• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2005 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "hw-Parcel"
18 //#define LOG_NDEBUG 0
19 
20 #include <errno.h>
21 #include <fcntl.h>
22 #include <inttypes.h>
23 #include <pthread.h>
24 #include <stdint.h>
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <sys/mman.h>
28 #include <sys/stat.h>
29 #include <sys/types.h>
30 #include <sys/resource.h>
31 #include <unistd.h>
32 
33 #include <hwbinder/Binder.h>
34 #include <hwbinder/BpHwBinder.h>
35 #include <hwbinder/IPCThreadState.h>
36 #include <hwbinder/Parcel.h>
37 #include <hwbinder/ProcessState.h>
38 #include <hwbinder/TextOutput.h>
39 
40 #include <cutils/ashmem.h>
41 #include <utils/Debug.h>
42 #include <utils/Log.h>
43 #include <utils/misc.h>
44 #include <utils/String8.h>
45 #include <utils/String16.h>
46 
47 #include "binder_kernel.h"
48 #include <hwbinder/Static.h>
49 
50 #define LOG_REFS(...)
51 //#define LOG_REFS(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
52 #define LOG_ALLOC(...)
53 //#define LOG_ALLOC(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
54 #define LOG_BUFFER(...)
55 // #define LOG_BUFFER(...) ALOG(LOG_DEBUG, LOG_TAG, __VA_ARGS__)
56 
57 // ---------------------------------------------------------------------------
58 
59 // This macro should never be used at runtime, as a too large value
60 // of s could cause an integer overflow. Instead, you should always
61 // use the wrapper function pad_size()
62 #define PAD_SIZE_UNSAFE(s) (((s)+3)&~3)
63 
pad_size(size_t s)64 static size_t pad_size(size_t s) {
65     if (s > (std::numeric_limits<size_t>::max() - 3)) {
66         LOG_ALWAYS_FATAL("pad size too big %zu", s);
67     }
68     return PAD_SIZE_UNSAFE(s);
69 }
70 
71 // Note: must be kept in sync with android/os/StrictMode.java's PENALTY_GATHER
72 #define STRICT_MODE_PENALTY_GATHER (0x40 << 16)
73 
74 namespace android {
75 namespace hardware {
76 
77 static pthread_mutex_t gParcelGlobalAllocSizeLock = PTHREAD_MUTEX_INITIALIZER;
78 static size_t gParcelGlobalAllocSize = 0;
79 static size_t gParcelGlobalAllocCount = 0;
80 
81 static size_t gMaxFds = 0;
82 
acquire_binder_object(const sp<ProcessState> & proc,const flat_binder_object & obj,const void * who)83 void acquire_binder_object(const sp<ProcessState>& proc,
84     const flat_binder_object& obj, const void* who)
85 {
86     switch (obj.hdr.type) {
87         case BINDER_TYPE_BINDER:
88             if (obj.binder) {
89                 LOG_REFS("Parcel %p acquiring reference on local %p", who, obj.cookie);
90                 reinterpret_cast<IBinder*>(obj.cookie)->incStrong(who);
91             }
92             return;
93         case BINDER_TYPE_WEAK_BINDER:
94             if (obj.binder)
95                 reinterpret_cast<RefBase::weakref_type*>(obj.binder)->incWeak(who);
96             return;
97         case BINDER_TYPE_HANDLE: {
98             const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);
99             if (b != nullptr) {
100                 LOG_REFS("Parcel %p acquiring reference on remote %p", who, b.get());
101                 b->incStrong(who);
102             }
103             return;
104         }
105         case BINDER_TYPE_WEAK_HANDLE: {
106             const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle);
107             if (b != nullptr) b.get_refs()->incWeak(who);
108             return;
109         }
110     }
111 
112     ALOGD("Invalid object type 0x%08x", obj.hdr.type);
113 }
114 
acquire_object(const sp<ProcessState> & proc,const binder_object_header & obj,const void * who)115 void acquire_object(const sp<ProcessState>& proc, const binder_object_header& obj,
116         const void *who) {
117     switch (obj.type) {
118         case BINDER_TYPE_BINDER:
119         case BINDER_TYPE_WEAK_BINDER:
120         case BINDER_TYPE_HANDLE:
121         case BINDER_TYPE_WEAK_HANDLE: {
122             const flat_binder_object& fbo = reinterpret_cast<const flat_binder_object&>(obj);
123             acquire_binder_object(proc, fbo, who);
124             break;
125         }
126     }
127 }
128 
release_object(const sp<ProcessState> & proc,const flat_binder_object & obj,const void * who)129 void release_object(const sp<ProcessState>& proc,
130     const flat_binder_object& obj, const void* who)
131 {
132     switch (obj.hdr.type) {
133         case BINDER_TYPE_BINDER:
134             if (obj.binder) {
135                 LOG_REFS("Parcel %p releasing reference on local %p", who, obj.cookie);
136                 reinterpret_cast<IBinder*>(obj.cookie)->decStrong(who);
137             }
138             return;
139         case BINDER_TYPE_WEAK_BINDER:
140             if (obj.binder)
141                 reinterpret_cast<RefBase::weakref_type*>(obj.binder)->decWeak(who);
142             return;
143         case BINDER_TYPE_HANDLE: {
144             const sp<IBinder> b = proc->getStrongProxyForHandle(obj.handle);
145             if (b != nullptr) {
146                 LOG_REFS("Parcel %p releasing reference on remote %p", who, b.get());
147                 b->decStrong(who);
148             }
149             return;
150         }
151         case BINDER_TYPE_WEAK_HANDLE: {
152             const wp<IBinder> b = proc->getWeakProxyForHandle(obj.handle);
153             if (b != nullptr) b.get_refs()->decWeak(who);
154             return;
155         }
156         case BINDER_TYPE_FD: {
157             if (obj.cookie != 0) { // owned
158                 close(obj.handle);
159             }
160             return;
161         }
162         case BINDER_TYPE_PTR: {
163             // The relevant buffer is part of the transaction buffer and will be freed that way
164             return;
165         }
166         case BINDER_TYPE_FDA: {
167             // The enclosed file descriptors are closed in the kernel
168             return;
169         }
170     }
171 
172     ALOGE("Invalid object type 0x%08x", obj.hdr.type);
173 }
174 
finish_flatten_binder(const sp<IBinder> &,const flat_binder_object & flat,Parcel * out)175 inline static status_t finish_flatten_binder(
176     const sp<IBinder>& /*binder*/, const flat_binder_object& flat, Parcel* out)
177 {
178     return out->writeObject(flat);
179 }
180 
flatten_binder(const sp<ProcessState> &,const sp<IBinder> & binder,Parcel * out)181 status_t flatten_binder(const sp<ProcessState>& /*proc*/,
182     const sp<IBinder>& binder, Parcel* out)
183 {
184     flat_binder_object obj = {};
185 
186     if (binder != nullptr) {
187         BHwBinder *local = binder->localBinder();
188         if (!local) {
189             BpHwBinder *proxy = binder->remoteBinder();
190             if (proxy == nullptr) {
191                 ALOGE("null proxy");
192             }
193             const int32_t handle = proxy ? proxy->handle() : 0;
194             obj.hdr.type = BINDER_TYPE_HANDLE;
195             obj.flags = FLAT_BINDER_FLAG_ACCEPTS_FDS;
196             obj.binder = 0; /* Don't pass uninitialized stack data to a remote process */
197             obj.handle = handle;
198             obj.cookie = 0;
199         } else {
200             // Get policy and convert it
201             int policy = local->getMinSchedulingPolicy();
202             int priority = local->getMinSchedulingPriority();
203 
204             obj.flags = priority & FLAT_BINDER_FLAG_PRIORITY_MASK;
205             obj.flags |= FLAT_BINDER_FLAG_ACCEPTS_FDS | FLAT_BINDER_FLAG_INHERIT_RT;
206             obj.flags |= (policy & 3) << FLAT_BINDER_FLAG_SCHED_POLICY_SHIFT;
207             if (local->isRequestingSid()) {
208                 obj.flags |= FLAT_BINDER_FLAG_TXN_SECURITY_CTX;
209             }
210             obj.hdr.type = BINDER_TYPE_BINDER;
211             obj.binder = reinterpret_cast<uintptr_t>(local->getWeakRefs());
212             obj.cookie = reinterpret_cast<uintptr_t>(local);
213         }
214     } else {
215         obj.hdr.type = BINDER_TYPE_BINDER;
216         obj.binder = 0;
217         obj.cookie = 0;
218     }
219 
220     return finish_flatten_binder(binder, obj, out);
221 }
222 
finish_unflatten_binder(BpHwBinder *,const flat_binder_object &,const Parcel &)223 inline static status_t finish_unflatten_binder(
224     BpHwBinder* /*proxy*/, const flat_binder_object& /*flat*/,
225     const Parcel& /*in*/)
226 {
227     return NO_ERROR;
228 }
229 
unflatten_binder(const sp<ProcessState> & proc,const Parcel & in,sp<IBinder> * out)230 status_t unflatten_binder(const sp<ProcessState>& proc,
231     const Parcel& in, sp<IBinder>* out)
232 {
233     const flat_binder_object* flat = in.readObject<flat_binder_object>();
234 
235     if (flat) {
236         switch (flat->hdr.type) {
237             case BINDER_TYPE_BINDER:
238                 *out = reinterpret_cast<IBinder*>(flat->cookie);
239                 return finish_unflatten_binder(nullptr, *flat, in);
240             case BINDER_TYPE_HANDLE:
241                 *out = proc->getStrongProxyForHandle(flat->handle);
242                 return finish_unflatten_binder(
243                     static_cast<BpHwBinder*>(out->get()), *flat, in);
244         }
245     }
246     return BAD_TYPE;
247 }
248 
249 // ---------------------------------------------------------------------------
250 
Parcel()251 Parcel::Parcel()
252 {
253     LOG_ALLOC("Parcel %p: constructing", this);
254     initState();
255 }
256 
~Parcel()257 Parcel::~Parcel()
258 {
259     freeDataNoInit();
260     LOG_ALLOC("Parcel %p: destroyed", this);
261 }
262 
getGlobalAllocSize()263 size_t Parcel::getGlobalAllocSize() {
264     pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
265     size_t size = gParcelGlobalAllocSize;
266     pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
267     return size;
268 }
269 
getGlobalAllocCount()270 size_t Parcel::getGlobalAllocCount() {
271     pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
272     size_t count = gParcelGlobalAllocCount;
273     pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
274     return count;
275 }
276 
data() const277 const uint8_t* Parcel::data() const
278 {
279     return mData;
280 }
281 
dataSize() const282 size_t Parcel::dataSize() const
283 {
284     return (mDataSize > mDataPos ? mDataSize : mDataPos);
285 }
286 
dataAvail() const287 size_t Parcel::dataAvail() const
288 {
289     size_t result = dataSize() - dataPosition();
290     if (result > INT32_MAX) {
291         LOG_ALWAYS_FATAL("result too big: %zu", result);
292     }
293     return result;
294 }
295 
dataPosition() const296 size_t Parcel::dataPosition() const
297 {
298     return mDataPos;
299 }
300 
dataCapacity() const301 size_t Parcel::dataCapacity() const
302 {
303     return mDataCapacity;
304 }
305 
setDataSize(size_t size)306 status_t Parcel::setDataSize(size_t size)
307 {
308     if (size > INT32_MAX) {
309         // don't accept size_t values which may have come from an
310         // inadvertent conversion from a negative int.
