• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* @(#)s_tan.c 5.1 93/09/24 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 #include  <LibConfig.h>
13 #include  <sys/EfiCdefs.h>
14 #if defined(LIBM_SCCS) && !defined(lint)
15 __RCSID("$NetBSD: s_tan.c,v 1.10 2002/05/26 22:01:58 wiz Exp $");
16 #endif
17 
18 /* tan(x)
19  * Return tangent function of x.
20  *
21  * kernel function:
22  *  __kernel_tan    ... tangent function on [-pi/4,pi/4]
23  *  __ieee754_rem_pio2  ... argument reduction routine
24  *
25  * Method.
26  *      Let S,C and T denote the sin, cos and tan respectively on
27  *  [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
28  *  in [-pi/4 , +pi/4], and let n = k mod 4.
29  *  We have
30  *
31  *          n        sin(x)      cos(x)        tan(x)
32  *     ----------------------------------------------------------
33  *      0        S     C     T
34  *      1        C    -S    -1/T
35  *      2       -S    -C     T
36  *      3       -C     S    -1/T
37  *     ----------------------------------------------------------
38  *
39  * Special cases:
40  *      Let trig be any of sin, cos, or tan.
41  *      trig(+-INF)  is NaN, with signals;
42  *      trig(NaN)    is that NaN;
43  *
44  * Accuracy:
45  *  TRIG(x) returns trig(x) nearly rounded
46  */
47 
48 #include "math.h"
49 #include "math_private.h"
50 
51 double
tan(double x)52 tan(double x)
53 {
54   double y[2],z=0.0;
55   int32_t n, ix;
56 
57     /* High word of x. */
58   GET_HIGH_WORD(ix,x);
59 
60     /* |x| ~< pi/4 */
61   ix &= 0x7fffffff;
62   if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);
63 
64     /* tan(Inf or NaN) is NaN */
65   else if (ix>=0x7ff00000) return x-x;    /* NaN */
66 
67     /* argument reduction needed */
68   else {
69       n = __ieee754_rem_pio2(x,y);
70       return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /*   1 -- n even
71               -1 -- n odd */
72   }
73 }
74