• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkFloatingPoint_DEFINED
9 #define SkFloatingPoint_DEFINED
10 
11 #include "include/core/SkTypes.h"
12 #include "include/private/SkFloatBits.h"
13 #include "include/private/SkSafe_math.h"
14 #include <float.h>
15 #include <math.h>
16 #include <cmath>
17 #include <cstring>
18 #include <limits>
19 
20 
21 #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1
22     #include <xmmintrin.h>
23 #elif defined(SK_ARM_HAS_NEON)
24     #include <arm_neon.h>
25 #endif
26 
27 // For _POSIX_VERSION
28 #if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
29 #include <unistd.h>
30 #endif
31 
32 constexpr float SK_FloatSqrt2 = 1.41421356f;
33 constexpr float SK_FloatPI    = 3.14159265f;
34 constexpr double SK_DoublePI  = 3.14159265358979323846264338327950288;
35 
36 // C++98 cmath std::pow seems to be the earliest portable way to get float pow.
37 // However, on Linux including cmath undefines isfinite.
38 // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14608
sk_float_pow(float base,float exp)39 static inline float sk_float_pow(float base, float exp) {
40     return powf(base, exp);
41 }
42 
43 #define sk_float_sqrt(x)        sqrtf(x)
44 #define sk_float_sin(x)         sinf(x)
45 #define sk_float_cos(x)         cosf(x)
46 #define sk_float_tan(x)         tanf(x)
47 #define sk_float_floor(x)       floorf(x)
48 #define sk_float_ceil(x)        ceilf(x)
49 #define sk_float_trunc(x)       truncf(x)
50 #ifdef SK_BUILD_FOR_MAC
51 #    define sk_float_acos(x)    static_cast<float>(acos(x))
52 #    define sk_float_asin(x)    static_cast<float>(asin(x))
53 #else
54 #    define sk_float_acos(x)    acosf(x)
55 #    define sk_float_asin(x)    asinf(x)
56 #endif
57 #define sk_float_atan2(y,x)     atan2f(y,x)
58 #define sk_float_abs(x)         fabsf(x)
59 #define sk_float_copysign(x, y) copysignf(x, y)
60 #define sk_float_mod(x,y)       fmodf(x,y)
61 #define sk_float_exp(x)         expf(x)
62 #define sk_float_log(x)         logf(x)
63 
sk_float_degrees_to_radians(float degrees)64 constexpr float sk_float_degrees_to_radians(float degrees) {
65     return degrees * (SK_FloatPI / 180);
66 }
67 
sk_float_radians_to_degrees(float radians)68 constexpr float sk_float_radians_to_degrees(float radians) {
69     return radians * (180 / SK_FloatPI);
70 }
71 
72 #define sk_float_round(x) sk_float_floor((x) + 0.5f)
73 
74 // can't find log2f on android, but maybe that just a tool bug?
75 #ifdef SK_BUILD_FOR_ANDROID
sk_float_log2(float x)76     static inline float sk_float_log2(float x) {
77         const double inv_ln_2 = 1.44269504088896;
78         return (float)(log(x) * inv_ln_2);
79     }
80 #else
81     #define sk_float_log2(x)        log2f(x)
82 #endif
83 
sk_float_isfinite(float x)84 static inline bool sk_float_isfinite(float x) {
85     return SkFloatBits_IsFinite(SkFloat2Bits(x));
86 }
87 
sk_floats_are_finite(float a,float b)88 static inline bool sk_floats_are_finite(float a, float b) {
89     return sk_float_isfinite(a) && sk_float_isfinite(b);
90 }
91 
sk_floats_are_finite(const float array[],int count)92 static inline bool sk_floats_are_finite(const float array[], int count) {
93     float prod = 0;
94     for (int i = 0; i < count; ++i) {
95         prod *= array[i];
96     }
97     // At this point, prod will either be NaN or 0
98     return prod == 0;   // if prod is NaN, this check will return false
99 }
100 
sk_float_isinf(float x)101 static inline bool sk_float_isinf(float x) {
102     return SkFloatBits_IsInf(SkFloat2Bits(x));
103 }
104 
sk_float_isnan(float x)105 static inline bool sk_float_isnan(float x) {
106     return !(x == x);
107 }
108 
109 #define sk_double_isnan(a)          sk_float_isnan(a)
110 
111 #define SK_MaxS32FitsInFloat    2147483520
112 #define SK_MinS32FitsInFloat    -SK_MaxS32FitsInFloat
113 
114 #define SK_MaxS64FitsInFloat    (SK_MaxS64 >> (63-24) << (63-24))   // 0x7fffff8000000000
115 #define SK_MinS64FitsInFloat    -SK_MaxS64FitsInFloat
116 
117 /**
118  *  Return the closest int for the given float. Returns SK_MaxS32FitsInFloat for NaN.
