• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2013-2019, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <string.h>
9 
10 #include <arch.h>
11 #include <arch_helpers.h>
12 #include <common/bl_common.h>
13 #include <common/debug.h>
14 #include <context.h>
15 #include <lib/el3_runtime/context_mgmt.h>
16 #include <lib/utils.h>
17 #include <plat/common/platform.h>
18 
19 #include "psci_private.h"
20 
21 /*
22  * SPD power management operations, expected to be supplied by the registered
23  * SPD on successful SP initialization
24  */
25 const spd_pm_ops_t *psci_spd_pm;
26 
27 /*
28  * PSCI requested local power state map. This array is used to store the local
29  * power states requested by a CPU for power levels from level 1 to
30  * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
31  * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
32  * CPU are the same.
33  *
34  * During state coordination, the platform is passed an array containing the
35  * local states requested for a particular non cpu power domain by each cpu
36  * within the domain.
37  *
38  * TODO: Dense packing of the requested states will cause cache thrashing
39  * when multiple power domains write to it. If we allocate the requested
40  * states at each power level in a cache-line aligned per-domain memory,
41  * the cache thrashing can be avoided.
42  */
43 static plat_local_state_t
44 	psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];
45 
46 unsigned int psci_plat_core_count;
47 
48 /*******************************************************************************
49  * Arrays that hold the platform's power domain tree information for state
50  * management of power domains.
51  * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
52  * which is an ancestor of a CPU power domain.
53  * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
54  ******************************************************************************/
55 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
56 #if USE_COHERENT_MEM
57 __section("tzfw_coherent_mem")
58 #endif
59 ;
60 
61 /* Lock for PSCI state coordination */
62 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
63 
64 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
65 
66 /*******************************************************************************
67  * Pointer to functions exported by the platform to complete power mgmt. ops
68  ******************************************************************************/
69 const plat_psci_ops_t *psci_plat_pm_ops;
70 
71 /******************************************************************************
72  * Check that the maximum power level supported by the platform makes sense
73  *****************************************************************************/
74 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) &&
75 	(PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL),
76 	assert_platform_max_pwrlvl_check);
77 
78 /*
79  * The plat_local_state used by the platform is one of these types: RUN,
80  * RETENTION and OFF. The platform can define further sub-states for each type
81  * apart from RUN. This categorization is done to verify the sanity of the
82  * psci_power_state passed by the platform and to print debug information. The
83  * categorization is done on the basis of the following conditions:
84  *
85  * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
86  *
87  * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
88  *    STATE_TYPE_RETN.
89  *
90  * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
91  *    STATE_TYPE_OFF.
92  */
93 typedef enum plat_local_state_type {
94 	STATE_TYPE_RUN = 0,
95 	STATE_TYPE_RETN,
96 	STATE_TYPE_OFF
97 } plat_local_state_type_t;
98 
99 /* Function used to categorize plat_local_state. */
find_local_state_type(plat_local_state_t state)100 static plat_local_state_type_t find_local_state_type(plat_local_state_t state)
101 {
102 	if (state != 0U) {
103 		if (state > PLAT_MAX_RET_STATE) {
104 			return STATE_TYPE_OFF;
105 		} else {
106 			return STATE_TYPE_RETN;
107 		}
108 	} else {
109 		return STATE_TYPE_RUN;
110 	}
111 }
112 
113 /******************************************************************************
114  * Check that the maximum retention level supported by the platform is less
115  * than the maximum off level.
116  *****************************************************************************/
117 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE,
118 		assert_platform_max_off_and_retn_state_check);
119 
120 /******************************************************************************
121  * This function ensures that the power state parameter in a CPU_SUSPEND request
122  * is valid. If so, it returns the requested states for each power level.
123  *****************************************************************************/
psci_validate_power_state(unsigned int power_state,psci_power_state_t * state_info)124 int psci_validate_power_state(unsigned int power_state,
125 			      psci_power_state_t *state_info)
126 {
127 	/* Check SBZ bits in power state are zero */
128 	if (psci_check_power_state(power_state) != 0U)
129 		return PSCI_E_INVALID_PARAMS;
130 
131 	assert(psci_plat_pm_ops->validate_power_state != NULL);
132 
133 	/* Validate the power_state using platform pm_ops */
134 	return psci_plat_pm_ops->validate_power_state(power_state, state_info);
135 }
136 
137 /******************************************************************************
138  * This function retrieves the `psci_power_state_t` for system suspend from
139  * the platform.
