1 /* Copyright 2015 The TensorFlow Authors. All Rights Reserved.
2
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6
7 http://www.apache.org/licenses/LICENSE-2.0
8
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15
16 #ifndef TENSORFLOW_CORE_FRAMEWORK_FUNCTION_H_
17 #define TENSORFLOW_CORE_FRAMEWORK_FUNCTION_H_
18
19 #include <vector>
20
21 // clang-format off
22 // Required for IS_MOBILE_PLATFORM
23 #include "tensorflow/core/platform/platform.h"
24 // clang-format on
25
26 #include "absl/types/optional.h"
27 #include "tensorflow/core/framework/attr_value.pb.h"
28 #include "tensorflow/core/framework/attr_value_util.h"
29 #include "tensorflow/core/framework/function.pb.h"
30 #include "tensorflow/core/framework/node_def_util.h"
31 #include "tensorflow/core/framework/op.h"
32 #include "tensorflow/core/framework/op_kernel.h"
33 #include "tensorflow/core/framework/selective_registration.h"
34 #include "tensorflow/core/framework/types.h"
35 #include "tensorflow/core/lib/gtl/flatmap.h"
36 #include "tensorflow/core/lib/hash/hash.h"
37 #include "tensorflow/core/lib/random/random.h"
38 #include "tensorflow/core/platform/env.h"
39 #include "tensorflow/core/platform/macros.h"
40 #include "tensorflow/core/platform/mutex.h"
41 #include "tensorflow/core/platform/protobuf.h"
42 #include "tensorflow/core/protobuf/config.pb.h"
43 #if !defined(IS_MOBILE_PLATFORM)
44 #include "tensorflow/core/protobuf/remote_tensor_handle.pb.h"
45 #endif // IS_MOBILE_PLATFORM
46
47 namespace tensorflow {
48
49 class CancellationManager;
50 class CollectiveExecutor;
51 class DeviceSet;
52 class Graph;
53 class GraphDef;
54 class OpKernel;
55 class ProcessFunctionLibraryRuntime;
56 class ResourceMgr;
57 class Rendezvous;
58 class ScopedStepContainer;
59 class StepStatsCollectorInterface;
60 class Node;
61
62 // FunctionDefHelper::Create is a convenient helper to construct a
63 // FunctionDef proto.
64 // E.g.,
65 // FunctionDef my_func = FunctionDefHelper::Create(
66 // "my_func_name",
67 // {"x:T", "y:T" /* one string per argument */},
68 // {"z:T" /* one string per return value */},
69 // {"T: {float, double}" /* one string per attribute */},
70 // {
71 // {{"o"}, "Mul", {"x", "y"}, {{"T", "$T"}}}
72 // /* one entry per function node */
73 // },
74 // /* Mapping between function returns and function node outputs. */
75 // {{"z", "o:z"}});
76 //
77 // For the old Function::Node approach, use FunctionDefHelper::Define()
78 // E.g.,
79 // FunctionDef my_func = FunctionDefHelper::Define(
80 // "my_func_name",
81 // {"x:T", "y:T" /* one string per argument */},
82 // {"z:T" /* one string per return value */},
83 // {"T: {float, double}" /* one string per attribute */},
84 // {
85 // {{"z"}, "Mul", {"x", "y"}, {{"T", "$T"}}}
86 // /* one entry per function node */
87 // });
88 class FunctionDefHelper {
89 public:
90 // AttrValueWrapper has copy constructors for the type T so that
91 // it's easy to construct a simple AttrValue proto.
92 //
93 // If T is a string type (const char*, string, or StringPiece), and
94 // it starts with "$", we construct a AttrValue of "placeholder".
95 //
96 // E.g.,
97 // std::<string, AttrValueWrapper> x = {"T", "$T"}
98 // is a named attr value placeholder.
99 struct AttrValueWrapper {
100 AttrValue proto;
101
AttrValueWrapperAttrValueWrapper102 AttrValueWrapper() {}
103
104 template <typename T>
AttrValueWrapperAttrValueWrapper105 AttrValueWrapper(T val) { // NOLINT(runtime/explicit)
106 SetAttrValue(val, &proto);
107 }
108
109 private:
110 void InitFromString(StringPiece val);
111 };
112
113 // Constructs an AttrValue.func given the "name" and "attrs".
114 static AttrValueWrapper FunctionRef(
115 const string& name,
116 gtl::ArraySlice<std::pair<string, AttrValueWrapper>> attrs);
FunctionRef(const string & name)117 static AttrValueWrapper FunctionRef(const string& name) {
118 return FunctionRef(name, {});
119 }
120
121 // Node is used to construct FunctionDef.Node using initialization
122 // lists. E.g.,
123 // Node n = {{"z"}, "Mul", {"x", "y"}, {{"T", "$T"}}}; // z = x * y
124 struct Node {
125 // When constructing a NodeDef, the first entry in ret is used as
126 // the node name, the remaining values are ignored.
127 std::vector<string> ret;
128 string op;
129 std::vector<string> arg;
130 std::vector<std::pair<string, AttrValueWrapper>> attr;
131 std::vector<string> dep;
132 string device;
133
134 NodeDef ToNodeDef() const;
135 };
136
137 // Creates a FunctionDef from the given parameters. Node inputs must use
138 // function encoding (node_name:output_name[:output_index]).
139 // - `ret_def` holds a mapping from the function output names from `out_def`
140 // to the node outputs from `node_def`.
