• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Jason Ekstrand (jason@jlekstrand.net)
25  *
26  */
27 
28 #include "nir.h"
29 
30 /*
31  * Implements a pass that lowers vector phi nodes to scalar phi nodes when
32  * we don't think it will hurt anything.
33  */
34 
35 struct lower_phis_to_scalar_state {
36    void *mem_ctx;
37    void *dead_ctx;
38 
39    /* Hash table marking which phi nodes are scalarizable.  The key is
40     * pointers to phi instructions and the entry is either NULL for not
41     * scalarizable or non-null for scalarizable.
42     */
43    struct hash_table *phi_table;
44 };
45 
46 static bool
47 should_lower_phi(nir_phi_instr *phi, struct lower_phis_to_scalar_state *state);
48 
49 static bool
is_phi_src_scalarizable(nir_phi_src * src,struct lower_phis_to_scalar_state * state)50 is_phi_src_scalarizable(nir_phi_src *src,
51                         struct lower_phis_to_scalar_state *state)
52 {
53    /* Don't know what to do with non-ssa sources */
54    if (!src->src.is_ssa)
55       return false;
56 
57    nir_instr *src_instr = src->src.ssa->parent_instr;
58    switch (src_instr->type) {
59    case nir_instr_type_alu: {
60       nir_alu_instr *src_alu = nir_instr_as_alu(src_instr);
61 
62       /* ALU operations with output_size == 0 should be scalarized.  We
63        * will also see a bunch of vecN operations from scalarizing ALU
64        * operations and, since they can easily be copy-propagated, they
65        * are ok too.
66        */
67       return nir_op_infos[src_alu->op].output_size == 0 ||
68              nir_op_is_vec(src_alu->op);
69    }
70 
71    case nir_instr_type_phi:
72       /* A phi is scalarizable if we're going to lower it */
73       return should_lower_phi(nir_instr_as_phi(src_instr), state);
74 
75    case nir_instr_type_load_const:
76       /* These are trivially scalarizable */
77       return true;
78 
79    case nir_instr_type_ssa_undef:
80       /* The caller of this function is going to OR the results and we don't
81        * want undefs to count so we return false.
82        */
83       return false;
84 
85    case nir_instr_type_intrinsic: {
86       nir_intrinsic_instr *src_intrin = nir_instr_as_intrinsic(src_instr);
87 
88       switch (src_intrin->intrinsic) {
89       case nir_intrinsic_load_deref: {
90          /* Don't scalarize if we see a load of a local variable because it
91           * might turn into one of the things we can't scalarize.
92           */
93          nir_deref_instr *deref = nir_src_as_deref(src_intrin->src[0]);
94          return !nir_deref_mode_may_be(deref, nir_var_function_temp |
95                                               nir_var_shader_temp);
96       }
97 
98       case nir_intrinsic_interp_deref_at_centroid:
99       case nir_intrinsic_interp_deref_at_sample:
100       case nir_intrinsic_interp_deref_at_offset:
101       case nir_intrinsic_interp_deref_at_vertex:
102       case nir_intrinsic_load_uniform:
103       case nir_intrinsic_load_ubo:
104       case nir_intrinsic_load_ssbo:
105       case nir_intrinsic_load_global:
106       case nir_intrinsic_load_global_constant:
107       case nir_intrinsic_load_input:
108          return true;
109       default:
110          break;
111       }
112    }
113    /* fallthrough */
114 
115    default:
116       /* We can't scalarize this type of instruction */
117       return false;
118    }
119 }
120 
121 /**
122  * Determines if the given phi node should be lowered.  The only phi nodes
123  * we will scalarize at the moment are those where all of the sources are
124  * scalarizable.
125  *
126  * The reason for this comes down to coalescing.  Since phi sources can't
127  * swizzle, swizzles on phis have to be resolved by inserting a mov right
128  * before the phi.  The choice then becomes between movs to pick off
129  * components for a scalar phi or potentially movs to recombine components
130  * for a vector phi.  The problem is that the movs generated to pick off
131  * the components are almost uncoalescable.  We can't coalesce them in NIR
132  * because we need them to pick off components and we can't coalesce them
133  * in the backend because the source register is a vector and the
134  * destination is a scalar that may be used at other places in the program.