311         return BAD_VALUE;
312     }
313 
314     status_t err;
315     err = continueWrite(size);
316     if (err == NO_ERROR) {
317         mDataSize = size;
318         ALOGV("setDataSize Setting data size of %p to %zu", this, mDataSize);
319     }
320     return err;
321 }
322 
setDataPosition(size_t pos) const323 void Parcel::setDataPosition(size_t pos) const
324 {
325     if (pos > INT32_MAX) {
326         // don't accept size_t values which may have come from an
327         // inadvertent conversion from a negative int.
328         LOG_ALWAYS_FATAL("pos too big: %zu", pos);
329     }
330 
331     mDataPos = pos;
332     mNextObjectHint = 0;
333 }
334 
setDataCapacity(size_t size)335 status_t Parcel::setDataCapacity(size_t size)
336 {
337     if (size > INT32_MAX) {
338         // don't accept size_t values which may have come from an
339         // inadvertent conversion from a negative int.
340         return BAD_VALUE;
341     }
342 
343     if (size > mDataCapacity) return continueWrite(size);
344     return NO_ERROR;
345 }
346 
setData(const uint8_t * buffer,size_t len)347 status_t Parcel::setData(const uint8_t* buffer, size_t len)
348 {
349     if (len > INT32_MAX) {
350         // don't accept size_t values which may have come from an
351         // inadvertent conversion from a negative int.
352         return BAD_VALUE;
353     }
354 
355     status_t err = restartWrite(len);
356     if (err == NO_ERROR) {
357         memcpy(const_cast<uint8_t*>(data()), buffer, len);
358         mDataSize = len;
359         mFdsKnown = false;
360     }
361     return err;
362 }
363 
364 // Write RPC headers.  (previously just the interface token)
writeInterfaceToken(const char * interface)365 status_t Parcel::writeInterfaceToken(const char* interface)
366 {
367     // currently the interface identification token is just its name as a string
368     return writeCString(interface);
369 }
370 
enforceInterface(const char * interface) const371 bool Parcel::enforceInterface(const char* interface) const
372 {
373     const char* str = readCString();
374     if (str != nullptr && strcmp(str, interface) == 0) {
375         return true;
376     } else {
377         ALOGW("**** enforceInterface() expected '%s' but read '%s'",
378                 interface, (str ? str : "<empty string>"));
379         return false;
380     }
381 }
382 
objects() const383 const binder_size_t* Parcel::objects() const
384 {
385     return mObjects;
386 }
387 
objectsCount() const388 size_t Parcel::objectsCount() const
389 {
390     return mObjectsSize;
391 }
392 
errorCheck() const393 status_t Parcel::errorCheck() const
394 {
395     return mError;
396 }
397 
setError(status_t err)398 void Parcel::setError(status_t err)
399 {
400     mError = err;
401 }
402 
finishWrite(size_t len)403 status_t Parcel::finishWrite(size_t len)
404 {
405     if (len > INT32_MAX) {
406         // don't accept size_t values which may have come from an
407         // inadvertent conversion from a negative int.
408         return BAD_VALUE;
409     }
410 
411     //printf("Finish write of %d\n", len);
412     mDataPos += len;
413     ALOGV("finishWrite Setting data pos of %p to %zu", this, mDataPos);
414     if (mDataPos > mDataSize) {
415         mDataSize = mDataPos;
416         ALOGV("finishWrite Setting data size of %p to %zu", this, mDataSize);
417     }
418     //printf("New pos=%d, size=%d\n", mDataPos, mDataSize);
419     return NO_ERROR;
420 }
421 
writeUnpadded(const void * data,size_t len)422 status_t Parcel::writeUnpadded(const void* data, size_t len)
423 {
424     if (len > INT32_MAX) {
425         // don't accept size_t values which may have come from an
426         // inadvertent conversion from a negative int.
427         return BAD_VALUE;
428     }
429 
430     size_t end = mDataPos + len;
431     if (end < mDataPos) {
432         // integer overflow
433         return BAD_VALUE;
434     }
435 
436     if (end <= mDataCapacity) {
437 restart_write:
438         memcpy(mData+mDataPos, data, len);
439         return finishWrite(len);
440     }
441 
442     status_t err = growData(len);
443     if (err == NO_ERROR) goto restart_write;
444     return err;
445 }
446 
write(const void * data,size_t len)447 status_t Parcel::write(const void* data, size_t len)
448 {
449     if (len > INT32_MAX) {
450         // don't accept size_t values which may have come from an
451         // inadvertent conversion from a negative int.
452         return BAD_VALUE;
453     }
454 
455     void* const d = writeInplace(len);
456     if (d) {
457         memcpy(d, data, len);
458         return NO_ERROR;
459     }
460     return mError;
461 }
462 
writeInplace(size_t len)463 void* Parcel::writeInplace(size_t len)
464 {
465     if (len > INT32_MAX) {
466         // don't accept size_t values which may have come from an
467         // inadvertent conversion from a negative int.
468         return nullptr;
469     }
470 
471     const size_t padded = pad_size(len);
472 
473     // sanity check for integer overflow
474     if (mDataPos+padded < mDataPos) {
475         return nullptr;
476     }
477 
478     if ((mDataPos+padded) <= mDataCapacity) {
479 restart_write:
480         //printf("Writing %ld bytes, padded to %ld\n", len, padded);
481         uint8_t* const data = mData+mDataPos;
482 
483         // Need to pad at end?