140  *****************************************************************************/
psci_query_sys_suspend_pwrstate(psci_power_state_t * state_info)141 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
142 {
143 	/*
144 	 * Assert that the required pm_ops hook is implemented to ensure that
145 	 * the capability detected during psci_setup() is valid.
146 	 */
147 	assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL);
148 
149 	/*
150 	 * Query the platform for the power_state required for system suspend
151 	 */
152 	psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
153 }
154 
155 /*******************************************************************************
156  * This function verifies that the all the other cores in the system have been
157  * turned OFF and the current CPU is the last running CPU in the system.
158  * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
159  * otherwise.
160  ******************************************************************************/
psci_is_last_on_cpu(void)161 unsigned int psci_is_last_on_cpu(void)
162 {
163 	unsigned int cpu_idx, my_idx = plat_my_core_pos();
164 
165 	for (cpu_idx = 0; cpu_idx < psci_plat_core_count;
166 			cpu_idx++) {
167 		if (cpu_idx == my_idx) {
168 			assert(psci_get_aff_info_state() == AFF_STATE_ON);
169 			continue;
170 		}
171 
172 		if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF)
173 			return 0;
174 	}
175 
176 	return 1;
177 }
178 
179 /*******************************************************************************
180  * Routine to return the maximum power level to traverse to after a cpu has
181  * been physically powered up. It is expected to be called immediately after
182  * reset from assembler code.
183  ******************************************************************************/
get_power_on_target_pwrlvl(void)184 static unsigned int get_power_on_target_pwrlvl(void)
185 {
186 	unsigned int pwrlvl;
187 
188 	/*
189 	 * Assume that this cpu was suspended and retrieve its target power
190 	 * level. If it is invalid then it could only have been turned off
191 	 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a
192 	 * cpu can be turned off to.
193 	 */
194 	pwrlvl = psci_get_suspend_pwrlvl();
195 	if (pwrlvl == PSCI_INVALID_PWR_LVL)
196 		pwrlvl = PLAT_MAX_PWR_LVL;
197 	assert(pwrlvl < PSCI_INVALID_PWR_LVL);
198 	return pwrlvl;
199 }
200 
201 /******************************************************************************
202  * Helper function to update the requested local power state array. This array
203  * does not store the requested state for the CPU power level. Hence an
204  * assertion is added to prevent us from accessing the CPU power level.
205  *****************************************************************************/
psci_set_req_local_pwr_state(unsigned int pwrlvl,unsigned int cpu_idx,plat_local_state_t req_pwr_state)206 static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
207 					 unsigned int cpu_idx,
208 					 plat_local_state_t req_pwr_state)
209 {
210 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
211 	if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
212 			(cpu_idx < psci_plat_core_count)) {
213 		psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state;
214 	}
215 }
216 
217 /******************************************************************************
218  * This function initializes the psci_req_local_pwr_states.
219  *****************************************************************************/
psci_init_req_local_pwr_states(void)220 void __init psci_init_req_local_pwr_states(void)
221 {
222 	/* Initialize the requested state of all non CPU power domains as OFF */
223 	unsigned int pwrlvl;
224 	unsigned int core;
225 
226 	for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) {
227 		for (core = 0; core < psci_plat_core_count; core++) {
228 			psci_req_local_pwr_states[pwrlvl][core] =
229 				PLAT_MAX_OFF_STATE;
230 		}
231 	}
232 }
233 
234 /******************************************************************************
235  * Helper function to return a reference to an array containing the local power
236  * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
237  * array will be the number of cpu power domains of which this power domain is
238  * an ancestor. These requested states will be used to determine a suitable
239  * target state for this power domain during psci state coordination. An
240  * assertion is added to prevent us from accessing the CPU power level.
241  *****************************************************************************/
psci_get_req_local_pwr_states(unsigned int pwrlvl,unsigned int cpu_idx)242 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
243 							 unsigned int cpu_idx)
244 {
245 	assert(pwrlvl > PSCI_CPU_PWR_LVL);
246 
247 	if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
248 			(cpu_idx < psci_plat_core_count)) {
249 		return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx];
250 	} else
251 		return NULL;
252 }
253 
254 /*
255  * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
256  * memory.
