971     nir_metadata_dominance = 0x2,
2972  
2973     /** Indicates that SSA def data-flow liveness information is valid
2974      *
2975      * This includes:
2976      *
2977      *   - nir_block::live_in
2978      *   - nir_block::live_out
2979      *
2980      * A pass can preserve this metadata type if it never adds or removes any
2981      * SSA defs (most passes shouldn't preserve this metadata type).
2982      */
2983     nir_metadata_live_ssa_defs = 0x4,
2984  
2985     /** A dummy metadata value to track when a pass forgot to call
2986      * nir_metadata_preserve.
2987      *
2988      * A pass should always clear this value even if it doesn't make any
2989      * progress to indicate that it thought about preserving metadata.
2990      */
2991     nir_metadata_not_properly_reset = 0x8,
2992  
2993     /** Indicates that loop analysis information is valid.
2994      *
2995      * This includes everything pointed to by nir_loop::info.
2996      *
2997      * A pass can preserve this metadata type if it is guaranteed to not affect
2998      * any loop metadata.  However, since loop metadata includes things like
2999      * loop counts which depend on arithmetic in the loop, this is very hard to
3000      * determine.  Most passes shouldn't preserve this metadata type.
3001      */
3002     nir_metadata_loop_analysis = 0x10,
3003  
3004     /** Indicates that nir_instr::index values are valid.
3005      *
3006      * The start instruction has index 0 and they increase through a natural
3007      * walk of instructions in blocks in the CFG.  The indices my have holes
3008      * after passes such as DCE.
3009      *
3010      * A pass can preserve this metadata type if it never adds or moves any
3011      * instructions (most passes shouldn't preserve this metadata type), but
3012      * can preserve it if it only removes instructions.
3013      */
3014     nir_metadata_instr_index = 0x20,
3015  
3016     /** All metadata
3017      *
3018      * This includes all nir_metadata flags except not_properly_reset.  Passes
3019      * which do not change the shader in any way should call
3020      *
3021      *    nir_metadata_preserve(impl, nir_metadata_all);
3022      */
3023     nir_metadata_all = ~nir_metadata_not_properly_reset,
3024  } nir_metadata;
3025  MESA_DEFINE_CPP_ENUM_BITFIELD_OPERATORS(nir_metadata)
3026  
3027  typedef struct {
3028     nir_cf_node cf_node;
3029  
3030     /** pointer to the function of which this is an implementation */
3031     struct nir_function *function;
3032  
3033     struct exec_list body; /** < list of nir_cf_node */
3034  
3035     nir_block *end_block;
3036  
3037     /** list for all local variables in the function */
3038     struct exec_list locals;
3039  
3040     /** list of local registers in the function */
3041     struct exec_list registers;
3042  
3043     /** next available local register index */
3044     unsigned reg_alloc;
3045  
3046     /** next available SSA value index */
3047     unsigned ssa_alloc;
3048  
3049     /* total number of basic blocks, only valid when block_index_dirty = false */
3050     unsigned num_blocks;
3051  
3052     /** True if this nir_function_impl uses structured control-flow
3053      *
3054      * Structured nir_function_impls have different validation rules.
3055      */
3056     bool structured;
3057  
3058     nir_metadata valid_metadata;
3059  } nir_function_impl;
3060  
3061  #define nir_foreach_function_temp_variable(var, impl) \
3062     foreach_list_typed(nir_variable, var, node, &(impl)->locals)
3063  
3064  #define nir_foreach_function_temp_variable_safe(var, impl) \
3065     foreach_list_typed_safe(nir_variable, var, node, &(impl)->locals)
3066  
3067  ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
nir_start_block(nir_function_impl * impl)3068  nir_start_block(nir_function_impl *impl)
3069  {
3070     return (nir_block *) impl->body.head_sentinel.next;
3071  }
3072  
3073  ATTRIBUTE_RETURNS_NONNULL static inline nir_block *
nir_impl_last_block(nir_function_impl * impl)3074  nir_impl_last_block(nir_function_impl *impl)
3075  {
3076     return (nir_block *) impl->body.tail_sentinel.prev;
3077  }
3078  
3079  static inline nir_cf_node *
nir_cf_node_next(nir_cf_node * node)3080  nir_cf_node_next(nir_cf_node *node)
3081  {
3082     struct exec_node *next = exec_node_get_next(&node->node);
3083     if (exec_node_is_tail_sentinel(next))
3084        return NULL;
3085     else
3086        return exec_node_data(nir_cf_node, next, node);
3087  }
3088  
3089  static inline nir_cf_node *
nir_cf_node_prev(nir_cf_node * node)3090  nir_cf_node_prev(nir_cf_node *node)
3091  {
3092     struct exec_node *prev = exec_node_get_prev(&node->node);
3093     if (exec_node_is_head_sentinel(prev))
3094        return NULL;
3095     else
3096        return exec_node_data(nir_cf_node, prev, node);
3097  }
3098  
3099  static inline bool
nir_cf_node_is_first(const nir_cf_node * node)3100  nir_cf_node_is_first(const nir_cf_node *node)
3101  {
3102     return exec_node_is_head_sentinel(node->node.prev);
3103  }
3104  
3105  static inline bool
nir_cf_node_is_last(const nir_cf_node * node)3106  nir_cf_node_is_last(const nir_cf_node *node)
3107  {
3108     return exec_node_is_tail_sentinel(node->node.next);
3109  }
3110  
NIR_DEFINE_CAST(nir_cf_node_as_block,nir_cf_node,nir_block,cf_node,type,nir_cf_node_block)3111  NIR_DEFINE_CAST(nir_cf_node_as_block, nir_cf_node, nir_block, cf_node,
3112                  type, nir_cf_node_block)
3113  NIR_DEFINE_CAST(nir_cf_node_as_if, nir_cf_node, nir_if, cf_node,
3114                  type, nir_cf_node_if)
3115  NIR_DEFINE_CAST(nir_cf_node_as_loop, nir_cf_node, nir_loop, cf_node,
3116                  type, nir_cf_node_loop)
3117  NIR_DEFINE_CAST(nir_cf_node_as_function, nir_cf_node,
3118                  nir_function_impl, cf_node, type, nir_cf_node_function)
3119  
3120  static inline nir_block *
3121  nir_if_first_then_block(nir_if *if_stmt)
3122  {
3123     struct exec_node *head = exec_list_get_head(&if_stmt->then_list);
3124     return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3125  }
3126  
3127  static inline nir_block *
nir_if_last_then_block(nir_if * if_stmt)3128  nir_if_last_then_block(nir_if *if_stmt)
3129  {
3130     struct exec_node *tail = exec_list_get_tail(&if_stmt->then_list);
3131     return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
3132  }
3133  
3134  static inline nir_block *
nir_if_first_else_block(nir_if * if_stmt)3135  nir_if_first_else_block(nir_if *if_stmt)
3136  {
3137     struct exec_node *head = exec_list_get_head(&if_stmt->else_list);
3138     return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3139  }
3140  
3141  static inline nir_block *
nir_if_last_else_block(nir_if * if_stmt)3142  nir_if_last_else_block(nir_if *if_stmt)
3143  {
3144     struct exec_node *tail = exec_list_get_tail(&if_stmt->else_list);
3145     return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
3146  }
3147  
3148  static inline nir_block *
nir_loop_first_block(nir_loop * loop)3149  nir_loop_first_block(nir_loop *loop)
3150  {
3151     struct exec_node *head = exec_list_get_head(&loop->body);
3152     return nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3153  }
3154  
3155  static inline nir_block *
nir_loop_last_block(nir_loop * loop)3156  nir_loop_last_block(nir_loop *loop)
3157  {
3158     struct exec_node *tail = exec_list_get_tail(&loop->body);
3159     return nir_cf_node_as_block(exec_node_data(nir_cf_node, tail, node));
3160  }
3161  
3162  /**
3163   * Return true if this list of cf_nodes contains a single empty block.
3164   */
3165  static inline bool
nir_cf_list_is_empty_block(struct exec_list * cf_list)3166  nir_cf_list_is_empty_block(struct exec_list *cf_list)
3167  {
3168     if (exec_list_is_singular(cf_list)) {
3169        struct exec_node *head = exec_list_get_head(cf_list);
3170        nir_block *block =
3171           nir_cf_node_as_block(exec_node_data(nir_cf_node, head, node));
3172        return exec_list_is_empty(&block->instr_list);
3173     }
3174     return false;
3175  }
3176  
3177  typedef struct {
3178     uint8_t num_components;
3179     uint8_t bit_size;
3180  } nir_parameter;
3181  
3182  typedef struct nir_function {
3183     struct exec_node node;
3184  
3185     const char *name;
3186     struct nir_shader *shader;
3187  
3188     unsigned num_params;
3189     nir_parameter *params;
3190  
3191     /** The implementation of this function.
3192      *
3193      * If the function is only declared and not implemented, this is NULL.
3194      */
3195     nir_function_impl *impl;
3196  
3197     bool is_entrypoint;
3198  } nir_function;
3199  
3200  typedef enum {
3201     nir_lower_imul64 = (1 << 0),
3202     nir_lower_isign64 = (1 << 1),
3203     /** Lower all int64 modulus and division opcodes */
3204     nir_lower_divmod64 = (1 << 2),
3205     /** Lower all 64-bit umul_high and imul_high opcodes */
3206     nir_lower_imul_high64 = (1 << 3),
3207     nir_lower_mov64 = (1 << 4),
3208     nir_lower_icmp64 = (1 << 5),
3209     nir_lower_iadd64 = (1 << 6),
3210     nir_lower_iabs64 = (1 << 7),
3211     nir_lower_ineg64 = (1 << 8),
3212     nir_lower_logic64 = (1 << 9),
3213     nir_lower_minmax64 = (1 << 10),
3214     nir_lower_shift64 = (1 << 11),
3215     nir_lower_imul_2x32_64 = (1 << 12),
3216     nir_lower_extract64 = (1 << 13),
3217     nir_lower_ufind_msb64 = (1 << 14),
3218     nir_lower_bit_count64 = (1 << 15),
3219  } nir_lower_int64_options;
3220  
3221  typedef enum {
3222     nir_lower_drcp = (1 << 0),
3223     nir_lower_dsqrt = (1 << 1),
3224     nir_lower_drsq = (1 << 2),
3225     nir_lower_dtrunc = (1 << 3),
3226     nir_lower_dfloor = (1 << 4),
3227     nir_lower_dceil = (1 << 5),
3228     nir_lower_dfract = (1 << 6),
3229     nir_lower_dround_even = (1 << 7),
3230     nir_lower_dmod = (1 << 8),
3231     nir_lower_dsub = (1 << 9),
3232     nir_lower_ddiv = (1 << 10),
3233     nir_lower_fp64_full_software = (1 << 11),
3234  } nir_lower_doubles_options;
3235  
3236  typedef enum {
3237     nir_divergence_single_prim_per_subgroup = (1 << 0),
3238     nir_divergence_single_patch_per_tcs_subgroup = (1 << 1),
3239     nir_divergence_single_patch_per_tes_subgroup = (1 << 2),
3240     nir_divergence_view_index_uniform = (1 << 3),
3241  } nir_divergence_options;
3242  
3243  typedef struct nir_shader_compiler_options {
3244     bool lower_fdiv;
3245     bool lower_ffma16;
3246     bool lower_ffma32;
3247     bool lower_ffma64;
3248     bool fuse_ffma16;
3249     bool fuse_ffma32;
3250     bool fuse_ffma64;
3251     bool lower_flrp16;
3252     bool lower_flrp32;
3253     /** Lowers flrp when it does not support doubles */
3254     bool lower_flrp64;
3255     bool lower_fpow;
3256     bool lower_fsat;
3257     bool lower_fsqrt;
3258     bool lower_sincos;
3259     bool lower_fmod;
3260     /** Lowers ibitfield_extract/ubitfield_extract to ibfe/ubfe. */
3261     bool lower_bitfield_extract;
3262     /** Lowers ibitfield_extract/ubitfield_extract to compares, shifts. */
3263     bool lower_bitfield_extract_to_shifts;
3264     /** Lowers bitfield_insert to bfi/bfm */
3265     bool lower_bitfield_insert;
3266     /** Lowers bitfield_insert to compares, and shifts. */
3267     bool lower_bitfield_insert_to_shifts;
3268     /** Lowers bitfield_insert to bfm/bitfield_select. */
3269     bool lower_bitfield_insert_to_bitfield_select;
3270     /** Lowers bitfield_reverse to shifts. */
3271     bool lower_bitfield_reverse;
3272     /** Lowers bit_count to shifts. */
3273     bool lower_bit_count;
3274     /** Lowers ifind_msb to compare and ufind_msb */
3275     bool lower_ifind_msb;
3276     /** Lowers find_lsb to ufind_msb and logic ops */
3277     bool lower_find_lsb;
3278     bool lower_uadd_carry;
3279     bool lower_usub_borrow;
3280     /** Lowers imul_high/umul_high to 16-bit multiplies and carry operations. */
3281     bool lower_mul_high;
3282     /** lowers fneg and ineg to fsub and isub. */
3283     bool lower_negate;
3284     /** lowers fsub and isub to fadd+fneg and iadd+ineg. */
3285     bool lower_sub;
3286  
3287     /* lower {slt,sge,seq,sne} to {flt,fge,feq,fneu} + b2f: */
3288     bool lower_scmp;
3289  
3290     /* lower b/fall_equalN/b/fany_nequalN (ex:fany_nequal4 to sne+fdot4+fsat) */
3291     bool lower_vector_cmp;
3292  
3293     /** enable rules to avoid bit ops */
3294     bool lower_bitops;
3295  
3296     /** enables rules to lower isign to imin+imax */
3297     bool lower_isign;
3298  
3299     /** enables rules to lower fsign to fsub and flt */
3300     bool lower_fsign;
3301  
3302     /** enables rules to lower iabs to ineg+imax */
3303     bool lower_iabs;
3304  
3305     /** enable rules that avoid generating umax from signed integer ops */
3306     bool lower_umax;
3307  
3308     /** enable rules that avoid generating umin from signed integer ops */
3309     bool lower_umin;
3310  
3311     /* lower fdph to fdot4 */
3312     bool lower_fdph;
3313  
3314     /** lower fdot to fmul and fsum/fadd. */
3315     bool lower_fdot;
3316  
3317     /* Does the native fdot instruction replicate its result for four
3318      * components?  If so, then opt_algebraic_late will turn all fdotN
3319      * instructions into fdotN_replicated instructions.