141 // - `control_ret_def` holds a mapping from the function control
142 // output names to the nodes from `node_def`.
143 static FunctionDef Create(
144 const string& function_name, gtl::ArraySlice<string> in_def,
145 gtl::ArraySlice<string> out_def, gtl::ArraySlice<string> attr_def,
146 gtl::ArraySlice<Node> node_def,
147 gtl::ArraySlice<std::pair<string, string>> ret_def,
148 gtl::ArraySlice<std::pair<string, string>> control_ret_def);
149
150 // Creates a FunctionDef from the given parameters. Node inputs must use
151 // function encoding (node_name:output_name[:output_index]).
152 // - `ret_def` holds a mapping from the function output names from `out_def`
153 // to the node outputs from `node_def`.
154 static FunctionDef Create(const string& function_name,
155 gtl::ArraySlice<string> in_def,
156 gtl::ArraySlice<string> out_def,
157 gtl::ArraySlice<string> attr_def,
158 gtl::ArraySlice<Node> node_def,
159 gtl::ArraySlice<std::pair<string, string>> ret_def);
160
161 // TODO(josh11b): Get rid of these and transition to the one above.
162 static FunctionDef Define(const string& function_name,
163 gtl::ArraySlice<string> arg_def,
164 gtl::ArraySlice<string> ret_def,
165 gtl::ArraySlice<string> attr_def,
166 gtl::ArraySlice<Node> node_def);
167
168 // Defines an anonymous function. I.e., its name is not relevant.
169 static FunctionDef Define(gtl::ArraySlice<string> arg_def,
170 gtl::ArraySlice<string> ret_def,
171 gtl::ArraySlice<string> attr_def,
172 gtl::ArraySlice<Node> node_def);
173
174 // Helpers to construct a constant scalar.
175 template <typename T>
Const(const string & name,const T & val)176 static Node Const(const string& name, const T& val) {
177 Node n = {{name}, "Const"};
178 const DataType dtype = DataTypeToEnum<T>::value;
179 n.attr.push_back({"dtype", dtype});
180 Tensor t(dtype, TensorShape({}));
181 t.scalar<T>()() = val;
182 n.attr.push_back({"value", t});
183 return n;
184 }
185
186 template <typename T>
Const(const string & name,gtl::ArraySlice<T> vals)187 static Node Const(const string& name, gtl::ArraySlice<T> vals) {
188 Node n = {{name}, "Const"};
189 const DataType dtype = DataTypeToEnum<T>::value;
190 n.attr.push_back({"dtype", dtype});
191 int64 num = vals.size();
192 Tensor t(dtype, TensorShape({num}));
193 for (size_t i = 0; i < vals.size(); ++i) {
194 t.flat<T>()(i) = vals[i];
195 }
196 n.attr.push_back({"value", t});
197 return n;
198 }
199 };
200
201 template <>
AttrValueWrapper(const char * val)202 inline FunctionDefHelper::AttrValueWrapper::AttrValueWrapper(const char* val) {
203 InitFromString(val);
204 }
205
206 template <>
AttrValueWrapper(const string & val)207 inline FunctionDefHelper::AttrValueWrapper::AttrValueWrapper(
208 const string& val) {
209 InitFromString(val);
210 }
211
212 template <>
AttrValueWrapper(StringPiece val)213 inline FunctionDefHelper::AttrValueWrapper::AttrValueWrapper(StringPiece val) {
214 InitFromString(val);
215 }
216
217 // Instantiate a function.
218 //
219 // "fdef" encodes a TF function with some attrs in fdef.signature.attr
220 // containing placeholders. InstantiateFunction binds these
221 // placeholders and produces an instantiated function encoded in
222 // "result.gdef". The value to substitute a placeholder is given by
223 // "attr_values", which is a map from a placeholder name to an attr
224 // value.
225 //
226 // InstantiateFunction calls "get_function" to find signatures of other
227 // functions and primitive ops.
228
229 // GetFunctionSignature(func name, opdef) returns OK if the func name is found
230 // and opdef is filled with a pointer to the corresponding signature
231 // (a OpDef proto). Otherwise, returns an error.
232 typedef std::function<Status(const string&, const OpDef**)>
233 GetFunctionSignature;
234
235 struct InstantiationResult {
236 DataTypeVector arg_types;
237 DataTypeVector ret_types;
238 std::vector<NodeDef> nodes;
239 };
240 Status InstantiateFunction(const FunctionDef& fdef, AttrSlice attr_values,
241 GetFunctionSignature get_function,
242 InstantiationResult* result);
243
244 // Returns a debug string for a function definition.
245 //
246 // The returned text is multiple-line. It is intended to be
247 // human-readable rather than being friendly to parsers. It is _NOT_
248 // intended to be the canonical string representation of "func_def".
249 // Particularly, it may not include all information presented in
250 // "func_def" (e.g., comments, description of the function arguments,
251 // etc.)
252 string DebugString(const FunctionDef& func_def);
253 string DebugString(const GraphDef& instantiated_func_def);
254 string DebugString(gtl::ArraySlice<NodeDef> instantiated_func_nodes);
255
256 // Returns a debug string for a top level graph (the main program and
257 // its supporting functions defined in its library).
258 string DebugStringWhole(const GraphDef& gdef);
259
260 // Returns true if f1 == f2. Compares all fields, including descriptions. Order
261 // of NodeDefs doesn't matter.