257  *
258  * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
259  * it's accessed by both cached and non-cached participants. To serve the common
260  * minimum, perform a cache flush before read and after write so that non-cached
261  * participants operate on latest data in main memory.
262  *
263  * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
264  * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
265  * In both cases, no cache operations are required.
266  */
267 
268 /*
269  * Retrieve local state of non-CPU power domain node from a non-cached CPU,
270  * after any required cache maintenance operation.
271  */
get_non_cpu_pd_node_local_state(unsigned int parent_idx)272 static plat_local_state_t get_non_cpu_pd_node_local_state(
273 		unsigned int parent_idx)
274 {
275 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
276 	flush_dcache_range(
277 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
278 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
279 #endif
280 	return psci_non_cpu_pd_nodes[parent_idx].local_state;
281 }
282 
283 /*
284  * Update local state of non-CPU power domain node from a cached CPU; perform
285  * any required cache maintenance operation afterwards.
286  */
set_non_cpu_pd_node_local_state(unsigned int parent_idx,plat_local_state_t state)287 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
288 		plat_local_state_t state)
289 {
290 	psci_non_cpu_pd_nodes[parent_idx].local_state = state;
291 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
292 	flush_dcache_range(
293 			(uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
294 			sizeof(psci_non_cpu_pd_nodes[parent_idx]));
295 #endif
296 }
297 
298 /******************************************************************************
299  * Helper function to return the current local power state of each power domain
300  * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
301  * function will be called after a cpu is powered on to find the local state
302  * each power domain has emerged from.
303  *****************************************************************************/
psci_get_target_local_pwr_states(unsigned int end_pwrlvl,psci_power_state_t * target_state)304 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl,
305 				      psci_power_state_t *target_state)
306 {
307 	unsigned int parent_idx, lvl;
308 	plat_local_state_t *pd_state = target_state->pwr_domain_state;
309 
310 	pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
311 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
312 
313 	/* Copy the local power state from node to state_info */
314 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
315 		pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
316 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
317 	}
318 
319 	/* Set the the higher levels to RUN */
320 	for (; lvl <= PLAT_MAX_PWR_LVL; lvl++)
321 		target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
322 }
323 
324 /******************************************************************************
325  * Helper function to set the target local power state that each power domain
326  * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
327  * enter. This function will be called after coordination of requested power
328  * states has been done for each power level.
329  *****************************************************************************/
psci_set_target_local_pwr_states(unsigned int end_pwrlvl,const psci_power_state_t * target_state)330 static void psci_set_target_local_pwr_states(unsigned int end_pwrlvl,
331 					const psci_power_state_t *target_state)
332 {
333 	unsigned int parent_idx, lvl;
334 	const plat_local_state_t *pd_state = target_state->pwr_domain_state;
335 
336 	psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
337 
338 	/*
339 	 * Need to flush as local_state might be accessed with Data Cache
340 	 * disabled during power on
341 	 */
342 	psci_flush_cpu_data(psci_svc_cpu_data.local_state);
343 
344 	parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
345 
346 	/* Copy the local_state from state_info */
347 	for (lvl = 1U; lvl <= end_pwrlvl; lvl++) {
348 		set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
349 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
350 	}
351 }
352 
353 
354 /*******************************************************************************
355  * PSCI helper function to get the parent nodes corresponding to a cpu_index.
356  ******************************************************************************/
psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,unsigned int end_lvl,unsigned int * node_index)357 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
358 				      unsigned int end_lvl,
359 				      unsigned int *node_index)
360 {
361 	unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
362 	unsigned int i;
363 	unsigned int *node = node_index;
364 
365 	for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) {
366 		*node = parent_node;
367 		node++;
368 		parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
369 	}
370 }
371 
372 /******************************************************************************
373  * This function is invoked post CPU power up and initialization. It sets the
374  * affinity info state, target power state and requested power state for the
375  * current CPU and all its ancestor power domains to RUN.