484         if (padded != len) {
485 #if BYTE_ORDER == BIG_ENDIAN
486             static const uint32_t mask[4] = {
487                 0x00000000, 0xffffff00, 0xffff0000, 0xff000000
488             };
489 #endif
490 #if BYTE_ORDER == LITTLE_ENDIAN
491             static const uint32_t mask[4] = {
492                 0x00000000, 0x00ffffff, 0x0000ffff, 0x000000ff
493             };
494 #endif
495             //printf("Applying pad mask: %p to %p\n", (void*)mask[padded-len],
496             //    *reinterpret_cast<void**>(data+padded-4));
497             *reinterpret_cast<uint32_t*>(data+padded-4) &= mask[padded-len];
498         }
499 
500         finishWrite(padded);
501         return data;
502     }
503 
504     status_t err = growData(padded);
505     if (err == NO_ERROR) goto restart_write;
506     return nullptr;
507 }
508 
writeInt8(int8_t val)509 status_t Parcel::writeInt8(int8_t val)
510 {
511     return write(&val, sizeof(val));
512 }
513 
writeUint8(uint8_t val)514 status_t Parcel::writeUint8(uint8_t val)
515 {
516     return write(&val, sizeof(val));
517 }
518 
writeInt16(int16_t val)519 status_t Parcel::writeInt16(int16_t val)
520 {
521     return write(&val, sizeof(val));
522 }
523 
writeUint16(uint16_t val)524 status_t Parcel::writeUint16(uint16_t val)
525 {
526     return write(&val, sizeof(val));
527 }
528 
writeInt32(int32_t val)529 status_t Parcel::writeInt32(int32_t val)
530 {
531     return writeAligned(val);
532 }
533 
writeUint32(uint32_t val)534 status_t Parcel::writeUint32(uint32_t val)
535 {
536     return writeAligned(val);
537 }
538 
writeBool(bool val)539 status_t Parcel::writeBool(bool val)
540 {
541     return writeInt8(int8_t(val));
542 }
writeInt64(int64_t val)543 status_t Parcel::writeInt64(int64_t val)
544 {
545     return writeAligned(val);
546 }
547 
writeUint64(uint64_t val)548 status_t Parcel::writeUint64(uint64_t val)
549 {
550     return writeAligned(val);
551 }
552 
writePointer(uintptr_t val)553 status_t Parcel::writePointer(uintptr_t val)
554 {
555     return writeAligned<binder_uintptr_t>(val);
556 }
557 
writeFloat(float val)558 status_t Parcel::writeFloat(float val)
559 {
560     return writeAligned(val);
561 }
562 
563 #if defined(__mips__) && defined(__mips_hard_float)
564 
writeDouble(double val)565 status_t Parcel::writeDouble(double val)
566 {
567     union {
568         double d;
569         unsigned long long ll;
570     } u;
571     u.d = val;
572     return writeAligned(u.ll);
573 }
574 
575 #else
576 
writeDouble(double val)577 status_t Parcel::writeDouble(double val)
578 {
579     return writeAligned(val);
580 }
581 
582 #endif
583 
writeCString(const char * str)584 status_t Parcel::writeCString(const char* str)
585 {
586     return write(str, strlen(str)+1);
587 }
writeString16(const std::unique_ptr<String16> & str)588 status_t Parcel::writeString16(const std::unique_ptr<String16>& str)
589 {
590     if (!str) {
591         return writeInt32(-1);
592     }
593 
594     return writeString16(*str);
595 }
596 
writeString16(const String16 & str)597 status_t Parcel::writeString16(const String16& str)
598 {
599     return writeString16(str.string(), str.size());
600 }
601 
writeString16(const char16_t * str,size_t len)602 status_t Parcel::writeString16(const char16_t* str, size_t len)
603 {
604     if (str == nullptr) return writeInt32(-1);
605 
606     status_t err = writeInt32(len);
607     if (err == NO_ERROR) {
608         len *= sizeof(char16_t);
609         uint8_t* data = (uint8_t*)writeInplace(len+sizeof(char16_t));
610         if (data) {
611             memcpy(data, str, len);
612             *reinterpret_cast<char16_t*>(data+len) = 0;
613             return NO_ERROR;
614         }
615         err = mError;
616     }
617     return err;
618 }
writeStrongBinder(const sp<IBinder> & val)619 status_t Parcel::writeStrongBinder(const sp<IBinder>& val)
620 {
621     return flatten_binder(ProcessState::self(), val, this);
622 }
623 
624 template <typename T>
writeObject(const T & val)625 status_t Parcel::writeObject(const T& val)
626 {
627     const bool enoughData = (mDataPos+sizeof(val)) <= mDataCapacity;
628     const bool enoughObjects = mObjectsSize < mObjectsCapacity;
629     if (enoughData && enoughObjects) {
630 restart_write:
631         *reinterpret_cast<T*>(mData+mDataPos) = val;
632 
633         const binder_object_header* hdr = reinterpret_cast<binder_object_header*>(mData+mDataPos);
634         switch (hdr->type) {
635             case BINDER_TYPE_BINDER:
636             case BINDER_TYPE_WEAK_BINDER:
637             case BINDER_TYPE_HANDLE:
638             case BINDER_TYPE_WEAK_HANDLE: {
639                 const flat_binder_object *fbo = reinterpret_cast<const flat_binder_object*>(hdr);
640                 if (fbo->binder != 0) {
641                     mObjects[mObjectsSize++] = mDataPos;
642                     acquire_binder_object(ProcessState::self(), *fbo, this);
643                 }
644                 break;
645             }
646             case BINDER_TYPE_FD: {
647                 // remember if it's a file descriptor
648                 if (!mAllowFds) {
649                     // fail before modifying our object index
650                     return FDS_NOT_ALLOWED;
651                 }
652                 mHasFds = mFdsKnown = true;
653                 mObjects[mObjectsSize++] = mDataPos;
654                 break;
655             }
656             case BINDER_TYPE_FDA:
657                 mObjects[mObjectsSize++] = mDataPos;
658                 break;
659             case BINDER_TYPE_PTR: {
660                 const binder_buffer_object *buffer_obj = reinterpret_cast<
661                     const binder_buffer_object*>(hdr);
662                 if ((void *)buffer_obj->buffer != nullptr) {
663                     mObjects[mObjectsSize++] = mDataPos;
664                 }
665                 break;
666             }
667             default: {
668                 ALOGE("writeObject: unknown type %d", hdr->type);
669                 break;
670             }
671         }
672         return finishWrite(sizeof(val));
673     }
674 
675     if (!enoughData) {
676         const status_t err = growData(sizeof(val));
677         if (err != NO_ERROR) return err;
678     }
679     if (!enoughObjects) {
680         if (mObjectsSize > SIZE_MAX - 2) return NO_MEMORY; // overflow
681         if (mObjectsSize + 2 > SIZE_MAX / 3) return NO_MEMORY; // overflow
682         size_t newSize = ((mObjectsSize+2)*3)/2;
683         if (newSize > SIZE_MAX / sizeof(binder_size_t)) return NO_MEMORY; // overflow
684         binder_size_t* objects = (binder_size_t*)realloc(mObjects, newSize*sizeof(binder_size_t));
685         if (objects == nullptr) return NO_MEMORY;
686         mObjects = objects;
687         mObjectsCapacity = newSize;
688     }
689 
690     goto restart_write;
691 }
692 
693 template status_t Parcel::writeObject<flat_binder_object>(const flat_binder_object& val);
694 template status_t Parcel::writeObject<binder_fd_object>(const binder_fd_object& val);
695 template status_t Parcel::writeObject<binder_buffer_object>(const binder_buffer_object& val);
696 template status_t Parcel::writeObject<binder_fd_array_object>(const binder_fd_array_object& val);
697 
validateBufferChild(size_t child_buffer_handle,size_t child_offset) const698 bool Parcel::validateBufferChild(size_t child_buffer_handle,
699                                  size_t child_offset) const {
700     if (child_buffer_handle >= mObjectsSize)
701         return false;
702     binder_buffer_object *child = reinterpret_cast<binder_buffer_object*>
703             (mData + mObjects[child_buffer_handle]);
704     if (child->hdr.type != BINDER_TYPE_PTR || child_offset > child->length) {
705         // Parent object not a buffer, or not large enough
706         LOG_BUFFER("writeEmbeddedReference found weird child. "
707                    "child_offset = %zu, child->length = %zu",
708                    child_offset, (size_t)child->length);
709         return false;
710     }
711     return true;
712 }
713 
validateBufferParent(size_t parent_buffer_handle,size_t parent_offset) const714 bool Parcel::validateBufferParent(size_t parent_buffer_handle,
715                                   size_t parent_offset) const {
716     if (parent_buffer_handle >= mObjectsSize)
717         return false;
718     binder_buffer_object *parent = reinterpret_cast<binder_buffer_object*>
719             (mData + mObjects[parent_buffer_handle]);
720     if (parent->hdr.type != BINDER_TYPE_PTR ||
721             sizeof(binder_uintptr_t) > parent->length ||
722             parent_offset > parent->length - sizeof(binder_uintptr_t)) {
723         // Parent object not a buffer, or not large enough
724         return false;
725     }
726     return true;
727 }
writeEmbeddedBuffer(const void * buffer,size_t length,size_t * handle,size_t parent_buffer_handle,size_t parent_offset)728 status_t Parcel::writeEmbeddedBuffer(
729         const void *buffer, size_t length, size_t *handle,
730         size_t parent_buffer_handle, size_t parent_offset) {
731     LOG_BUFFER("writeEmbeddedBuffer(%p, %zu, parent = (%zu, %zu)) -> %zu",
732         buffer, length, parent_buffer_handle,
733          parent_offset, mObjectsSize);
734     if(!validateBufferParent(parent_buffer_handle, parent_offset))
735         return BAD_VALUE;
736     binder_buffer_object obj = {
737         .hdr = { .type = BINDER_TYPE_PTR },
738         .flags = BINDER_BUFFER_FLAG_HAS_PARENT,
739         .buffer = reinterpret_cast<binder_uintptr_t>(buffer),
740         .length = length,
741         .parent = parent_buffer_handle,
742         .parent_offset = parent_offset,
743     };
744     if (handle != nullptr) {
745         // We use an index into mObjects as a handle
746         *handle = mObjectsSize;
747     }
748     return writeObject(obj);
749 }
750 
writeBuffer(const void * buffer,size_t length,size_t * handle)751 status_t Parcel::writeBuffer(const void *buffer, size_t length, size_t *handle)
752 {
753     LOG_BUFFER("writeBuffer(%p, %zu) -> %zu",
754         buffer, length, mObjectsSize);
755     binder_buffer_object obj {
756         .hdr = { .type = BINDER_TYPE_PTR },
757         .flags = 0,
758         .buffer = reinterpret_cast<binder_uintptr_t>(buffer),
759         .length = length,
760     };
761     if (handle != nullptr) {
762         // We use an index into mObjects as a handle
763         *handle = mObjectsSize;
764     }
765     return writeObject(obj);
766 }
767 
clearCache() const768 void Parcel::clearCache() const {
769     LOG_BUFFER("clearing cache.");
770     mBufCachePos = 0;
771     mBufCache.clear();
772 }
773 
updateCache() const774 void Parcel::updateCache() const {
775     if(mBufCachePos == mObjectsSize)
776         return;
777     LOG_BUFFER("updating cache from %zu to %zu", mBufCachePos, mObjectsSize);
778     for(size_t i = mBufCachePos; i < mObjectsSize; i++) {
779         binder_size_t dataPos = mObjects[i];
780         binder_buffer_object *obj =
781             reinterpret_cast<binder_buffer_object*>(mData+dataPos);
782         if(obj->hdr.type != BINDER_TYPE_PTR)
783             continue;
784         BufferInfo ifo;
785         ifo.index = i;
786         ifo.buffer = obj->buffer;
787         ifo.bufend = obj->buffer + obj->length;
788         mBufCache.push_back(ifo);
789     }
790     mBufCachePos = mObjectsSize;
791 }
792 
793 /* O(n) (n=#buffers) to find a buffer that contains the given addr */
findBuffer(const void * ptr,size_t length,bool * found,size_t * handle,size_t * offset) const794 status_t Parcel::findBuffer(const void *ptr, size_t length, bool *found,
795                         size_t *handle, size_t *offset) const {
796     if(found == nullptr)
797         return UNKNOWN_ERROR;
798     updateCache();
799     binder_uintptr_t ptrVal = reinterpret_cast<binder_uintptr_t>(ptr);
800     // true if the pointer is in some buffer, but the length is too big
801     // so that ptr + length doesn't fit into the buffer.