262 bool FunctionDefsEqual(const FunctionDef& f1, const FunctionDef& f2);
263
264 // Return a hash of `fdef` that is consistent with FunctionDefsEqual method.
265 // In other words, if two fdefs compare equal, their hash values will be the
266 // same.
267 uint64 FunctionDefHash(const FunctionDef& fdef);
268
269 class CallFrameInterface {
270 public:
~CallFrameInterface()271 virtual ~CallFrameInterface() {}
272
273 virtual size_t num_args() const = 0;
274 virtual size_t num_retvals() const = 0;
275
276 virtual Status GetArg(int index, Tensor* val) const = 0;
277 virtual Status SetRetval(int index, const Tensor& val) = 0;
278 };
279
280 // Represents a function call frame. I.e., the data structure used to
281 // pass arguments to a function and retrieve its results.
282 //
283 // Runtime must arrange accesses to one FunctionCallFrame s.t.
284 // 1. SetArgs() happens before any GetArg();
285 // 2. GetRetvals happens after all SetRetval();
286 class FunctionCallFrame : public CallFrameInterface {
287 public:
288 FunctionCallFrame(DataTypeSlice arg_types, DataTypeSlice ret_types);
289 ~FunctionCallFrame() override;
290
291 // Caller methods.
292 Status SetArgs(gtl::ArraySlice<Tensor> args);
293 Status GetRetvals(std::vector<Tensor>* rets) const;
294
295 // Moves the return values from the frame to rets. If allow_dead_tensors is
296 // false it will fail if any of the retvals do not have a value.
297 Status ConsumeRetvals(std::vector<Tensor>* rets, bool allow_dead_tensors);
298
num_args()299 size_t num_args() const override { return arg_types_.size(); }
num_retvals()300 size_t num_retvals() const override { return ret_types_.size(); }
301
302 // Callee methods.
303 Status GetArg(int index, Tensor* val) const override;
304 Status SetRetval(int index, const Tensor& val) override;
305
306 private:
307 DataTypeVector arg_types_;
308 DataTypeVector ret_types_;
309 gtl::InlinedVector<Tensor, 4> args_;
310 struct Retval {
311 bool has_val = false;
312 Tensor val;
313 };
314 gtl::InlinedVector<Retval, 4> rets_;
315
316 TF_DISALLOW_COPY_AND_ASSIGN(FunctionCallFrame);
317 };
318
319 // Helper to maintain a map between function names in a given
320 // FunctionDefLibrary and function definitions.
321 //
322 // This class is thread-safe.
323 class FunctionLibraryDefinition : public OpRegistryInterface {
324 public:
325 // Ops created for function arguments bear the name given by `kArgOp`; those
326 // created for return values bear the name given by `kRetOp`.
327 static constexpr const char* const kArgOp = "_Arg";
328 static constexpr const char* const kDeviceArgOp = "_DeviceArg";
329 static constexpr const char* const kRetOp = "_Retval";
330 static constexpr const char* const kDeviceRetOp = "_DeviceRetval";
331 static constexpr const char* const kIntsOnDeviceAttr =
332 "experimental_ints_on_device";
333
334 static constexpr const char* const kGradientOp = "SymbolicGradient";
335 static constexpr const char* const kFuncAttr = "f";
336
337 // Note: This constructor grabs `lib_def`'s lock in shared mode.
338 FunctionLibraryDefinition(const FunctionLibraryDefinition& lib_def);
339 FunctionLibraryDefinition(const OpRegistryInterface* default_registry,
340 const FunctionDefLibrary& lib_def);
341 ~FunctionLibraryDefinition() override;
342
343 FunctionLibraryDefinition& operator=(const FunctionLibraryDefinition&) =
344 delete;
345
346 // Returns True if the library contains `func`, False otherwise.
347 bool Contains(const string& func) const;
348
349 // Returns nullptr if "func" is not defined in "lib_def". Otherwise,
350 // returns its definition proto.
351 //
352 // NB: This function returns a borrowed pointer, which can be invalidated by a
353 // subsequent call to `ReplaceFunction()` with the given name.
354 const FunctionDef* Find(const string& func) const LOCKS_EXCLUDED(mu_);
355
356 // Adds function definition 'fdef' to this function library.
357 // Returns status 'ok' on success, or error otherwise. This is a no-op if
358 // 'fdef' already exists in this function library.
359 // If 'fdef' is successfully added to the library, it will be accessible
360 // from 'LookUp' and included in the proto returned by 'ToProto'.
361 // This operation is atomic.
362 Status AddFunctionDef(const FunctionDef& fdef) LOCKS_EXCLUDED(mu_);
363
364 // Adds gradient definition 'grad' to this function library.
365 // This is a no-op if 'grad' already exists in this function library.
366 // If 'grad' is successfully added, it will be accessible via 'FindGradient'
367 // and included in the proto returned by 'ToProto'.
368 // This operation is atomic.
369 Status AddGradientDef(const GradientDef& grad) LOCKS_EXCLUDED(mu_);
370
371 // Replaces the function corresponding to `func` with `fdef`. Returns
372 // a non-OK status if "func" was not found in the library, OK otherwise.
373 // Please be careful when replacing function: make sure all previous pointers
374 // returned by `Find()` are no longer in use.
375 Status ReplaceFunction(const string& func, const FunctionDef& fdef)
376 LOCKS_EXCLUDED(mu_);
377
378 // Replaces the gradient corresponding to `grad.function_name()`. Returns
379 // a non-OK status if "grad.function_name()" was not found in the library, OK
380 // otherwise.
