• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2018 The SwiftShader Authors. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //    http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "VkQueue.hpp"
16 #include "VkCommandBuffer.hpp"
17 #include "VkFence.hpp"
18 #include "VkSemaphore.hpp"
19 #include "Device/Renderer.hpp"
20 #include "WSI/VkSwapchainKHR.hpp"
21 
22 #include "marl/defer.h"
23 #include "marl/scheduler.h"
24 #include "marl/thread.h"
25 #include "marl/trace.h"
26 
27 #include <cstring>
28 
29 namespace {
30 
DeepCopySubmitInfo(uint32_t submitCount,const VkSubmitInfo * pSubmits)31 VkSubmitInfo *DeepCopySubmitInfo(uint32_t submitCount, const VkSubmitInfo *pSubmits)
32 {
33 	size_t submitSize = sizeof(VkSubmitInfo) * submitCount;
34 	size_t totalSize = submitSize;
35 	for(uint32_t i = 0; i < submitCount; i++)
36 	{
37 		totalSize += pSubmits[i].waitSemaphoreCount * sizeof(VkSemaphore);
38 		totalSize += pSubmits[i].waitSemaphoreCount * sizeof(VkPipelineStageFlags);
39 		totalSize += pSubmits[i].signalSemaphoreCount * sizeof(VkSemaphore);
40 		totalSize += pSubmits[i].commandBufferCount * sizeof(VkCommandBuffer);
41 	}
42 
43 	uint8_t *mem = static_cast<uint8_t *>(
44 	    vk::allocate(totalSize, vk::REQUIRED_MEMORY_ALIGNMENT, vk::DEVICE_MEMORY, vk::Fence::GetAllocationScope()));
45 
46 	auto submits = new(mem) VkSubmitInfo[submitCount];
47 	memcpy(mem, pSubmits, submitSize);
48 	mem += submitSize;
49 
50 	for(uint32_t i = 0; i < submitCount; i++)
51 	{
52 		size_t size = pSubmits[i].waitSemaphoreCount * sizeof(VkSemaphore);
53 		submits[i].pWaitSemaphores = reinterpret_cast<const VkSemaphore *>(mem);
54 		memcpy(mem, pSubmits[i].pWaitSemaphores, size);
55 		mem += size;
56 
57 		size = pSubmits[i].waitSemaphoreCount * sizeof(VkPipelineStageFlags);
58 		submits[i].pWaitDstStageMask = reinterpret_cast<const VkPipelineStageFlags *>(mem);
59 		memcpy(mem, pSubmits[i].pWaitDstStageMask, size);
60 		mem += size;
61 
62 		size = pSubmits[i].signalSemaphoreCount * sizeof(VkSemaphore);
63 		submits[i].pSignalSemaphores = reinterpret_cast<const VkSemaphore *>(mem);
64 		memcpy(mem, pSubmits[i].pSignalSemaphores, size);
65 		mem += size;
66 
67 		size = pSubmits[i].commandBufferCount * sizeof(VkCommandBuffer);
68 		submits[i].pCommandBuffers = reinterpret_cast<const VkCommandBuffer *>(mem);
69 		memcpy(mem, pSubmits[i].pCommandBuffers, size);
70 		mem += size;
71 	}
72 
73 	return submits;
74 }
75 
76 }  // anonymous namespace
77 
78 namespace vk {
79 
Queue(Device * device,marl::Scheduler * scheduler)80 Queue::Queue(Device *device, marl::Scheduler *scheduler)
81     : device(device)
82 {
83 	queueThread = std::thread(&Queue::taskLoop, this, scheduler);
84 }
85 
~Queue()86 Queue::~Queue()
87 {
88 	Task task;
89 	task.type = Task::KILL_THREAD;
90 	pending.put(task);
91 
92 	queueThread.join();
93 	ASSERT_MSG(pending.count() == 0, "queue has work after worker thread shutdown");
94 
95 	garbageCollect();
96 }
97 
submit(uint32_t submitCount,const VkSubmitInfo * pSubmits,Fence * fence)98 VkResult Queue::submit(uint32_t submitCount, const VkSubmitInfo *pSubmits, Fence *fence)
99 {
100 	garbageCollect();
101 
102 	Task task;
103 	task.submitCount = submitCount;
104 	task.pSubmits = DeepCopySubmitInfo(submitCount, pSubmits);
105 	task.events = fence;
106 
107 	if(task.events)
108 	{
109 		task.events->start();
110 	}
111 
112 	pending.put(task);
113 
114 	return VK_SUCCESS;
115 }
116 
submitQueue(const Task & task)117 void Queue::submitQueue(const Task &task)
118 {
119 	if(renderer == nullptr)