376  *****************************************************************************/
psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)377 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)
378 {
379 	unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl;
380 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
381 
382 	/* Reset the local_state to RUN for the non cpu power domains. */
383 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
384 		set_non_cpu_pd_node_local_state(parent_idx,
385 				PSCI_LOCAL_STATE_RUN);
386 		psci_set_req_local_pwr_state(lvl,
387 					     cpu_idx,
388 					     PSCI_LOCAL_STATE_RUN);
389 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
390 	}
391 
392 	/* Set the affinity info state to ON */
393 	psci_set_aff_info_state(AFF_STATE_ON);
394 
395 	psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
396 	psci_flush_cpu_data(psci_svc_cpu_data);
397 }
398 
399 /******************************************************************************
400  * This function is passed the local power states requested for each power
401  * domain (state_info) between the current CPU domain and its ancestors until
402  * the target power level (end_pwrlvl). It updates the array of requested power
403  * states with this information.
404  *
405  * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
406  * retrieves the states requested by all the cpus of which the power domain at
407  * that level is an ancestor. It passes this information to the platform to
408  * coordinate and return the target power state. If the target state for a level
409  * is RUN then subsequent levels are not considered. At the CPU level, state
410  * coordination is not required. Hence, the requested and the target states are
411  * the same.
412  *
413  * The 'state_info' is updated with the target state for each level between the
414  * CPU and the 'end_pwrlvl' and returned to the caller.
415  *
416  * This function will only be invoked with data cache enabled and while
417  * powering down a core.
418  *****************************************************************************/
psci_do_state_coordination(unsigned int end_pwrlvl,psci_power_state_t * state_info)419 void psci_do_state_coordination(unsigned int end_pwrlvl,
420 				psci_power_state_t *state_info)
421 {
422 	unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
423 	unsigned int start_idx;
424 	unsigned int ncpus;
425 	plat_local_state_t target_state, *req_states;
426 
427 	assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
428 	parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
429 
430 	/* For level 0, the requested state will be equivalent
431 	   to target state */
432 	for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
433 
434 		/* First update the requested power state */
435 		psci_set_req_local_pwr_state(lvl, cpu_idx,
436 					     state_info->pwr_domain_state[lvl]);
437 
438 		/* Get the requested power states for this power level */
439 		start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
440 		req_states = psci_get_req_local_pwr_states(lvl, start_idx);
441 
442 		/*
443 		 * Let the platform coordinate amongst the requested states at
444 		 * this power level and return the target local power state.
445 		 */
446 		ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
447 		target_state = plat_get_target_pwr_state(lvl,
448 							 req_states,
449 							 ncpus);
450 
451 		state_info->pwr_domain_state[lvl] = target_state;
452 
453 		/* Break early if the negotiated target power state is RUN */
454 		if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0)
455 			break;
456 
457 		parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
458 	}
459 
460 	/*
461 	 * This is for cases when we break out of the above loop early because
462 	 * the target power state is RUN at a power level < end_pwlvl.
463 	 * We update the requested power state from state_info and then
464 	 * set the target state as RUN.
465 	 */
466 	for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) {
467 		psci_set_req_local_pwr_state(lvl, cpu_idx,
468 					     state_info->pwr_domain_state[lvl]);
469 		state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
470 
471 	}
472 
473 	/* Update the target state in the power domain nodes */
474 	psci_set_target_local_pwr_states(end_pwrlvl, state_info);
475 }
476 
477 /******************************************************************************
478  * This function validates a suspend request by making sure that if a standby
479  * state is requested then no power level is turned off and the highest power
480  * level is placed in a standby/retention state.
481  *
482  * It also ensures that the state level X will enter is not shallower than the
483  * state level X + 1 will enter.
484  *
485  * This validation will be enabled only for DEBUG builds as the platform is
486  * expected to perform these validations as well.
487  *****************************************************************************/
psci_validate_suspend_req(const psci_power_state_t * state_info,unsigned int is_power_down_state)488 int psci_validate_suspend_req(const psci_power_state_t *state_info,
489 			      unsigned int is_power_down_state)
490 {
491 	unsigned int max_off_lvl, target_lvl, max_retn_lvl;
492 	plat_local_state_t state;
493 	plat_local_state_type_t req_state_type, deepest_state_type;
494 	int i;
495 
496 	/* Find the target suspend power level */
497 	target_lvl = psci_find_target_suspend_lvl(state_info);
498 	if (target_lvl == PSCI_INVALID_PWR_LVL)
499 		return PSCI_E_INVALID_PARAMS;
500 
501 	/* All power domain levels are in a RUN state to begin with */
502 	deepest_state_type = STATE_TYPE_RUN;
503 
504 	for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) {
505 		state = state_info->pwr_domain_state[i];
506 		req_state_type = find_local_state_type(state);
507 
508 		/*
509 		 * While traversing from the highest power level to the lowest,
510 		 * the state requested for lower levels has to be the same or
511 		 * deeper i.e. equal to or greater than the state at the higher
512 		 * levels. If this condition is true, then the requested state
513 		 * becomes the deepest state encountered so far.