381 Status ReplaceGradient(const GradientDef& grad) LOCKS_EXCLUDED(mu_);
382
383 // Removes the function corresponding to 'func'. Returns a non-OK status if
384 // 'func' was not found in the library, OK otherwise.
385 // Please be careful when removing function: make sure there are no other
386 // nodes using the function, and all previous pointers returned by `Find()`
387 // are no longer in use.
388 Status RemoveFunction(const string& func) LOCKS_EXCLUDED(mu_);
389
390 // Adds the functions and gradients in 'other' to this function library.
391 // Duplicate functions and gradients are ignored.
392 // This operation is atomic.
393 Status AddLibrary(const FunctionLibraryDefinition& other) LOCKS_EXCLUDED(mu_);
394
395 // Adds the functions and gradients in 'lib_def' to this function library.
396 // Duplicate functions and gradients are ignored.
397 // This operation is atomic.
398 Status AddLibrary(const FunctionDefLibrary& lib_def) LOCKS_EXCLUDED(mu_);
399
400 // If the gradient function for 'func' is specified explicitly in
401 // the library, returns the gradient function name. Otherwise,
402 // returns an empty string.
403 string FindGradient(const string& func) const LOCKS_EXCLUDED(mu_);
404
405 // OpRegistryInterface method. Useful for constructing a Graph.
406 //
407 // If "op" is defined in the library, returns its signature.
408 // Otherwise, assume "op" is a primitive op and returns its op
409 // signature and shape inference function.
410 //
411 // NB: This function outputs a borrowed pointer, which can be invalidated by a
412 // subsequent call to `ReplaceFunction()` with the given name.
413 Status LookUp(const string& op_type_name,
414 const OpRegistrationData** op_reg_data) const override
415 LOCKS_EXCLUDED(mu_);
416
417 // Generates new function name with the specified prefix that is unique
418 // across this library.
419 string UniqueFunctionName(StringPiece prefix) const LOCKS_EXCLUDED(mu_);
420
421 // Given a node def 'ndef', inspects attributes of the callee
422 // function to derive the attribute 'value' for 'attr'. Returns OK
423 // iff the attribute is given by the function's definition.
424 // TODO(irving): Remove; keep only the const Node& version.
425 template <typename T>
426 Status GetAttr(const NodeDef& ndef, const string& attr, T* value) const;
427
428 // Given a node, inspects attributes of the callee function to derive the
429 // attribute 'value' for 'attr'. Returns OK iff the attribute is given by the
430 // function's definition.
431 template <typename T>
432 Status GetAttr(const Node& node, const string& attr, T* value) const;
433
434 // Returns a proto representation of the state of this function library.
435 FunctionDefLibrary ToProto() const LOCKS_EXCLUDED(mu_);
436
num_functions()437 size_t num_functions() const {
438 tf_shared_lock l(mu_);
439 return function_defs_.size();
440 }
441
442 // Returns all the function names in the FunctionLibraryDefinition.
443 std::vector<string> ListFunctionNames() const LOCKS_EXCLUDED(mu_);
444
default_registry()445 const OpRegistryInterface* default_registry() const {
446 return default_registry_;
447 }
448
449 // Returns a copy of `*this` with only the subset of functions that are
450 // reachable from the nodes of `graph` or `func`.
451 FunctionLibraryDefinition ReachableDefinitions(const GraphDef& graph) const;
452 FunctionLibraryDefinition ReachableDefinitions(const FunctionDef& func) const;
453
454 // Copies the function named `func` from `other` to this
455 // FunctionLibraryDefinition.
456 // REQUIRES: `this->default_registry() == other.default_registry()`.
457 // Returns OK on success, or error otherwise. This is a no-op if a function
458 // name `func` already exists in this function library, and has the same
459 // implementation as in `other`. If the implementations conflict, an invalid
460 // argument error is returned.
461 Status CopyFunctionDefFrom(const string& func,
462 const FunctionLibraryDefinition& other)
463 LOCKS_EXCLUDED(mu_);
464
465 private:
466 // Shape inference for functions is handled separately by ShapeRefiner.
467
468 struct FunctionDefAndOpRegistration {
469 explicit FunctionDefAndOpRegistration(const FunctionDef& fdef_in);
470
471 const FunctionDef fdef;
472 const OpRegistrationData op_registration_data;
473 };
474
475 std::shared_ptr<FunctionDefAndOpRegistration> FindHelper(
476 const string& func) const SHARED_LOCKS_REQUIRED(mu_);
477 string FindGradientHelper(const string& func) const
478 SHARED_LOCKS_REQUIRED(mu_);
479
480 Status AddHelper(std::shared_ptr<FunctionDefAndOpRegistration> registration,
481 bool* added) EXCLUSIVE_LOCKS_REQUIRED(mu_);
482
483 // Same as AddFunctionDef/AddGradientDef except these methods set
484 // `added` to true if the `fdef`/`grad` were actually added to this.
485 Status AddFunctionDefHelper(const FunctionDef& fdef, bool* added)
486 EXCLUSIVE_LOCKS_REQUIRED(mu_);
487 Status AddGradientDefHelper(const GradientDef& grad, bool* added)
488 EXCLUSIVE_LOCKS_REQUIRED(mu_);
489
490 // Helper function for GetAttr. Returns the FunctionDef* to get the
491 // attr from.