135  * On the other hand, if we have a bunch of scalars going into a vector
136  * phi, the situation is much better.  In this case, if the SSA def is
137  * generated in the predecessor block to the corresponding phi source, the
138  * backend code will be an ALU op into a temporary and then a mov into the
139  * given vector component;  this move can almost certainly be coalesced
140  * away.
141  */
142 static bool
should_lower_phi(nir_phi_instr * phi,struct lower_phis_to_scalar_state * state)143 should_lower_phi(nir_phi_instr *phi, struct lower_phis_to_scalar_state *state)
144 {
145    /* Already scalar */
146    if (phi->dest.ssa.num_components == 1)
147       return false;
148 
149    struct hash_entry *entry = _mesa_hash_table_search(state->phi_table, phi);
150    if (entry)
151       return entry->data != NULL;
152 
153    /* Insert an entry and mark it as scalarizable for now. That way
154     * we don't recurse forever and a cycle in the dependence graph
155     * won't automatically make us fail to scalarize.
156     */
157    entry = _mesa_hash_table_insert(state->phi_table, phi, (void *)(intptr_t)1);
158 
159    bool scalarizable = false;
160 
161    nir_foreach_phi_src(src, phi) {
162       /* This loop ignores srcs that are not scalarizable because its likely
163        * still worth copying to temps if another phi source is scalarizable.
164        * This reduces register spilling by a huge amount in the i965 driver for
165        * Deus Ex: MD.
166        */
167       scalarizable = is_phi_src_scalarizable(src, state);
168       if (scalarizable)
169          break;
170    }
171 
172    /* The hash table entry for 'phi' may have changed while recursing the
173     * dependence graph, so we need to reset it */
174    entry = _mesa_hash_table_search(state->phi_table, phi);
175    assert(entry);
176 
177    entry->data = (void *)(intptr_t)scalarizable;
178 
179    return scalarizable;
180 }
181 
182 static bool
lower_phis_to_scalar_block(nir_block * block,struct lower_phis_to_scalar_state * state)183 lower_phis_to_scalar_block(nir_block *block,
184                            struct lower_phis_to_scalar_state *state)
185 {
186    bool progress = false;
187 
188    /* Find the last phi node in the block */
189    nir_phi_instr *last_phi = NULL;
190    nir_foreach_instr(instr, block) {
191       if (instr->type != nir_instr_type_phi)
192          break;
193 
194       last_phi = nir_instr_as_phi(instr);
195    }
196 
197    /* We have to handle the phi nodes in their own pass due to the way
198     * we're modifying the linked list of instructions.
199     */
200    nir_foreach_instr_safe(instr, block) {
201       if (instr->type != nir_instr_type_phi)
202          break;
203 
204       nir_phi_instr *phi = nir_instr_as_phi(instr);
205 
206       if (!should_lower_phi(phi, state))
207          continue;
208 
209       unsigned bit_size = phi->dest.ssa.bit_size;
210 
211       /* Create a vecN operation to combine the results.  Most of these
212        * will be redundant, but copy propagation should clean them up for
213        * us.  No need to add the complexity here.