802     bool suspectRejectBadPointer = false;
803     LOG_BUFFER("findBuffer examining %zu objects.", mObjectsSize);
804     for(auto entry = mBufCache.rbegin(); entry != mBufCache.rend(); ++entry ) {
805         if(entry->buffer <= ptrVal && ptrVal < entry->bufend) {
806             // might have found it.
807             if(ptrVal + length <= entry->bufend) {
808                 *found = true;
809                 if(handle != nullptr) *handle = entry->index;
810                 if(offset != nullptr) *offset = ptrVal - entry->buffer;
811                 LOG_BUFFER("    findBuffer has a match at %zu!", entry->index);
812                 return OK;
813             } else {
814                 suspectRejectBadPointer = true;
815             }
816         }
817     }
818     LOG_BUFFER("findBuffer did not find for ptr = %p.", ptr);
819     *found = false;
820     return suspectRejectBadPointer ? BAD_VALUE : OK;
821 }
822 
823 /* findBuffer with the assumption that ptr = .buffer (so it points to top
824  * of the buffer, aka offset 0).
825  *  */
quickFindBuffer(const void * ptr,size_t * handle) const826 status_t Parcel::quickFindBuffer(const void *ptr, size_t *handle) const {
827     updateCache();
828     binder_uintptr_t ptrVal = reinterpret_cast<binder_uintptr_t>(ptr);
829     LOG_BUFFER("quickFindBuffer examining %zu objects.", mObjectsSize);
830     for(auto entry = mBufCache.rbegin(); entry != mBufCache.rend(); ++entry ) {
831         if(entry->buffer == ptrVal) {
832             if(handle != nullptr) *handle = entry->index;
833             return OK;
834         }
835     }
836     LOG_BUFFER("quickFindBuffer did not find for ptr = %p.", ptr);
837     return NO_INIT;
838 }
839 
writeNativeHandleNoDup(const native_handle_t * handle,bool embedded,size_t parent_buffer_handle,size_t parent_offset)840 status_t Parcel::writeNativeHandleNoDup(const native_handle_t *handle,
841                                         bool embedded,
842                                         size_t parent_buffer_handle,
843                                         size_t parent_offset)
844 {
845     size_t buffer_handle;
846     status_t status = OK;
847 
848     if (handle == nullptr) {
849         status = writeUint64(0);
850         return status;
851     }
852 
853     size_t native_handle_size = sizeof(native_handle_t)
854                 + handle->numFds * sizeof(int) + handle->numInts * sizeof(int);
855     writeUint64(native_handle_size);
856 
857     if (embedded) {
858         status = writeEmbeddedBuffer((void*) handle,
859                 native_handle_size, &buffer_handle,
860                 parent_buffer_handle, parent_offset);
861     } else {
862         status = writeBuffer((void*) handle, native_handle_size, &buffer_handle);
863     }
864 
865     if (status != OK) {
866         return status;
867     }
868 
869     struct binder_fd_array_object fd_array {
870         .hdr = { .type = BINDER_TYPE_FDA },
871         .num_fds = static_cast<binder_size_t>(handle->numFds),
872         .parent = buffer_handle,
873         .parent_offset = offsetof(native_handle_t, data),
874     };
875 
876     return writeObject(fd_array);
877 }
878 
writeNativeHandleNoDup(const native_handle_t * handle)879 status_t Parcel::writeNativeHandleNoDup(const native_handle_t *handle)
880 {
881     return writeNativeHandleNoDup(handle, false /* embedded */);
882 }
883 
writeEmbeddedNativeHandle(const native_handle_t * handle,size_t parent_buffer_handle,size_t parent_offset)884 status_t Parcel::writeEmbeddedNativeHandle(const native_handle_t *handle,
885                                            size_t parent_buffer_handle,
886                                            size_t parent_offset)
887 {
888     return writeNativeHandleNoDup(handle, true /* embedded */,
889                                   parent_buffer_handle, parent_offset);
890 }
891 
remove(size_t,size_t)892 void Parcel::remove(size_t /*start*/, size_t /*amt*/)
893 {
894     LOG_ALWAYS_FATAL("Parcel::remove() not yet implemented!");
895 }
896 
read(void * outData,size_t len) const897 status_t Parcel::read(void* outData, size_t len) const
898 {
899     if (len > INT32_MAX) {
900         // don't accept size_t values which may have come from an
901         // inadvertent conversion from a negative int.
902         return BAD_VALUE;
903     }
904 
905     if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize
906             && len <= pad_size(len)) {
907         memcpy(outData, mData+mDataPos, len);
908         mDataPos += pad_size(len);
909         ALOGV("read Setting data pos of %p to %zu", this, mDataPos);
910         return NO_ERROR;
911     }
912     return NOT_ENOUGH_DATA;
913 }
914 
readInplace(size_t len) const915 const void* Parcel::readInplace(size_t len) const
916 {
917     if (len > INT32_MAX) {
918         // don't accept size_t values which may have come from an
919         // inadvertent conversion from a negative int.
920         return nullptr;
921     }
922 
923     if ((mDataPos+pad_size(len)) >= mDataPos && (mDataPos+pad_size(len)) <= mDataSize
924             && len <= pad_size(len)) {
925         const void* data = mData+mDataPos;
926         mDataPos += pad_size(len);
927         ALOGV("readInplace Setting data pos of %p to %zu", this, mDataPos);
928         return data;
929     }
930     return nullptr;
931 }
932 
933 template<class T>
readAligned(T * pArg) const934 status_t Parcel::readAligned(T *pArg) const {
935     COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T));
936 
937     if ((mDataPos+sizeof(T)) <= mDataSize) {
938         const void* data = mData+mDataPos;
939         mDataPos += sizeof(T);
940         *pArg =  *reinterpret_cast<const T*>(data);
941         return NO_ERROR;
942     } else {
943         return NOT_ENOUGH_DATA;
944     }
945 }
946 
947 template<class T>
readAligned() const948 T Parcel::readAligned() const {
949     T result;
950     if (readAligned(&result) != NO_ERROR) {
951         result = 0;
952     }
953 
954     return result;
955 }
956 
957 template<class T>
writeAligned(T val)958 status_t Parcel::writeAligned(T val) {
959     COMPILE_TIME_ASSERT_FUNCTION_SCOPE(PAD_SIZE_UNSAFE(sizeof(T)) == sizeof(T));
960 
961     if ((mDataPos+sizeof(val)) <= mDataCapacity) {
962 restart_write:
963         *reinterpret_cast<T*>(mData+mDataPos) = val;
964         return finishWrite(sizeof(val));
965     }
966 
967     status_t err = growData(sizeof(val));
968     if (err == NO_ERROR) goto restart_write;
969     return err;
970 }
971 
readInt8(int8_t * pArg) const972 status_t Parcel::readInt8(int8_t *pArg) const
973 {
974     return read(pArg, sizeof(*pArg));
975 }
976 
readUint8(uint8_t * pArg) const977 status_t Parcel::readUint8(uint8_t *pArg) const
978 {
979     return read(pArg, sizeof(*pArg));
980 }
981 
readInt16(int16_t * pArg) const982 status_t Parcel::readInt16(int16_t *pArg) const
983 {
984     return read(pArg, sizeof(*pArg));
985 }
986 
readUint16(uint16_t * pArg) const987 status_t Parcel::readUint16(uint16_t *pArg) const
988 {
989     return read(pArg, sizeof(*pArg));
990 }
991 
readInt32(int32_t * pArg) const992 status_t Parcel::readInt32(int32_t *pArg) const
993 {
994     return readAligned(pArg);
995 }
996 
readInt32() const997 int32_t Parcel::readInt32() const
998 {
999     return readAligned<int32_t>();
1000 }
1001 
readUint32(uint32_t * pArg) const1002 status_t Parcel::readUint32(uint32_t *pArg) const
1003 {
1004     return readAligned(pArg);
1005 }
1006 
readUint32() const1007 uint32_t Parcel::readUint32() const
1008 {
1009     return readAligned<uint32_t>();
1010 }
1011 
readInt64(int64_t * pArg) const1012 status_t Parcel::readInt64(int64_t *pArg) const
1013 {
1014     return readAligned(pArg);
1015 }
1016 
readInt64() const1017 int64_t Parcel::readInt64() const
1018 {
1019     return readAligned<int64_t>();
1020 }
1021 
readUint64(uint64_t * pArg) const1022 status_t Parcel::readUint64(uint64_t *pArg) const
1023 {
1024     return readAligned(pArg);
1025 }
1026 
readUint64() const1027 uint64_t Parcel::readUint64() const
1028 {
1029     return readAligned<uint64_t>();
1030 }
1031 
readPointer(uintptr_t * pArg) const1032 status_t Parcel::readPointer(uintptr_t *pArg) const
1033 {
1034     status_t ret;
1035     binder_uintptr_t ptr;
1036     ret = readAligned(&ptr);
1037     if (!ret)
1038         *pArg = ptr;
1039     return ret;
1040 }
1041 
readPointer() const1042 uintptr_t Parcel::readPointer() const
1043 {
1044     return readAligned<binder_uintptr_t>();
1045 }
1046 
1047 
readFloat(float * pArg) const1048 status_t Parcel::readFloat(float *pArg) const
1049 {
1050     return readAligned(pArg);
1051 }
1052 
1053 
readFloat() const1054 float Parcel::readFloat() const
1055 {
1056     return readAligned<float>();
1057 }
1058 
1059 #if defined(__mips__) && defined(__mips_hard_float)
1060 
readDouble(double * pArg) const1061 status_t Parcel::readDouble(double *pArg) const
1062 {
1063     union {
1064       double d;
1065       unsigned long long ll;
1066     } u;
1067     u.d = 0;
1068     status_t status;
1069     status = readAligned(&u.ll);
1070     *pArg = u.d;
1071     return status;
1072 }
1073 
readDouble() const1074 double Parcel::readDouble() const
1075 {
1076     union {
1077       double d;
1078       unsigned long long ll;
1079     } u;
1080     u.ll = readAligned<unsigned long long>();
1081     return u.d;
1082 }
1083 
1084 #else
1085 
readDouble(double * pArg) const1086 status_t Parcel::readDouble(double *pArg) const
1087 {
1088     return readAligned(pArg);
1089 }
1090 
readDouble() const1091 double Parcel::readDouble() const
1092 {
1093     return readAligned<double>();
1094 }
1095 
1096 #endif
1097 
readBool(bool * pArg) const1098 status_t Parcel::readBool(bool *pArg) const
1099 {
1100     int8_t tmp;
1101     status_t ret = readInt8(&tmp);
1102     *pArg = (tmp != 0);
1103     return ret;
1104 }
1105 
readBool() const1106 bool Parcel::readBool() const
1107 {
1108     int8_t tmp;
1109     status_t err = readInt8(&tmp);
1110 
1111     if (err != OK) {
1112         return 0;
1113     }
1114 
1115     return tmp != 0;
1116 }
1117 
readCString() const1118 const char* Parcel::readCString() const
1119 {
1120     if (mDataPos < mDataSize) {
1121         const size_t avail = mDataSize-mDataPos;
1122         const char* str = reinterpret_cast<const char*>(mData+mDataPos);
1123         // is the string's trailing NUL within the parcel's valid bounds?