514 		 */
515 		if (req_state_type < deepest_state_type)
516 			return PSCI_E_INVALID_PARAMS;
517 		deepest_state_type = req_state_type;
518 	}
519 
520 	/* Find the highest off power level */
521 	max_off_lvl = psci_find_max_off_lvl(state_info);
522 
523 	/* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
524 	max_retn_lvl = PSCI_INVALID_PWR_LVL;
525 	if (target_lvl != max_off_lvl)
526 		max_retn_lvl = target_lvl;
527 
528 	/*
529 	 * If this is not a request for a power down state then max off level
530 	 * has to be invalid and max retention level has to be a valid power
531 	 * level.
532 	 */
533 	if ((is_power_down_state == 0U) &&
534 			((max_off_lvl != PSCI_INVALID_PWR_LVL) ||
535 			 (max_retn_lvl == PSCI_INVALID_PWR_LVL)))
536 		return PSCI_E_INVALID_PARAMS;
537 
538 	return PSCI_E_SUCCESS;
539 }
540 
541 /******************************************************************************
542  * This function finds the highest power level which will be powered down
543  * amongst all the power levels specified in the 'state_info' structure
544  *****************************************************************************/
psci_find_max_off_lvl(const psci_power_state_t * state_info)545 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
546 {
547 	int i;
548 
549 	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
550 		if (is_local_state_off(state_info->pwr_domain_state[i]) != 0)
551 			return (unsigned int) i;
552 	}
553 
554 	return PSCI_INVALID_PWR_LVL;
555 }
556 
557 /******************************************************************************
558  * This functions finds the level of the highest power domain which will be
559  * placed in a low power state during a suspend operation.
560  *****************************************************************************/
psci_find_target_suspend_lvl(const psci_power_state_t * state_info)561 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
562 {
563 	int i;
564 
565 	for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
566 		if (is_local_state_run(state_info->pwr_domain_state[i]) == 0)
567 			return (unsigned int) i;
568 	}
569 
570 	return PSCI_INVALID_PWR_LVL;
571 }
572 
573 /*******************************************************************************
574  * This function is passed the highest level in the topology tree that the
575  * operation should be applied to and a list of node indexes. It picks up locks
576  * from the node index list in order of increasing power domain level in the
577  * range specified.
578  ******************************************************************************/
psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,const unsigned int * parent_nodes)579 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
580 				   const unsigned int *parent_nodes)
581 {
582 	unsigned int parent_idx;
583 	unsigned int level;
584 
585 	/* No locking required for level 0. Hence start locking from level 1 */
586 	for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) {
587 		parent_idx = parent_nodes[level - 1U];
588 		psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
589 	}
590 }
591 
592 /*******************************************************************************
593  * This function is passed the highest level in the topology tree that the
594  * operation should be applied to and a list of node indexes. It releases the
595  * locks in order of decreasing power domain level in the range specified.
596  ******************************************************************************/
psci_release_pwr_domain_locks(unsigned int end_pwrlvl,const unsigned int * parent_nodes)597 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
598 				   const unsigned int *parent_nodes)
599 {
600 	unsigned int parent_idx;
601 	unsigned int level;
602 
603 	/* Unlock top down. No unlocking required for level 0. */
604 	for (level = end_pwrlvl; level >= PSCI_CPU_PWR_LVL + 1U; level--) {
605 		parent_idx = parent_nodes[level - 1U];
606 		psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
607 	}
608 }
609 
610 /*******************************************************************************
611  * Simple routine to determine whether a mpidr is valid or not.
612  ******************************************************************************/
psci_validate_mpidr(u_register_t mpidr)613 int psci_validate_mpidr(u_register_t mpidr)
614 {
615 	if (plat_core_pos_by_mpidr(mpidr) < 0)
616 		return PSCI_E_INVALID_PARAMS;
617 
618 	return PSCI_E_SUCCESS;
619 }
620 
621 /*******************************************************************************
622  * This function determines the full entrypoint information for the requested
623  * PSCI entrypoint on power on/resume and returns it.
