1 /*
2 * Copyright 2014 Google Inc. All rights reserved.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16 #include <cmath>
17 #include "flatbuffers/flatbuffers.h"
18 #include "flatbuffers/idl.h"
19 #include "flatbuffers/minireflect.h"
20 #include "flatbuffers/registry.h"
21 #include "flatbuffers/util.h"
22
23 // clang-format off
24 #ifdef FLATBUFFERS_CPP98_STL
25 #include "flatbuffers/stl_emulation.h"
26 namespace std {
27 using flatbuffers::unique_ptr;
28 }
29 #endif
30 // clang-format on
31
32 #include "monster_test_generated.h"
33 #include "namespace_test/namespace_test1_generated.h"
34 #include "namespace_test/namespace_test2_generated.h"
35 #include "union_vector/union_vector_generated.h"
36 #include "monster_extra_generated.h"
37 #include "test_assert.h"
38
39 #include "flatbuffers/flexbuffers.h"
40
41 using namespace MyGame::Example;
42
43 void FlatBufferBuilderTest();
44
45 // Include simple random number generator to ensure results will be the
46 // same cross platform.
47 // http://en.wikipedia.org/wiki/Park%E2%80%93Miller_random_number_generator
48 uint32_t lcg_seed = 48271;
lcg_rand()49 uint32_t lcg_rand() {
50 return lcg_seed = (static_cast<uint64_t>(lcg_seed) * 279470273UL) % 4294967291UL;
51 }
lcg_reset()52 void lcg_reset() { lcg_seed = 48271; }
53
54 std::string test_data_path =
55 #ifdef BAZEL_TEST_DATA_PATH
56 "../com_github_google_flatbuffers/tests/";
57 #else
58 "tests/";
59 #endif
60
61 // example of how to build up a serialized buffer algorithmically:
CreateFlatBufferTest(std::string & buffer)62 flatbuffers::DetachedBuffer CreateFlatBufferTest(std::string &buffer) {
63 flatbuffers::FlatBufferBuilder builder;
64
65 auto vec = Vec3(1, 2, 3, 0, Color_Red, Test(10, 20));
66
67 auto name = builder.CreateString("MyMonster");
68
69 unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
70 auto inventory = builder.CreateVector(inv_data, 10);
71
72 // Alternatively, create the vector first, and fill in data later:
73 // unsigned char *inv_buf = nullptr;
74 // auto inventory = builder.CreateUninitializedVector<unsigned char>(
75 // 10, &inv_buf);
76 // memcpy(inv_buf, inv_data, 10);
77
78 Test tests[] = { Test(10, 20), Test(30, 40) };
79 auto testv = builder.CreateVectorOfStructs(tests, 2);
80
81 // clang-format off
82 #ifndef FLATBUFFERS_CPP98_STL
83 // Create a vector of structures from a lambda.
84 auto testv2 = builder.CreateVectorOfStructs<Test>(
85 2, [&](size_t i, Test* s) -> void {
86 *s = tests[i];
87 });
88 #else
89 // Create a vector of structures using a plain old C++ function.
90 auto testv2 = builder.CreateVectorOfStructs<Test>(
91 2, [](size_t i, Test* s, void *state) -> void {
92 *s = (reinterpret_cast<Test*>(state))[i];
93 }, tests);
94 #endif // FLATBUFFERS_CPP98_STL
95 // clang-format on
96
97 // create monster with very few fields set:
98 // (same functionality as CreateMonster below, but sets fields manually)
99 flatbuffers::Offset<Monster> mlocs[3];
100 auto fred = builder.CreateString("Fred");
101 auto barney = builder.CreateString("Barney");
102 auto wilma = builder.CreateString("Wilma");
103 MonsterBuilder mb1(builder);
104 mb1.add_name(fred);
105 mlocs[0] = mb1.Finish();
106 MonsterBuilder mb2(builder);
107 mb2.add_name(barney);
108 mb2.add_hp(1000);
109 mlocs[1] = mb2.Finish();
110 MonsterBuilder mb3(builder);
111 mb3.add_name(wilma);
112 mlocs[2] = mb3.Finish();
113
114 // Create an array of strings. Also test string pooling, and lambdas.
115 auto vecofstrings =
116 builder.CreateVector<flatbuffers::Offset<flatbuffers::String>>(
117 4,
118 [](size_t i, flatbuffers::FlatBufferBuilder *b)
119 -> flatbuffers::Offset<flatbuffers::String> {
120 static const char *names[] = { "bob", "fred", "bob", "fred" };
121 return b->CreateSharedString(names[i]);
122 },
123 &builder);
124
125 // Creating vectors of strings in one convenient call.