1124         const char* eos = reinterpret_cast<const char*>(memchr(str, 0, avail));
1125         if (eos) {
1126             const size_t len = eos - str;
1127             mDataPos += pad_size(len+1);
1128             ALOGV("readCString Setting data pos of %p to %zu", this, mDataPos);
1129             return str;
1130         }
1131     }
1132     return nullptr;
1133 }
readString16() const1134 String16 Parcel::readString16() const
1135 {
1136     size_t len;
1137     const char16_t* str = readString16Inplace(&len);
1138     if (str) return String16(str, len);
1139     ALOGE("Reading a NULL string not supported here.");
1140     return String16();
1141 }
1142 
readString16(std::unique_ptr<String16> * pArg) const1143 status_t Parcel::readString16(std::unique_ptr<String16>* pArg) const
1144 {
1145     const int32_t start = dataPosition();
1146     int32_t size;
1147     status_t status = readInt32(&size);
1148     pArg->reset();
1149 
1150     if (status != OK || size < 0) {
1151         return status;
1152     }
1153 
1154     setDataPosition(start);
1155     pArg->reset(new (std::nothrow) String16());
1156 
1157     status = readString16(pArg->get());
1158 
1159     if (status != OK) {
1160         pArg->reset();
1161     }
1162 
1163     return status;
1164 }
1165 
readString16(String16 * pArg) const1166 status_t Parcel::readString16(String16* pArg) const
1167 {
1168     size_t len;
1169     const char16_t* str = readString16Inplace(&len);
1170     if (str) {
1171         pArg->setTo(str, len);
1172         return 0;
1173     } else {
1174         *pArg = String16();
1175         return UNEXPECTED_NULL;
1176     }
1177 }
1178 
readString16Inplace(size_t * outLen) const1179 const char16_t* Parcel::readString16Inplace(size_t* outLen) const
1180 {
1181     int32_t size = readInt32();
1182     // watch for potential int overflow from size+1
1183     if (size >= 0 && size < INT32_MAX) {
1184         *outLen = size;
1185         const char16_t* str = (const char16_t*)readInplace((size+1)*sizeof(char16_t));
1186         if (str != nullptr) {
1187             return str;
1188         }
1189     }
1190     *outLen = 0;
1191     return nullptr;
1192 }
readStrongBinder(sp<IBinder> * val) const1193 status_t Parcel::readStrongBinder(sp<IBinder>* val) const
1194 {
1195     status_t status = readNullableStrongBinder(val);
1196     if (status == OK && !val->get()) {
1197         status = UNEXPECTED_NULL;
1198     }
1199     return status;
1200 }
1201 
readNullableStrongBinder(sp<IBinder> * val) const1202 status_t Parcel::readNullableStrongBinder(sp<IBinder>* val) const
1203 {
1204     return unflatten_binder(ProcessState::self(), *this, val);
1205 }
1206 
readStrongBinder() const1207 sp<IBinder> Parcel::readStrongBinder() const
1208 {
1209     sp<IBinder> val;
1210     // Note that a lot of code in Android reads binders by hand with this
1211     // method, and that code has historically been ok with getting nullptr
1212     // back (while ignoring error codes).
1213     readNullableStrongBinder(&val);
1214     return val;
1215 }
1216 
1217 template<typename T>
readObject(size_t * objects_offset) const1218 const T* Parcel::readObject(size_t *objects_offset) const
1219 {
1220     const size_t DPOS = mDataPos;
1221     if (objects_offset != nullptr) {
1222         *objects_offset = 0;
1223     }
1224 
1225     if ((DPOS+sizeof(T)) <= mDataSize) {
1226         const T* obj = reinterpret_cast<const T*>(mData+DPOS);
1227         mDataPos = DPOS + sizeof(T);
1228         const binder_object_header *hdr = reinterpret_cast<const binder_object_header*>(obj);
1229         switch (hdr->type) {
1230             case BINDER_TYPE_BINDER:
1231             case BINDER_TYPE_WEAK_BINDER:
1232             case BINDER_TYPE_HANDLE:
1233             case BINDER_TYPE_WEAK_HANDLE: {
1234                 const flat_binder_object *flat_obj =
1235                     reinterpret_cast<const flat_binder_object*>(hdr);
1236                 if (flat_obj->cookie == 0 && flat_obj->binder == 0) {
1237                     // When transferring a NULL binder object, we don't write it into
1238                     // the object list, so we don't want to check for it when
1239                     // reading.
1240                     ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
1241                     return obj;
1242                 }
1243                 break;
1244             }
1245             case BINDER_TYPE_FD:
1246             case BINDER_TYPE_FDA:
1247                 // fd (-arrays) must always appear in the meta-data list (eg touched by the kernel)
1248                 break;
1249             case BINDER_TYPE_PTR: {
1250                 const binder_buffer_object *buffer_obj =
1251                     reinterpret_cast<const binder_buffer_object*>(hdr);
1252                 if ((void *)buffer_obj->buffer == nullptr) {
1253                     // null pointers can be returned directly - they're not written in the
1254                     // object list. All non-null buffers must appear in the objects list.
1255                     return obj;
1256                 }
1257                 break;
1258             }
1259         }
1260         // Ensure that this object is valid...
1261         binder_size_t* const OBJS = mObjects;
1262         const size_t N = mObjectsSize;
1263         size_t opos = mNextObjectHint;
1264 
1265         if (N > 0) {
1266             ALOGV("Parcel %p looking for obj at %zu, hint=%zu",
1267                  this, DPOS, opos);
1268 
1269             // Start at the current hint position, looking for an object at
1270             // the current data position.
1271             if (opos < N) {
1272                 while (opos < (N-1) && OBJS[opos] < DPOS) {
1273                     opos++;
1274                 }
1275             } else {
1276                 opos = N-1;
1277             }
1278             if (OBJS[opos] == DPOS) {
1279                 // Found it!
1280                 ALOGV("Parcel %p found obj %zu at index %zu with forward search",
1281                      this, DPOS, opos);
1282                 mNextObjectHint = opos+1;
1283                 ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
1284                 if (objects_offset != nullptr) {
1285                     *objects_offset = opos;
1286                 }
1287                 return obj;
1288             }
1289 
1290             // Look backwards for it...
1291             while (opos > 0 && OBJS[opos] > DPOS) {
1292                 opos--;
1293             }
1294             if (OBJS[opos] == DPOS) {
1295                 // Found it!
