1 /*
2 * Copyright (c) 2013-2019, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <assert.h>
8 #include <string.h>
9
10 #include <arch.h>
11 #include <arch_helpers.h>
12 #include <common/bl_common.h>
13 #include <common/debug.h>
14 #include <context.h>
15 #include <lib/el3_runtime/context_mgmt.h>
16 #include <lib/utils.h>
17 #include <plat/common/platform.h>
18
19 #include "psci_private.h"
20
21 /*
22 * SPD power management operations, expected to be supplied by the registered
23 * SPD on successful SP initialization
24 */
25 const spd_pm_ops_t *psci_spd_pm;
26
27 /*
28 * PSCI requested local power state map. This array is used to store the local
29 * power states requested by a CPU for power levels from level 1 to
30 * PLAT_MAX_PWR_LVL. It does not store the requested local power state for power
31 * level 0 (PSCI_CPU_PWR_LVL) as the requested and the target power state for a
32 * CPU are the same.
33 *
34 * During state coordination, the platform is passed an array containing the
35 * local states requested for a particular non cpu power domain by each cpu
36 * within the domain.
37 *
38 * TODO: Dense packing of the requested states will cause cache thrashing
39 * when multiple power domains write to it. If we allocate the requested
40 * states at each power level in a cache-line aligned per-domain memory,
41 * the cache thrashing can be avoided.
42 */
43 static plat_local_state_t
44 psci_req_local_pwr_states[PLAT_MAX_PWR_LVL][PLATFORM_CORE_COUNT];
45
46 unsigned int psci_plat_core_count;
47
48 /*******************************************************************************
49 * Arrays that hold the platform's power domain tree information for state
50 * management of power domains.
51 * Each node in the array 'psci_non_cpu_pd_nodes' corresponds to a power domain
52 * which is an ancestor of a CPU power domain.
53 * Each node in the array 'psci_cpu_pd_nodes' corresponds to a cpu power domain
54 ******************************************************************************/
55 non_cpu_pd_node_t psci_non_cpu_pd_nodes[PSCI_NUM_NON_CPU_PWR_DOMAINS]
56 #if USE_COHERENT_MEM
57 __section("tzfw_coherent_mem")
58 #endif
59 ;
60
61 /* Lock for PSCI state coordination */
62 DEFINE_PSCI_LOCK(psci_locks[PSCI_NUM_NON_CPU_PWR_DOMAINS]);
63
64 cpu_pd_node_t psci_cpu_pd_nodes[PLATFORM_CORE_COUNT];
65
66 /*******************************************************************************
67 * Pointer to functions exported by the platform to complete power mgmt. ops
68 ******************************************************************************/
69 const plat_psci_ops_t *psci_plat_pm_ops;
70
71 /******************************************************************************
72 * Check that the maximum power level supported by the platform makes sense
73 *****************************************************************************/
74 CASSERT((PLAT_MAX_PWR_LVL <= PSCI_MAX_PWR_LVL) &&
75 (PLAT_MAX_PWR_LVL >= PSCI_CPU_PWR_LVL),
76 assert_platform_max_pwrlvl_check);
77
78 /*
79 * The plat_local_state used by the platform is one of these types: RUN,
80 * RETENTION and OFF. The platform can define further sub-states for each type
81 * apart from RUN. This categorization is done to verify the sanity of the
82 * psci_power_state passed by the platform and to print debug information. The
83 * categorization is done on the basis of the following conditions:
84 *
85 * 1. If (plat_local_state == 0) then the category is STATE_TYPE_RUN.
86 *
87 * 2. If (0 < plat_local_state <= PLAT_MAX_RET_STATE), then the category is
88 * STATE_TYPE_RETN.
89 *
90 * 3. If (plat_local_state > PLAT_MAX_RET_STATE), then the category is
91 * STATE_TYPE_OFF.
92 */
93 typedef enum plat_local_state_type {
94 STATE_TYPE_RUN = 0,
95 STATE_TYPE_RETN,
96 STATE_TYPE_OFF
97 } plat_local_state_type_t;
98
99 /* Function used to categorize plat_local_state. */
find_local_state_type(plat_local_state_t state)100 static plat_local_state_type_t find_local_state_type(plat_local_state_t state)
101 {
102 if (state != 0U) {
103 if (state > PLAT_MAX_RET_STATE) {
104 return STATE_TYPE_OFF;
105 } else {
106 return STATE_TYPE_RETN;
107 }
108 } else {
109 return STATE_TYPE_RUN;
110 }
111 }
112
113 /******************************************************************************
114 * Check that the maximum retention level supported by the platform is less
115 * than the maximum off level.
116 *****************************************************************************/
117 CASSERT(PLAT_MAX_RET_STATE < PLAT_MAX_OFF_STATE,
118 assert_platform_max_off_and_retn_state_check);
119
120 /******************************************************************************
121 * This function ensures that the power state parameter in a CPU_SUSPEND request
122 * is valid. If so, it returns the requested states for each power level.