3320      */
3321     bool fdot_replicates;
3322  
3323     /** lowers ffloor to fsub+ffract: */
3324     bool lower_ffloor;
3325  
3326     /** lowers ffract to fsub+ffloor: */
3327     bool lower_ffract;
3328  
3329     /** lowers fceil to fneg+ffloor+fneg: */
3330     bool lower_fceil;
3331  
3332     bool lower_ftrunc;
3333  
3334     bool lower_ldexp;
3335  
3336     bool lower_pack_half_2x16;
3337     bool lower_pack_unorm_2x16;
3338     bool lower_pack_snorm_2x16;
3339     bool lower_pack_unorm_4x8;
3340     bool lower_pack_snorm_4x8;
3341     bool lower_pack_64_2x32;
3342     bool lower_pack_64_4x16;
3343     bool lower_pack_32_2x16;
3344     bool lower_pack_64_2x32_split;
3345     bool lower_pack_32_2x16_split;
3346     bool lower_unpack_half_2x16;
3347     bool lower_unpack_unorm_2x16;
3348     bool lower_unpack_snorm_2x16;
3349     bool lower_unpack_unorm_4x8;
3350     bool lower_unpack_snorm_4x8;
3351     bool lower_unpack_64_2x32_split;
3352     bool lower_unpack_32_2x16_split;
3353  
3354     bool lower_pack_split;
3355  
3356     bool lower_extract_byte;
3357     bool lower_extract_word;
3358  
3359     bool lower_all_io_to_temps;
3360     bool lower_all_io_to_elements;
3361  
3362     /* Indicates that the driver only has zero-based vertex id */
3363     bool vertex_id_zero_based;
3364  
3365     /**
3366      * If enabled, gl_BaseVertex will be lowered as:
3367      * is_indexed_draw (~0/0) & firstvertex
3368      */
3369     bool lower_base_vertex;
3370  
3371     /**
3372      * If enabled, gl_HelperInvocation will be lowered as:
3373      *
3374      *   !((1 << sample_id) & sample_mask_in))
3375      *
3376      * This depends on some possibly hw implementation details, which may
3377      * not be true for all hw.  In particular that the FS is only executed
3378      * for covered samples or for helper invocations.  So, do not blindly
3379      * enable this option.
3380      *
3381      * Note: See also issue #22 in ARB_shader_image_load_store
3382      */
3383     bool lower_helper_invocation;
3384  
3385     /**
3386      * Convert gl_SampleMaskIn to gl_HelperInvocation as follows:
3387      *
3388      *   gl_SampleMaskIn == 0 ---> gl_HelperInvocation
3389      *   gl_SampleMaskIn != 0 ---> !gl_HelperInvocation
3390      */
3391     bool optimize_sample_mask_in;
3392  
3393     bool lower_cs_local_index_from_id;
3394     bool lower_cs_local_id_from_index;
3395  
3396     /* Prevents lowering global_invocation_id to be in terms of work_group_id */
3397     bool has_cs_global_id;
3398  
3399     bool lower_device_index_to_zero;
3400  
3401     /* Set if nir_lower_pntc_ytransform() should invert gl_PointCoord.
3402      * Either when frame buffer is flipped or GL_POINT_SPRITE_COORD_ORIGIN
3403      * is GL_LOWER_LEFT.
3404      */
3405     bool lower_wpos_pntc;
3406  
3407     /**
3408      * Set if nir_op_[iu]hadd and nir_op_[iu]rhadd instructions should be
3409      * lowered to simple arithmetic.
3410      *
3411      * If this flag is set, the lowering will be applied to all bit-sizes of
3412      * these instructions.
3413      *
3414      * \sa ::lower_hadd64
3415      */
3416     bool lower_hadd;
3417  
3418     /**
3419      * Set if only 64-bit nir_op_[iu]hadd and nir_op_[iu]rhadd instructions
3420      * should be lowered to simple arithmetic.
3421      *
3422      * If this flag is set, the lowering will be applied to only 64-bit
3423      * versions of these instructions.
3424      *
3425      * \sa ::lower_hadd
3426      */
3427     bool lower_hadd64;
3428  
3429     /**
3430      * Set if nir_op_add_sat and nir_op_usub_sat should be lowered to simple
3431      * arithmetic.
3432      *
3433      * If this flag is set, the lowering will be applied to all bit-sizes of
3434      * these instructions.
3435      *
3436      * \sa ::lower_usub_sat64
3437      */
3438     bool lower_add_sat;
3439  
3440     /**
3441      * Set if only 64-bit nir_op_usub_sat should be lowered to simple
3442      * arithmetic.
3443      *
3444      * \sa ::lower_add_sat
3445      */
3446     bool lower_usub_sat64;
3447  
3448     /**
3449      * Should IO be re-vectorized?  Some scalar ISAs still operate on vec4's
3450      * for IO purposes and would prefer loads/stores be vectorized.
3451      */
3452     bool vectorize_io;
3453     bool lower_to_scalar;
3454  
3455     /**
3456      * Whether nir_opt_vectorize should only create 16-bit 2D vectors.
3457      */
3458     bool vectorize_vec2_16bit;
3459  
3460     /**
3461      * Should the linker unify inputs_read/outputs_written between adjacent
3462      * shader stages which are linked into a single program?
3463      */
3464     bool unify_interfaces;
3465  
3466     /**
3467      * Should nir_lower_io() create load_interpolated_input intrinsics?
3468      *
3469      * If not, it generates regular load_input intrinsics and interpolation
3470      * information must be inferred from the list of input nir_variables.
3471      */
3472     bool use_interpolated_input_intrinsics;
3473  
3474  
3475     /**
3476      * Whether nir_lower_io() will lower interpolateAt functions to
3477      * load_interpolated_input intrinsics.
3478      *
3479      * Unlike use_interpolated_input_intrinsics this will only lower these
3480      * functions and leave input load intrinsics untouched.
3481      */
3482     bool lower_interpolate_at;
3483  
3484     /* Lowers when 32x32->64 bit multiplication is not supported */
3485     bool lower_mul_2x32_64;
3486  
3487     /* Lowers when rotate instruction is not supported */
3488     bool lower_rotate;
3489  
3490     /**
3491      * Backend supports imul24, and would like to use it (when possible)
3492      * for address/offset calculation.  If true, driver should call
3493      * nir_lower_amul().  (If not set, amul will automatically be lowered
3494      * to imul.)
3495      */
3496     bool has_imul24;
3497  
3498     /** Backend supports umul24, if not set  umul24 will automatically be lowered
3499      * to imul with masked inputs */
3500     bool has_umul24;
3501  
3502     /** Backend supports umad24, if not set  umad24 will automatically be lowered
3503      * to imul with masked inputs and iadd */
3504     bool has_umad24;
3505  
3506     /* Whether to generate only scoped_barrier intrinsics instead of the set of
3507      * memory and control barrier intrinsics based on GLSL.
3508      */
3509     bool use_scoped_barrier;
3510  
3511     /**
3512      * Is this the Intel vec4 backend?
3513      *
3514      * Used to inhibit algebraic optimizations that are known to be harmful on
3515      * the Intel vec4 backend.  This is generally applicable to any
3516      * optimization that might cause more immediate values to be used in
3517      * 3-source (e.g., ffma and flrp) instructions.
3518      */
3519     bool intel_vec4;
3520  
3521     /** Lower nir_op_ibfe and nir_op_ubfe that have two constant sources. */
3522     bool lower_bfe_with_two_constants;
3523  
3524     /** Whether 8-bit ALU is supported. */
3525     bool support_8bit_alu;
3526  
3527     /** Whether 16-bit ALU is supported. */
3528     bool support_16bit_alu;
3529  
3530     unsigned max_unroll_iterations;
3531  
3532     /* For the non-zero value of the enum corresponds multiplier when
3533      * calling lower_uniforms_to_ubo */
3534     bool lower_uniforms_to_ubo;
3535  
3536     nir_lower_int64_options lower_int64_options;
3537     nir_lower_doubles_options lower_doubles_options;
3538     nir_divergence_options divergence_analysis_options;
3539  } nir_shader_compiler_options;
3540  
3541  typedef struct nir_shader {
3542     /** list of uniforms (nir_variable) */
3543     struct exec_list variables;
3544  
3545     /** Set of driver-specific options for the shader.
3546      *
3547      * The memory for the options is expected to be kept in a single static
3548      * copy by the driver.
3549      */
3550     const struct nir_shader_compiler_options *options;
3551  
3552     /** Various bits of compile-time information about a given shader */
3553     struct shader_info info;
3554  
3555     struct exec_list functions; /** < list of nir_function */
3556  
3557     /**
3558      * The size of the variable space for load_input_*, load_uniform_*, etc.
3559      * intrinsics.  This is in back-end specific units which is likely one of
3560      * bytes, dwords, or vec4s depending on context and back-end.
3561      */
3562     unsigned num_inputs, num_uniforms, num_outputs;
3563  
3564     /** Size in bytes of required shared memory */
3565     unsigned shared_size;
3566  
3567     /** Size in bytes of required scratch space */
3568     unsigned scratch_size;
3569  
3570     /** Constant data associated with this shader.
3571      *
3572      * Constant data is loaded through load_constant intrinsics (as compared to
3573      * the NIR load_const instructions which have the constant value inlined
3574      * into them).  This is usually generated by nir_opt_large_constants (so
3575      * shaders don't have to load_const into a temporary array when they want
3576      * to indirect on a const array).