1296                 ALOGV("Parcel %p found obj %zu at index %zu with backward search",
1297                      this, DPOS, opos);
1298                 mNextObjectHint = opos+1;
1299                 ALOGV("readObject Setting data pos of %p to %zu", this, mDataPos);
1300                 if (objects_offset != nullptr) {
1301                     *objects_offset = opos;
1302                 }
1303                 return obj;
1304             }
1305         }
1306         ALOGW("Attempt to read object from Parcel %p at offset %zu that is not in the object list",
1307              this, DPOS);
1308     }
1309     return nullptr;
1310 }
1311 
1312 template const flat_binder_object* Parcel::readObject<flat_binder_object>(size_t *objects_offset) const;
1313 
1314 template const binder_fd_object* Parcel::readObject<binder_fd_object>(size_t *objects_offset) const;
1315 
1316 template const binder_buffer_object* Parcel::readObject<binder_buffer_object>(size_t *objects_offset) const;
1317 
1318 template const binder_fd_array_object* Parcel::readObject<binder_fd_array_object>(size_t *objects_offset) const;
1319 
verifyBufferObject(const binder_buffer_object * buffer_obj,size_t size,uint32_t flags,size_t parent,size_t parentOffset) const1320 bool Parcel::verifyBufferObject(const binder_buffer_object *buffer_obj,
1321                                 size_t size, uint32_t flags, size_t parent,
1322                                 size_t parentOffset) const {
1323     if (buffer_obj->length != size) {
1324         ALOGE("Buffer length %" PRIu64 " does not match expected size %zu.",
1325               static_cast<uint64_t>(buffer_obj->length), size);
1326         return false;
1327     }
1328 
1329     if (buffer_obj->flags != flags) {
1330         ALOGE("Buffer flags 0x%02X do not match expected flags 0x%02X.", buffer_obj->flags, flags);
1331         return false;
1332     }
1333 
1334     if (flags & BINDER_BUFFER_FLAG_HAS_PARENT) {
1335         if (buffer_obj->parent != parent) {
1336             ALOGE("Buffer parent %" PRIu64 " does not match expected parent %zu.",
1337                   static_cast<uint64_t>(buffer_obj->parent), parent);
1338             return false;
1339         }
1340         if (buffer_obj->parent_offset != parentOffset) {
1341               ALOGE("Buffer parent offset %" PRIu64 " does not match expected offset %zu.",
1342                   static_cast<uint64_t>(buffer_obj->parent_offset), parentOffset);
1343             return false;
1344         }
1345 
1346         binder_buffer_object *parentBuffer =
1347             reinterpret_cast<binder_buffer_object*>(mData + mObjects[parent]);
1348         void* bufferInParent = *reinterpret_cast<void**>(
1349             reinterpret_cast<uint8_t*>(parentBuffer->buffer) + parentOffset);
1350         void* childBuffer = reinterpret_cast<void*>(buffer_obj->buffer);
1351 
1352         if (bufferInParent != childBuffer) {
1353               ALOGE("Buffer in parent %p differs from embedded buffer %p",
1354                     bufferInParent, childBuffer);
1355               android_errorWriteLog(0x534e4554, "179289794");
1356               return false;
1357         }
1358     }
1359 
1360     return true;
1361 }
1362 
readBuffer(size_t buffer_size,size_t * buffer_handle,uint32_t flags,size_t parent,size_t parentOffset,const void ** buffer_out) const1363 status_t Parcel::readBuffer(size_t buffer_size, size_t *buffer_handle,
1364                             uint32_t flags, size_t parent, size_t parentOffset,
1365                             const void **buffer_out) const {
1366 
1367     const binder_buffer_object* buffer_obj = readObject<binder_buffer_object>(buffer_handle);
1368 
1369     if (buffer_obj == nullptr || buffer_obj->hdr.type != BINDER_TYPE_PTR) {
1370         return BAD_VALUE;
1371     }
1372 
1373     if (!verifyBufferObject(buffer_obj, buffer_size, flags, parent, parentOffset)) {
1374         return BAD_VALUE;
1375     }
1376 
1377     // in read side, always use .buffer and .length.
1378     *buffer_out = reinterpret_cast<void*>(buffer_obj->buffer);
1379 
1380     return OK;
1381 }
1382 
readNullableBuffer(size_t buffer_size,size_t * buffer_handle,const void ** buffer_out) const1383 status_t Parcel::readNullableBuffer(size_t buffer_size, size_t *buffer_handle,
1384                                     const void **buffer_out) const
1385 {
1386     return readBuffer(buffer_size, buffer_handle,
1387                       0 /* flags */, 0 /* parent */, 0 /* parentOffset */,
1388                       buffer_out);
1389 }
1390 
readBuffer(size_t buffer_size,size_t * buffer_handle,const void ** buffer_out) const1391 status_t Parcel::readBuffer(size_t buffer_size, size_t *buffer_handle,
1392                             const void **buffer_out) const
1393 {
1394     status_t status = readNullableBuffer(buffer_size, buffer_handle, buffer_out);
1395     if (status == OK && *buffer_out == nullptr) {
1396         return UNEXPECTED_NULL;
1397     }
1398     return status;
1399 }
1400 
1401 
readEmbeddedBuffer(size_t buffer_size,size_t * buffer_handle,size_t parent_buffer_handle,size_t parent_offset,const void ** buffer_out) const1402 status_t Parcel::readEmbeddedBuffer(size_t buffer_size,
1403                                     size_t *buffer_handle,
1404                                     size_t parent_buffer_handle,
1405                                     size_t parent_offset,
1406                                     const void **buffer_out) const
1407 {
1408     status_t status = readNullableEmbeddedBuffer(buffer_size, buffer_handle,
1409                                                  parent_buffer_handle,
1410                                                  parent_offset, buffer_out);
1411     if (status == OK && *buffer_out == nullptr) {
1412         return UNEXPECTED_NULL;
1413     }
1414     return status;
1415 }
1416 
readNullableEmbeddedBuffer(size_t buffer_size,size_t * buffer_handle,size_t parent_buffer_handle,size_t parent_offset,const void ** buffer_out) const1417 status_t Parcel::readNullableEmbeddedBuffer(size_t buffer_size,
1418                                             size_t *buffer_handle,
1419                                             size_t parent_buffer_handle,
1420                                             size_t parent_offset,
1421                                             const void **buffer_out) const
1422 {
1423     return readBuffer(buffer_size, buffer_handle, BINDER_BUFFER_FLAG_HAS_PARENT,
1424                       parent_buffer_handle, parent_offset, buffer_out);
1425 }
1426 
readEmbeddedNativeHandle(size_t parent_buffer_handle,size_t parent_offset,const native_handle_t ** handle) const1427 status_t Parcel::readEmbeddedNativeHandle(size_t parent_buffer_handle,
1428                                           size_t parent_offset,
1429                                           const native_handle_t **handle) const
1430 {
1431     status_t status = readNullableEmbeddedNativeHandle(parent_buffer_handle, parent_offset, handle);
1432     if (status == OK && *handle == nullptr) {
1433         return UNEXPECTED_NULL;
1434     }
1435     return status;
1436 }
1437 
readNullableNativeHandleNoDup(const native_handle_t ** handle,bool embedded,size_t parent_buffer_handle,size_t parent_offset) const1438 status_t Parcel::readNullableNativeHandleNoDup(const native_handle_t **handle,
1439                                                bool embedded,
1440                                                size_t parent_buffer_handle,
1441                                                size_t parent_offset) const
1442 {
1443     uint64_t nativeHandleSize;
1444     status_t status = readUint64(&nativeHandleSize);
1445     if (status != OK) {
1446         return BAD_VALUE;
1447     }
1448 
1449     if (nativeHandleSize == 0) {
1450         // If !embedded, then parent_* vars are 0 and don't actually correspond
1451         // to anything. In that case, we're actually reading this data into
1452         // writable memory, and the handle returned from here will actually be
1453         // used (rather than be ignored).
1454         if (embedded) {
1455             binder_buffer_object *parentBuffer =
1456                 reinterpret_cast<binder_buffer_object*>(mData + mObjects[parent_buffer_handle]);
1457 
1458             void* bufferInParent = *reinterpret_cast<void**>(
1459                 reinterpret_cast<uint8_t*>(parentBuffer->buffer) + parent_offset);
1460 
1461             if (bufferInParent != nullptr) {
1462                   ALOGE("Buffer in (handle) parent %p is not nullptr.", bufferInParent);
1463                   android_errorWriteLog(0x534e4554, "179289794");
1464                   return BAD_VALUE;
1465             }
1466         }
1467 
1468         *handle = nullptr;
1469         return status;
1470     }
1471 
1472     if (nativeHandleSize < sizeof(native_handle_t)) {
1473         ALOGE("Received a native_handle_t size that was too small.");
1474         return BAD_VALUE;
1475     }
1476 
1477     size_t fdaParent;
1478     if (embedded) {
1479         status = readNullableEmbeddedBuffer(nativeHandleSize, &fdaParent,
1480                                             parent_buffer_handle, parent_offset,
1481                                             reinterpret_cast<const void**>(handle));
1482     } else {
1483         status = readNullableBuffer(nativeHandleSize, &fdaParent,
1484                                     reinterpret_cast<const void**>(handle));
1485     }
1486 
1487     if (status != OK) {
1488         return status;
1489     }
1490 
1491     if (*handle == nullptr) {
1492         // null handle already read above
1493         ALOGE("Expecting non-null handle buffer");
1494         return BAD_VALUE;
1495     }
1496 
1497     int numFds = (*handle)->numFds;
1498     int numInts = (*handle)->numInts;
1499 
1500     if (numFds < 0 || numFds > NATIVE_HANDLE_MAX_FDS) {
1501         ALOGE("Received native_handle with invalid number of fds.");
1502         return BAD_VALUE;
1503     }
1504 
1505     if (numInts < 0 || numInts > NATIVE_HANDLE_MAX_INTS) {
1506         ALOGE("Received native_handle with invalid number of ints.");
1507         return BAD_VALUE;
1508     }
1509 