492 const FunctionDef* GetAttrImpl(const NodeDef& ndef) const LOCKS_EXCLUDED(mu_);
493
494 // Remove all functions in `funcs` and all gradients of functions in
495 // `funcs_with_grads` from this library.
496 void Remove(const std::vector<string>& funcs,
497 const std::vector<string>& funcs_with_grads)
498 EXCLUSIVE_LOCKS_REQUIRED(mu_);
499
500 // Remove `func` from the library. Returns non-OK Status unless `func` is in
501 // the library. This should only be called when there is a guarantee that the
502 // function being removed hasn't been retrieved with `Find`.
503 Status RemoveFunctionHelper(const string& func) EXCLUSIVE_LOCKS_REQUIRED(mu_);
504
505 // Remove gradient of function `func` from the library. Returns non-OK Status
506 // unless `func` has a gradient.
507 Status RemoveGradient(const string& func) EXCLUSIVE_LOCKS_REQUIRED(mu_);
508
509 mutable mutex mu_;
510 const OpRegistryInterface* const default_registry_;
511 gtl::FlatMap<string, std::shared_ptr<FunctionDefAndOpRegistration>>
512 function_defs_ GUARDED_BY(mu_);
513 gtl::FlatMap<string, string> func_grad_ GUARDED_BY(mu_);
514 };
515
516 // Forward declare. Defined in common_runtime/function.h
517 struct FunctionBody;
518
519 // Forward declare. Defined in common_runtime/device.h
520 class Device;
521 // Forward declare. Defined in common_runtime/device_mgr.h
522 class DeviceMgr;
523
524 class FunctionLibraryRuntime {
525 public:
~FunctionLibraryRuntime()526 virtual ~FunctionLibraryRuntime() {}
527
528 // Instantiate a function with the given "attrs".
529 //
530 // Returns OK and fills in "handle" if the instantiation succeeds.
531 // Otherwise returns an error and "handle" is undefined.
532 struct InstantiateOptions {
533 // The canonical device name of the device on which the function
534 // should be instantiated. If empty, the function will be
535 // instantiated on the local device.
536 string target;
537
538 // Should the function be instantiated as a multi-device function?
539 bool is_multi_device_function = false;
540
541 // For multi-device functions, a vector of canonical device names for
542 // function's inputs. The device of resource inputs must be the device
543 // backing the resource, not the CPU device backing the resource handle.
544 // Must have the same length as number of inputs to the function.
545 std::vector<string> input_devices;
546
547 // For multi-device functions, a vector of canonical device names for
548 // function's outputs.
549 //
550 // (a) If specified (must have the same length as number of outputs):
551 //
552 // Specified devices will be assigned to Retval nodes inserted into the
553 // function body graph in place of function outputs. It is allowed to
554 // specify output device as empty string, in this case Retval device
555 // assignment will be inferred later when function graph will be placed
556 // before partitioning (this is required for resource outputs). Placer will
557 // respect colocation constraints.
558 //
559 // (b) If not specified:
560 //
561 // Function runtime will infer Retval device by following input edges, until
562 // it will reach a node with a device specification. This device
563 // specification must identify a unique device, i.e. a general specification
564 // like "job:foo" matching multiple devices will result in an error.
565 //
566 // IMPORTANT: Resource outputs
567 //
568 // Multi device functions might return resources on a devices different from
569 // the function call device. If output device is not specified for the
570 // resource output, and node producing that resource is a function call,
571 // runtime will leave device specification empty and will rely on Placer to
572 // infer correct device.
573 std::vector<string> output_devices;
574
575 // This interface is EXPERIMENTAL and subject to change.
576 //
577 // For multi-device functions, a mapping from _Arg node index to type and
578 // shape for input resources.
579 // REQUIRES: if input_resource_dtypes_and_shapes.count(i) > 0 then i-th
580 // argument type must be DT_RESOURCE.
581 std::unordered_map<int, DtypeAndPartialTensorShape>
582 input_resource_dtypes_and_shapes;
583
584 // This interface is EXPERIMENTAL and subject to change.
585 //
586 // If non-null, the runtime will use `lib_def` to resolve function(s) named
587 // in `function_name` and `attrs`. Otherwise, the runtime will use its
588 // internal library.
589 //
590 // NOTE(mrry): If provided, all functions defined in `lib_def` must be
591 // self-contained, and cannot refer to functions defined in other libraries.
592 const FunctionLibraryDefinition* lib_def = nullptr;
593
594 // This interface is EXPERIMENTAL and subject to change.
595 //
596 // If non-empty, the runtime will use `state_handle` to identify
597 // cached state related the instantiated function. Two functions
598 // of the same name and attrs, instantiated with the same
599 // `state_handle` will have the same handle and share the same
600 // state (in stateful kernels); and two functions with different
601 // values for `state_handle` will have independent state.
602 string state_handle;
603
604 // This interface is EXPERIMENTAL and subject to change.
605 //
606 // Instantiates the function using an executor of the given type. If empty,
607 // the default TensorFlow executor will be used.
608 string executor_type;
609
610 // If true, the runtime will attempt to create kernels for the function at
611 // instantiation time, rather than on the first run. This can be used to
612 // surface errors earlier.
613 bool create_kernels_eagerly = false;
614
615 // This interface is EXPERIMENTAL and subject to change.
616 //
617 // Instantiates the function with the provided config_proto.
618 ConfigProto config_proto;
619
620 // If provided, this optimization function will be invoked before
621 // the placer for multi-device functions.