3577      */
3578     void *constant_data;
3579     /** Size of the constant data associated with the shader, in bytes */
3580     unsigned constant_data_size;
3581  } nir_shader;
3582  
3583  #define nir_foreach_function(func, shader) \
3584     foreach_list_typed(nir_function, func, node, &(shader)->functions)
3585  
3586  static inline nir_function_impl *
nir_shader_get_entrypoint(nir_shader * shader)3587  nir_shader_get_entrypoint(nir_shader *shader)
3588  {
3589     nir_function *func = NULL;
3590  
3591     nir_foreach_function(function, shader) {
3592        assert(func == NULL);
3593        if (function->is_entrypoint) {
3594           func = function;
3595  #ifndef NDEBUG
3596           break;
3597  #endif
3598        }
3599     }
3600  
3601     if (!func)
3602        return NULL;
3603  
3604     assert(func->num_params == 0);
3605     assert(func->impl);
3606     return func->impl;
3607  }
3608  
3609  typedef struct nir_liveness_bounds {
3610     uint32_t start;
3611     uint32_t end;
3612  } nir_liveness_bounds;
3613  
3614  typedef struct nir_instr_liveness {
3615     /**
3616      * nir_instr->index for the start and end of a single live interval for SSA
3617      * defs.  ssa values last used by a nir_if condition will have an interval
3618      * ending at the first instruction after the last one before the if
3619      * condition.
3620      *
3621      * Indexed by def->index (impl->ssa_alloc elements).
3622      */
3623     struct nir_liveness_bounds *defs;
3624  } nir_instr_liveness;
3625  
3626  nir_instr_liveness *
3627  nir_live_ssa_defs_per_instr(nir_function_impl *impl);
3628  
3629  nir_shader *nir_shader_create(void *mem_ctx,
3630                                gl_shader_stage stage,
3631                                const nir_shader_compiler_options *options,
3632                                shader_info *si);
3633  
3634  nir_register *nir_local_reg_create(nir_function_impl *impl);
3635  
3636  void nir_reg_remove(nir_register *reg);
3637  
3638  /** Adds a variable to the appropriate list in nir_shader */
3639  void nir_shader_add_variable(nir_shader *shader, nir_variable *var);
3640  
3641  static inline void
nir_function_impl_add_variable(nir_function_impl * impl,nir_variable * var)3642  nir_function_impl_add_variable(nir_function_impl *impl, nir_variable *var)
3643  {
3644     assert(var->data.mode == nir_var_function_temp);
3645     exec_list_push_tail(&impl->locals, &var->node);
3646  }
3647  
3648  /** creates a variable, sets a few defaults, and adds it to the list */
3649  nir_variable *nir_variable_create(nir_shader *shader,
3650                                    nir_variable_mode mode,
3651                                    const struct glsl_type *type,
3652                                    const char *name);
3653  /** creates a local variable and adds it to the list */
3654  nir_variable *nir_local_variable_create(nir_function_impl *impl,
3655                                          const struct glsl_type *type,
3656                                          const char *name);
3657  
3658  nir_variable *nir_find_variable_with_location(nir_shader *shader,
3659                                                nir_variable_mode mode,
3660                                                unsigned location);
3661  
3662  nir_variable *nir_find_variable_with_driver_location(nir_shader *shader,
3663                                                       nir_variable_mode mode,
3664                                                       unsigned location);
3665  
3666  /** creates a function and adds it to the shader's list of functions */
3667  nir_function *nir_function_create(nir_shader *shader, const char *name);
3668  
3669  nir_function_impl *nir_function_impl_create(nir_function *func);
3670  /** creates a function_impl that isn't tied to any particular function */
3671  nir_function_impl *nir_function_impl_create_bare(nir_shader *shader);
3672  
3673  nir_block *nir_block_create(nir_shader *shader);
3674  nir_if *nir_if_create(nir_shader *shader);
3675  nir_loop *nir_loop_create(nir_shader *shader);
3676  
3677  nir_function_impl *nir_cf_node_get_function(nir_cf_node *node);
3678  
3679  /** requests that the given pieces of metadata be generated */
3680  void nir_metadata_require(nir_function_impl *impl, nir_metadata required, ...);
3681  /** dirties all but the preserved metadata */
3682  void nir_metadata_preserve(nir_function_impl *impl, nir_metadata preserved);
3683  /** Preserves all metadata for the given shader */
3684  void nir_shader_preserve_all_metadata(nir_shader *shader);
3685  
3686  /** creates an instruction with default swizzle/writemask/etc. with NULL registers */
3687  nir_alu_instr *nir_alu_instr_create(nir_shader *shader, nir_op op);
3688  
3689  nir_deref_instr *nir_deref_instr_create(nir_shader *shader,
3690                                          nir_deref_type deref_type);
3691  
3692  nir_jump_instr *nir_jump_instr_create(nir_shader *shader, nir_jump_type type);
3693  
3694  nir_load_const_instr *nir_load_const_instr_create(nir_shader *shader,
3695                                                    unsigned num_components,
3696                                                    unsigned bit_size);
3697  
3698  nir_intrinsic_instr *nir_intrinsic_instr_create(nir_shader *shader,
3699                                                  nir_intrinsic_op op);
3700  
3701  nir_call_instr *nir_call_instr_create(nir_shader *shader,
3702                                        nir_function *callee);
3703  
3704  nir_tex_instr *nir_tex_instr_create(nir_shader *shader, unsigned num_srcs);
3705  
3706  nir_phi_instr *nir_phi_instr_create(nir_shader *shader);
3707  
3708  nir_parallel_copy_instr *nir_parallel_copy_instr_create(nir_shader *shader);
3709  
3710  nir_ssa_undef_instr *nir_ssa_undef_instr_create(nir_shader *shader,
3711                                                  unsigned num_components,
3712                                                  unsigned bit_size);
3713  
3714  nir_const_value nir_alu_binop_identity(nir_op binop, unsigned bit_size);
3715  
3716  /**
3717   * NIR Cursors and Instruction Insertion API
3718   * @{
3719   *
3720   * A tiny struct representing a point to insert/extract instructions or
3721   * control flow nodes.  Helps reduce the combinatorial explosion of possible
3722   * points to insert/extract.
3723   *
3724   * \sa nir_control_flow.h
3725   */
3726  typedef enum {
3727     nir_cursor_before_block,
3728     nir_cursor_after_block,
3729     nir_cursor_before_instr,
3730     nir_cursor_after_instr,
3731  } nir_cursor_option;
3732  
3733  typedef struct {
3734     nir_cursor_option option;
3735     union {
3736        nir_block *block;
3737        nir_instr *instr;
3738     };
3739  } nir_cursor;
3740  
3741  static inline nir_block *
nir_cursor_current_block(nir_cursor cursor)3742  nir_cursor_current_block(nir_cursor cursor)
3743  {
3744     if (cursor.option == nir_cursor_before_instr ||
3745         cursor.option == nir_cursor_after_instr) {
3746        return cursor.instr->block;
3747     } else {
3748        return cursor.block;
3749     }
3750  }
3751  
3752  bool nir_cursors_equal(nir_cursor a, nir_cursor b);
3753  
3754  static inline nir_cursor
nir_before_block(nir_block * block)3755  nir_before_block(nir_block *block)
3756  {
3757     nir_cursor cursor;
3758     cursor.option = nir_cursor_before_block;
3759     cursor.block = block;
3760     return cursor;
3761  }
3762  
3763  static inline nir_cursor
nir_after_block(nir_block * block)3764  nir_after_block(nir_block *block)
3765  {
3766     nir_cursor cursor;
3767     cursor.option = nir_cursor_after_block;
3768     cursor.block = block;
3769     return cursor;
3770  }
3771  
3772  static inline nir_cursor
nir_before_instr(nir_instr * instr)3773  nir_before_instr(nir_instr *instr)
3774  {
3775     nir_cursor cursor;
3776     cursor.option = nir_cursor_before_instr;
3777     cursor.instr = instr;
3778     return cursor;
3779  }
3780  
3781  static inline nir_cursor
nir_after_instr(nir_instr * instr)3782  nir_after_instr(nir_instr *instr)
3783  {
3784     nir_cursor cursor;
3785     cursor.option = nir_cursor_after_instr;
3786     cursor.instr = instr;
3787     return cursor;
3788  }
3789  
3790  static inline nir_cursor
nir_after_block_before_jump(nir_block * block)3791  nir_after_block_before_jump(nir_block *block)
3792  {
3793     nir_instr *last_instr = nir_block_last_instr(block);
3794     if (last_instr && last_instr->type == nir_instr_type_jump) {
3795        return nir_before_instr(last_instr);
3796     } else {
3797        return nir_after_block(block);
3798     }
3799  }
3800  
3801  static inline nir_cursor
nir_before_src(nir_src * src,bool is_if_condition)3802  nir_before_src(nir_src *src, bool is_if_condition)
3803  {
3804     if (is_if_condition) {
3805        nir_block *prev_block =
3806           nir_cf_node_as_block(nir_cf_node_prev(&src->parent_if->cf_node));
3807        assert(!nir_block_ends_in_jump(prev_block));
3808        return nir_after_block(prev_block);
3809     } else if (src->parent_instr->type == nir_instr_type_phi) {
3810  #ifndef NDEBUG
3811        nir_phi_instr *cond_phi = nir_instr_as_phi(src->parent_instr);
3812        bool found = false;
3813        nir_foreach_phi_src(phi_src, cond_phi) {
3814           if (phi_src->src.ssa == src->ssa) {
3815              found = true;
3816              break;
3817           }
3818        }
3819        assert(found);
3820  #endif
3821        /* The LIST_ENTRY macro is a generic container-of macro, it just happens
3822         * to have a more specific name.
3823         */
3824        nir_phi_src *phi_src = LIST_ENTRY(nir_phi_src, src, src);
3825        return nir_after_block_before_jump(phi_src->pred);
3826     } else {
3827        return nir_before_instr(src->parent_instr);
3828     }
3829  }
3830  
3831  static inline nir_cursor
nir_before_cf_node(nir_cf_node * node)3832  nir_before_cf_node(nir_cf_node *node)
3833  {
3834     if (node->type == nir_cf_node_block)
3835        return nir_before_block(nir_cf_node_as_block(node));
3836  
3837     return nir_after_block(nir_cf_node_as_block(nir_cf_node_prev(node)));
3838  }
3839  
3840  static inline nir_cursor
nir_after_cf_node(nir_cf_node * node)3841  nir_after_cf_node(nir_cf_node *node)
3842  {
3843     if (node->type == nir_cf_node_block)
3844        return nir_after_block(nir_cf_node_as_block(node));
3845  
3846     return nir_before_block(nir_cf_node_as_block(nir_cf_node_next(node)));
3847  }
3848  
3849  static inline nir_cursor
nir_after_phis(nir_block * block)3850  nir_after_phis(nir_block *block)
3851  {
3852     nir_foreach_instr(instr, block) {
3853        if (instr->type != nir_instr_type_phi)
3854           return nir_before_instr(instr);
3855     }
3856     return nir_after_block(block);
3857  }
3858  
3859  static inline nir_cursor
nir_after_cf_node_and_phis(nir_cf_node * node)3860  nir_after_cf_node_and_phis(nir_cf_node *node)
3861  {
3862     if (node->type == nir_cf_node_block)
3863        return nir_after_block(nir_cf_node_as_block(node));
3864  
3865     nir_block *block = nir_cf_node_as_block(nir_cf_node_next(node));
3866  
3867     return nir_after_phis(block);
3868  }
3869  
3870  static inline nir_cursor
nir_before_cf_list(struct exec_list * cf_list)3871  nir_before_cf_list(struct exec_list *cf_list)
3872  {
3873     nir_cf_node *first_node = exec_node_data(nir_cf_node,
3874                                              exec_list_get_head(cf_list), node);
3875     return nir_before_cf_node(first_node);
3876  }
3877  
3878  static inline nir_cursor
nir_after_cf_list(struct exec_list * cf_list)3879  nir_after_cf_list(struct exec_list *cf_list)
3880  {
3881     nir_cf_node *last_node = exec_node_data(nir_cf_node,
3882                                             exec_list_get_tail(cf_list), node);
3883     return nir_after_cf_node(last_node);
3884  }
3885  
3886  /**
3887   * Insert a NIR instruction at the given cursor.
3888   *
3889   * Note: This does not update the cursor.