624  ******************************************************************************/
625 #ifdef __aarch64__
psci_get_ns_ep_info(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)626 static int psci_get_ns_ep_info(entry_point_info_t *ep,
627 			       uintptr_t entrypoint,
628 			       u_register_t context_id)
629 {
630 	u_register_t ep_attr, sctlr;
631 	unsigned int daif, ee, mode;
632 	u_register_t ns_scr_el3 = read_scr_el3();
633 	u_register_t ns_sctlr_el1 = read_sctlr_el1();
634 
635 	sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
636 		read_sctlr_el2() : ns_sctlr_el1;
637 	ee = 0;
638 
639 	ep_attr = NON_SECURE | EP_ST_DISABLE;
640 	if ((sctlr & SCTLR_EE_BIT) != 0U) {
641 		ep_attr |= EP_EE_BIG;
642 		ee = 1;
643 	}
644 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
645 
646 	ep->pc = entrypoint;
647 	zeromem(&ep->args, sizeof(ep->args));
648 	ep->args.arg0 = context_id;
649 
650 	/*
651 	 * Figure out whether the cpu enters the non-secure address space
652 	 * in aarch32 or aarch64
653 	 */
654 	if ((ns_scr_el3 & SCR_RW_BIT) != 0U) {
655 
656 		/*
657 		 * Check whether a Thumb entry point has been provided for an
658 		 * aarch64 EL
659 		 */
660 		if ((entrypoint & 0x1UL) != 0UL)
661 			return PSCI_E_INVALID_ADDRESS;
662 
663 		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1;
664 
665 		ep->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
666 	} else {
667 
668 		mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
669 			MODE32_hyp : MODE32_svc;
670 
671 		/*
672 		 * TODO: Choose async. exception bits if HYP mode is not
673 		 * implemented according to the values of SCR.{AW, FW} bits
674 		 */
675 		daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
676 
677 		ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif);
678 	}
679 
680 	return PSCI_E_SUCCESS;
681 }
682 #else /* !__aarch64__ */
psci_get_ns_ep_info(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)683 static int psci_get_ns_ep_info(entry_point_info_t *ep,
684 			       uintptr_t entrypoint,
685 			       u_register_t context_id)
686 {
687 	u_register_t ep_attr;
688 	unsigned int aif, ee, mode;
689 	u_register_t scr = read_scr();
690 	u_register_t ns_sctlr, sctlr;
691 
692 	/* Switch to non secure state */
693 	write_scr(scr | SCR_NS_BIT);
694 	isb();
695 	ns_sctlr = read_sctlr();
696 
697 	sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;
698 
699 	/* Return to original state */
700 	write_scr(scr);
701 	isb();
702 	ee = 0;
703 
704 	ep_attr = NON_SECURE | EP_ST_DISABLE;
705 	if (sctlr & SCTLR_EE_BIT) {
706 		ep_attr |= EP_EE_BIG;
707 		ee = 1;
708 	}
709 	SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
710 
711 	ep->pc = entrypoint;
712 	zeromem(&ep->args, sizeof(ep->args));
713 	ep->args.arg0 = context_id;
714 
715 	mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
716 
717 	/*
718 	 * TODO: Choose async. exception bits if HYP mode is not
719 	 * implemented according to the values of SCR.{AW, FW} bits
720 	 */
721 	aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;
722 
723 	ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);
724 
725 	return PSCI_E_SUCCESS;
726 }
727 
728 #endif /* __aarch64__ */
729 
730 /*******************************************************************************
731  * This function validates the entrypoint with the platform layer if the
732  * appropriate pm_ops hook is exported by the platform and returns the
733  * 'entry_point_info'.
734  ******************************************************************************/
psci_validate_entry_point(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)735 int psci_validate_entry_point(entry_point_info_t *ep,
736 			      uintptr_t entrypoint,
737 			      u_register_t context_id)
738 {
739 	int rc;
740 
741 	/* Validate the entrypoint using platform psci_ops */
742 	if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) {
743 		rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
744 		if (rc != PSCI_E_SUCCESS)
745 			return PSCI_E_INVALID_ADDRESS;
746 	}
747 
748 	/*
749 	 * Verify and derive the re-entry information for
750 	 * the non-secure world from the non-secure state from
751 	 * where this call originated.