123 *****************************************************************************/
psci_validate_power_state(unsigned int power_state,psci_power_state_t * state_info)124 int psci_validate_power_state(unsigned int power_state,
125 psci_power_state_t *state_info)
126 {
127 /* Check SBZ bits in power state are zero */
128 if (psci_check_power_state(power_state) != 0U)
129 return PSCI_E_INVALID_PARAMS;
130
131 assert(psci_plat_pm_ops->validate_power_state != NULL);
132
133 /* Validate the power_state using platform pm_ops */
134 return psci_plat_pm_ops->validate_power_state(power_state, state_info);
135 }
136
137 /******************************************************************************
138 * This function retrieves the `psci_power_state_t` for system suspend from
139 * the platform.
140 *****************************************************************************/
psci_query_sys_suspend_pwrstate(psci_power_state_t * state_info)141 void psci_query_sys_suspend_pwrstate(psci_power_state_t *state_info)
142 {
143 /*
144 * Assert that the required pm_ops hook is implemented to ensure that
145 * the capability detected during psci_setup() is valid.
146 */
147 assert(psci_plat_pm_ops->get_sys_suspend_power_state != NULL);
148
149 /*
150 * Query the platform for the power_state required for system suspend
151 */
152 psci_plat_pm_ops->get_sys_suspend_power_state(state_info);
153 }
154
155 /*******************************************************************************
156 * This function verifies that the all the other cores in the system have been
157 * turned OFF and the current CPU is the last running CPU in the system.
158 * Returns 1 (true) if the current CPU is the last ON CPU or 0 (false)
159 * otherwise.
160 ******************************************************************************/
psci_is_last_on_cpu(void)161 unsigned int psci_is_last_on_cpu(void)
162 {
163 unsigned int cpu_idx, my_idx = plat_my_core_pos();
164
165 for (cpu_idx = 0; cpu_idx < psci_plat_core_count;
166 cpu_idx++) {
167 if (cpu_idx == my_idx) {
168 assert(psci_get_aff_info_state() == AFF_STATE_ON);
169 continue;
170 }
171
172 if (psci_get_aff_info_state_by_idx(cpu_idx) != AFF_STATE_OFF)
173 return 0;
174 }
175
176 return 1;
177 }
178
179 /*******************************************************************************
180 * Routine to return the maximum power level to traverse to after a cpu has
181 * been physically powered up. It is expected to be called immediately after
182 * reset from assembler code.
183 ******************************************************************************/
get_power_on_target_pwrlvl(void)184 static unsigned int get_power_on_target_pwrlvl(void)
185 {
186 unsigned int pwrlvl;
187
188 /*
189 * Assume that this cpu was suspended and retrieve its target power
190 * level. If it is invalid then it could only have been turned off
191 * earlier. PLAT_MAX_PWR_LVL will be the highest power level a
192 * cpu can be turned off to.
193 */
194 pwrlvl = psci_get_suspend_pwrlvl();
195 if (pwrlvl == PSCI_INVALID_PWR_LVL)
196 pwrlvl = PLAT_MAX_PWR_LVL;
197 assert(pwrlvl < PSCI_INVALID_PWR_LVL);
198 return pwrlvl;
199 }
200
201 /******************************************************************************
202 * Helper function to update the requested local power state array. This array
203 * does not store the requested state for the CPU power level. Hence an
204 * assertion is added to prevent us from accessing the CPU power level.
205 *****************************************************************************/
psci_set_req_local_pwr_state(unsigned int pwrlvl,unsigned int cpu_idx,plat_local_state_t req_pwr_state)206 static void psci_set_req_local_pwr_state(unsigned int pwrlvl,
207 unsigned int cpu_idx,
208 plat_local_state_t req_pwr_state)
209 {
210 assert(pwrlvl > PSCI_CPU_PWR_LVL);
211 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
212 (cpu_idx < psci_plat_core_count)) {
213 psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx] = req_pwr_state;
214 }
215 }
216
217 /******************************************************************************
218 * This function initializes the psci_req_local_pwr_states.
219 *****************************************************************************/
psci_init_req_local_pwr_states(void)220 void __init psci_init_req_local_pwr_states(void)
221 {
222 /* Initialize the requested state of all non CPU power domains as OFF */
223 unsigned int pwrlvl;
224 unsigned int core;
225
226 for (pwrlvl = 0U; pwrlvl < PLAT_MAX_PWR_LVL; pwrlvl++) {
227 for (core = 0; core < psci_plat_core_count; core++) {
228 psci_req_local_pwr_states[pwrlvl][core] =
229 PLAT_MAX_OFF_STATE;
230 }
231 }
232 }
233
234 /******************************************************************************
235 * Helper function to return a reference to an array containing the local power
236 * states requested by each cpu for a power domain at 'pwrlvl'. The size of the
237 * array will be the number of cpu power domains of which this power domain is
238 * an ancestor. These requested states will be used to determine a suitable
239 * target state for this power domain during psci state coordination. An
240 * assertion is added to prevent us from accessing the CPU power level.