3890   */
3891  void nir_instr_insert(nir_cursor cursor, nir_instr *instr);
3892  
3893  static inline void
nir_instr_insert_before(nir_instr * instr,nir_instr * before)3894  nir_instr_insert_before(nir_instr *instr, nir_instr *before)
3895  {
3896     nir_instr_insert(nir_before_instr(instr), before);
3897  }
3898  
3899  static inline void
nir_instr_insert_after(nir_instr * instr,nir_instr * after)3900  nir_instr_insert_after(nir_instr *instr, nir_instr *after)
3901  {
3902     nir_instr_insert(nir_after_instr(instr), after);
3903  }
3904  
3905  static inline void
nir_instr_insert_before_block(nir_block * block,nir_instr * before)3906  nir_instr_insert_before_block(nir_block *block, nir_instr *before)
3907  {
3908     nir_instr_insert(nir_before_block(block), before);
3909  }
3910  
3911  static inline void
nir_instr_insert_after_block(nir_block * block,nir_instr * after)3912  nir_instr_insert_after_block(nir_block *block, nir_instr *after)
3913  {
3914     nir_instr_insert(nir_after_block(block), after);
3915  }
3916  
3917  static inline void
nir_instr_insert_before_cf(nir_cf_node * node,nir_instr * before)3918  nir_instr_insert_before_cf(nir_cf_node *node, nir_instr *before)
3919  {
3920     nir_instr_insert(nir_before_cf_node(node), before);
3921  }
3922  
3923  static inline void
nir_instr_insert_after_cf(nir_cf_node * node,nir_instr * after)3924  nir_instr_insert_after_cf(nir_cf_node *node, nir_instr *after)
3925  {
3926     nir_instr_insert(nir_after_cf_node(node), after);
3927  }
3928  
3929  static inline void
nir_instr_insert_before_cf_list(struct exec_list * list,nir_instr * before)3930  nir_instr_insert_before_cf_list(struct exec_list *list, nir_instr *before)
3931  {
3932     nir_instr_insert(nir_before_cf_list(list), before);
3933  }
3934  
3935  static inline void
nir_instr_insert_after_cf_list(struct exec_list * list,nir_instr * after)3936  nir_instr_insert_after_cf_list(struct exec_list *list, nir_instr *after)
3937  {
3938     nir_instr_insert(nir_after_cf_list(list), after);
3939  }
3940  
3941  void nir_instr_remove_v(nir_instr *instr);
3942  
3943  static inline nir_cursor
nir_instr_remove(nir_instr * instr)3944  nir_instr_remove(nir_instr *instr)
3945  {
3946     nir_cursor cursor;
3947     nir_instr *prev = nir_instr_prev(instr);
3948     if (prev) {
3949        cursor = nir_after_instr(prev);
3950     } else {
3951        cursor = nir_before_block(instr->block);
3952     }
3953     nir_instr_remove_v(instr);
3954     return cursor;
3955  }
3956  
3957  /** @} */
3958  
3959  nir_ssa_def *nir_instr_ssa_def(nir_instr *instr);
3960  
3961  typedef bool (*nir_foreach_ssa_def_cb)(nir_ssa_def *def, void *state);
3962  typedef bool (*nir_foreach_dest_cb)(nir_dest *dest, void *state);
3963  typedef bool (*nir_foreach_src_cb)(nir_src *src, void *state);
3964  bool nir_foreach_ssa_def(nir_instr *instr, nir_foreach_ssa_def_cb cb,
3965                           void *state);
3966  bool nir_foreach_dest(nir_instr *instr, nir_foreach_dest_cb cb, void *state);
3967  bool nir_foreach_src(nir_instr *instr, nir_foreach_src_cb cb, void *state);
3968  bool nir_foreach_phi_src_leaving_block(nir_block *instr,
3969                                         nir_foreach_src_cb cb,
3970                                         void *state);
3971  
3972  nir_const_value *nir_src_as_const_value(nir_src src);
3973  
3974  #define NIR_SRC_AS_(name, c_type, type_enum, cast_macro)                \
3975  static inline c_type *                                                  \
3976  nir_src_as_ ## name (nir_src src)                                       \
3977  {                                                                       \
3978      return src.is_ssa && src.ssa->parent_instr->type == type_enum       \
3979             ? cast_macro(src.ssa->parent_instr) : NULL;                  \
3980  }
3981  
3982  NIR_SRC_AS_(alu_instr, nir_alu_instr, nir_instr_type_alu, nir_instr_as_alu)
3983  NIR_SRC_AS_(intrinsic, nir_intrinsic_instr,
3984              nir_instr_type_intrinsic, nir_instr_as_intrinsic)
3985  NIR_SRC_AS_(deref, nir_deref_instr, nir_instr_type_deref, nir_instr_as_deref)
3986  
3987  bool nir_src_is_dynamically_uniform(nir_src src);
3988  bool nir_srcs_equal(nir_src src1, nir_src src2);
3989  bool nir_instrs_equal(const nir_instr *instr1, const nir_instr *instr2);
3990  void nir_instr_rewrite_src(nir_instr *instr, nir_src *src, nir_src new_src);
3991  void nir_instr_move_src(nir_instr *dest_instr, nir_src *dest, nir_src *src);
3992  void nir_if_rewrite_condition(nir_if *if_stmt, nir_src new_src);
3993  void nir_instr_rewrite_dest(nir_instr *instr, nir_dest *dest,
3994                              nir_dest new_dest);
3995  
3996  void nir_ssa_dest_init(nir_instr *instr, nir_dest *dest,
3997                         unsigned num_components, unsigned bit_size,
3998                         const char *name);
3999  void nir_ssa_def_init(nir_instr *instr, nir_ssa_def *def,
4000                        unsigned num_components, unsigned bit_size,
4001                        const char *name);
4002  static inline void
nir_ssa_dest_init_for_type(nir_instr * instr,nir_dest * dest,const struct glsl_type * type,const char * name)4003  nir_ssa_dest_init_for_type(nir_instr *instr, nir_dest *dest,
4004                             const struct glsl_type *type,
4005                             const char *name)
4006  {
4007     assert(glsl_type_is_vector_or_scalar(type));
4008     nir_ssa_dest_init(instr, dest, glsl_get_components(type),
4009                       glsl_get_bit_size(type), name);
4010  }
4011  void nir_ssa_def_rewrite_uses(nir_ssa_def *def, nir_src new_src);
4012  void nir_ssa_def_rewrite_uses_after(nir_ssa_def *def, nir_src new_src,
4013                                      nir_instr *after_me);
4014  
4015  nir_component_mask_t nir_ssa_def_components_read(const nir_ssa_def *def);
4016  
4017  
4018  /** Returns the next block, disregarding structure
4019   *
4020   * The ordering is deterministic but has no guarantees beyond that.  In
4021   * particular, it is not guaranteed to be dominance-preserving.
4022   */
4023  nir_block *nir_block_unstructured_next(nir_block *block);
4024  nir_block *nir_unstructured_start_block(nir_function_impl *impl);
4025  
4026  #define nir_foreach_block_unstructured(block, impl) \
4027     for (nir_block *block = nir_unstructured_start_block(impl); block != NULL; \
4028          block = nir_block_unstructured_next(block))
4029  
4030  #define nir_foreach_block_unstructured_safe(block, impl) \
4031     for (nir_block *block = nir_unstructured_start_block(impl), \
4032          *next = nir_block_unstructured_next(block); \
4033          block != NULL; \
4034          block = next, next = nir_block_unstructured_next(block))
4035  
4036  /*
4037   * finds the next basic block in source-code order, returns NULL if there is
4038   * none
4039   */
4040  
4041  nir_block *nir_block_cf_tree_next(nir_block *block);
4042  
4043  /* Performs the opposite of nir_block_cf_tree_next() */
4044  
4045  nir_block *nir_block_cf_tree_prev(nir_block *block);
4046  
4047  /* Gets the first block in a CF node in source-code order */
4048  
4049  nir_block *nir_cf_node_cf_tree_first(nir_cf_node *node);
4050  
4051  /* Gets the last block in a CF node in source-code order */
4052  
4053  nir_block *nir_cf_node_cf_tree_last(nir_cf_node *node);
4054  
4055  /* Gets the next block after a CF node in source-code order */
4056  
4057  nir_block *nir_cf_node_cf_tree_next(nir_cf_node *node);
4058  
4059  /* Macros for loops that visit blocks in source-code order */
4060  
4061  #define nir_foreach_block(block, impl) \
4062     for (nir_block *block = nir_start_block(impl); block != NULL; \
4063          block = nir_block_cf_tree_next(block))
4064  
4065  #define nir_foreach_block_safe(block, impl) \
4066     for (nir_block *block = nir_start_block(impl), \
4067          *next = nir_block_cf_tree_next(block); \
4068          block != NULL; \
4069          block = next, next = nir_block_cf_tree_next(block))
4070  
4071  #define nir_foreach_block_reverse(block, impl) \
4072     for (nir_block *block = nir_impl_last_block(impl); block != NULL; \
4073          block = nir_block_cf_tree_prev(block))
4074  
4075  #define nir_foreach_block_reverse_safe(block, impl) \
4076     for (nir_block *block = nir_impl_last_block(impl), \
4077          *prev = nir_block_cf_tree_prev(block); \
4078          block != NULL; \
4079          block = prev, prev = nir_block_cf_tree_prev(block))
4080  
4081  #define nir_foreach_block_in_cf_node(block, node) \
4082     for (nir_block *block = nir_cf_node_cf_tree_first(node); \
4083          block != nir_cf_node_cf_tree_next(node); \
4084          block = nir_block_cf_tree_next(block))
4085  
4086  /* If the following CF node is an if, this function returns that if.
4087   * Otherwise, it returns NULL.