622 std::function<Status(std::vector<string> /*ret_node_names*/,
623 std::vector<string> /*keep_node_names*/,
624 FunctionLibraryDefinition*, const DeviceSet&,
625 Device* /*cpu_device*/, std::unique_ptr<Graph>*)>
626 optimize_graph_fn;
627
628 // If set, partitioned functions will be added to `graph_collector`.
629 // `graph_collector` must be alive during the call to Instantiate.
630 GraphCollector* graph_collector = nullptr;
631
632 // Indicates whether the multi-device function backend should default the
633 // placement of ops without request device to `target`.
634 bool default_device_to_target = true;
635
636 // If true, the optimized Graph will be stored so that
637 // `FunctionLibraryRuntime::DebugString(handle)` contains the optimized
638 // Graph. Otherwise, the unoptimized function Graph will be returned.
639 bool include_optimized_graph_in_debug_string = false;
640 };
641 typedef uint64 Handle;
642 virtual Status Instantiate(const string& function_name, AttrSlice attrs,
643 const InstantiateOptions& options,
644 Handle* handle) = 0;
Instantiate(const string & function_name,AttrSlice attrs,Handle * handle)645 Status Instantiate(const string& function_name, AttrSlice attrs,
646 Handle* handle) {
647 auto opts = absl::make_unique<InstantiateOptions>();
648 return Instantiate(function_name, attrs, *opts, handle);
649 }
650
651 // Releases state associated with the handle.
652 virtual Status ReleaseHandle(Handle handle) = 0;
653
654 // Returns the function body for the instantiated function given its
655 // handle 'h'. Returns nullptr if "h" is not found.
656 //
657 // *this keeps the ownership of the returned object, which remains alive
658 // as long as *this.
659 virtual const FunctionBody* GetFunctionBody(Handle h) = 0;
660
661 // Returns the return types for the function identified by handle `h`.
662 virtual Status GetRetTypes(Handle h, DataTypeVector* ret_types) = 0;
663
664 // Asynchronously invokes the instantiated function identified by
665 // "handle".
666 //
667 // If function execution succeeds, "done" is called with OK and
668 // "*rets" is filled with the function's return values. Otheriwse,
669 // "done" is called with an error status.
670 //
671 // Does not take ownership of "rets".
672 // In the cross-process scenario, runner isn't used for making the Async
673 // RPC calls.
674 struct Options {
OptionsOptions675 Options() {}
OptionsOptions676 explicit Options(const int64 step_id) : step_id(step_id) {}
677 // Choose a step ID that is guaranteed not to clash with any
678 // Session-generated step ID. DirectSession only generates
679 // non-negative step IDs (contiguous, starting from 0), and
680 // MasterSession generates 56-bit random step IDs whose MSB is
681 // always 0, so a negative random step ID should suffice.
682 const int64 step_id = -std::abs(static_cast<int64>(random::New64()));
683
684 // op_id of the function running in eager mode. Set when we want to copy
685 // remote outputs lazily. All components of a remote multi-device function
686 // should use the same op_id, in order to correctly map remote output
687 // tensors to the remote TensorHandles in the default device.
688 absl::optional<int64> op_id = absl::nullopt;
689
690 RendezvousInterface* rendezvous = nullptr;
691 CancellationManager* cancellation_manager = nullptr;
692 CollectiveExecutor* collective_executor = nullptr;
693 ScopedStepContainer* step_container = nullptr;
694 StepStatsCollectorInterface* stats_collector = nullptr;
695
696 std::function<void(std::function<void()>)>* runner = nullptr;
697
698 // Parameters for remote function execution.
699 bool remote_execution = false;
700 string source_device = ""; // Fully specified device name.
701
702 // Allocator attributes specifying where the args are / rets should be put.
703 // These should either be {} or match the length of args / retvals. If {},
704 // the default allocator attributes will be assumed for all args / retvals.
705 std::vector<AllocatorAttributes> args_alloc_attrs;
706 std::vector<AllocatorAttributes> rets_alloc_attrs;
707
708 // If true, we create a new IntraProcessRendezvous, else use the existing
709 // one.
710 bool create_rendezvous = false;
711
712 // If True, allow returning dead tensors.
713 bool allow_dead_tensors = false;
714
715 // Returns a human readable representation of this.
716 string DebugString() const;
717 };
718 typedef std::function<void(const Status&)> DoneCallback;
719 virtual void Run(const Options& opts, Handle handle,
720 gtl::ArraySlice<Tensor> args, std::vector<Tensor>* rets,
721 DoneCallback done) = 0;
722 virtual void Run(const Options& opts, Handle handle,
723 CallFrameInterface* call_frame, DoneCallback done) = 0;
724
725 // Creates a "kernel" for the given node def "ndef".
726 //
727 // If succeeds, returns OK and the caller takes the ownership of the
728 // returned "*kernel". Otherwise, returns an error.
729 virtual Status CreateKernel(const NodeDef& ndef, OpKernel** kernel) = 0;
730
731 // Returns true iff the function named `function_name` is stateful.
732 //
733 // NOTE(mrry): This method assumes that the runtime is associated with a
734 // default function library, and looks up `function_name` in that library.
735 // It does not support overriding the function library.
736 virtual bool IsStateful(const string& function_name) const = 0;
737
738 // Returns the device on which the function executes.
739 virtual Device* device() = 0;
740 virtual const Device* device() const = 0;
741
742 // Returns the default runner in which the ops should be launched. If the
743 // device on which the function executes has a private thread pool, return
744 // runner on the device local thread pool.