119  */
sk_float_saturate2int(float x)120 static inline int sk_float_saturate2int(float x) {
121     x = x < SK_MaxS32FitsInFloat ? x : SK_MaxS32FitsInFloat;
122     x = x > SK_MinS32FitsInFloat ? x : SK_MinS32FitsInFloat;
123     return (int)x;
124 }
125 
126 /**
127  *  Return the closest int for the given double. Returns SK_MaxS32 for NaN.
128  */
sk_double_saturate2int(double x)129 static inline int sk_double_saturate2int(double x) {
130     x = x < SK_MaxS32 ? x : SK_MaxS32;
131     x = x > SK_MinS32 ? x : SK_MinS32;
132     return (int)x;
133 }
134 
135 /**
136  *  Return the closest int64_t for the given float. Returns SK_MaxS64FitsInFloat for NaN.
137  */
sk_float_saturate2int64(float x)138 static inline int64_t sk_float_saturate2int64(float x) {
139     x = x < SK_MaxS64FitsInFloat ? x : SK_MaxS64FitsInFloat;
140     x = x > SK_MinS64FitsInFloat ? x : SK_MinS64FitsInFloat;
141     return (int64_t)x;
142 }
143 
144 #define sk_float_floor2int(x)   sk_float_saturate2int(sk_float_floor(x))
145 #define sk_float_round2int(x)   sk_float_saturate2int(sk_float_floor((x) + 0.5f))
146 #define sk_float_ceil2int(x)    sk_float_saturate2int(sk_float_ceil(x))
147 
148 #define sk_float_floor2int_no_saturate(x)   (int)sk_float_floor(x)
149 #define sk_float_round2int_no_saturate(x)   (int)sk_float_floor((x) + 0.5f)
150 #define sk_float_ceil2int_no_saturate(x)    (int)sk_float_ceil(x)
151 
152 #define sk_double_floor(x)          floor(x)
153 #define sk_double_round(x)          floor((x) + 0.5)
154 #define sk_double_ceil(x)           ceil(x)
155 #define sk_double_floor2int(x)      (int)floor(x)
156 #define sk_double_round2int(x)      (int)floor((x) + 0.5)
157 #define sk_double_ceil2int(x)       (int)ceil(x)
158 
159 // Cast double to float, ignoring any warning about too-large finite values being cast to float.
160 // Clang thinks this is undefined, but it's actually implementation defined to return either
161 // the largest float or infinity (one of the two bracketing representable floats).  Good enough!
162 [[clang::no_sanitize("float-cast-overflow")]]
sk_double_to_float(double x)163 static inline float sk_double_to_float(double x) {
164     return static_cast<float>(x);
165 }
166 
167 #define SK_FloatNaN                 std::numeric_limits<float>::quiet_NaN()
168 #define SK_FloatInfinity            (+std::numeric_limits<float>::infinity())
169 #define SK_FloatNegativeInfinity    (-std::numeric_limits<float>::infinity())
170 
171 #define SK_DoubleNaN                std::numeric_limits<double>::quiet_NaN()
172 
173 // Returns false if any of the floats are outside of [0...1]
174 // Returns true if count is 0
175 bool sk_floats_are_unit(const float array[], size_t count);
176 
sk_float_rsqrt_portable(float x)177 static inline float sk_float_rsqrt_portable(float x) {
178     // Get initial estimate.