4088   */
4089  nir_if *nir_block_get_following_if(nir_block *block);
4090  
4091  nir_loop *nir_block_get_following_loop(nir_block *block);
4092  
4093  void nir_index_local_regs(nir_function_impl *impl);
4094  void nir_index_ssa_defs(nir_function_impl *impl);
4095  unsigned nir_index_instrs(nir_function_impl *impl);
4096  
4097  void nir_index_blocks(nir_function_impl *impl);
4098  
4099  unsigned nir_shader_index_vars(nir_shader *shader, nir_variable_mode modes);
4100  unsigned nir_function_impl_index_vars(nir_function_impl *impl);
4101  
4102  void nir_print_shader(nir_shader *shader, FILE *fp);
4103  void nir_print_shader_annotated(nir_shader *shader, FILE *fp, struct hash_table *errors);
4104  void nir_print_instr(const nir_instr *instr, FILE *fp);
4105  void nir_print_deref(const nir_deref_instr *deref, FILE *fp);
4106  
4107  /** Shallow clone of a single instruction. */
4108  nir_instr *nir_instr_clone(nir_shader *s, const nir_instr *orig);
4109  
4110  /** Shallow clone of a single ALU instruction. */
4111  nir_alu_instr *nir_alu_instr_clone(nir_shader *s, const nir_alu_instr *orig);
4112  
4113  nir_shader *nir_shader_clone(void *mem_ctx, const nir_shader *s);
4114  nir_function_impl *nir_function_impl_clone(nir_shader *shader,
4115                                             const nir_function_impl *fi);
4116  nir_constant *nir_constant_clone(const nir_constant *c, nir_variable *var);
4117  nir_variable *nir_variable_clone(const nir_variable *c, nir_shader *shader);
4118  
4119  void nir_shader_replace(nir_shader *dest, nir_shader *src);
4120  
4121  void nir_shader_serialize_deserialize(nir_shader *s);
4122  
4123  #ifndef NDEBUG
4124  void nir_validate_shader(nir_shader *shader, const char *when);
4125  void nir_validate_ssa_dominance(nir_shader *shader, const char *when);
4126  void nir_metadata_set_validation_flag(nir_shader *shader);
4127  void nir_metadata_check_validation_flag(nir_shader *shader);
4128  
4129  static inline bool
should_skip_nir(const char * name)4130  should_skip_nir(const char *name)
4131  {
4132     static const char *list = NULL;
4133     if (!list) {
4134        /* Comma separated list of names to skip. */
4135        list = getenv("NIR_SKIP");
4136        if (!list)
4137           list = "";
4138     }
4139  
4140     if (!list[0])
4141        return false;
4142  
4143     return comma_separated_list_contains(list, name);
4144  }
4145  
4146  static inline bool
should_clone_nir(void)4147  should_clone_nir(void)
4148  {
4149     static int should_clone = -1;
4150     if (should_clone < 0)
4151        should_clone = env_var_as_boolean("NIR_TEST_CLONE", false);
4152  
4153     return should_clone;
4154  }
4155  
4156  static inline bool
should_serialize_deserialize_nir(void)4157  should_serialize_deserialize_nir(void)
4158  {
4159     static int test_serialize = -1;
4160     if (test_serialize < 0)
4161        test_serialize = env_var_as_boolean("NIR_TEST_SERIALIZE", false);
4162  
4163     return test_serialize;
4164  }
4165  
4166  static inline bool
should_print_nir(nir_shader * shader)4167  should_print_nir(nir_shader *shader)
4168  {
4169     static int should_print = -1;
4170     if (should_print < 0)
4171        should_print = env_var_as_unsigned("NIR_PRINT", 0);
4172  
4173     if (should_print == 1)
4174        return !shader->info.internal;
4175  
4176     return should_print;
4177  }
4178  #else
nir_validate_shader(nir_shader * shader,const char * when)4179  static inline void nir_validate_shader(nir_shader *shader, const char *when) { (void) shader; (void)when; }
nir_validate_ssa_dominance(nir_shader * shader,const char * when)4180  static inline void nir_validate_ssa_dominance(nir_shader *shader, const char *when) { (void) shader; (void)when; }
nir_metadata_set_validation_flag(nir_shader * shader)4181  static inline void nir_metadata_set_validation_flag(nir_shader *shader) { (void) shader; }
nir_metadata_check_validation_flag(nir_shader * shader)4182  static inline void nir_metadata_check_validation_flag(nir_shader *shader) { (void) shader; }
should_skip_nir(UNUSED const char * pass_name)4183  static inline bool should_skip_nir(UNUSED const char *pass_name) { return false; }
should_clone_nir(void)4184  static inline bool should_clone_nir(void) { return false; }
should_serialize_deserialize_nir(void)4185  static inline bool should_serialize_deserialize_nir(void) { return false; }
should_print_nir(nir_shader * shader)4186  static inline bool should_print_nir(nir_shader *shader) { return false; }
4187  #endif /* NDEBUG */
4188  
4189  #define _PASS(pass, nir, do_pass) do {                               \
4190     if (should_skip_nir(#pass)) {                                     \
4191        printf("skipping %s\n", #pass);                                \
4192        break;                                                         \
4193     }                                                                 \
4194     do_pass                                                           \
4195     if (should_clone_nir()) {                                         \
4196        nir_shader *clone = nir_shader_clone(ralloc_parent(nir), nir); \
4197        nir_shader_replace(nir, clone);                                \
4198     }                                                                 \
4199     if (should_serialize_deserialize_nir()) {                         \
4200        nir_shader_serialize_deserialize(nir);                         \
4201     }                                                                 \
4202  } while (0)
4203  
4204  #define NIR_PASS(progress, nir, pass, ...) _PASS(pass, nir,          \
4205     nir_metadata_set_validation_flag(nir);                            \
4206     if (should_print_nir(nir))                                           \
4207        printf("%s\n", #pass);                                         \
4208     if (pass(nir, ##__VA_ARGS__)) {                                   \
4209        nir_validate_shader(nir, "after " #pass);                      \
4210        progress = true;                                               \
4211        if (should_print_nir(nir))                                        \
4212           nir_print_shader(nir, stdout);                              \
4213        nir_metadata_check_validation_flag(nir);                       \
4214     }                                                                 \
4215  )
4216  
4217  #define NIR_PASS_V(nir, pass, ...) _PASS(pass, nir,                  \
4218     if (should_print_nir(nir))                                           \
4219        printf("%s\n", #pass);                                         \
4220     pass(nir, ##__VA_ARGS__);                                         \
4221     nir_validate_shader(nir, "after " #pass);                         \
4222     if (should_print_nir(nir))                                           \
4223        nir_print_shader(nir, stdout);                                 \
4224  )
4225  
4226  #define NIR_SKIP(name) should_skip_nir(#name)
4227  
4228  /** An instruction filtering callback
4229   *
4230   * Returns true if the instruction should be processed and false otherwise.
4231   */
4232  typedef bool (*nir_instr_filter_cb)(const nir_instr *, const void *);
4233  
4234  /** A simple instruction lowering callback
4235   *
4236   * Many instruction lowering passes can be written as a simple function which
4237   * takes an instruction as its input and returns a sequence of instructions
4238   * that implement the consumed instruction.  This function type represents
4239   * such a lowering function.  When called, a function with this prototype
4240   * should either return NULL indicating that no lowering needs to be done or
4241   * emit a sequence of instructions using the provided builder (whose cursor
4242   * will already be placed after the instruction to be lowered) and return the
4243   * resulting nir_ssa_def.
4244   */
4245  typedef nir_ssa_def *(*nir_lower_instr_cb)(struct nir_builder *,
4246                                             nir_instr *, void *);
4247  
4248  /**
4249   * Special return value for nir_lower_instr_cb when some progress occurred
4250   * (like changing an input to the instr) that didn't result in a replacement
4251   * SSA def being generated.
4252   */
4253  #define NIR_LOWER_INSTR_PROGRESS ((nir_ssa_def *)(uintptr_t)1)
4254  
4255  /** Iterate over all the instructions in a nir_function_impl and lower them
4256   *  using the provided callbacks
4257   *
4258   * This function implements the guts of a standard lowering pass for you.  It
4259   * iterates over all of the instructions in a nir_function_impl and calls the
4260   * filter callback on each one.  If the filter callback returns true, it then
4261   * calls the lowering call back on the instruction.  (Splitting it this way
4262   * allows us to avoid some save/restore work for instructions we know won't be
4263   * lowered.)  If the instruction is dead after the lowering is complete, it
4264   * will be removed.  If new instructions are added, the lowering callback will
4265   * also be called on them in case multiple lowerings are required.
4266   *
4267   * The metadata for the nir_function_impl will also be updated.  If any blocks
4268   * are added (they cannot be removed), dominance and block indices will be
4269   * invalidated.
4270   */
4271  bool nir_function_impl_lower_instructions(nir_function_impl *impl,
4272                                            nir_instr_filter_cb filter,
4273                                            nir_lower_instr_cb lower,
4274                                            void *cb_data);
4275  bool nir_shader_lower_instructions(nir_shader *shader,
4276                                     nir_instr_filter_cb filter,
4277                                     nir_lower_instr_cb lower,
4278                                     void *cb_data);
4279  
4280  void nir_calc_dominance_impl(nir_function_impl *impl);
4281  void nir_calc_dominance(nir_shader *shader);
4282  
4283  nir_block *nir_dominance_lca(nir_block *b1, nir_block *b2);
4284  bool nir_block_dominates(nir_block *parent, nir_block *child);
4285  bool nir_block_is_unreachable(nir_block *block);
4286  
4287  void nir_dump_dom_tree_impl(nir_function_impl *impl, FILE *fp);
4288  void nir_dump_dom_tree(nir_shader *shader, FILE *fp);
4289  
4290  void nir_dump_dom_frontier_impl(nir_function_impl *impl, FILE *fp);
4291  void nir_dump_dom_frontier(nir_shader *shader, FILE *fp);
4292  
4293  void nir_dump_cfg_impl(nir_function_impl *impl, FILE *fp);
4294  void nir_dump_cfg(nir_shader *shader, FILE *fp);
4295  
4296  void nir_gs_count_vertices_and_primitives(const nir_shader *shader,
4297                                            int *out_vtxcnt,
4298                                            int *out_prmcnt,
4299                                            unsigned num_streams);
4300  
4301  bool nir_shrink_vec_array_vars(nir_shader *shader, nir_variable_mode modes);
4302  bool nir_split_array_vars(nir_shader *shader, nir_variable_mode modes);
4303  bool nir_split_var_copies(nir_shader *shader);
4304  bool nir_split_per_member_structs(nir_shader *shader);
4305  bool nir_split_struct_vars(nir_shader *shader, nir_variable_mode modes);
4306  
4307  bool nir_lower_returns_impl(nir_function_impl *impl);
4308  bool nir_lower_returns(nir_shader *shader);
4309  
4310  void nir_inline_function_impl(struct nir_builder *b,
4311                                const nir_function_impl *impl,
4312                                nir_ssa_def **params,
4313                                struct hash_table *shader_var_remap);
4314  bool nir_inline_functions(nir_shader *shader);
4315  
4316  void nir_find_inlinable_uniforms(nir_shader *shader);
4317  void nir_inline_uniforms(nir_shader *shader, unsigned num_uniforms,
4318                           const uint32_t *uniform_values,
4319                           const uint16_t *uniform_dw_offsets);
4320  
4321  bool nir_propagate_invariant(nir_shader *shader);
4322  
4323  void nir_lower_var_copy_instr(nir_intrinsic_instr *copy, nir_shader *shader);
4324  void nir_lower_deref_copy_instr(struct nir_builder *b,
4325                                  nir_intrinsic_instr *copy);
4326  bool nir_lower_var_copies(nir_shader *shader);
4327  
4328  bool nir_opt_memcpy(nir_shader *shader);
4329  bool nir_lower_memcpy(nir_shader *shader);
4330  
4331  void nir_fixup_deref_modes(nir_shader *shader);
4332  
4333  bool nir_lower_global_vars_to_local(nir_shader *shader);
4334  
4335  typedef enum {
4336     nir_lower_direct_array_deref_of_vec_load     = (1 << 0),
4337     nir_lower_indirect_array_deref_of_vec_load   = (1 << 1),
4338     nir_lower_direct_array_deref_of_vec_store    = (1 << 2),
4339     nir_lower_indirect_array_deref_of_vec_store  = (1 << 3),
4340  } nir_lower_array_deref_of_vec_options;
4341  
4342  bool nir_lower_array_deref_of_vec(nir_shader *shader, nir_variable_mode modes,
4343                                    nir_lower_array_deref_of_vec_options options);
4344  
4345  bool nir_lower_indirect_derefs(nir_shader *shader, nir_variable_mode modes,
4346                                 uint32_t max_lower_array_len);
4347  
4348  bool nir_lower_locals_to_regs(nir_shader *shader);
4349  
4350  void nir_lower_io_to_temporaries(nir_shader *shader,
4351                                   nir_function_impl *entrypoint,
4352                                   bool outputs, bool inputs);
4353  
4354  bool nir_lower_vars_to_scratch(nir_shader *shader,
4355                                 nir_variable_mode modes,
4356                                 int size_threshold,
4357                                 glsl_type_size_align_func size_align);
4358  
4359  void nir_lower_clip_halfz(nir_shader *shader);
4360  
4361  void nir_shader_gather_info(nir_shader *shader, nir_function_impl *entrypoint);
4362  
4363  void nir_gather_ssa_types(nir_function_impl *impl,
4364                            BITSET_WORD *float_types,
4365                            BITSET_WORD *int_types);
4366  
4367  void nir_assign_var_locations(nir_shader *shader, nir_variable_mode mode,
4368                                unsigned *size,
4369                                int (*type_size)(const struct glsl_type *, bool));
4370  
4371  /* Some helpers to do very simple linking */
4372  bool nir_remove_unused_varyings(nir_shader *producer, nir_shader *consumer);
4373  bool nir_remove_unused_io_vars(nir_shader *shader, nir_variable_mode mode,
4374                                 uint64_t *used_by_other_stage,
4375                                 uint64_t *used_by_other_stage_patches);
4376  void nir_compact_varyings(nir_shader *producer, nir_shader *consumer,
4377                            bool default_to_smooth_interp);
4378  void nir_link_xfb_varyings(nir_shader *producer, nir_shader *consumer);
4379  bool nir_link_opt_varyings(nir_shader *producer, nir_shader *consumer);
4380  
4381  bool nir_lower_amul(nir_shader *shader,
4382                      int (*type_size)(const struct glsl_type *, bool));
4383  
4384  bool nir_lower_ubo_vec4(nir_shader *shader);
4385  
4386  void nir_assign_io_var_locations(nir_shader *shader,
4387                                   nir_variable_mode mode,
4388                                   unsigned *size,
4389                                   gl_shader_stage stage);
4390  
4391  typedef struct {
4392     uint8_t num_linked_io_vars;
4393     uint8_t num_linked_patch_io_vars;
4394  } nir_linked_io_var_info;
4395  
4396  nir_linked_io_var_info
4397  nir_assign_linked_io_var_locations(nir_shader *producer,
4398                                     nir_shader *consumer);
4399  
4400  typedef enum {
4401     /* If set, this causes all 64-bit IO operations to be lowered on-the-fly
4402      * to 32-bit operations.  This is only valid for nir_var_shader_in/out
4403      * modes.