745 virtual std::function<void(std::function<void()>)>* runner() = 0;
746
747 // Get the DeviceMgr from which the device was obtained.
748 virtual const DeviceMgr* device_mgr() const = 0;
749
750 // Returns the function library definition that backs this runtime.
751 //
752 // NOTE(mrry): The returned library definition is the default function library
753 // for this runtime. The caller may override the function library used by the
754 // runtime to instantiate functions, which will not be reflected in the return
755 // value of this function.
756 virtual const FunctionLibraryDefinition* GetFunctionLibraryDefinition()
757 const = 0;
758
759 // Returns the environment on which the function executes.
760 virtual Env* env() = 0;
761
762 // Returns the ConfigProto passed to the session used to create the function.
763 virtual const ConfigProto* const config_proto() = 0;
764
765 // Returns a debug string showing the definition of the function of
766 // 'handle'.
767 virtual string DebugString(Handle handle) = 0;
768
769 // Returns the graph version number.
770 virtual int graph_def_version() const = 0;
771
772 typedef uint64 LocalHandle;
773
774 // Creates a copy of ProcessFunctionLibraryRuntime (transferring ownership to
775 // the caller), FunctionLibraryRuntime (owned by the returned
776 // ProcessFunctionLibraryRuntime), FunctionLibraryDefinition (transferring
777 // ownership to the caller). Note that both the ProcessFunctionLibraryRuntime
778 // and FunctionLibraryRuntime borrow a pointer to the
779 // FunctionLibraryDefinition and so the FunctionLibraryDefinition should
780 // outlive both.
781 //
782 // The `skip_flib_def` argument controls whether the method should clone the
783 // FunctionLibraryDefinition (default behavior) or return an empty function
784 // library. The latter is used by tf.data, which manages
785 // FunctionLibraryDefinitions for its functions independently (and passes
786 // these into the FunctionLibraryRuntime through an overlay), to avoid linear
787 // runtime w.r.t. to number of functions in the current function library.
788 virtual Status Clone(std::unique_ptr<FunctionLibraryDefinition>* out_lib_def,
789 std::unique_ptr<ProcessFunctionLibraryRuntime>* out_pflr,
790 FunctionLibraryRuntime** out_flr,
791 bool skip_flib_def = false) = 0;
792
793 // Returns the name of the executor class (in the sense of
794 // `ExecutorFactory::GetFactory()`) that will be used based on the given
795 // dynamic `options` and static `attrs`. If none is specified, this method
796 // will return an empty string, which leaves the decision up to the runtime.
797 static string ExecutorType(const InstantiateOptions& options,
798 AttrSlice attrs);
799 };
800
801 // Returns a canonicalized string for the instantiation of the
802 // function of the given "name", attributes "attrs", and "options".
803 //
804 // The returned string is guaranteed to be stable within one address
805 // space. But it may be change as the implementation
806 // evolves. Therefore, it should not be persisted or compared across
807 // address spaces.
808 string Canonicalize(const string& funcname, AttrSlice attrs,
809 const FunctionLibraryRuntime::InstantiateOptions& options);
810 string Canonicalize(const string& funcname, AttrSlice attrs);
811
812 const FunctionLibraryRuntime::Handle kInvalidHandle = -1;
813 const FunctionLibraryRuntime::LocalHandle kInvalidLocalHandle = -1;
814
815 class CustomKernelCreator {
816 public:
~CustomKernelCreator()817 virtual ~CustomKernelCreator() {}
818
819 // Given a NodeDef 'node_def' and the function library runtime 'flr',
820 // validate if the class supports creating such a kernel.
821 virtual bool CanCreateKernel(const FunctionLibraryRuntime& flr,
822 const NodeDef& node_def) const = 0;
823
824 // Given a supported NodeDef, returns a kernel that computes the node.
825 virtual Status CreateKernel(FunctionLibraryRuntime* flr, const NodeDef& ndef,
826 std::unique_ptr<OpKernel>* kernel) const = 0;
827 };
828
829 // Used to instantiate and run functions in a distributed system.
830 class DistributedFunctionLibraryRuntime {
831 public:
~DistributedFunctionLibraryRuntime()832 virtual ~DistributedFunctionLibraryRuntime() {}
833
834 // The _target attr in attrs determines where the function is instantiated.
835 virtual void Instantiate(
836 const string& function_name, const FunctionLibraryDefinition& lib_def,
837 AttrSlice attrs,
838 const FunctionLibraryRuntime::InstantiateOptions& options,
839 FunctionLibraryRuntime::LocalHandle* handle,
840 FunctionLibraryRuntime::DoneCallback done) = 0;
841
842 // opts.runner isn't used for execution.
843 virtual void Run(const FunctionLibraryRuntime::Options& opts,
844 FunctionLibraryRuntime::LocalHandle handle,
845 gtl::ArraySlice<Tensor> args, std::vector<Tensor>* rets,
846 FunctionLibraryRuntime::DoneCallback done) = 0;
847
848 #if !defined(IS_MOBILE_PLATFORM)
849 // TODO(yujingzhang): Support outputting tensors on remote devices.