241 *****************************************************************************/
psci_get_req_local_pwr_states(unsigned int pwrlvl,unsigned int cpu_idx)242 static plat_local_state_t *psci_get_req_local_pwr_states(unsigned int pwrlvl,
243 unsigned int cpu_idx)
244 {
245 assert(pwrlvl > PSCI_CPU_PWR_LVL);
246
247 if ((pwrlvl > PSCI_CPU_PWR_LVL) && (pwrlvl <= PLAT_MAX_PWR_LVL) &&
248 (cpu_idx < psci_plat_core_count)) {
249 return &psci_req_local_pwr_states[pwrlvl - 1U][cpu_idx];
250 } else
251 return NULL;
252 }
253
254 /*
255 * psci_non_cpu_pd_nodes can be placed either in normal memory or coherent
256 * memory.
257 *
258 * With !USE_COHERENT_MEM, psci_non_cpu_pd_nodes is placed in normal memory,
259 * it's accessed by both cached and non-cached participants. To serve the common
260 * minimum, perform a cache flush before read and after write so that non-cached
261 * participants operate on latest data in main memory.
262 *
263 * When USE_COHERENT_MEM is used, psci_non_cpu_pd_nodes is placed in coherent
264 * memory. With HW_ASSISTED_COHERENCY, all PSCI participants are cache-coherent.
265 * In both cases, no cache operations are required.
266 */
267
268 /*
269 * Retrieve local state of non-CPU power domain node from a non-cached CPU,
270 * after any required cache maintenance operation.
271 */
get_non_cpu_pd_node_local_state(unsigned int parent_idx)272 static plat_local_state_t get_non_cpu_pd_node_local_state(
273 unsigned int parent_idx)
274 {
275 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
276 flush_dcache_range(
277 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
278 sizeof(psci_non_cpu_pd_nodes[parent_idx]));
279 #endif
280 return psci_non_cpu_pd_nodes[parent_idx].local_state;
281 }
282
283 /*
284 * Update local state of non-CPU power domain node from a cached CPU; perform
285 * any required cache maintenance operation afterwards.
286 */
set_non_cpu_pd_node_local_state(unsigned int parent_idx,plat_local_state_t state)287 static void set_non_cpu_pd_node_local_state(unsigned int parent_idx,
288 plat_local_state_t state)
289 {
290 psci_non_cpu_pd_nodes[parent_idx].local_state = state;
291 #if !(USE_COHERENT_MEM || HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY)
292 flush_dcache_range(
293 (uintptr_t) &psci_non_cpu_pd_nodes[parent_idx],
294 sizeof(psci_non_cpu_pd_nodes[parent_idx]));
295 #endif
296 }
297
298 /******************************************************************************
299 * Helper function to return the current local power state of each power domain
300 * from the current cpu power domain to its ancestor at the 'end_pwrlvl'. This
301 * function will be called after a cpu is powered on to find the local state
302 * each power domain has emerged from.
303 *****************************************************************************/
psci_get_target_local_pwr_states(unsigned int end_pwrlvl,psci_power_state_t * target_state)304 void psci_get_target_local_pwr_states(unsigned int end_pwrlvl,
305 psci_power_state_t *target_state)
306 {
307 unsigned int parent_idx, lvl;
308 plat_local_state_t *pd_state = target_state->pwr_domain_state;
309
310 pd_state[PSCI_CPU_PWR_LVL] = psci_get_cpu_local_state();
311 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
312
313 /* Copy the local power state from node to state_info */
314 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
315 pd_state[lvl] = get_non_cpu_pd_node_local_state(parent_idx);
316 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
317 }
318
319 /* Set the the higher levels to RUN */
320 for (; lvl <= PLAT_MAX_PWR_LVL; lvl++)
321 target_state->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
322 }
323
324 /******************************************************************************
325 * Helper function to set the target local power state that each power domain
326 * from the current cpu power domain to its ancestor at the 'end_pwrlvl' will
327 * enter. This function will be called after coordination of requested power
328 * states has been done for each power level.
329 *****************************************************************************/
psci_set_target_local_pwr_states(unsigned int end_pwrlvl,const psci_power_state_t * target_state)330 static void psci_set_target_local_pwr_states(unsigned int end_pwrlvl,
331 const psci_power_state_t *target_state)
332 {
333 unsigned int parent_idx, lvl;
334 const plat_local_state_t *pd_state = target_state->pwr_domain_state;
335
336 psci_set_cpu_local_state(pd_state[PSCI_CPU_PWR_LVL]);
337
338 /*
339 * Need to flush as local_state might be accessed with Data Cache
340 * disabled during power on
341 */
342 psci_flush_cpu_data(psci_svc_cpu_data.local_state);
343
344 parent_idx = psci_cpu_pd_nodes[plat_my_core_pos()].parent_node;
345
346 /* Copy the local_state from state_info */
347 for (lvl = 1U; lvl <= end_pwrlvl; lvl++) {
348 set_non_cpu_pd_node_local_state(parent_idx, pd_state[lvl]);
349 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
350 }
351 }
352
353
354 /*******************************************************************************
355 * PSCI helper function to get the parent nodes corresponding to a cpu_index.