126 std::vector<std::string> names2;
127 names2.push_back("jane");
128 names2.push_back("mary");
129 auto vecofstrings2 = builder.CreateVectorOfStrings(names2);
130
131 // Create an array of sorted tables, can be used with binary search when read:
132 auto vecoftables = builder.CreateVectorOfSortedTables(mlocs, 3);
133
134 // Create an array of sorted structs,
135 // can be used with binary search when read:
136 std::vector<Ability> abilities;
137 abilities.push_back(Ability(4, 40));
138 abilities.push_back(Ability(3, 30));
139 abilities.push_back(Ability(2, 20));
140 abilities.push_back(Ability(1, 10));
141 auto vecofstructs = builder.CreateVectorOfSortedStructs(&abilities);
142
143 // Create a nested FlatBuffer.
144 // Nested FlatBuffers are stored in a ubyte vector, which can be convenient
145 // since they can be memcpy'd around much easier than other FlatBuffer
146 // values. They have little overhead compared to storing the table directly.
147 // As a test, create a mostly empty Monster buffer:
148 flatbuffers::FlatBufferBuilder nested_builder;
149 auto nmloc = CreateMonster(nested_builder, nullptr, 0, 0,
150 nested_builder.CreateString("NestedMonster"));
151 FinishMonsterBuffer(nested_builder, nmloc);
152 // Now we can store the buffer in the parent. Note that by default, vectors
153 // are only aligned to their elements or size field, so in this case if the
154 // buffer contains 64-bit elements, they may not be correctly aligned. We fix
155 // that with:
156 builder.ForceVectorAlignment(nested_builder.GetSize(), sizeof(uint8_t),
157 nested_builder.GetBufferMinAlignment());
158 // If for whatever reason you don't have the nested_builder available, you
159 // can substitute flatbuffers::largest_scalar_t (64-bit) for the alignment, or
160 // the largest force_align value in your schema if you're using it.
161 auto nested_flatbuffer_vector = builder.CreateVector(
162 nested_builder.GetBufferPointer(), nested_builder.GetSize());
163
164 // Test a nested FlexBuffer:
165 flexbuffers::Builder flexbuild;
166 flexbuild.Int(1234);
167 flexbuild.Finish();
168 auto flex = builder.CreateVector(flexbuild.GetBuffer());
169
170 // Test vector of enums.
171 Color colors[] = { Color_Blue, Color_Green };
172 // We use this special creation function because we have an array of
173 // pre-C++11 (enum class) enums whose size likely is int, yet its declared
174 // type in the schema is byte.
175 auto vecofcolors = builder.CreateVectorScalarCast<int8_t, Color>(colors, 2);
176
177 // shortcut for creating monster with all fields set:
178 auto mloc = CreateMonster(builder, &vec, 150, 80, name, inventory, Color_Blue,
179 Any_Monster, mlocs[1].Union(), // Store a union.
180 testv, vecofstrings, vecoftables, 0,
181 nested_flatbuffer_vector, 0, false, 0, 0, 0, 0, 0,
182 0, 0, 0, 0, 3.14159f, 3.0f, 0.0f, vecofstrings2,
183 vecofstructs, flex, testv2, 0, 0, 0, 0, 0, 0, 0, 0,
184 0, 0, 0, AnyUniqueAliases_NONE, 0,
185 AnyAmbiguousAliases_NONE, 0, vecofcolors);
186
187 FinishMonsterBuffer(builder, mloc);
188
189 // clang-format off
190 #ifdef FLATBUFFERS_TEST_VERBOSE
191 // print byte data for debugging:
192 auto p = builder.GetBufferPointer();
193 for (flatbuffers::uoffset_t i = 0; i < builder.GetSize(); i++)
194 printf("%d ", p[i]);
195 #endif
196 // clang-format on
197
198 // return the buffer for the caller to use.
199 auto bufferpointer =
200 reinterpret_cast<const char *>(builder.GetBufferPointer());
201 buffer.assign(bufferpointer, bufferpointer + builder.GetSize());
202
203 return builder.Release();
204 }
205
206 // example of accessing a buffer loaded in memory:
AccessFlatBufferTest(const uint8_t * flatbuf,size_t length,bool pooled=true)207 void AccessFlatBufferTest(const uint8_t *flatbuf, size_t length,
208 bool pooled = true) {
209 // First, verify the buffers integrity (optional)
210 flatbuffers::Verifier verifier(flatbuf, length);
211 TEST_EQ(VerifyMonsterBuffer(verifier), true);
212
213 // clang-format off
214 #ifdef FLATBUFFERS_TRACK_VERIFIER_BUFFER_SIZE
215 std::vector<uint8_t> test_buff;
216 test_buff.resize(length * 2);
217 std::memcpy(&test_buff[0], flatbuf, length);
218 std::memcpy(&test_buff[length], flatbuf, length);
219
220 flatbuffers::Verifier verifier1(&test_buff[0], length);
221 TEST_EQ(VerifyMonsterBuffer(verifier1), true);
222 TEST_EQ(verifier1.GetComputedSize(), length);
223
224 flatbuffers::Verifier verifier2(&test_buff[length], length);
225 TEST_EQ(VerifyMonsterBuffer(verifier2), true);
226 TEST_EQ(verifier2.GetComputedSize(), length);
227 #endif
228 // clang-format on
229
230 TEST_EQ(strcmp(MonsterIdentifier(), "MONS"), 0);
231 TEST_EQ(MonsterBufferHasIdentifier(flatbuf), true);
232 TEST_EQ(strcmp(MonsterExtension(), "mon"), 0);
233
234 // Access the buffer from the root.