752 	 */
753 	rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
754 	return rc;
755 }
756 
757 /*******************************************************************************
758  * Generic handler which is called when a cpu is physically powered on. It
759  * traverses the node information and finds the highest power level powered
760  * off and performs generic, architectural, platform setup and state management
761  * to power on that power level and power levels below it.
762  * e.g. For a cpu that's been powered on, it will call the platform specific
763  * code to enable the gic cpu interface and for a cluster it will enable
764  * coherency at the interconnect level in addition to gic cpu interface.
765  ******************************************************************************/
psci_warmboot_entrypoint(void)766 void psci_warmboot_entrypoint(void)
767 {
768 	unsigned int end_pwrlvl;
769 	unsigned int cpu_idx = plat_my_core_pos();
770 	unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
771 	psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
772 
773 	/*
774 	 * Verify that we have been explicitly turned ON or resumed from
775 	 * suspend.
776 	 */
777 	if (psci_get_aff_info_state() == AFF_STATE_OFF) {
778 		ERROR("Unexpected affinity info state.\n");
779 		panic();
780 	}
781 
782 	/*
783 	 * Get the maximum power domain level to traverse to after this cpu
784 	 * has been physically powered up.
785 	 */
786 	end_pwrlvl = get_power_on_target_pwrlvl();
787 
788 	/* Get the parent nodes */
789 	psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
790 
791 	/*
792 	 * This function acquires the lock corresponding to each power level so
793 	 * that by the time all locks are taken, the system topology is snapshot
794 	 * and state management can be done safely.
795 	 */
796 	psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes);
797 
798 	psci_get_target_local_pwr_states(end_pwrlvl, &state_info);
799 
800 #if ENABLE_PSCI_STAT
801 	plat_psci_stat_accounting_stop(&state_info);
802 #endif
803 
804 	/*
805 	 * This CPU could be resuming from suspend or it could have just been
806 	 * turned on. To distinguish between these 2 cases, we examine the
807 	 * affinity state of the CPU:
808 	 *  - If the affinity state is ON_PENDING then it has just been
809 	 *    turned on.
810 	 *  - Else it is resuming from suspend.
811 	 *
812 	 * Depending on the type of warm reset identified, choose the right set
813 	 * of power management handler and perform the generic, architecture
814 	 * and platform specific handling.
815 	 */
816 	if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING)
817 		psci_cpu_on_finish(cpu_idx, &state_info);
818 	else
819 		psci_cpu_suspend_finish(cpu_idx, &state_info);
820 
821 	/*
822 	 * Set the requested and target state of this CPU and all the higher
823 	 * power domains which are ancestors of this CPU to run.
824 	 */
825 	psci_set_pwr_domains_to_run(end_pwrlvl);
826 
827 #if ENABLE_PSCI_STAT
828 	/*
829 	 * Update PSCI stats.
830 	 * Caches are off when writing stats data on the power down path.
831 	 * Since caches are now enabled, it's necessary to do cache
832 	 * maintenance before reading that same data.
833 	 */
834 	psci_stats_update_pwr_up(end_pwrlvl, &state_info);
835 #endif
836 
837 	/*
838 	 * This loop releases the lock corresponding to each power level
839 	 * in the reverse order to which they were acquired.
840 	 */
841 	psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes);
842 }
843 
844 /*******************************************************************************
845  * This function initializes the set of hooks that PSCI invokes as part of power
846  * management operation. The power management hooks are expected to be provided
847  * by the SPD, after it finishes all its initialization
848  ******************************************************************************/
psci_register_spd_pm_hook(const spd_pm_ops_t * pm)849 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
850 {
851 	assert(pm != NULL);
852 	psci_spd_pm = pm;
853 
854 	if (pm->svc_migrate != NULL)
855 		psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
856 
857 	if (pm->svc_migrate_info != NULL)
858 		psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
859 				| define_psci_cap(PSCI_MIG_INFO_TYPE);
860 }
861 
862 /*******************************************************************************
863  * This function invokes the migrate info hook in the spd_pm_ops. It performs
864  * the necessary return value validation. If the Secure Payload is UP and
865  * migrate capable, it returns the mpidr of the CPU on which the Secure payload
866  * is resident through the mpidr parameter. Else the value of the parameter on
867  * return is undefined.