356 ******************************************************************************/
psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,unsigned int end_lvl,unsigned int * node_index)357 void psci_get_parent_pwr_domain_nodes(unsigned int cpu_idx,
358 unsigned int end_lvl,
359 unsigned int *node_index)
360 {
361 unsigned int parent_node = psci_cpu_pd_nodes[cpu_idx].parent_node;
362 unsigned int i;
363 unsigned int *node = node_index;
364
365 for (i = PSCI_CPU_PWR_LVL + 1U; i <= end_lvl; i++) {
366 *node = parent_node;
367 node++;
368 parent_node = psci_non_cpu_pd_nodes[parent_node].parent_node;
369 }
370 }
371
372 /******************************************************************************
373 * This function is invoked post CPU power up and initialization. It sets the
374 * affinity info state, target power state and requested power state for the
375 * current CPU and all its ancestor power domains to RUN.
376 *****************************************************************************/
psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)377 void psci_set_pwr_domains_to_run(unsigned int end_pwrlvl)
378 {
379 unsigned int parent_idx, cpu_idx = plat_my_core_pos(), lvl;
380 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
381
382 /* Reset the local_state to RUN for the non cpu power domains. */
383 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
384 set_non_cpu_pd_node_local_state(parent_idx,
385 PSCI_LOCAL_STATE_RUN);
386 psci_set_req_local_pwr_state(lvl,
387 cpu_idx,
388 PSCI_LOCAL_STATE_RUN);
389 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
390 }
391
392 /* Set the affinity info state to ON */
393 psci_set_aff_info_state(AFF_STATE_ON);
394
395 psci_set_cpu_local_state(PSCI_LOCAL_STATE_RUN);
396 psci_flush_cpu_data(psci_svc_cpu_data);
397 }
398
399 /******************************************************************************
400 * This function is passed the local power states requested for each power
401 * domain (state_info) between the current CPU domain and its ancestors until
402 * the target power level (end_pwrlvl). It updates the array of requested power
403 * states with this information.
404 *
405 * Then, for each level (apart from the CPU level) until the 'end_pwrlvl', it
406 * retrieves the states requested by all the cpus of which the power domain at
407 * that level is an ancestor. It passes this information to the platform to
408 * coordinate and return the target power state. If the target state for a level
409 * is RUN then subsequent levels are not considered. At the CPU level, state
410 * coordination is not required. Hence, the requested and the target states are
411 * the same.
412 *
413 * The 'state_info' is updated with the target state for each level between the
414 * CPU and the 'end_pwrlvl' and returned to the caller.
415 *
416 * This function will only be invoked with data cache enabled and while
417 * powering down a core.
418 *****************************************************************************/
psci_do_state_coordination(unsigned int end_pwrlvl,psci_power_state_t * state_info)419 void psci_do_state_coordination(unsigned int end_pwrlvl,
420 psci_power_state_t *state_info)
421 {
422 unsigned int lvl, parent_idx, cpu_idx = plat_my_core_pos();
423 unsigned int start_idx;
424 unsigned int ncpus;
425 plat_local_state_t target_state, *req_states;
426
427 assert(end_pwrlvl <= PLAT_MAX_PWR_LVL);
428 parent_idx = psci_cpu_pd_nodes[cpu_idx].parent_node;
429
430 /* For level 0, the requested state will be equivalent
431 to target state */
432 for (lvl = PSCI_CPU_PWR_LVL + 1U; lvl <= end_pwrlvl; lvl++) {
433
434 /* First update the requested power state */
435 psci_set_req_local_pwr_state(lvl, cpu_idx,
436 state_info->pwr_domain_state[lvl]);
437
438 /* Get the requested power states for this power level */
439 start_idx = psci_non_cpu_pd_nodes[parent_idx].cpu_start_idx;
440 req_states = psci_get_req_local_pwr_states(lvl, start_idx);
441
442 /*
443 * Let the platform coordinate amongst the requested states at
444 * this power level and return the target local power state.
445 */
446 ncpus = psci_non_cpu_pd_nodes[parent_idx].ncpus;
447 target_state = plat_get_target_pwr_state(lvl,
448 req_states,
449 ncpus);
450
451 state_info->pwr_domain_state[lvl] = target_state;
452
453 /* Break early if the negotiated target power state is RUN */
454 if (is_local_state_run(state_info->pwr_domain_state[lvl]) != 0)
455 break;
456
457 parent_idx = psci_non_cpu_pd_nodes[parent_idx].parent_node;
458 }
459
460 /*
461 * This is for cases when we break out of the above loop early because
462 * the target power state is RUN at a power level < end_pwlvl.
463 * We update the requested power state from state_info and then
464 * set the target state as RUN.
465 */
466 for (lvl = lvl + 1U; lvl <= end_pwrlvl; lvl++) {
467 psci_set_req_local_pwr_state(lvl, cpu_idx,
468 state_info->pwr_domain_state[lvl]);
469 state_info->pwr_domain_state[lvl] = PSCI_LOCAL_STATE_RUN;
470
471 }
472
473 /* Update the target state in the power domain nodes */
474 psci_set_target_local_pwr_states(end_pwrlvl, state_info);
475 }
476
477 /******************************************************************************
478 * This function validates a suspend request by making sure that if a standby
479 * state is requested then no power level is turned off and the highest power
480 * level is placed in a standby/retention state.