1510     if (nativeHandleSize != (sizeof(native_handle_t) + ((numFds + numInts) * sizeof(int)))) {
1511         ALOGE("Size of native_handle doesn't match.");
1512         return BAD_VALUE;
1513     }
1514 
1515     const binder_fd_array_object* fd_array_obj = readObject<binder_fd_array_object>();
1516 
1517     if (fd_array_obj == nullptr || fd_array_obj->hdr.type != BINDER_TYPE_FDA) {
1518         ALOGE("Can't find file-descriptor array object.");
1519         return BAD_VALUE;
1520     }
1521 
1522     if (static_cast<int>(fd_array_obj->num_fds) != numFds) {
1523         ALOGE("Number of native handles does not match.");
1524         return BAD_VALUE;
1525     }
1526 
1527     if (fd_array_obj->parent != fdaParent) {
1528         ALOGE("Parent handle of file-descriptor array not correct.");
1529         return BAD_VALUE;
1530     }
1531 
1532     if (fd_array_obj->parent_offset != offsetof(native_handle_t, data)) {
1533         ALOGE("FD array object not properly offset in parent.");
1534         return BAD_VALUE;
1535     }
1536 
1537     return OK;
1538 }
1539 
readNullableEmbeddedNativeHandle(size_t parent_buffer_handle,size_t parent_offset,const native_handle_t ** handle) const1540 status_t Parcel::readNullableEmbeddedNativeHandle(size_t parent_buffer_handle,
1541                                                   size_t parent_offset,
1542                                                   const native_handle_t **handle) const
1543 {
1544     return readNullableNativeHandleNoDup(handle, true /* embedded */, parent_buffer_handle,
1545                                          parent_offset);
1546 }
1547 
readNativeHandleNoDup(const native_handle_t ** handle) const1548 status_t Parcel::readNativeHandleNoDup(const native_handle_t **handle) const
1549 {
1550     status_t status = readNullableNativeHandleNoDup(handle);
1551     if (status == OK && *handle == nullptr) {
1552         return UNEXPECTED_NULL;
1553     }
1554     return status;
1555 }
1556 
readNullableNativeHandleNoDup(const native_handle_t ** handle) const1557 status_t Parcel::readNullableNativeHandleNoDup(const native_handle_t **handle) const
1558 {
1559     return readNullableNativeHandleNoDup(handle, false /* embedded */);
1560 }
1561 
closeFileDescriptors()1562 void Parcel::closeFileDescriptors()
1563 {
1564     size_t i = mObjectsSize;
1565     if (i > 0) {
1566         //ALOGI("Closing file descriptors for %zu objects...", i);
1567     }
1568     while (i > 0) {
1569         i--;
1570         const flat_binder_object* flat
1571             = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);
1572         if (flat->hdr.type == BINDER_TYPE_FD) {
1573             //ALOGI("Closing fd: %ld", flat->handle);
1574             close(flat->handle);
1575         }
1576     }
1577 }
1578 
ipcData() const1579 uintptr_t Parcel::ipcData() const
1580 {
1581     return reinterpret_cast<uintptr_t>(mData);
1582 }
1583 
ipcDataSize() const1584 size_t Parcel::ipcDataSize() const
1585 {
1586     return mDataSize > mDataPos ? mDataSize : mDataPos;
1587 }
1588 
ipcObjects() const1589 uintptr_t Parcel::ipcObjects() const
1590 {
1591     return reinterpret_cast<uintptr_t>(mObjects);
1592 }
1593 
ipcObjectsCount() const1594 size_t Parcel::ipcObjectsCount() const
1595 {
1596     return mObjectsSize;
1597 }
1598 
1599 #define BUFFER_ALIGNMENT_BYTES 8
ipcBufferSize() const1600 size_t Parcel::ipcBufferSize() const
1601 {
1602     size_t totalBuffersSize = 0;
1603     // Add size for BINDER_TYPE_PTR
1604     size_t i = mObjectsSize;
1605     while (i > 0) {
1606         i--;
1607         const binder_buffer_object* buffer
1608             = reinterpret_cast<binder_buffer_object*>(mData+mObjects[i]);
1609         if (buffer->hdr.type == BINDER_TYPE_PTR) {
1610             /* The binder kernel driver requires each buffer to be 8-byte
1611              * aligned */
1612             size_t alignedSize = (buffer->length + (BUFFER_ALIGNMENT_BYTES - 1))
1613                     & ~(BUFFER_ALIGNMENT_BYTES - 1);
1614             if (alignedSize > SIZE_MAX - totalBuffersSize) {
1615                 ALOGE("ipcBuffersSize(): invalid buffer sizes.");
1616                 return 0;
1617             }
1618             totalBuffersSize += alignedSize;
1619         }
1620     }
1621     return totalBuffersSize;
1622 }
1623 
ipcSetDataReference(const uint8_t * data,size_t dataSize,const binder_size_t * objects,size_t objectsCount,release_func relFunc,void * relCookie)1624 void Parcel::ipcSetDataReference(const uint8_t* data, size_t dataSize,
1625     const binder_size_t* objects, size_t objectsCount, release_func relFunc, void* relCookie)
1626 {
1627     binder_size_t minOffset = 0;
1628     freeDataNoInit();
1629     mError = NO_ERROR;
1630     mData = const_cast<uint8_t*>(data);
1631     mDataSize = mDataCapacity = dataSize;
1632     //ALOGI("setDataReference Setting data size of %p to %lu (pid=%d)", this, mDataSize, getpid());
1633     mDataPos = 0;
1634     ALOGV("setDataReference Setting data pos of %p to %zu", this, mDataPos);
1635     mObjects = const_cast<binder_size_t*>(objects);
1636     mObjectsSize = mObjectsCapacity = objectsCount;
1637     mNextObjectHint = 0;
1638     clearCache();
1639     mOwner = relFunc;
1640     mOwnerCookie = relCookie;
1641     for (size_t i = 0; i < mObjectsSize; i++) {
1642         binder_size_t offset = mObjects[i];
1643         if (offset < minOffset) {
1644             ALOGE("%s: bad object offset %" PRIu64 " < %" PRIu64 "\n",
1645                   __func__, (uint64_t)offset, (uint64_t)minOffset);
1646             mObjectsSize = 0;
1647             break;
1648         }
1649         minOffset = offset + sizeof(flat_binder_object);
1650     }
1651     scanForFds();
1652 }
1653 
print(TextOutput & to,uint32_t) const1654 void Parcel::print(TextOutput& to, uint32_t /*flags*/) const
1655 {
1656     to << "Parcel(";
1657 
1658     if (errorCheck() != NO_ERROR) {
1659         const status_t err = errorCheck();
1660         to << "Error: " << (void*)(intptr_t)err << " \"" << strerror(-err) << "\"";
1661     } else if (dataSize() > 0) {
1662         const uint8_t* DATA = data();
1663         to << indent << HexDump(DATA, dataSize()) << dedent;
1664         const binder_size_t* OBJS = objects();
1665         const size_t N = objectsCount();
1666         for (size_t i=0; i<N; i++) {
1667             const flat_binder_object* flat
1668                 = reinterpret_cast<const flat_binder_object*>(DATA+OBJS[i]);
1669             if (flat->hdr.type == BINDER_TYPE_PTR) {
1670                 const binder_buffer_object* buffer
1671                     = reinterpret_cast<const binder_buffer_object*>(DATA+OBJS[i]);
1672                 HexDump bufferDump((const uint8_t*)buffer->buffer, (size_t)buffer->length);
1673                 bufferDump.setSingleLineCutoff(0);
1674                 to << endl << "Object #" << i << " @ " << (void*)OBJS[i] << " (buffer size " << buffer->length << "):";
1675                 to << indent << bufferDump << dedent;
1676             } else {
1677                 to << endl << "Object #" << i << " @ " << (void*)OBJS[i] << ": "
1678                     << TypeCode(flat->hdr.type & 0x7f7f7f00)
1679                     << " = " << flat->binder;
1680             }
1681         }
1682     } else {
1683         to << "NULL";
1684     }
1685 
1686     to << ")";
1687 }
1688 
releaseObjects()1689 void Parcel::releaseObjects()
1690 {
1691     const sp<ProcessState> proc(ProcessState::self());
1692     size_t i = mObjectsSize;
1693     uint8_t* const data = mData;
1694     binder_size_t* const objects = mObjects;
1695     while (i > 0) {
1696         i--;
1697         const flat_binder_object* flat
1698             = reinterpret_cast<flat_binder_object*>(data+objects[i]);
1699         release_object(proc, *flat, this);
1700     }
1701 }
1702 
acquireObjects()1703 void Parcel::acquireObjects()
1704 {
1705     const sp<ProcessState> proc(ProcessState::self());
1706     size_t i = mObjectsSize;
1707     uint8_t* const data = mData;
1708     binder_size_t* const objects = mObjects;
1709     while (i > 0) {
1710         i--;
1711         const binder_object_header* flat
1712             = reinterpret_cast<binder_object_header*>(data+objects[i]);
1713         acquire_object(proc, *flat, this);
1714     }
1715 }
1716 
freeData()1717 void Parcel::freeData()
1718 {
1719     freeDataNoInit();
1720     initState();
1721 }
1722 
freeDataNoInit()1723 void Parcel::freeDataNoInit()
1724 {
1725     if (mOwner) {
1726         LOG_ALLOC("Parcel %p: freeing other owner data", this);
1727         //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid());
1728         mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);
1729     } else {
1730         LOG_ALLOC("Parcel %p: freeing allocated data", this);
1731         releaseObjects();
1732         if (mData) {
1733             LOG_ALLOC("Parcel %p: freeing with %zu capacity", this, mDataCapacity);
1734             pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
1735             if (mDataCapacity <= gParcelGlobalAllocSize) {
1736               gParcelGlobalAllocSize = gParcelGlobalAllocSize - mDataCapacity;
1737             } else {
1738               gParcelGlobalAllocSize = 0;
1739             }
1740             if (gParcelGlobalAllocCount > 0) {
1741               gParcelGlobalAllocCount--;
1742             }
1743             pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
1744             free(mData);
1745         }
1746         if (mObjects) free(mObjects);
1747     }
1748 }
1749 
growData(size_t len)1750 status_t Parcel::growData(size_t len)
1751 {
1752     if (len > INT32_MAX) {
1753         // don't accept size_t values which may have come from an
1754         // inadvertent conversion from a negative int.
1755         return BAD_VALUE;
1756     }
1757     if (len > SIZE_MAX - mDataSize) return NO_MEMORY; // overflow
1758     if (mDataSize + len > SIZE_MAX / 3) return NO_MEMORY; // overflow
1759     size_t newSize = ((mDataSize+len)*3)/2;
1760     return continueWrite(newSize);
1761 }
1762 
restartWrite(size_t desired)1763 status_t Parcel::restartWrite(size_t desired)
1764 {
1765     if (desired > INT32_MAX) {
1766         // don't accept size_t values which may have come from an
1767         // inadvertent conversion from a negative int.