214        */
215       nir_op vec_op = nir_op_vec(phi->dest.ssa.num_components);
216 
217       nir_alu_instr *vec = nir_alu_instr_create(state->mem_ctx, vec_op);
218       nir_ssa_dest_init(&vec->instr, &vec->dest.dest,
219                         phi->dest.ssa.num_components,
220                         bit_size, NULL);
221       vec->dest.write_mask = (1 << phi->dest.ssa.num_components) - 1;
222 
223       for (unsigned i = 0; i < phi->dest.ssa.num_components; i++) {
224          nir_phi_instr *new_phi = nir_phi_instr_create(state->mem_ctx);
225          nir_ssa_dest_init(&new_phi->instr, &new_phi->dest, 1,
226                            phi->dest.ssa.bit_size, NULL);
227 
228          vec->src[i].src = nir_src_for_ssa(&new_phi->dest.ssa);
229 
230          nir_foreach_phi_src(src, phi) {
231             /* We need to insert a mov to grab the i'th component of src */
232             nir_alu_instr *mov = nir_alu_instr_create(state->mem_ctx,
233                                                       nir_op_mov);
234             nir_ssa_dest_init(&mov->instr, &mov->dest.dest, 1, bit_size, NULL);
235             mov->dest.write_mask = 1;
236             nir_src_copy(&mov->src[0].src, &src->src, state->mem_ctx);
237             mov->src[0].swizzle[0] = i;
238 
239             /* Insert at the end of the predecessor but before the jump */
240             nir_instr *pred_last_instr = nir_block_last_instr(src->pred);
241             if (pred_last_instr && pred_last_instr->type == nir_instr_type_jump)
242                nir_instr_insert_before(pred_last_instr, &mov->instr);
243             else
244                nir_instr_insert_after_block(src->pred, &mov->instr);
245 
246             nir_phi_src *new_src = ralloc(new_phi, nir_phi_src);
247             new_src->pred = src->pred;
248             new_src->src = nir_src_for_ssa(&mov->dest.dest.ssa);
249 
250             exec_list_push_tail(&new_phi->srcs, &new_src->node);
251          }
252 
253          nir_instr_insert_before(&phi->instr, &new_phi->instr);
254       }
255 
256       nir_instr_insert_after(&last_phi->instr, &vec->instr);
257 
258       nir_ssa_def_rewrite_uses(&phi->dest.ssa,
259                                nir_src_for_ssa(&vec->dest.dest.ssa));
260 
261       ralloc_steal(state->dead_ctx, phi);
262       nir_instr_remove(&phi->instr);
263 
264       progress = true;
265 
266       /* We're using the safe iterator and inserting all the newly
267        * scalarized phi nodes before their non-scalarized version so that's
268        * ok.  However, we are also inserting vec operations after all of
269        * the last phi node so once we get here, we can't trust even the
270        * safe iterator to stop properly.  We have to break manually.
271        */
272       if (instr == &last_phi->instr)
273          break;
274    }
275 
276    return progress;
277 }
278 
279 static bool
lower_phis_to_scalar_impl(nir_function_impl * impl)280 lower_phis_to_scalar_impl(nir_function_impl *impl)
281 {
282    struct lower_phis_to_scalar_state state;
283    bool progress = false;
284 
285    state.mem_ctx = ralloc_parent(impl);
286    state.dead_ctx = ralloc_context(NULL);
287    state.phi_table = _mesa_pointer_hash_table_create(state.dead_ctx);
288 
289    nir_foreach_block(block, impl) {
290       progress = lower_phis_to_scalar_block(block, &state) || progress;
291    }
292 
293    nir_metadata_preserve(impl, nir_metadata_block_index |
294                                nir_metadata_dominance);
295 
296    ralloc_free(state.dead_ctx);
297    return progress;
298 }
299 
300 /** A pass that lowers vector phi nodes to scalar
301  *
302  * This pass loops through the blocks and lowers looks for vector phi nodes
303  * it can lower to scalar phi nodes.  Not all phi nodes are lowered.  For
304  * instance, if one of the sources is a non-scalarizable vector, then we
305  * don't bother lowering because that would generate hard-to-coalesce movs.
306  */
307 bool
nir_lower_phis_to_scalar(nir_shader * shader)308 nir_lower_phis_to_scalar(nir_shader *shader)
309 {
310    bool progress = false;
311 
312    nir_foreach_function(function, shader) {
313       if (function->impl)
314          progress = lower_phis_to_scalar_impl(function->impl) || progress;
315    }
316 
317    return progress;
318 }
319