481 *
482 * It also ensures that the state level X will enter is not shallower than the
483 * state level X + 1 will enter.
484 *
485 * This validation will be enabled only for DEBUG builds as the platform is
486 * expected to perform these validations as well.
487 *****************************************************************************/
psci_validate_suspend_req(const psci_power_state_t * state_info,unsigned int is_power_down_state)488 int psci_validate_suspend_req(const psci_power_state_t *state_info,
489 unsigned int is_power_down_state)
490 {
491 unsigned int max_off_lvl, target_lvl, max_retn_lvl;
492 plat_local_state_t state;
493 plat_local_state_type_t req_state_type, deepest_state_type;
494 int i;
495
496 /* Find the target suspend power level */
497 target_lvl = psci_find_target_suspend_lvl(state_info);
498 if (target_lvl == PSCI_INVALID_PWR_LVL)
499 return PSCI_E_INVALID_PARAMS;
500
501 /* All power domain levels are in a RUN state to begin with */
502 deepest_state_type = STATE_TYPE_RUN;
503
504 for (i = (int) target_lvl; i >= (int) PSCI_CPU_PWR_LVL; i--) {
505 state = state_info->pwr_domain_state[i];
506 req_state_type = find_local_state_type(state);
507
508 /*
509 * While traversing from the highest power level to the lowest,
510 * the state requested for lower levels has to be the same or
511 * deeper i.e. equal to or greater than the state at the higher
512 * levels. If this condition is true, then the requested state
513 * becomes the deepest state encountered so far.
514 */
515 if (req_state_type < deepest_state_type)
516 return PSCI_E_INVALID_PARAMS;
517 deepest_state_type = req_state_type;
518 }
519
520 /* Find the highest off power level */
521 max_off_lvl = psci_find_max_off_lvl(state_info);
522
523 /* The target_lvl is either equal to the max_off_lvl or max_retn_lvl */
524 max_retn_lvl = PSCI_INVALID_PWR_LVL;
525 if (target_lvl != max_off_lvl)
526 max_retn_lvl = target_lvl;
527
528 /*
529 * If this is not a request for a power down state then max off level
530 * has to be invalid and max retention level has to be a valid power
531 * level.
532 */
533 if ((is_power_down_state == 0U) &&
534 ((max_off_lvl != PSCI_INVALID_PWR_LVL) ||
535 (max_retn_lvl == PSCI_INVALID_PWR_LVL)))
536 return PSCI_E_INVALID_PARAMS;
537
538 return PSCI_E_SUCCESS;
539 }
540
541 /******************************************************************************
542 * This function finds the highest power level which will be powered down
543 * amongst all the power levels specified in the 'state_info' structure
544 *****************************************************************************/
psci_find_max_off_lvl(const psci_power_state_t * state_info)545 unsigned int psci_find_max_off_lvl(const psci_power_state_t *state_info)
546 {
547 int i;
548
549 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
550 if (is_local_state_off(state_info->pwr_domain_state[i]) != 0)
551 return (unsigned int) i;
552 }
553
554 return PSCI_INVALID_PWR_LVL;
555 }
556
557 /******************************************************************************
558 * This functions finds the level of the highest power domain which will be
559 * placed in a low power state during a suspend operation.
560 *****************************************************************************/
psci_find_target_suspend_lvl(const psci_power_state_t * state_info)561 unsigned int psci_find_target_suspend_lvl(const psci_power_state_t *state_info)
562 {
563 int i;
564
565 for (i = (int) PLAT_MAX_PWR_LVL; i >= (int) PSCI_CPU_PWR_LVL; i--) {
566 if (is_local_state_run(state_info->pwr_domain_state[i]) == 0)
567 return (unsigned int) i;
568 }
569
570 return PSCI_INVALID_PWR_LVL;
571 }
572
573 /*******************************************************************************
574 * This function is passed the highest level in the topology tree that the
575 * operation should be applied to and a list of node indexes. It picks up locks
576 * from the node index list in order of increasing power domain level in the
577 * range specified.
578 ******************************************************************************/
psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,const unsigned int * parent_nodes)579 void psci_acquire_pwr_domain_locks(unsigned int end_pwrlvl,
580 const unsigned int *parent_nodes)
581 {
582 unsigned int parent_idx;
583 unsigned int level;
584
585 /* No locking required for level 0. Hence start locking from level 1 */
586 for (level = PSCI_CPU_PWR_LVL + 1U; level <= end_pwrlvl; level++) {
587 parent_idx = parent_nodes[level - 1U];
588 psci_lock_get(&psci_non_cpu_pd_nodes[parent_idx]);
589 }
590 }
591
592 /*******************************************************************************
593 * This function is passed the highest level in the topology tree that the
594 * operation should be applied to and a list of node indexes. It releases the
595 * locks in order of decreasing power domain level in the range specified.