Run(const FunctionLibraryRuntime::Options & opts,FunctionLibraryRuntime::LocalHandle handle,std::vector<eager::RemoteTensorHandle> * args,FunctionLibraryRuntime::DoneCallback done)850 virtual void Run(const FunctionLibraryRuntime::Options& opts,
851 FunctionLibraryRuntime::LocalHandle handle,
852 std::vector<eager::RemoteTensorHandle>* args,
853 FunctionLibraryRuntime::DoneCallback done) {
854 done(errors::Unimplemented("Unimplemented."));
855 }
856 #endif // IS_MOBILE_PLATFORM
857
858 virtual void CleanUp(uint64 step_id,
859 FunctionLibraryRuntime::LocalHandle handle,
860 FunctionLibraryRuntime::DoneCallback done) = 0;
861
862 // DeviceMgr with *all* available devices.
863 virtual DeviceMgr* remote_device_mgr() const = 0;
864 };
865
866 // Extracts the actual type from "attr_values" based on its definition
867 // "arg_def".
868 //
869 // If "arg_def" is a N*T type, *is_type_list is set to false, and
870 // *dtypes is set to be a vector of size N and each element is T.
871 //
872 // If "arg_def" is a list(type), *is_type_list is set to true, and
873 // *dtypes is set to be a vector of types specified in attrs for
874 // arg_def.
875 //
876 // Otherwise (arg_def is a simple type T), *is_type_list is set to
877 // false, and *dtypes is set to a single element vector, whose only
878 // element is T.
879 Status ArgNumType(AttrSlice attrs, const OpDef::ArgDef& arg_def,
880 bool* is_type_list, DataTypeVector* dtypes);
881
882 // To register a gradient function for a builtin op, one should use
883 // REGISTER_OP_GRADIENT(<op_name>, <c++ grad factory>);
884 //
885 // Typically, the c++ grad factory is a plan function that can be
886 // converted into ::tensorflow::gradient::Creator, which is
887 // std::function<Status(const AttrSlice&, FunctionDef*)>.
888 //
889 // A ::tensorflow::gradient::Creator should populate in FunctionDef* with a
890 // definition of a brain function which compute the gradient for the
891 // <op_name> when the <op_name> is instantiated with the given attrs.
892 //
893 // E.g.,
894 //
895 // Status MatMulGrad(const AttrSlice& attrs, FunctionDef* g) {
896 // bool transpose_a;
897 // TF_RETURN_IF_ERROR(attrs.Get("transpose_a", &transpose_a));
898 // bool transpose_b;
899 // TF_RETURN_IF_ERROR(attrs.Get("transpose_b", &transpose_b));
900 // DataType dtype;
901 // TF_RETURN_IF_ERROR(attrs.Get("dtype", &dtype));
902 // if (!transpose_a && !transpose_b) {
903 // *g = FunctionDefHelper::Define(
904 // "MatMulGrad",
905 // {"x:T ", "y:T", "dz:T"}, // Inputs to this function
906 // {"dx:T", "dy:T"}, // Outputs from this function
907 // {"T: {float, double}"}, // Attributes needed by this function
908 // {
909 // {{"x_t"}, "Transpose", {"x"}, {{"T", "$T"}}},
910 // {{"y_t"}, "Transpose", {"y"}, {{"T", "$T"}}},
911 // {{"dx"}, "MatMul", {"dz", "y_t"}, {{"T", "$T"}}},
912 // {{"dy"}, "MatMul", {"x_", "dz"}, {{"T", "$T"}}},
913 // });
914 // } else {
915 // ... ...
916 // }
917 // return Status::OK();
918 // }
919 //
920 // NOTE: $T is substituted with the type variable "T" when the
921 // gradient function MatMul is instantiated.
922 //
923 // TODO(zhifengc): Better documentation somewhere.
924
925 // Macros to define a gradient function factory for a primitive
926 // operation.
927 #define REGISTER_OP_GRADIENT(name, fn) \
928 REGISTER_OP_GRADIENT_UNIQ_HELPER(__COUNTER__, name, fn)
929
930 #define REGISTER_OP_NO_GRADIENT(name) \
931 REGISTER_OP_GRADIENT_UNIQ_HELPER(__COUNTER__, name, nullptr)
932
933 #define REGISTER_OP_GRADIENT_UNIQ_HELPER(ctr, name, fn) \
934 REGISTER_OP_GRADIENT_UNIQ(ctr, name, fn)
935
936 #define REGISTER_OP_GRADIENT_UNIQ(ctr, name, fn) \
937 static bool unused_grad_##ctr TF_ATTRIBUTE_UNUSED = \
938 SHOULD_REGISTER_OP_GRADIENT && \
939 ::tensorflow::gradient::RegisterOp(name, fn)
940
941 namespace gradient {
942 // Register a gradient creator for the "op".
943 typedef std::function<Status(const AttrSlice& attrs, FunctionDef*)> Creator;
944 bool RegisterOp(const string& op, Creator func);
945
946 // Returns OK the gradient creator for the "op" is found (may be
947 // nullptr if REGISTER_OP_NO_GRADIENT is used.
948 Status GetOpGradientCreator(const string& op, Creator* creator);
949 }; // namespace gradient
950
951 // Declare explicit instantiations of GetAttr
952 #define GET_ATTR(T) \
953 extern template Status FunctionLibraryDefinition::GetAttr( \
954 const Node&, const string&, T*) const; \
955 extern template Status FunctionLibraryDefinition::GetAttr( \
956 const NodeDef&, const string&, T*) const;
957 GET_ATTR(string)
958 GET_ATTR(bool)
959 #undef GET_ATTR
960
961 } // end namespace tensorflow
962
963 #endif // TENSORFLOW_CORE_FRAMEWORK_FUNCTION_H_
964