4404      */
4405     nir_lower_io_lower_64bit_to_32 = (1 << 0),
4406  
4407     /* If set, this forces all non-flat fragment shader inputs to be
4408      * interpolated as if with the "sample" qualifier.  This requires
4409      * nir_shader_compiler_options::use_interpolated_input_intrinsics.
4410      */
4411     nir_lower_io_force_sample_interpolation = (1 << 1),
4412  } nir_lower_io_options;
4413  bool nir_lower_io(nir_shader *shader,
4414                    nir_variable_mode modes,
4415                    int (*type_size)(const struct glsl_type *, bool),
4416                    nir_lower_io_options);
4417  
4418  bool nir_io_add_const_offset_to_base(nir_shader *nir, nir_variable_mode modes);
4419  
4420  bool
4421  nir_lower_vars_to_explicit_types(nir_shader *shader,
4422                                   nir_variable_mode modes,
4423                                   glsl_type_size_align_func type_info);
4424  
4425  bool nir_lower_mem_constant_vars(nir_shader *shader,
4426                                   glsl_type_size_align_func type_info);
4427  
4428  bool nir_lower_vec3_to_vec4(nir_shader *shader, nir_variable_mode modes);
4429  
4430  typedef enum {
4431     /**
4432      * An address format which is a simple 32-bit global GPU address.
4433      */
4434     nir_address_format_32bit_global,
4435  
4436     /**
4437      * An address format which is a simple 64-bit global GPU address.
4438      */
4439     nir_address_format_64bit_global,
4440  
4441     /**
4442      * An address format which is a bounds-checked 64-bit global GPU address.
4443      *
4444      * The address is comprised as a 32-bit vec4 where .xy are a uint64_t base
4445      * address stored with the low bits in .x and high bits in .y, .z is a
4446      * size, and .w is an offset.  When the final I/O operation is lowered, .w
4447      * is checked against .z and the operation is predicated on the result.
4448      */
4449     nir_address_format_64bit_bounded_global,
4450  
4451     /**
4452      * An address format which is comprised of a vec2 where the first
4453      * component is a buffer index and the second is an offset.
4454      */
4455     nir_address_format_32bit_index_offset,
4456  
4457     /**
4458      * An address format which is a 64-bit value, where the high 32 bits
4459      * are a buffer index, and the low 32 bits are an offset.
4460      */
4461      nir_address_format_32bit_index_offset_pack64,
4462  
4463     /**
4464      * An address format which is comprised of a vec3 where the first two
4465      * components specify the buffer and the third is an offset.
4466      */
4467     nir_address_format_vec2_index_32bit_offset,
4468  
4469     /**
4470      * An address format which represents generic pointers with a 62-bit
4471      * pointer and a 2-bit enum in the top two bits.  The top two bits have
4472      * the following meanings:
4473      *
4474      *  - 0x0: Global memory
4475      *  - 0x1: Shared memory
4476      *  - 0x2: Scratch memory
4477      *  - 0x3: Global memory
4478      *
4479      * The redundancy between 0x0 and 0x3 is because of Intel sign-extension of
4480      * addresses.  Valid global memory addresses may naturally have either 0 or
4481      * ~0 as their high bits.
4482      *
4483      * Shared and scratch pointers are represented as 32-bit offsets with the
4484      * top 32 bits only being used for the enum.  This allows us to avoid
4485      * 64-bit address calculations in a bunch of cases.
4486      */
4487     nir_address_format_62bit_generic,
4488  
4489     /**
4490      * An address format which is a simple 32-bit offset.
4491      */
4492     nir_address_format_32bit_offset,
4493  
4494     /**
4495      * An address format which is a simple 32-bit offset cast to 64-bit.
4496      */
4497      nir_address_format_32bit_offset_as_64bit,
4498  
4499     /**
4500      * An address format representing a purely logical addressing model.  In
4501      * this model, all deref chains must be complete from the dereference
4502      * operation to the variable.  Cast derefs are not allowed.  These
4503      * addresses will be 32-bit scalars but the format is immaterial because
4504      * you can always chase the chain.
4505      */
4506     nir_address_format_logical,
4507  } nir_address_format;
4508  
4509  static inline unsigned
nir_address_format_bit_size(nir_address_format addr_format)4510  nir_address_format_bit_size(nir_address_format addr_format)
4511  {
4512     switch (addr_format) {
4513     case nir_address_format_32bit_global:              return 32;
4514     case nir_address_format_64bit_global:              return 64;
4515     case nir_address_format_64bit_bounded_global:      return 32;
4516     case nir_address_format_32bit_index_offset:        return 32;
4517     case nir_address_format_32bit_index_offset_pack64: return 64;
4518     case nir_address_format_vec2_index_32bit_offset:   return 32;
4519     case nir_address_format_62bit_generic:             return 64;
4520     case nir_address_format_32bit_offset:              return 32;
4521     case nir_address_format_32bit_offset_as_64bit:     return 64;
4522     case nir_address_format_logical:                   return 32;
4523     }
4524     unreachable("Invalid address format");
4525  }
4526  
4527  static inline unsigned
nir_address_format_num_components(nir_address_format addr_format)4528  nir_address_format_num_components(nir_address_format addr_format)
4529  {
4530     switch (addr_format) {
4531     case nir_address_format_32bit_global:              return 1;
4532     case nir_address_format_64bit_global:              return 1;
4533     case nir_address_format_64bit_bounded_global:      return 4;
4534     case nir_address_format_32bit_index_offset:        return 2;
4535     case nir_address_format_32bit_index_offset_pack64: return 1;
4536     case nir_address_format_vec2_index_32bit_offset:   return 3;
4537     case nir_address_format_62bit_generic:             return 1;
4538     case nir_address_format_32bit_offset:              return 1;
4539     case nir_address_format_32bit_offset_as_64bit:     return 1;
4540     case nir_address_format_logical:                   return 1;
4541     }
4542     unreachable("Invalid address format");
4543  }
4544  
4545  static inline const struct glsl_type *
nir_address_format_to_glsl_type(nir_address_format addr_format)4546  nir_address_format_to_glsl_type(nir_address_format addr_format)
4547  {
4548     unsigned bit_size = nir_address_format_bit_size(addr_format);
4549     assert(bit_size == 32 || bit_size == 64);
4550     return glsl_vector_type(bit_size == 32 ? GLSL_TYPE_UINT : GLSL_TYPE_UINT64,
4551                             nir_address_format_num_components(addr_format));
4552  }
4553  
4554  const nir_const_value *nir_address_format_null_value(nir_address_format addr_format);
4555  
4556  nir_ssa_def *nir_build_addr_ieq(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
4557                                  nir_address_format addr_format);
4558  
4559  nir_ssa_def *nir_build_addr_isub(struct nir_builder *b, nir_ssa_def *addr0, nir_ssa_def *addr1,
4560                                   nir_address_format addr_format);
4561  
4562  nir_ssa_def * nir_explicit_io_address_from_deref(struct nir_builder *b,
4563                                                   nir_deref_instr *deref,
4564                                                   nir_ssa_def *base_addr,
4565                                                   nir_address_format addr_format);
4566  
4567  bool nir_get_explicit_deref_align(nir_deref_instr *deref,
4568                                    bool default_to_type_align,
4569                                    uint32_t *align_mul,
4570                                    uint32_t *align_offset);
4571  
4572  void nir_lower_explicit_io_instr(struct nir_builder *b,
4573                                   nir_intrinsic_instr *io_instr,
4574                                   nir_ssa_def *addr,
4575                                   nir_address_format addr_format);
4576  
4577  bool nir_lower_explicit_io(nir_shader *shader,
4578                             nir_variable_mode modes,
4579                             nir_address_format);
4580  
4581  nir_src *nir_get_io_offset_src(nir_intrinsic_instr *instr);
4582  nir_src *nir_get_io_vertex_index_src(nir_intrinsic_instr *instr);
4583  nir_src *nir_get_shader_call_payload_src(nir_intrinsic_instr *call);
4584  
4585  bool nir_is_per_vertex_io(const nir_variable *var, gl_shader_stage stage);
4586  
4587  bool nir_lower_regs_to_ssa_impl(nir_function_impl *impl);
4588  bool nir_lower_regs_to_ssa(nir_shader *shader);
4589  bool nir_lower_vars_to_ssa(nir_shader *shader);
4590  
4591  bool nir_remove_dead_derefs(nir_shader *shader);
4592  bool nir_remove_dead_derefs_impl(nir_function_impl *impl);
4593  
4594  typedef struct nir_remove_dead_variables_options {
4595     bool (*can_remove_var)(nir_variable *var, void *data);
4596     void *can_remove_var_data;
4597  } nir_remove_dead_variables_options;
4598  
4599  bool nir_remove_dead_variables(nir_shader *shader, nir_variable_mode modes,
4600                                 const nir_remove_dead_variables_options *options);
4601  
4602  bool nir_lower_variable_initializers(nir_shader *shader,
4603                                       nir_variable_mode modes);
4604  
4605  bool nir_move_vec_src_uses_to_dest(nir_shader *shader);
4606  bool nir_lower_vec_to_movs(nir_shader *shader);
4607  void nir_lower_alpha_test(nir_shader *shader, enum compare_func func,
4608                            bool alpha_to_one,
4609                            const gl_state_index16 *alpha_ref_state_tokens);
4610  bool nir_lower_alu(nir_shader *shader);
4611  
4612  bool nir_lower_flrp(nir_shader *shader, unsigned lowering_mask,
4613                      bool always_precise);
4614  
4615  bool nir_lower_alu_to_scalar(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
4616  bool nir_lower_bool_to_bitsize(nir_shader *shader);
4617  bool nir_lower_bool_to_float(nir_shader *shader);
4618  bool nir_lower_bool_to_int32(nir_shader *shader);
4619  bool nir_opt_simplify_convert_alu_types(nir_shader *shader);
4620  bool nir_lower_convert_alu_types(nir_shader *shader,
4621                                   bool (*should_lower)(nir_intrinsic_instr *));
4622  bool nir_lower_constant_convert_alu_types(nir_shader *shader);
4623  bool nir_lower_alu_conversion_to_intrinsic(nir_shader *shader);
4624  bool nir_lower_int_to_float(nir_shader *shader);
4625  bool nir_lower_load_const_to_scalar(nir_shader *shader);
4626  bool nir_lower_read_invocation_to_scalar(nir_shader *shader);
4627  bool nir_lower_phis_to_scalar(nir_shader *shader);
4628  void nir_lower_io_arrays_to_elements(nir_shader *producer, nir_shader *consumer);
4629  void nir_lower_io_arrays_to_elements_no_indirects(nir_shader *shader,
4630                                                    bool outputs_only);
4631  void nir_lower_io_to_scalar(nir_shader *shader, nir_variable_mode mask);
4632  bool nir_lower_io_to_scalar_early(nir_shader *shader, nir_variable_mode mask);
4633  bool nir_lower_io_to_vector(nir_shader *shader, nir_variable_mode mask);
4634  
4635  bool nir_lower_fragcolor(nir_shader *shader);
4636  bool nir_lower_fragcoord_wtrans(nir_shader *shader);
4637  void nir_lower_viewport_transform(nir_shader *shader);
4638  bool nir_lower_uniforms_to_ubo(nir_shader *shader, int multiplier);
4639  
4640  typedef struct nir_lower_subgroups_options {
4641     uint8_t subgroup_size;
4642     uint8_t ballot_bit_size;
4643     bool lower_to_scalar:1;
4644     bool lower_vote_trivial:1;
4645     bool lower_vote_eq_to_ballot:1;
4646     bool lower_subgroup_masks:1;
4647     bool lower_shuffle:1;
4648     bool lower_shuffle_to_32bit:1;
4649     bool lower_shuffle_to_swizzle_amd:1;
4650     bool lower_quad:1;
4651     bool lower_quad_broadcast_dynamic:1;
4652     bool lower_quad_broadcast_dynamic_to_const:1;
4653     bool lower_elect:1;
4654  } nir_lower_subgroups_options;
4655  
4656  bool nir_lower_subgroups(nir_shader *shader,
4657                           const nir_lower_subgroups_options *options);
4658  
4659  bool nir_lower_system_values(nir_shader *shader);
4660  
4661  typedef struct nir_lower_compute_system_values_options {
4662     bool has_base_global_invocation_id:1;
4663     bool has_base_work_group_id:1;
4664  } nir_lower_compute_system_values_options;
4665  
4666  bool nir_lower_compute_system_values(nir_shader *shader,
4667                                       const nir_lower_compute_system_values_options *options);
4668  
4669  enum PACKED nir_lower_tex_packing {
4670     nir_lower_tex_packing_none = 0,
4671     /* The sampler returns up to 2 32-bit words of half floats or 16-bit signed
4672      * or unsigned ints based on the sampler type
4673      */
4674     nir_lower_tex_packing_16,
4675     /* The sampler returns 1 32-bit word of 4x8 unorm */
4676     nir_lower_tex_packing_8,
4677  };
4678  
4679  typedef struct nir_lower_tex_options {
4680     /**
4681      * bitmask of (1 << GLSL_SAMPLER_DIM_x) to control for which
4682      * sampler types a texture projector is lowered.