179     int i;
180     memcpy(&i, &x, 4);
181     i = 0x5F1FFFF9 - (i>>1);
182     float estimate;
183     memcpy(&estimate, &i, 4);
184 
185     // One step of Newton's method to refine.
186     const float estimate_sq = estimate*estimate;
187     estimate *= 0.703952253f*(2.38924456f-x*estimate_sq);
188     return estimate;
189 }
190 
191 // Fast, approximate inverse square root.
192 // Compare to name-brand "1.0f / sk_float_sqrt(x)".  Should be around 10x faster on SSE, 2x on NEON.
sk_float_rsqrt(float x)193 static inline float sk_float_rsqrt(float x) {
194 // We want all this inlined, so we'll inline SIMD and just take the hit when we don't know we've got
195 // it at compile time.  This is going to be too fast to productively hide behind a function pointer.
196 //
197 // We do one step of Newton's method to refine the estimates in the NEON and portable paths.  No
198 // refinement is faster, but very innacurate.  Two steps is more accurate, but slower than 1/sqrt.
199 //
200 // Optimized constants in the portable path courtesy of http://rrrola.wz.cz/inv_sqrt.html
201 #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1
202     return _mm_cvtss_f32(_mm_rsqrt_ss(_mm_set_ss(x)));
203 #elif defined(SK_ARM_HAS_NEON)
204     // Get initial estimate.
205     const float32x2_t xx = vdup_n_f32(x);  // Clever readers will note we're doing everything 2x.
206     float32x2_t estimate = vrsqrte_f32(xx);
207 
208     // One step of Newton's method to refine.
209     const float32x2_t estimate_sq = vmul_f32(estimate, estimate);
210     estimate = vmul_f32(estimate, vrsqrts_f32(xx, estimate_sq));
211     return vget_lane_f32(estimate, 0);  // 1 will work fine too; the answer's in both places.
212 #else
213     return sk_float_rsqrt_portable(x);
214 #endif
215 }
216 
217 // This is the number of significant digits we can print in a string such that when we read that
218 // string back we get the floating point number we expect.  The minimum value C requires is 6, but
219 // most compilers support 9
220 #ifdef FLT_DECIMAL_DIG
221 #define SK_FLT_DECIMAL_DIG FLT_DECIMAL_DIG
222 #else
223 #define SK_FLT_DECIMAL_DIG 9
224 #endif
225 
226 // IEEE defines how float divide behaves for non-finite values and zero-denoms, but C does not
227 // so we have a helper that suppresses the possible undefined-behavior warnings.
228 
229 [[clang::no_sanitize("float-divide-by-zero")]]
sk_ieee_float_divide(float numer,float denom)230 static inline float sk_ieee_float_divide(float numer, float denom) {
231     return numer / denom;
232 }
233 
234 [[clang::no_sanitize("float-divide-by-zero")]]
sk_ieee_double_divide(double numer,double denom)235 static inline double sk_ieee_double_divide(double numer, double denom) {
236     return numer / denom;
237 }
238 
239 // While we clean up divide by zero, we'll replace places that do divide by zero with this TODO.
sk_ieee_float_divide_TODO_IS_DIVIDE_BY_ZERO_SAFE_HERE(float n,float d)240 static inline float sk_ieee_float_divide_TODO_IS_DIVIDE_BY_ZERO_SAFE_HERE(float n, float d) {
241     return sk_ieee_float_divide(n,d);
242 }
sk_ieee_double_divide_TODO_IS_DIVIDE_BY_ZERO_SAFE_HERE(double n,double d)243 static inline float sk_ieee_double_divide_TODO_IS_DIVIDE_BY_ZERO_SAFE_HERE(double n, double d) {
244     return sk_ieee_double_divide(n,d);
245 }
246 
sk_fmaf(float f,float m,float a)247 static inline float sk_fmaf(float f, float m, float a) {
248 #if defined(FP_FAST_FMA)
249     return std::fmaf(f,m,a);
250 #else
251     return f*m+a;
252 #endif
253 }
254 
255 #endif
256