• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2013-2020, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <assert.h>
8 #include <stddef.h>
9 
10 #include <arch.h>
11 #include <arch_helpers.h>
12 #include <common/bl_common.h>
13 #include <context.h>
14 #include <lib/el3_runtime/context_mgmt.h>
15 #include <lib/cpus/errata_report.h>
16 #include <plat/common/platform.h>
17 
18 #include "psci_private.h"
19 
20 /*******************************************************************************
21  * Per cpu non-secure contexts used to program the architectural state prior
22  * return to the normal world.
23  * TODO: Use the memory allocator to set aside memory for the contexts instead
24  * of relying on platform defined constants.
25  ******************************************************************************/
26 static cpu_context_t psci_ns_context[PLATFORM_CORE_COUNT];
27 
28 /******************************************************************************
29  * Define the psci capability variable.
30  *****************************************************************************/
31 unsigned int psci_caps;
32 
33 /*******************************************************************************
34  * Function which initializes the 'psci_non_cpu_pd_nodes' or the
35  * 'psci_cpu_pd_nodes' corresponding to the power level.
36  ******************************************************************************/
psci_init_pwr_domain_node(unsigned char node_idx,unsigned int parent_idx,unsigned char level)37 static void __init psci_init_pwr_domain_node(unsigned char node_idx,
38 					unsigned int parent_idx,
39 					unsigned char level)
40 {
41 	if (level > PSCI_CPU_PWR_LVL) {
42 		psci_non_cpu_pd_nodes[node_idx].level = level;
43 		psci_lock_init(psci_non_cpu_pd_nodes, node_idx);
44 		psci_non_cpu_pd_nodes[node_idx].parent_node = parent_idx;
45 		psci_non_cpu_pd_nodes[node_idx].local_state =
46 							 PLAT_MAX_OFF_STATE;
47 	} else {
48 		psci_cpu_data_t *svc_cpu_data;
49 
50 		psci_cpu_pd_nodes[node_idx].parent_node = parent_idx;
51 
52 		/* Initialize with an invalid mpidr */
53 		psci_cpu_pd_nodes[node_idx].mpidr = PSCI_INVALID_MPIDR;
54 
55 		svc_cpu_data =
56 			&(_cpu_data_by_index(node_idx)->psci_svc_cpu_data);
57 
58 		/* Set the Affinity Info for the cores as OFF */
59 		svc_cpu_data->aff_info_state = AFF_STATE_OFF;
60 
61 		/* Invalidate the suspend level for the cpu */
62 		svc_cpu_data->target_pwrlvl = PSCI_INVALID_PWR_LVL;
63 
64 		/* Set the power state to OFF state */
65 		svc_cpu_data->local_state = PLAT_MAX_OFF_STATE;
66 
67 		psci_flush_dcache_range((uintptr_t)svc_cpu_data,
68 						 sizeof(*svc_cpu_data));
69 
70 		cm_set_context_by_index(node_idx,
71 					(void *) &psci_ns_context[node_idx],
72 					NON_SECURE);
73 	}
74 }
75 
76 /*******************************************************************************
77  * This functions updates cpu_start_idx and ncpus field for each of the node in
78  * psci_non_cpu_pd_nodes[]. It does so by comparing the parent nodes of each of
79  * the CPUs and check whether they match with the parent of the previous
80  * CPU. The basic assumption for this work is that children of the same parent
81  * are allocated adjacent indices. The platform should ensure this though proper
82  * mapping of the CPUs to indices via plat_core_pos_by_mpidr() and
83  * plat_my_core_pos() APIs.
84  *******************************************************************************/
psci_update_pwrlvl_limits(void)85 static void __init psci_update_pwrlvl_limits(void)
86 {
87 	unsigned int cpu_idx;
88 	int j;
89 	unsigned int nodes_idx[PLAT_MAX_PWR_LVL] = {0};
90 	unsigned int temp_index[PLAT_MAX_PWR_LVL];
91 
92 	for (cpu_idx = 0; cpu_idx < psci_plat_core_count; cpu_idx++) {
93 		psci_get_parent_pwr_domain_nodes(cpu_idx,
94 						 PLAT_MAX_PWR_LVL,
95 						 temp_index);
96 		for (j = (int)PLAT_MAX_PWR_LVL - 1; j >= 0; j--) {
97 			if (temp_index[j] != nodes_idx[j]) {
98 				nodes_idx[j] = temp_index[j];
99 				psci_non_cpu_pd_nodes[nodes_idx[j]].cpu_start_idx
100 					= cpu_idx;
101 			}
102 			psci_non_cpu_pd_nodes[nodes_idx[j]].ncpus++;
103 		}
104 	}
105 }
106 
107 /*******************************************************************************
108  * Core routine to populate the power domain tree. The tree descriptor passed by
109  * the platform is populated breadth-first and the first entry in the map
110  * informs the number of root power domains. The parent nodes of the root nodes
111  * will point to an invalid entry(-1).