4683      */
4684     unsigned lower_txp;
4685  
4686     /**
4687      * If true, lower away nir_tex_src_offset for all texelfetch instructions.
4688      */
4689     bool lower_txf_offset;
4690  
4691     /**
4692      * If true, lower away nir_tex_src_offset for all rect textures.
4693      */
4694     bool lower_rect_offset;
4695  
4696     /**
4697      * If true, lower rect textures to 2D, using txs to fetch the
4698      * texture dimensions and dividing the texture coords by the
4699      * texture dims to normalize.
4700      */
4701     bool lower_rect;
4702  
4703     /**
4704      * If true, convert yuv to rgb.
4705      */
4706     unsigned lower_y_uv_external;
4707     unsigned lower_y_u_v_external;
4708     unsigned lower_yx_xuxv_external;
4709     unsigned lower_xy_uxvx_external;
4710     unsigned lower_ayuv_external;
4711     unsigned lower_xyuv_external;
4712     unsigned lower_yuv_external;
4713     unsigned bt709_external;
4714     unsigned bt2020_external;
4715  
4716     /**
4717      * To emulate certain texture wrap modes, this can be used
4718      * to saturate the specified tex coord to [0.0, 1.0].  The
4719      * bits are according to sampler #, ie. if, for example:
4720      *
4721      *   (conf->saturate_s & (1 << n))
4722      *
4723      * is true, then the s coord for sampler n is saturated.
4724      *
4725      * Note that clamping must happen *after* projector lowering
4726      * so any projected texture sample instruction with a clamped
4727      * coordinate gets automatically lowered, regardless of the
4728      * 'lower_txp' setting.
4729      */
4730     unsigned saturate_s;
4731     unsigned saturate_t;
4732     unsigned saturate_r;
4733  
4734     /* Bitmask of textures that need swizzling.
4735      *
4736      * If (swizzle_result & (1 << texture_index)), then the swizzle in
4737      * swizzles[texture_index] is applied to the result of the texturing
4738      * operation.
4739      */
4740     unsigned swizzle_result;
4741  
4742     /* A swizzle for each texture.  Values 0-3 represent x, y, z, or w swizzles
4743      * while 4 and 5 represent 0 and 1 respectively.
4744      */
4745     uint8_t swizzles[32][4];
4746  
4747     /* Can be used to scale sampled values in range required by the format. */
4748     float scale_factors[32];
4749  
4750     /**
4751      * Bitmap of textures that need srgb to linear conversion.  If
4752      * (lower_srgb & (1 << texture_index)) then the rgb (xyz) components
4753      * of the texture are lowered to linear.
4754      */
4755     unsigned lower_srgb;
4756  
4757     /**
4758      * If true, lower nir_texop_tex on shaders that doesn't support implicit
4759      * LODs to nir_texop_txl.
4760      */
4761     bool lower_tex_without_implicit_lod;
4762  
4763     /**
4764      * If true, lower nir_texop_txd on cube maps with nir_texop_txl.
4765      */
4766     bool lower_txd_cube_map;
4767  
4768     /**
4769      * If true, lower nir_texop_txd on 3D surfaces with nir_texop_txl.
4770      */
4771     bool lower_txd_3d;
4772  
4773     /**
4774      * If true, lower nir_texop_txd on shadow samplers (except cube maps)
4775      * with nir_texop_txl. Notice that cube map shadow samplers are lowered
4776      * with lower_txd_cube_map.
4777      */
4778     bool lower_txd_shadow;
4779  
4780     /**
4781      * If true, lower nir_texop_txd on all samplers to a nir_texop_txl.
4782      * Implies lower_txd_cube_map and lower_txd_shadow.
4783      */
4784     bool lower_txd;
4785  
4786     /**
4787      * If true, lower nir_texop_txb that try to use shadow compare and min_lod
4788      * at the same time to a nir_texop_lod, some math, and nir_texop_tex.
4789      */
4790     bool lower_txb_shadow_clamp;
4791  
4792     /**
4793      * If true, lower nir_texop_txd on shadow samplers when it uses min_lod
4794      * with nir_texop_txl.  This includes cube maps.
4795      */
4796     bool lower_txd_shadow_clamp;
4797  
4798     /**
4799      * If true, lower nir_texop_txd on when it uses both offset and min_lod
4800      * with nir_texop_txl.  This includes cube maps.
4801      */
4802     bool lower_txd_offset_clamp;
4803  
4804     /**
4805      * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
4806      * sampler is bindless.
4807      */
4808     bool lower_txd_clamp_bindless_sampler;
4809  
4810     /**
4811      * If true, lower nir_texop_txd with min_lod to a nir_texop_txl if the
4812      * sampler index is not statically determinable to be less than 16.
4813      */
4814     bool lower_txd_clamp_if_sampler_index_not_lt_16;
4815  
4816     /**
4817      * If true, lower nir_texop_txs with a non-0-lod into nir_texop_txs with
4818      * 0-lod followed by a nir_ishr.
4819      */
4820     bool lower_txs_lod;
4821  
4822     /**
4823      * If true, apply a .bagr swizzle on tg4 results to handle Broadcom's
4824      * mixed-up tg4 locations.
4825      */
4826     bool lower_tg4_broadcom_swizzle;
4827  
4828     /**
4829      * If true, lowers tg4 with 4 constant offsets to 4 tg4 calls
4830      */
4831     bool lower_tg4_offsets;
4832  
4833     enum nir_lower_tex_packing lower_tex_packing[32];
4834  } nir_lower_tex_options;
4835  
4836  bool nir_lower_tex(nir_shader *shader,
4837                     const nir_lower_tex_options *options);
4838  
4839  bool nir_lower_cl_images_to_tex(nir_shader *shader);
4840  
4841  enum nir_lower_non_uniform_access_type {
4842     nir_lower_non_uniform_ubo_access     = (1 << 0),
4843     nir_lower_non_uniform_ssbo_access    = (1 << 1),
4844     nir_lower_non_uniform_texture_access = (1 << 2),
4845     nir_lower_non_uniform_image_access   = (1 << 3),
4846  };
4847  
4848  bool nir_lower_non_uniform_access(nir_shader *shader,
4849                                    enum nir_lower_non_uniform_access_type);
4850  
4851  enum nir_lower_idiv_path {
4852     /* This path is based on NV50LegalizeSSA::handleDIV(). It is the faster of
4853      * the two but it is not exact in some cases (for example, 1091317713u /
4854      * 1034u gives 5209173 instead of 1055432) */
4855     nir_lower_idiv_fast,
4856     /* This path is based on AMDGPUTargetLowering::LowerUDIVREM() and
4857      * AMDGPUTargetLowering::LowerSDIVREM(). It requires more instructions than
4858      * the nv50 path and many of them are integer multiplications, so it is
4859      * probably slower. It should always return the correct result, though. */
4860     nir_lower_idiv_precise,
4861  };
4862  
4863  bool nir_lower_idiv(nir_shader *shader, enum nir_lower_idiv_path path);
4864  
4865  typedef struct nir_input_attachment_options {
4866     bool use_fragcoord_sysval;
4867     bool use_layer_id_sysval;
4868     bool use_view_id_for_layer;
4869  } nir_input_attachment_options;
4870  
4871  bool nir_lower_input_attachments(nir_shader *shader,
4872                                   const nir_input_attachment_options *options);
4873  
4874  bool nir_lower_clip_vs(nir_shader *shader, unsigned ucp_enables,
4875                         bool use_vars,
4876                         bool use_clipdist_array,
4877                         const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
4878  bool nir_lower_clip_gs(nir_shader *shader, unsigned ucp_enables,
4879                         bool use_clipdist_array,
4880                         const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
4881  bool nir_lower_clip_fs(nir_shader *shader, unsigned ucp_enables,
4882                         bool use_clipdist_array);
4883  bool nir_lower_clip_cull_distance_arrays(nir_shader *nir);
4884  bool nir_lower_clip_disable(nir_shader *shader, unsigned clip_plane_enable);
4885  
4886  void nir_lower_point_size_mov(nir_shader *shader,
4887                                const gl_state_index16 *pointsize_state_tokens);
4888  
4889  bool nir_lower_frexp(nir_shader *nir);
4890  
4891  void nir_lower_two_sided_color(nir_shader *shader, bool face_sysval);
4892  
4893  bool nir_lower_clamp_color_outputs(nir_shader *shader);
4894  
4895  bool nir_lower_flatshade(nir_shader *shader);
4896  
4897  void nir_lower_passthrough_edgeflags(nir_shader *shader);
4898  bool nir_lower_patch_vertices(nir_shader *nir, unsigned static_count,
4899                                const gl_state_index16 *uniform_state_tokens);
4900  
4901  typedef struct nir_lower_wpos_ytransform_options {
4902     gl_state_index16 state_tokens[STATE_LENGTH];
4903     bool fs_coord_origin_upper_left :1;
4904     bool fs_coord_origin_lower_left :1;
4905     bool fs_coord_pixel_center_integer :1;
4906     bool fs_coord_pixel_center_half_integer :1;
4907  } nir_lower_wpos_ytransform_options;
4908  
4909  bool nir_lower_wpos_ytransform(nir_shader *shader,
4910                                 const nir_lower_wpos_ytransform_options *options);
4911  bool nir_lower_wpos_center(nir_shader *shader, const bool for_sample_shading);
4912  
4913  bool nir_lower_pntc_ytransform(nir_shader *shader,
4914                                 const gl_state_index16 clipplane_state_tokens[][STATE_LENGTH]);
4915  
4916  bool nir_lower_wrmasks(nir_shader *shader, nir_instr_filter_cb cb, const void *data);
4917  
4918  bool nir_lower_fb_read(nir_shader *shader);
4919  
4920  typedef struct nir_lower_drawpixels_options {
4921     gl_state_index16 texcoord_state_tokens[STATE_LENGTH];
4922     gl_state_index16 scale_state_tokens[STATE_LENGTH];
4923     gl_state_index16 bias_state_tokens[STATE_LENGTH];
4924     unsigned drawpix_sampler;
4925     unsigned pixelmap_sampler;
4926     bool pixel_maps :1;
4927     bool scale_and_bias :1;
4928  } nir_lower_drawpixels_options;
4929  
4930  void nir_lower_drawpixels(nir_shader *shader,
4931                            const nir_lower_drawpixels_options *options);
4932  
4933  typedef struct nir_lower_bitmap_options {
4934     unsigned sampler;
4935     bool swizzle_xxxx;
4936  } nir_lower_bitmap_options;
4937  
4938  void nir_lower_bitmap(nir_shader *shader, const nir_lower_bitmap_options *options);
4939  
4940  bool nir_lower_atomics_to_ssbo(nir_shader *shader);
4941  
4942  typedef enum  {
4943     nir_lower_int_source_mods = 1 << 0,
4944     nir_lower_float_source_mods = 1 << 1,