596 ******************************************************************************/
psci_release_pwr_domain_locks(unsigned int end_pwrlvl,const unsigned int * parent_nodes)597 void psci_release_pwr_domain_locks(unsigned int end_pwrlvl,
598 const unsigned int *parent_nodes)
599 {
600 unsigned int parent_idx;
601 unsigned int level;
602
603 /* Unlock top down. No unlocking required for level 0. */
604 for (level = end_pwrlvl; level >= PSCI_CPU_PWR_LVL + 1U; level--) {
605 parent_idx = parent_nodes[level - 1U];
606 psci_lock_release(&psci_non_cpu_pd_nodes[parent_idx]);
607 }
608 }
609
610 /*******************************************************************************
611 * Simple routine to determine whether a mpidr is valid or not.
612 ******************************************************************************/
psci_validate_mpidr(u_register_t mpidr)613 int psci_validate_mpidr(u_register_t mpidr)
614 {
615 if (plat_core_pos_by_mpidr(mpidr) < 0)
616 return PSCI_E_INVALID_PARAMS;
617
618 return PSCI_E_SUCCESS;
619 }
620
621 /*******************************************************************************
622 * This function determines the full entrypoint information for the requested
623 * PSCI entrypoint on power on/resume and returns it.
624 ******************************************************************************/
625 #ifdef __aarch64__
psci_get_ns_ep_info(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)626 static int psci_get_ns_ep_info(entry_point_info_t *ep,
627 uintptr_t entrypoint,
628 u_register_t context_id)
629 {
630 u_register_t ep_attr, sctlr;
631 unsigned int daif, ee, mode;
632 u_register_t ns_scr_el3 = read_scr_el3();
633 u_register_t ns_sctlr_el1 = read_sctlr_el1();
634
635 sctlr = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
636 read_sctlr_el2() : ns_sctlr_el1;
637 ee = 0;
638
639 ep_attr = NON_SECURE | EP_ST_DISABLE;
640 if ((sctlr & SCTLR_EE_BIT) != 0U) {
641 ep_attr |= EP_EE_BIG;
642 ee = 1;
643 }
644 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
645
646 ep->pc = entrypoint;
647 zeromem(&ep->args, sizeof(ep->args));
648 ep->args.arg0 = context_id;
649
650 /*
651 * Figure out whether the cpu enters the non-secure address space
652 * in aarch32 or aarch64
653 */
654 if ((ns_scr_el3 & SCR_RW_BIT) != 0U) {
655
656 /*
657 * Check whether a Thumb entry point has been provided for an
658 * aarch64 EL
659 */
660 if ((entrypoint & 0x1UL) != 0UL)
661 return PSCI_E_INVALID_ADDRESS;
662
663 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ? MODE_EL2 : MODE_EL1;
664
665 ep->spsr = SPSR_64(mode, MODE_SP_ELX, DISABLE_ALL_EXCEPTIONS);
666 } else {
667
668 mode = ((ns_scr_el3 & SCR_HCE_BIT) != 0U) ?
669 MODE32_hyp : MODE32_svc;
670
671 /*
672 * TODO: Choose async. exception bits if HYP mode is not
673 * implemented according to the values of SCR.{AW, FW} bits
674 */
675 daif = DAIF_ABT_BIT | DAIF_IRQ_BIT | DAIF_FIQ_BIT;
676
677 ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, daif);
678 }
679
680 return PSCI_E_SUCCESS;
681 }
682 #else /* !__aarch64__ */
psci_get_ns_ep_info(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)683 static int psci_get_ns_ep_info(entry_point_info_t *ep,
684 uintptr_t entrypoint,
685 u_register_t context_id)
686 {
687 u_register_t ep_attr;
688 unsigned int aif, ee, mode;
689 u_register_t scr = read_scr();
690 u_register_t ns_sctlr, sctlr;
691
692 /* Switch to non secure state */
693 write_scr(scr | SCR_NS_BIT);
694 isb();
695 ns_sctlr = read_sctlr();
696
697 sctlr = scr & SCR_HCE_BIT ? read_hsctlr() : ns_sctlr;
698
699 /* Return to original state */
700 write_scr(scr);
701 isb();
702 ee = 0;
703
704 ep_attr = NON_SECURE | EP_ST_DISABLE;
705 if (sctlr & SCTLR_EE_BIT) {
706 ep_attr |= EP_EE_BIG;
707 ee = 1;
708 }
709 SET_PARAM_HEAD(ep, PARAM_EP, VERSION_1, ep_attr);
710
711 ep->pc = entrypoint;
712 zeromem(&ep->args, sizeof(ep->args));
713 ep->args.arg0 = context_id;
714
715 mode = scr & SCR_HCE_BIT ? MODE32_hyp : MODE32_svc;
716
717 /*
718 * TODO: Choose async. exception bits if HYP mode is not
719 * implemented according to the values of SCR.{AW, FW} bits
720 */
721 aif = SPSR_ABT_BIT | SPSR_IRQ_BIT | SPSR_FIQ_BIT;
722
723 ep->spsr = SPSR_MODE32(mode, entrypoint & 0x1, ee, aif);
724
725 return PSCI_E_SUCCESS;
726 }
727
728 #endif /* __aarch64__ */
729
730 /*******************************************************************************
731 * This function validates the entrypoint with the platform layer if the
732 * appropriate pm_ops hook is exported by the platform and returns the
733 * 'entry_point_info'.