112  ******************************************************************************/
populate_power_domain_tree(const unsigned char * topology)113 static unsigned int __init populate_power_domain_tree(const unsigned char
114 							*topology)
115 {
116 	unsigned int i, j = 0U, num_nodes_at_lvl = 1U, num_nodes_at_next_lvl;
117 	unsigned int node_index = 0U, num_children;
118 	unsigned int parent_node_index = 0U;
119 	int level = (int)PLAT_MAX_PWR_LVL;
120 
121 	/*
122 	 * For each level the inputs are:
123 	 * - number of nodes at this level in plat_array i.e. num_nodes_at_level
124 	 *   This is the sum of values of nodes at the parent level.
125 	 * - Index of first entry at this level in the plat_array i.e.
126 	 *   parent_node_index.
127 	 * - Index of first free entry in psci_non_cpu_pd_nodes[] or
128 	 *   psci_cpu_pd_nodes[] i.e. node_index depending upon the level.
129 	 */
130 	while (level >= (int) PSCI_CPU_PWR_LVL) {
131 		num_nodes_at_next_lvl = 0U;
132 		/*
133 		 * For each entry (parent node) at this level in the plat_array:
134 		 * - Find the number of children
135 		 * - Allocate a node in a power domain array for each child
136 		 * - Set the parent of the child to the parent_node_index - 1
137 		 * - Increment parent_node_index to point to the next parent
138 		 * - Accumulate the number of children at next level.
139 		 */
140 		for (i = 0U; i < num_nodes_at_lvl; i++) {
141 			assert(parent_node_index <=
142 					PSCI_NUM_NON_CPU_PWR_DOMAINS);
143 			num_children = topology[parent_node_index];
144 
145 			for (j = node_index;
146 				j < (node_index + num_children); j++)
147 				psci_init_pwr_domain_node((unsigned char)j,
148 						  parent_node_index - 1U,
149 						  (unsigned char)level);
150 
151 			node_index = j;
152 			num_nodes_at_next_lvl += num_children;
153 			parent_node_index++;
154 		}
155 
156 		num_nodes_at_lvl = num_nodes_at_next_lvl;
157 		level--;
158 
159 		/* Reset the index for the cpu power domain array */
160 		if (level == (int) PSCI_CPU_PWR_LVL)
161 			node_index = 0;
162 	}
163 
164 	/* Validate the sanity of array exported by the platform */
165 	assert(j <= PLATFORM_CORE_COUNT);
166 	return j;
167 }
168 
169 /*******************************************************************************
170  * This function does the architectural setup and takes the warm boot
171  * entry-point `mailbox_ep` as an argument. The function also initializes the
172  * power domain topology tree by querying the platform. The power domain nodes
173  * higher than the CPU are populated in the array psci_non_cpu_pd_nodes[] and
174  * the CPU power domains are populated in psci_cpu_pd_nodes[]. The platform
175  * exports its static topology map through the
176  * populate_power_domain_topology_tree() API. The algorithm populates the
177  * psci_non_cpu_pd_nodes and psci_cpu_pd_nodes iteratively by using this
178  * topology map.  On a platform that implements two clusters of 2 cpus each,
179  * and supporting 3 domain levels, the populated psci_non_cpu_pd_nodes would
180  * look like this:
181  *
182  * ---------------------------------------------------
183  * | system node | cluster 0 node  | cluster 1 node  |
184  * ---------------------------------------------------
185  *
186  * And populated psci_cpu_pd_nodes would look like this :
187  * <-    cpus cluster0   -><-   cpus cluster1   ->
188  * ------------------------------------------------
189  * |   CPU 0   |   CPU 1   |   CPU 2   |   CPU 3  |
190  * ------------------------------------------------
191  ******************************************************************************/
psci_setup(const psci_lib_args_t * lib_args)192 int __init psci_setup(const psci_lib_args_t *lib_args)
193 {
194 	const unsigned char *topology_tree;
195 
196 	assert(VERIFY_PSCI_LIB_ARGS_V1(lib_args));
197 
198 	/* Do the Architectural initialization */
199 	psci_arch_setup();
200 
201 	/* Query the topology map from the platform */
202 	topology_tree = plat_get_power_domain_tree_desc();
203 
204 	/* Populate the power domain arrays using the platform topology map */
205 	psci_plat_core_count = populate_power_domain_tree(topology_tree);
206 
207 	/* Update the CPU limits for each node in psci_non_cpu_pd_nodes */
208 	psci_update_pwrlvl_limits();
209 
210 	/* Populate the mpidr field of cpu node for this CPU */
211 	psci_cpu_pd_nodes[plat_my_core_pos()].mpidr =
212 		read_mpidr() & MPIDR_AFFINITY_MASK;
213 
214 	psci_init_req_local_pwr_states();
215 
216 	/*
217 	 * Set the requested and target state of this CPU and all the higher
218 	 * power domain levels for this CPU to run.