1768         return BAD_VALUE;
1769     }
1770 
1771     if (mOwner) {
1772         freeData();
1773         return continueWrite(desired);
1774     }
1775 
1776     uint8_t* data = (uint8_t*)realloc(mData, desired);
1777     if (!data && desired > mDataCapacity) {
1778         mError = NO_MEMORY;
1779         return NO_MEMORY;
1780     }
1781 
1782     releaseObjects();
1783 
1784     if (data) {
1785         LOG_ALLOC("Parcel %p: restart from %zu to %zu capacity", this, mDataCapacity, desired);
1786         pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
1787         gParcelGlobalAllocSize += desired;
1788         gParcelGlobalAllocSize -= mDataCapacity;
1789         if (!mData) {
1790             gParcelGlobalAllocCount++;
1791         }
1792         pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
1793         mData = data;
1794         mDataCapacity = desired;
1795     }
1796 
1797     mDataSize = mDataPos = 0;
1798     ALOGV("restartWrite Setting data size of %p to %zu", this, mDataSize);
1799     ALOGV("restartWrite Setting data pos of %p to %zu", this, mDataPos);
1800 
1801     free(mObjects);
1802     mObjects = nullptr;
1803     mObjectsSize = mObjectsCapacity = 0;
1804     mNextObjectHint = 0;
1805     mHasFds = false;
1806     clearCache();
1807     mFdsKnown = true;
1808     mAllowFds = true;
1809 
1810     return NO_ERROR;
1811 }
1812 
continueWrite(size_t desired)1813 status_t Parcel::continueWrite(size_t desired)
1814 {
1815     if (desired > INT32_MAX) {
1816         // don't accept size_t values which may have come from an
1817         // inadvertent conversion from a negative int.
1818         return BAD_VALUE;
1819     }
1820 
1821     // If shrinking, first adjust for any objects that appear
1822     // after the new data size.
1823     size_t objectsSize = mObjectsSize;
1824     if (desired < mDataSize) {
1825         if (desired == 0) {
1826             objectsSize = 0;
1827         } else {
1828             while (objectsSize > 0) {
1829                 if (mObjects[objectsSize-1] < desired)
1830                     break;
1831                 objectsSize--;
1832             }
1833         }
1834     }
1835 
1836     if (mOwner) {
1837         // If the size is going to zero, just release the owner's data.
1838         if (desired == 0) {
1839             freeData();
1840             return NO_ERROR;
1841         }
1842 
1843         // If there is a different owner, we need to take
1844         // posession.
1845         uint8_t* data = (uint8_t*)malloc(desired);
1846         if (!data) {
1847             mError = NO_MEMORY;
1848             return NO_MEMORY;
1849         }
1850         binder_size_t* objects = nullptr;
1851 
1852         if (objectsSize) {
1853             objects = (binder_size_t*)calloc(objectsSize, sizeof(binder_size_t));
1854             if (!objects) {
1855                 free(data);
1856 
1857                 mError = NO_MEMORY;
1858                 return NO_MEMORY;
1859             }
1860 
1861             // Little hack to only acquire references on objects
1862             // we will be keeping.
1863             size_t oldObjectsSize = mObjectsSize;
1864             mObjectsSize = objectsSize;
1865             acquireObjects();
1866             mObjectsSize = oldObjectsSize;
1867         }
1868 
1869         if (mData) {
1870             memcpy(data, mData, mDataSize < desired ? mDataSize : desired);
1871         }
1872         if (objects && mObjects) {
1873             memcpy(objects, mObjects, objectsSize*sizeof(binder_size_t));
1874         }
1875         //ALOGI("Freeing data ref of %p (pid=%d)", this, getpid());
1876         mOwner(this, mData, mDataSize, mObjects, mObjectsSize, mOwnerCookie);
1877         mOwner = nullptr;
1878 
1879         LOG_ALLOC("Parcel %p: taking ownership of %zu capacity", this, desired);
1880         pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
1881         gParcelGlobalAllocSize += desired;
1882         gParcelGlobalAllocCount++;
1883         pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
1884 
1885         mData = data;
1886         mObjects = objects;
1887         mDataSize = (mDataSize < desired) ? mDataSize : desired;
1888         ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
1889         mDataCapacity = desired;
1890         mObjectsSize = mObjectsCapacity = objectsSize;
1891         mNextObjectHint = 0;
1892 
1893         clearCache();
1894     } else if (mData) {
1895         if (objectsSize < mObjectsSize) {
1896             // Need to release refs on any objects we are dropping.
1897             const sp<ProcessState> proc(ProcessState::self());
1898             for (size_t i=objectsSize; i<mObjectsSize; i++) {
1899                 const flat_binder_object* flat
1900                     = reinterpret_cast<flat_binder_object*>(mData+mObjects[i]);
1901                 if (flat->hdr.type == BINDER_TYPE_FD) {
1902                     // will need to rescan because we may have lopped off the only FDs
1903                     mFdsKnown = false;
1904                 }
1905                 release_object(proc, *flat, this);
1906             }
1907 
1908             if (objectsSize == 0) {
1909                 free(mObjects);
1910                 mObjects = nullptr;
1911             } else {
1912                 binder_size_t* objects =
1913                     (binder_size_t*)realloc(mObjects, objectsSize*sizeof(binder_size_t));
1914                 if (objects) {
1915                     mObjects = objects;
1916                 }
1917             }
1918             mObjectsSize = objectsSize;
1919             mNextObjectHint = 0;
1920 
1921             clearCache();
1922         }
1923 
1924         // We own the data, so we can just do a realloc().
1925         if (desired > mDataCapacity) {
1926             uint8_t* data = (uint8_t*)realloc(mData, desired);
1927             if (data) {
1928                 LOG_ALLOC("Parcel %p: continue from %zu to %zu capacity", this, mDataCapacity,
1929                         desired);
1930                 pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
1931                 gParcelGlobalAllocSize += desired;
1932                 gParcelGlobalAllocSize -= mDataCapacity;
1933                 pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
1934                 mData = data;
1935                 mDataCapacity = desired;
1936             } else {
1937                 mError = NO_MEMORY;
1938                 return NO_MEMORY;
1939             }
1940         } else {
1941             if (mDataSize > desired) {
1942                 mDataSize = desired;
1943                 ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
1944             }
1945             if (mDataPos > desired) {
1946                 mDataPos = desired;
1947                 ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos);
1948             }
1949         }
1950 
1951     } else {
1952         // This is the first data.  Easy!
1953         uint8_t* data = (uint8_t*)malloc(desired);
1954         if (!data) {
1955             mError = NO_MEMORY;
1956             return NO_MEMORY;
1957         }
1958 
1959         if(!(mDataCapacity == 0 && mObjects == nullptr
1960              && mObjectsCapacity == 0)) {
1961             ALOGE("continueWrite: %zu/%p/%zu/%zu", mDataCapacity, mObjects, mObjectsCapacity, desired);
1962         }
1963 
1964         LOG_ALLOC("Parcel %p: allocating with %zu capacity", this, desired);
1965         pthread_mutex_lock(&gParcelGlobalAllocSizeLock);
1966         gParcelGlobalAllocSize += desired;
1967         gParcelGlobalAllocCount++;
1968         pthread_mutex_unlock(&gParcelGlobalAllocSizeLock);
1969 
1970         mData = data;
1971         mDataSize = mDataPos = 0;
1972         ALOGV("continueWrite Setting data size of %p to %zu", this, mDataSize);
1973         ALOGV("continueWrite Setting data pos of %p to %zu", this, mDataPos);
1974         mDataCapacity = desired;
1975     }
1976 
1977     return NO_ERROR;
1978 }
1979 
initState()1980 void Parcel::initState()
1981 {
1982     LOG_ALLOC("Parcel %p: initState", this);
1983     mError = NO_ERROR;
1984     mData = nullptr;
1985     mDataSize = 0;
1986     mDataCapacity = 0;
1987     mDataPos = 0;
1988     ALOGV("initState Setting data size of %p to %zu", this, mDataSize);
1989     ALOGV("initState Setting data pos of %p to %zu", this, mDataPos);
1990     mObjects = nullptr;
1991     mObjectsSize = 0;
1992     mObjectsCapacity = 0;
1993     mNextObjectHint = 0;
1994     mHasFds = false;
1995     mFdsKnown = true;
1996     mAllowFds = true;
1997     mOwner = nullptr;
1998     clearCache();
1999 
2000     // racing multiple init leads only to multiple identical write
2001     if (gMaxFds == 0) {
2002         struct rlimit result;
2003         if (!getrlimit(RLIMIT_NOFILE, &result)) {
2004             gMaxFds = (size_t)result.rlim_cur;
2005             //ALOGI("parcel fd limit set to %zu", gMaxFds);
2006         } else {
2007             ALOGW("Unable to getrlimit: %s", strerror(errno));
2008             gMaxFds = 1024;
2009         }
2010     }
2011 }
2012 
scanForFds() const2013 void Parcel::scanForFds() const
2014 {
2015     bool hasFds = false;
2016     for (size_t i=0; i<mObjectsSize; i++) {
2017         const flat_binder_object* flat
2018             = reinterpret_cast<const flat_binder_object*>(mData + mObjects[i]);
2019         if (flat->hdr.type == BINDER_TYPE_FD) {
2020             hasFds = true;
2021             break;
2022         }
2023     }
2024     mHasFds = hasFds;
2025     mFdsKnown = true;
2026 }
2027 
2028 } // namespace hardware
2029 } // namespace android
2030