734 ******************************************************************************/
psci_validate_entry_point(entry_point_info_t * ep,uintptr_t entrypoint,u_register_t context_id)735 int psci_validate_entry_point(entry_point_info_t *ep,
736 uintptr_t entrypoint,
737 u_register_t context_id)
738 {
739 int rc;
740
741 /* Validate the entrypoint using platform psci_ops */
742 if (psci_plat_pm_ops->validate_ns_entrypoint != NULL) {
743 rc = psci_plat_pm_ops->validate_ns_entrypoint(entrypoint);
744 if (rc != PSCI_E_SUCCESS)
745 return PSCI_E_INVALID_ADDRESS;
746 }
747
748 /*
749 * Verify and derive the re-entry information for
750 * the non-secure world from the non-secure state from
751 * where this call originated.
752 */
753 rc = psci_get_ns_ep_info(ep, entrypoint, context_id);
754 return rc;
755 }
756
757 /*******************************************************************************
758 * Generic handler which is called when a cpu is physically powered on. It
759 * traverses the node information and finds the highest power level powered
760 * off and performs generic, architectural, platform setup and state management
761 * to power on that power level and power levels below it.
762 * e.g. For a cpu that's been powered on, it will call the platform specific
763 * code to enable the gic cpu interface and for a cluster it will enable
764 * coherency at the interconnect level in addition to gic cpu interface.
765 ******************************************************************************/
psci_warmboot_entrypoint(void)766 void psci_warmboot_entrypoint(void)
767 {
768 unsigned int end_pwrlvl;
769 unsigned int cpu_idx = plat_my_core_pos();
770 unsigned int parent_nodes[PLAT_MAX_PWR_LVL] = {0};
771 psci_power_state_t state_info = { {PSCI_LOCAL_STATE_RUN} };
772
773 /*
774 * Verify that we have been explicitly turned ON or resumed from
775 * suspend.
776 */
777 if (psci_get_aff_info_state() == AFF_STATE_OFF) {
778 ERROR("Unexpected affinity info state.\n");
779 panic();
780 }
781
782 /*
783 * Get the maximum power domain level to traverse to after this cpu
784 * has been physically powered up.
785 */
786 end_pwrlvl = get_power_on_target_pwrlvl();
787
788 /* Get the parent nodes */
789 psci_get_parent_pwr_domain_nodes(cpu_idx, end_pwrlvl, parent_nodes);
790
791 /*
792 * This function acquires the lock corresponding to each power level so
793 * that by the time all locks are taken, the system topology is snapshot
794 * and state management can be done safely.
795 */
796 psci_acquire_pwr_domain_locks(end_pwrlvl, parent_nodes);
797
798 psci_get_target_local_pwr_states(end_pwrlvl, &state_info);
799
800 #if ENABLE_PSCI_STAT
801 plat_psci_stat_accounting_stop(&state_info);
802 #endif
803
804 /*
805 * This CPU could be resuming from suspend or it could have just been
806 * turned on. To distinguish between these 2 cases, we examine the
807 * affinity state of the CPU:
808 * - If the affinity state is ON_PENDING then it has just been
809 * turned on.
810 * - Else it is resuming from suspend.
811 *
812 * Depending on the type of warm reset identified, choose the right set
813 * of power management handler and perform the generic, architecture
814 * and platform specific handling.
815 */
816 if (psci_get_aff_info_state() == AFF_STATE_ON_PENDING)
817 psci_cpu_on_finish(cpu_idx, &state_info);
818 else
819 psci_cpu_suspend_finish(cpu_idx, &state_info);
820
821 /*
822 * Set the requested and target state of this CPU and all the higher
823 * power domains which are ancestors of this CPU to run.
824 */
825 psci_set_pwr_domains_to_run(end_pwrlvl);
826
827 #if ENABLE_PSCI_STAT
828 /*
829 * Update PSCI stats.
830 * Caches are off when writing stats data on the power down path.
831 * Since caches are now enabled, it's necessary to do cache
832 * maintenance before reading that same data.
833 */
834 psci_stats_update_pwr_up(end_pwrlvl, &state_info);
835 #endif
836
837 /*
838 * This loop releases the lock corresponding to each power level
839 * in the reverse order to which they were acquired.
840 */
841 psci_release_pwr_domain_locks(end_pwrlvl, parent_nodes);
842 }
843
844 /*******************************************************************************
845 * This function initializes the set of hooks that PSCI invokes as part of power
846 * management operation. The power management hooks are expected to be provided
847 * by the SPD, after it finishes all its initialization
848 ******************************************************************************/
psci_register_spd_pm_hook(const spd_pm_ops_t * pm)849 void psci_register_spd_pm_hook(const spd_pm_ops_t *pm)
850 {
851 assert(pm != NULL);
852 psci_spd_pm = pm;
853
854 if (pm->svc_migrate != NULL)
855 psci_caps |= define_psci_cap(PSCI_MIG_AARCH64);
856
857 if (pm->svc_migrate_info != NULL)
858 psci_caps |= define_psci_cap(PSCI_MIG_INFO_UP_CPU_AARCH64)
859 | define_psci_cap(PSCI_MIG_INFO_TYPE);
860 }
861
862 /*******************************************************************************
863 * This function invokes the migrate info hook in the spd_pm_ops. It performs
864 * the necessary return value validation. If the Secure Payload is UP and
865 * migrate capable, it returns the mpidr of the CPU on which the Secure payload
866 * is resident through the mpidr parameter. Else the value of the parameter on
867 * return is undefined.