868  ******************************************************************************/
psci_spd_migrate_info(u_register_t * mpidr)869 int psci_spd_migrate_info(u_register_t *mpidr)
870 {
871 	int rc;
872 
873 	if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL))
874 		return PSCI_E_NOT_SUPPORTED;
875 
876 	rc = psci_spd_pm->svc_migrate_info(mpidr);
877 
878 	assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) ||
879 	       (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED));
880 
881 	return rc;
882 }
883 
884 
885 /*******************************************************************************
886  * This function prints the state of all power domains present in the
887  * system
888  ******************************************************************************/
psci_print_power_domain_map(void)889 void psci_print_power_domain_map(void)
890 {
891 #if LOG_LEVEL >= LOG_LEVEL_INFO
892 	unsigned int idx;
893 	plat_local_state_t state;
894 	plat_local_state_type_t state_type;
895 
896 	/* This array maps to the PSCI_STATE_X definitions in psci.h */
897 	static const char * const psci_state_type_str[] = {
898 		"ON",
899 		"RETENTION",
900 		"OFF",
901 	};
902 
903 	INFO("PSCI Power Domain Map:\n");
904 	for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - psci_plat_core_count);
905 							idx++) {
906 		state_type = find_local_state_type(
907 				psci_non_cpu_pd_nodes[idx].local_state);
908 		INFO("  Domain Node : Level %u, parent_node %d,"
909 				" State %s (0x%x)\n",
910 				psci_non_cpu_pd_nodes[idx].level,
911 				psci_non_cpu_pd_nodes[idx].parent_node,
912 				psci_state_type_str[state_type],
913 				psci_non_cpu_pd_nodes[idx].local_state);
914 	}
915 
916 	for (idx = 0; idx < psci_plat_core_count; idx++) {
917 		state = psci_get_cpu_local_state_by_idx(idx);
918 		state_type = find_local_state_type(state);
919 		INFO("  CPU Node : MPID 0x%llx, parent_node %d,"
920 				" State %s (0x%x)\n",
921 				(unsigned long long)psci_cpu_pd_nodes[idx].mpidr,
922 				psci_cpu_pd_nodes[idx].parent_node,
923 				psci_state_type_str[state_type],
924 				psci_get_cpu_local_state_by_idx(idx));
925 	}
926 #endif
927 }
928 
929 /******************************************************************************
930  * Return whether any secondaries were powered up with CPU_ON call. A CPU that
931  * have ever been powered up would have set its MPDIR value to something other
932  * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to
933  * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is
934  * meaningful only when called on the primary CPU during early boot.
935  *****************************************************************************/
psci_secondaries_brought_up(void)936 int psci_secondaries_brought_up(void)
937 {
938 	unsigned int idx, n_valid = 0U;
939 
940 	for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) {
941 		if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR)
942 			n_valid++;
943 	}
944 
945 	assert(n_valid > 0U);
946 
947 	return (n_valid > 1U) ? 1 : 0;
948 }
949 
950 /*******************************************************************************
951  * Initiate power down sequence, by calling power down operations registered for
952  * this CPU.
953  ******************************************************************************/
psci_do_pwrdown_sequence(unsigned int power_level)954 void psci_do_pwrdown_sequence(unsigned int power_level)
955 {
956 #if HW_ASSISTED_COHERENCY
957 	/*
958 	 * With hardware-assisted coherency, the CPU drivers only initiate the
959 	 * power down sequence, without performing cache-maintenance operations
960 	 * in software. Data caches enabled both before and after this call.
961 	 */
962 	prepare_cpu_pwr_dwn(power_level);
963 #else
964 	/*
965 	 * Without hardware-assisted coherency, the CPU drivers disable data
966 	 * caches, then perform cache-maintenance operations in software.
967 	 *
968 	 * This also calls prepare_cpu_pwr_dwn() to initiate power down
969 	 * sequence, but that function will return with data caches disabled.
970 	 * We must ensure that the stack memory is flushed out to memory before
971 	 * we start popping from it again.
972 	 */
973 	psci_do_pwrdown_cache_maintenance(power_level);
974 #endif
975 }
976