120 	{
121 		renderer.reset(new sw::Renderer(device));
122 	}
123 
124 	for(uint32_t i = 0; i < task.submitCount; i++)
125 	{
126 		auto &submitInfo = task.pSubmits[i];
127 		for(uint32_t j = 0; j < submitInfo.waitSemaphoreCount; j++)
128 		{
129 			vk::Cast(submitInfo.pWaitSemaphores[j])->wait(submitInfo.pWaitDstStageMask[j]);
130 		}
131 
132 		{
133 			CommandBuffer::ExecutionState executionState;
134 			executionState.renderer = renderer.get();
135 			executionState.events = task.events;
136 			for(uint32_t j = 0; j < submitInfo.commandBufferCount; j++)
137 			{
138 				vk::Cast(submitInfo.pCommandBuffers[j])->submit(executionState);
139 			}
140 		}
141 
142 		for(uint32_t j = 0; j < submitInfo.signalSemaphoreCount; j++)
143 		{
144 			vk::Cast(submitInfo.pSignalSemaphores[j])->signal();
145 		}
146 	}
147 
148 	if(task.pSubmits)
149 	{
150 		toDelete.put(task.pSubmits);
151 	}
152 
153 	if(task.events)
154 	{
155 		// TODO: fix renderer signaling so that work submitted separately from (but before) a fence
156 		// is guaranteed complete by the time the fence signals.
157 		renderer->synchronize();
158 		task.events->finish();
159 	}
160 }
161 
taskLoop(marl::Scheduler * scheduler)162 void Queue::taskLoop(marl::Scheduler *scheduler)
163 {
164 	marl::Thread::setName("Queue<%p>", this);
165 	scheduler->bind();
166 	defer(scheduler->unbind());
167 
168 	while(true)
169 	{
170 		Task task = pending.take();
171 
172 		switch(task.type)
173 		{
174 			case Task::KILL_THREAD:
175 				ASSERT_MSG(pending.count() == 0, "queue has remaining work!");
176 				return;
177 			case Task::SUBMIT_QUEUE:
178 				submitQueue(task);
179 				break;
180 			default:
181 				UNREACHABLE("task.type %d", static_cast<int>(task.type));
182 				break;
183 		}
184 	}
185 }
186 
waitIdle()187 VkResult Queue::waitIdle()
188 {
189 	// Wait for task queue to flush.
190 	sw::WaitGroup wg;
191 	wg.add();
192 
193 	Task task;
194 	task.events = &wg;
195 	pending.put(task);
196 
197 	wg.wait();
198 
199 	garbageCollect();
200 
201 	return VK_SUCCESS;
202 }
203 
garbageCollect()204 void Queue::garbageCollect()
205 {
206 	while(true)
207 	{
208 		auto v = toDelete.tryTake();
209 		if(!v.second) { break; }
210 		vk::deallocate(v.first, DEVICE_MEMORY);
211 	}
212 }
213 
214 #ifndef __ANDROID__
present(const VkPresentInfoKHR * presentInfo)215 VkResult Queue::present(const VkPresentInfoKHR *presentInfo)
216 {
217 	// This is a hack to deal with screen tearing for now.
218 	// Need to correctly implement threading using VkSemaphore
219 	// to get rid of it. b/132458423
220 	waitIdle();
221 
222 	for(uint32_t i = 0; i < presentInfo->waitSemaphoreCount; i++)
223 	{
224 		vk::Cast(presentInfo->pWaitSemaphores[i])->wait();
225 	}
226 
227 	VkResult commandResult = VK_SUCCESS;
228 
229 	for(uint32_t i = 0; i < presentInfo->swapchainCount; i++)
230 	{
231 		VkResult perSwapchainResult = vk::Cast(presentInfo->pSwapchains[i])->present(presentInfo->pImageIndices[i]);
232 
233 		if(presentInfo->pResults)
234 		{
235 			presentInfo->pResults[i] = perSwapchainResult;
236 		}
237 
238 		// Keep track of the worst result code. VK_SUBOPTIMAL_KHR is a success code so it should
239 		// not override failure codes, but should not get replaced by a VK_SUCCESS result itself.
240 		if(perSwapchainResult != VK_SUCCESS)
241 		{
242 			if(commandResult == VK_SUCCESS || commandResult == VK_SUBOPTIMAL_KHR)
243 			{
244 				commandResult = perSwapchainResult;
245 			}
246 		}
247 	}
248 
249 	return commandResult;
250 }
251 #endif
252 
253 }  // namespace vk
254