868 ******************************************************************************/
psci_spd_migrate_info(u_register_t * mpidr)869 int psci_spd_migrate_info(u_register_t *mpidr)
870 {
871 int rc;
872
873 if ((psci_spd_pm == NULL) || (psci_spd_pm->svc_migrate_info == NULL))
874 return PSCI_E_NOT_SUPPORTED;
875
876 rc = psci_spd_pm->svc_migrate_info(mpidr);
877
878 assert((rc == PSCI_TOS_UP_MIG_CAP) || (rc == PSCI_TOS_NOT_UP_MIG_CAP) ||
879 (rc == PSCI_TOS_NOT_PRESENT_MP) || (rc == PSCI_E_NOT_SUPPORTED));
880
881 return rc;
882 }
883
884
885 /*******************************************************************************
886 * This function prints the state of all power domains present in the
887 * system
888 ******************************************************************************/
psci_print_power_domain_map(void)889 void psci_print_power_domain_map(void)
890 {
891 #if LOG_LEVEL >= LOG_LEVEL_INFO
892 unsigned int idx;
893 plat_local_state_t state;
894 plat_local_state_type_t state_type;
895
896 /* This array maps to the PSCI_STATE_X definitions in psci.h */
897 static const char * const psci_state_type_str[] = {
898 "ON",
899 "RETENTION",
900 "OFF",
901 };
902
903 INFO("PSCI Power Domain Map:\n");
904 for (idx = 0; idx < (PSCI_NUM_PWR_DOMAINS - psci_plat_core_count);
905 idx++) {
906 state_type = find_local_state_type(
907 psci_non_cpu_pd_nodes[idx].local_state);
908 INFO(" Domain Node : Level %u, parent_node %d,"
909 " State %s (0x%x)\n",
910 psci_non_cpu_pd_nodes[idx].level,
911 psci_non_cpu_pd_nodes[idx].parent_node,
912 psci_state_type_str[state_type],
913 psci_non_cpu_pd_nodes[idx].local_state);
914 }
915
916 for (idx = 0; idx < psci_plat_core_count; idx++) {
917 state = psci_get_cpu_local_state_by_idx(idx);
918 state_type = find_local_state_type(state);
919 INFO(" CPU Node : MPID 0x%llx, parent_node %d,"
920 " State %s (0x%x)\n",
921 (unsigned long long)psci_cpu_pd_nodes[idx].mpidr,
922 psci_cpu_pd_nodes[idx].parent_node,
923 psci_state_type_str[state_type],
924 psci_get_cpu_local_state_by_idx(idx));
925 }
926 #endif
927 }
928
929 /******************************************************************************
930 * Return whether any secondaries were powered up with CPU_ON call. A CPU that
931 * have ever been powered up would have set its MPDIR value to something other
932 * than PSCI_INVALID_MPIDR. Note that MPDIR isn't reset back to
933 * PSCI_INVALID_MPIDR when a CPU is powered down later, so the return value is
934 * meaningful only when called on the primary CPU during early boot.
935 *****************************************************************************/
psci_secondaries_brought_up(void)936 int psci_secondaries_brought_up(void)
937 {
938 unsigned int idx, n_valid = 0U;
939
940 for (idx = 0U; idx < ARRAY_SIZE(psci_cpu_pd_nodes); idx++) {
941 if (psci_cpu_pd_nodes[idx].mpidr != PSCI_INVALID_MPIDR)
942 n_valid++;
943 }
944
945 assert(n_valid > 0U);
946
947 return (n_valid > 1U) ? 1 : 0;
948 }
949
950 /*******************************************************************************
951 * Initiate power down sequence, by calling power down operations registered for
952 * this CPU.
953 ******************************************************************************/
psci_do_pwrdown_sequence(unsigned int power_level)954 void psci_do_pwrdown_sequence(unsigned int power_level)
955 {
956 #if HW_ASSISTED_COHERENCY
957 /*
958 * With hardware-assisted coherency, the CPU drivers only initiate the
959 * power down sequence, without performing cache-maintenance operations
960 * in software. Data caches enabled both before and after this call.
961 */
962 prepare_cpu_pwr_dwn(power_level);
963 #else
964 /*
965 * Without hardware-assisted coherency, the CPU drivers disable data
966 * caches, then perform cache-maintenance operations in software.
967 *
968 * This also calls prepare_cpu_pwr_dwn() to initiate power down
969 * sequence, but that function will return with data caches disabled.
970 * We must ensure that the stack memory is flushed out to memory before
971 * we start popping from it again.
972 */
973 psci_do_pwrdown_cache_maintenance(power_level);
974 #endif
975 }
976