219 	 */
220 	psci_set_pwr_domains_to_run(PLAT_MAX_PWR_LVL);
221 
222 	(void) plat_setup_psci_ops((uintptr_t)lib_args->mailbox_ep,
223 				   &psci_plat_pm_ops);
224 	assert(psci_plat_pm_ops != NULL);
225 
226 	/*
227 	 * Flush `psci_plat_pm_ops` as it will be accessed by secondary CPUs
228 	 * during warm boot, possibly before data cache is enabled.
229 	 */
230 	psci_flush_dcache_range((uintptr_t)&psci_plat_pm_ops,
231 					sizeof(psci_plat_pm_ops));
232 
233 	/* Initialize the psci capability */
234 	psci_caps = PSCI_GENERIC_CAP;
235 
236 	if (psci_plat_pm_ops->pwr_domain_off != NULL)
237 		psci_caps |=  define_psci_cap(PSCI_CPU_OFF);
238 	if ((psci_plat_pm_ops->pwr_domain_on != NULL) &&
239 	    (psci_plat_pm_ops->pwr_domain_on_finish != NULL))
240 		psci_caps |=  define_psci_cap(PSCI_CPU_ON_AARCH64);
241 	if ((psci_plat_pm_ops->pwr_domain_suspend != NULL) &&
242 	    (psci_plat_pm_ops->pwr_domain_suspend_finish != NULL)) {
243 		psci_caps |=  define_psci_cap(PSCI_CPU_SUSPEND_AARCH64);
244 		if (psci_plat_pm_ops->get_sys_suspend_power_state != NULL)
245 			psci_caps |=  define_psci_cap(PSCI_SYSTEM_SUSPEND_AARCH64);
246 	}
247 	if (psci_plat_pm_ops->system_off != NULL)
248 		psci_caps |=  define_psci_cap(PSCI_SYSTEM_OFF);
249 	if (psci_plat_pm_ops->system_reset != NULL)
250 		psci_caps |=  define_psci_cap(PSCI_SYSTEM_RESET);
251 	if (psci_plat_pm_ops->get_node_hw_state != NULL)
252 		psci_caps |= define_psci_cap(PSCI_NODE_HW_STATE_AARCH64);
253 	if ((psci_plat_pm_ops->read_mem_protect != NULL) &&
254 			(psci_plat_pm_ops->write_mem_protect != NULL))
255 		psci_caps |= define_psci_cap(PSCI_MEM_PROTECT);
256 	if (psci_plat_pm_ops->mem_protect_chk != NULL)
257 		psci_caps |= define_psci_cap(PSCI_MEM_CHK_RANGE_AARCH64);
258 	if (psci_plat_pm_ops->system_reset2 != NULL)
259 		psci_caps |= define_psci_cap(PSCI_SYSTEM_RESET2_AARCH64);
260 
261 #if ENABLE_PSCI_STAT
262 	psci_caps |=  define_psci_cap(PSCI_STAT_RESIDENCY_AARCH64);
263 	psci_caps |=  define_psci_cap(PSCI_STAT_COUNT_AARCH64);
264 #endif
265 
266 	return 0;
267 }
268 
269 /*******************************************************************************
270  * This duplicates what the primary cpu did after a cold boot in BL1. The same
271  * needs to be done when a cpu is hotplugged in. This function could also over-
272  * ride any EL3 setup done by BL1 as this code resides in rw memory.
273  ******************************************************************************/
psci_arch_setup(void)274 void psci_arch_setup(void)
275 {
276 #if (ARM_ARCH_MAJOR > 7) || defined(ARMV7_SUPPORTS_GENERIC_TIMER)
277 	/* Program the counter frequency */
278 	write_cntfrq_el0(plat_get_syscnt_freq2());
279 #endif
280 
281 	/* Initialize the cpu_ops pointer. */
282 	init_cpu_ops();
283 
284 	/* Having initialized cpu_ops, we can now print errata status */
285 	print_errata_status();
286 
287 #if ENABLE_PAUTH
288 	/* Store APIAKey_EL1 key */
289 	set_cpu_data(apiakey[0], read_apiakeylo_el1());
290 	set_cpu_data(apiakey[1], read_apiakeyhi_el1());
291 #endif /* ENABLE_PAUTH */
292 }
293 
294 /******************************************************************************
295  * PSCI Library interface to initialize the cpu context for the next non
296  * secure image during cold boot. The relevant registers in the cpu context
297  * need to be retrieved and programmed on return from this interface.
298  *****************************************************************************/
psci_prepare_next_non_secure_ctx(entry_point_info_t * next_image_info)299 void psci_prepare_next_non_secure_ctx(entry_point_info_t *next_image_info)
300 {
301 	assert(GET_SECURITY_STATE(next_image_info->h.attr) == NON_SECURE);
302 	cm_init_my_context(next_image_info);
303 	cm_prepare_el3_exit(NON_SECURE);
304 }
305