4945     nir_lower_64bit_source_mods = 1 << 2,
4946     nir_lower_triop_abs = 1 << 3,
4947     nir_lower_all_source_mods = (1 << 4) - 1
4948  } nir_lower_to_source_mods_flags;
4949  
4950  
4951  bool nir_lower_to_source_mods(nir_shader *shader, nir_lower_to_source_mods_flags options);
4952  
4953  typedef enum {
4954     nir_lower_gs_intrinsics_per_stream = 1 << 0,
4955     nir_lower_gs_intrinsics_count_primitives = 1 << 1,
4956     nir_lower_gs_intrinsics_count_vertices_per_primitive = 1 << 2,
4957     nir_lower_gs_intrinsics_overwrite_incomplete = 1 << 3,
4958  } nir_lower_gs_intrinsics_flags;
4959  
4960  bool nir_lower_gs_intrinsics(nir_shader *shader, nir_lower_gs_intrinsics_flags options);
4961  
4962  typedef unsigned (*nir_lower_bit_size_callback)(const nir_instr *, void *);
4963  
4964  bool nir_lower_bit_size(nir_shader *shader,
4965                          nir_lower_bit_size_callback callback,
4966                          void *callback_data);
4967  bool nir_lower_64bit_phis(nir_shader *shader);
4968  
4969  nir_lower_int64_options nir_lower_int64_op_to_options_mask(nir_op opcode);
4970  bool nir_lower_int64(nir_shader *shader);
4971  
4972  nir_lower_doubles_options nir_lower_doubles_op_to_options_mask(nir_op opcode);
4973  bool nir_lower_doubles(nir_shader *shader, const nir_shader *softfp64,
4974                         nir_lower_doubles_options options);
4975  bool nir_lower_pack(nir_shader *shader);
4976  
4977  void nir_lower_mediump_outputs(nir_shader *nir);
4978  
4979  bool nir_lower_point_size(nir_shader *shader, float min, float max);
4980  
4981  typedef enum {
4982     nir_lower_interpolation_at_sample = (1 << 1),
4983     nir_lower_interpolation_at_offset = (1 << 2),
4984     nir_lower_interpolation_centroid  = (1 << 3),
4985     nir_lower_interpolation_pixel     = (1 << 4),
4986     nir_lower_interpolation_sample    = (1 << 5),
4987  } nir_lower_interpolation_options;
4988  
4989  bool nir_lower_interpolation(nir_shader *shader,
4990                               nir_lower_interpolation_options options);
4991  
4992  bool nir_lower_discard_to_demote(nir_shader *shader);
4993  
4994  bool nir_lower_memory_model(nir_shader *shader);
4995  
4996  bool nir_lower_goto_ifs(nir_shader *shader);
4997  
4998  bool nir_shader_uses_view_index(nir_shader *shader);
4999  bool nir_can_lower_multiview(nir_shader *shader);
5000  bool nir_lower_multiview(nir_shader *shader, uint32_t view_mask);
5001  
5002  bool nir_normalize_cubemap_coords(nir_shader *shader);
5003  
5004  void nir_live_ssa_defs_impl(nir_function_impl *impl);
5005  
5006  void nir_loop_analyze_impl(nir_function_impl *impl,
5007                             nir_variable_mode indirect_mask);
5008  
5009  bool nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b);
5010  
5011  bool nir_repair_ssa_impl(nir_function_impl *impl);
5012  bool nir_repair_ssa(nir_shader *shader);
5013  
5014  void nir_convert_loop_to_lcssa(nir_loop *loop);
5015  bool nir_convert_to_lcssa(nir_shader *shader, bool skip_invariants, bool skip_bool_invariants);
5016  void nir_divergence_analysis(nir_shader *shader);
5017  bool nir_update_instr_divergence(nir_shader *shader, nir_instr *instr);
5018  
5019  /* If phi_webs_only is true, only convert SSA values involved in phi nodes to
5020   * registers.  If false, convert all values (even those not involved in a phi
5021   * node) to registers.
5022   */
5023  bool nir_convert_from_ssa(nir_shader *shader, bool phi_webs_only);
5024  
5025  bool nir_lower_phis_to_regs_block(nir_block *block);
5026  bool nir_lower_ssa_defs_to_regs_block(nir_block *block);
5027  bool nir_rematerialize_derefs_in_use_blocks_impl(nir_function_impl *impl);
5028  
5029  bool nir_lower_samplers(nir_shader *shader);
5030  bool nir_lower_ssbo(nir_shader *shader);
5031  
5032  /* This is here for unit tests. */
5033  bool nir_opt_comparison_pre_impl(nir_function_impl *impl);
5034  
5035  bool nir_opt_comparison_pre(nir_shader *shader);
5036  
5037  bool nir_opt_access(nir_shader *shader);
5038  bool nir_opt_algebraic(nir_shader *shader);
5039  bool nir_opt_algebraic_before_ffma(nir_shader *shader);
5040  bool nir_opt_algebraic_late(nir_shader *shader);
5041  bool nir_opt_algebraic_distribute_src_mods(nir_shader *shader);
5042  bool nir_opt_constant_folding(nir_shader *shader);
5043  
5044  /* Try to combine a and b into a.  Return true if combination was possible,
5045   * which will result in b being removed by the pass.  Return false if
5046   * combination wasn't possible.
5047   */
5048  typedef bool (*nir_combine_memory_barrier_cb)(
5049     nir_intrinsic_instr *a, nir_intrinsic_instr *b, void *data);
5050  
5051  bool nir_opt_combine_memory_barriers(nir_shader *shader,
5052                                       nir_combine_memory_barrier_cb combine_cb,
5053                                       void *data);
5054  
5055  bool nir_opt_combine_stores(nir_shader *shader, nir_variable_mode modes);
5056  
5057  bool nir_copy_prop(nir_shader *shader);
5058  
5059  bool nir_opt_copy_prop_vars(nir_shader *shader);
5060  
5061  bool nir_opt_cse(nir_shader *shader);
5062  
5063  bool nir_opt_dce(nir_shader *shader);
5064  
5065  bool nir_opt_dead_cf(nir_shader *shader);
5066  
5067  bool nir_opt_dead_write_vars(nir_shader *shader);
5068  
5069  bool nir_opt_deref_impl(nir_function_impl *impl);
5070  bool nir_opt_deref(nir_shader *shader);
5071  
5072  bool nir_opt_find_array_copies(nir_shader *shader);
5073  
5074  bool nir_opt_gcm(nir_shader *shader, bool value_number);
5075  
5076  bool nir_opt_idiv_const(nir_shader *shader, unsigned min_bit_size);
5077  
5078  bool nir_opt_if(nir_shader *shader, bool aggressive_last_continue);
5079  
5080  bool nir_opt_intrinsics(nir_shader *shader);
5081  
5082  bool nir_opt_large_constants(nir_shader *shader,
5083                               glsl_type_size_align_func size_align,
5084                               unsigned threshold);
5085  
5086  bool nir_opt_loop_unroll(nir_shader *shader, nir_variable_mode indirect_mask);
5087  
5088  typedef enum {
5089      nir_move_const_undef = (1 << 0),
5090      nir_move_load_ubo    = (1 << 1),
5091      nir_move_load_input  = (1 << 2),
5092      nir_move_comparisons = (1 << 3),
5093      nir_move_copies      = (1 << 4),
5094  } nir_move_options;
5095  
5096  bool nir_can_move_instr(nir_instr *instr, nir_move_options options);
5097  
5098  bool nir_opt_sink(nir_shader *shader, nir_move_options options);
5099  
5100  bool nir_opt_move(nir_shader *shader, nir_move_options options);
5101  
5102  bool nir_opt_peephole_select(nir_shader *shader, unsigned limit,
5103                               bool indirect_load_ok, bool expensive_alu_ok);
5104  
5105  bool nir_opt_rematerialize_compares(nir_shader *shader);
5106  
5107  bool nir_opt_remove_phis(nir_shader *shader);
5108  bool nir_opt_remove_phis_block(nir_block *block);
5109  
5110  bool nir_opt_shrink_vectors(nir_shader *shader);
5111  
5112  bool nir_opt_trivial_continues(nir_shader *shader);
5113  
5114  bool nir_opt_undef(nir_shader *shader);
5115  
5116  bool nir_opt_uniform_atomics(nir_shader *shader);
5117  
5118  typedef bool (*nir_opt_vectorize_cb)(const nir_instr *a, const nir_instr *b,
5119                                       void *data);
5120  bool nir_opt_vectorize(nir_shader *shader, nir_opt_vectorize_cb filter,
5121                         void *data);
5122  
5123  bool nir_opt_conditional_discard(nir_shader *shader);
5124  
5125  typedef bool (*nir_should_vectorize_mem_func)(unsigned align_mul,
5126                                                unsigned align_offset,
5127                                                unsigned bit_size,
5128                                                unsigned num_components,
5129                                                nir_intrinsic_instr *low, nir_intrinsic_instr *high);
5130  
5131  bool nir_opt_load_store_vectorize(nir_shader *shader, nir_variable_mode modes,
5132                                    nir_should_vectorize_mem_func callback,
5133                                    nir_variable_mode robust_modes);
5134  
5135  void nir_sweep(nir_shader *shader);
5136  
5137  void nir_remap_dual_slot_attributes(nir_shader *shader,
5138                                      uint64_t *dual_slot_inputs);
5139  uint64_t nir_get_single_slot_attribs_mask(uint64_t attribs, uint64_t dual_slot);
5140  
5141  nir_intrinsic_op nir_intrinsic_from_system_value(gl_system_value val);
5142  gl_system_value nir_system_value_from_intrinsic(nir_intrinsic_op intrin);
5143  
5144  static inline bool
nir_variable_is_in_ubo(const nir_variable * var)5145  nir_variable_is_in_ubo(const nir_variable *var)
5146  {
5147     return (var->data.mode == nir_var_mem_ubo &&
5148             var->interface_type != NULL);
5149  }
5150  
5151  static inline bool
nir_variable_is_in_ssbo(const nir_variable * var)5152  nir_variable_is_in_ssbo(const nir_variable *var)
5153  {
5154     return (var->data.mode == nir_var_mem_ssbo &&
5155             var->interface_type != NULL);
5156  }
5157  
5158  static inline bool
nir_variable_is_in_block(const nir_variable * var)5159  nir_variable_is_in_block(const nir_variable *var)
5160  {
5161     return nir_variable_is_in_ubo(var) || nir_variable_is_in_ssbo(var);
5162  }
5163  
5164  typedef struct nir_unsigned_upper_bound_config {
5165     unsigned min_subgroup_size;
5166     unsigned max_subgroup_size;
5167     unsigned max_work_group_invocations;
5168     unsigned max_work_group_count[3];
5169     unsigned max_work_group_size[3];
5170  
5171     uint32_t vertex_attrib_max[32];
5172  } nir_unsigned_upper_bound_config;
5173  
5174  uint32_t
5175  nir_unsigned_upper_bound(nir_shader *shader, struct hash_table *range_ht,
5176                           nir_ssa_scalar scalar,
5177                           const nir_unsigned_upper_bound_config *config);
5178  
5179  bool
5180  nir_addition_might_overflow(nir_shader *shader, struct hash_table *range_ht,
5181                              nir_ssa_scalar ssa, unsigned const_val,
5182                              const nir_unsigned_upper_bound_config *config);
5183  
5184  #ifdef __cplusplus
5185  } /* extern "C" */
5186  #endif
5187  
5188  #endif /* NIR_H */
5189