• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <math.h>
7 #include <stddef.h>
8 #include <stdint.h>
9 #include <stdlib.h>
10 #include <string.h>
11 
12 #include <xnnpack.h>
13 #include <xnnpack/allocator.h>
14 #include <xnnpack/log.h>
15 #include <xnnpack/operator.h>
16 #include <xnnpack/params-init.h>
17 #include <xnnpack/params.h>
18 
19 
xnn_create_prelu_nc_f32(size_t channels,size_t input_stride,size_t output_stride,const float * negative_slope,float output_min,float output_max,uint32_t flags,xnn_operator_t * prelu_op_out)20 enum xnn_status xnn_create_prelu_nc_f32(
21     size_t channels,
22     size_t input_stride,
23     size_t output_stride,
24     const float* negative_slope,
25     float output_min,
26     float output_max,
27     uint32_t flags,
28     xnn_operator_t* prelu_op_out)
29 {
30   xnn_operator_t prelu_op = NULL;
31   enum xnn_status status = xnn_status_uninitialized;
32 
33   if (!xnn_params.initialized) {
34     xnn_log_error("failed to create PReLU operator: XNNPACK is not initialized");
35     goto error;
36   }
37 
38   status = xnn_status_invalid_parameter;
39 
40   if (channels == 0) {
41     xnn_log_error(
42       "failed to create PReLU operator with %zu channels: number of channels must be non-zero", channels);
43     goto error;
44   }
45 
46   if (input_stride < channels) {
47     xnn_log_error(
48       "failed to create PReLU operator with input element stride of %zu: "
49       "stride must be at least as large as the number of channels (%zu)",
50       input_stride, channels);
51     goto error;
52   }
53 
54   if (output_stride < channels) {
55     xnn_log_error(
56       "failed to create PReLU operator with output element stride of %zu: "
57       "stride must be at least as large as the number of channels (%zu)",
58       output_stride, channels);
59     goto error;
60   }
61 
62   if (output_min >= output_max) {
63     xnn_log_error(
64       "failed to create PReLU operator with [%.7g, %.7g] output range: lower bound must be below upper bound",
65       output_min, output_max);
66     goto error;
67   }
68 
69   status = xnn_status_out_of_memory;
70 
71   prelu_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator));
72   if (prelu_op == NULL) {
73     xnn_log_error("failed to allocate %zu bytes for PReLU operator descriptor", sizeof(struct xnn_operator));
74     goto error;
75   }
76 
77   const size_t packed_channels = round_up_po2(channels, XNN_EXTRA_BYTES / sizeof(float));
78   prelu_op->packed_weights = xnn_allocate_simd_memory(packed_channels * sizeof(float));
79   if (prelu_op->packed_weights == NULL) {
80     xnn_log_error("failed to allocate %zu bytes for packed slope data",
81       packed_channels * sizeof(float));
82     goto error;
83   }
84   memcpy(prelu_op->packed_weights, negative_slope, channels * sizeof(float));
85 
86   prelu_op->channels = channels;
87   prelu_op->input_pixel_stride = input_stride;
88   prelu_op->output_pixel_stride = output_stride;
89   prelu_op->f32_output_params = xnn_init_f32_output_params(output_min, output_max);
90 
91   prelu_op->type = xnn_operator_type_prelu_nc_f32;
92   prelu_op->ukernel.type = xnn_ukernel_type_prelu;
93 
94   prelu_op->state = xnn_run_state_invalid;
95 
96   *prelu_op_out = prelu_op;
97   return xnn_status_success;
98 
99 error:
100   xnn_delete_operator(prelu_op);
101   return status;
102 }
103 
xnn_setup_prelu_nc_f32(xnn_operator_t prelu_op,size_t batch_size,const float * input,float * output,pthreadpool_t threadpool)104 enum xnn_status xnn_setup_prelu_nc_f32(
105     xnn_operator_t prelu_op,
106     size_t batch_size,
107     const float* input,
108     float* output,
109     pthreadpool_t threadpool)
110 {
111   if (prelu_op->type != xnn_operator_type_prelu_nc_f32) {
112     xnn_log_error("failed to setup PReLU (NC, F32) operator: operator type mismatch");
113     return xnn_status_invalid_parameter;
114   }
115   prelu_op->state = xnn_run_state_invalid;
116 
117   if (!xnn_params.initialized) {
118     xnn_log_error("failed to setup PReLU operator: XNNPACK is not initialized");
119     return xnn_status_uninitialized;
120   }
121 
122   if (batch_size == 0) {
123     prelu_op->state = xnn_run_state_skip;
124     return xnn_status_success;
125   }
126 
127   const size_t channels = prelu_op->channels;
128   prelu_op->context.prelu = (struct prelu_context) {
129     .n = channels * sizeof(float),
130     .x = input,
131     .x_stride = prelu_op->input_pixel_stride * sizeof(float),
132     .w = prelu_op->packed_weights,
133     .y = output,
134     .y_stride = prelu_op->output_pixel_stride * sizeof(float),
135     .ukernel = xnn_params.f32.prelu.ukernel,
136     .params = prelu_op->f32_output_params,
137   };
138 
139   size_t batch_tile = batch_size;
140   const size_t num_threads = pthreadpool_get_threads_count(threadpool);
141   if (num_threads > 1) {
142     const size_t target_tiles_per_thread = 5;
143     const size_t max_batch_tile = divide_round_up(batch_size, num_threads * target_tiles_per_thread);
144     if (max_batch_tile < batch_tile) {
145       const uint32_t row_tile = xnn_params.f32.prelu.row_tile;
146       batch_tile = min(batch_tile, divide_round_up(batch_tile, max_batch_tile * row_tile) * row_tile);
147     }
148   }
149   prelu_op->compute.type = xnn_parallelization_type_1d_tile_1d;
150   prelu_op->compute.task_1d_tile_1d = (pthreadpool_task_1d_tile_1d_t) xnn_compute_prelu;
151   prelu_op->compute.range[0] = batch_size;
152   prelu_op->compute.tile[0] = batch_tile;
153   prelu_op->state = xnn_run_state_ready;
154 
155   return xnn_status_success;
156 }
157