235 auto monster = GetMonster(flatbuf);
236
237 TEST_EQ(monster->hp(), 80);
238 TEST_EQ(monster->mana(), 150); // default
239 TEST_EQ_STR(monster->name()->c_str(), "MyMonster");
240 // Can't access the following field, it is deprecated in the schema,
241 // which means accessors are not generated:
242 // monster.friendly()
243
244 auto pos = monster->pos();
245 TEST_NOTNULL(pos);
246 TEST_EQ(pos->z(), 3);
247 TEST_EQ(pos->test3().a(), 10);
248 TEST_EQ(pos->test3().b(), 20);
249
250 auto inventory = monster->inventory();
251 TEST_EQ(VectorLength(inventory), 10UL); // Works even if inventory is null.
252 TEST_NOTNULL(inventory);
253 unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
254 // Check compatibilty of iterators with STL.
255 std::vector<unsigned char> inv_vec(inventory->begin(), inventory->end());
256 for (auto it = inventory->begin(); it != inventory->end(); ++it) {
257 auto indx = it - inventory->begin();
258 TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check.
259 TEST_EQ(*it, inv_data[indx]);
260 }
261
262 for (auto it = inventory->cbegin(); it != inventory->cend(); ++it) {
263 auto indx = it - inventory->cbegin();
264 TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check.
265 TEST_EQ(*it, inv_data[indx]);
266 }
267
268 for (auto it = inventory->rbegin(); it != inventory->rend(); ++it) {
269 auto indx = inventory->rend() - it;
270 TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check.
271 TEST_EQ(*it, inv_data[indx]);
272 }
273
274 for (auto it = inventory->crbegin(); it != inventory->crend(); ++it) {
275 auto indx = inventory->crend() - it;
276 TEST_EQ(*it, inv_vec.at(indx)); // Use bounds-check.
277 TEST_EQ(*it, inv_data[indx]);
278 }
279
280 TEST_EQ(monster->color(), Color_Blue);
281
282 // Example of accessing a union:
283 TEST_EQ(monster->test_type(), Any_Monster); // First make sure which it is.
284 auto monster2 = reinterpret_cast<const Monster *>(monster->test());
285 TEST_NOTNULL(monster2);
286 TEST_EQ_STR(monster2->name()->c_str(), "Fred");
287
288 // Example of accessing a vector of strings:
289 auto vecofstrings = monster->testarrayofstring();
290 TEST_EQ(vecofstrings->size(), 4U);
291 TEST_EQ_STR(vecofstrings->Get(0)->c_str(), "bob");
292 TEST_EQ_STR(vecofstrings->Get(1)->c_str(), "fred");
293 if (pooled) {
294 // These should have pointer equality because of string pooling.
295 TEST_EQ(vecofstrings->Get(0)->c_str(), vecofstrings->Get(2)->c_str());
296 TEST_EQ(vecofstrings->Get(1)->c_str(), vecofstrings->Get(3)->c_str());
297 }
298
299 auto vecofstrings2 = monster->testarrayofstring2();
300 if (vecofstrings2) {
301 TEST_EQ(vecofstrings2->size(), 2U);
302 TEST_EQ_STR(vecofstrings2->Get(0)->c_str(), "jane");
303 TEST_EQ_STR(vecofstrings2->Get(1)->c_str(), "mary");
304 }
305
306 // Example of accessing a vector of tables:
307 auto vecoftables = monster->testarrayoftables();
308 TEST_EQ(vecoftables->size(), 3U);
309 for (auto it = vecoftables->begin(); it != vecoftables->end(); ++it)
310 TEST_EQ(strlen(it->name()->c_str()) >= 4, true);
311 TEST_EQ_STR(vecoftables->Get(0)->name()->c_str(), "Barney");
312 TEST_EQ(vecoftables->Get(0)->hp(), 1000);
313 TEST_EQ_STR(vecoftables->Get(1)->name()->c_str(), "Fred");
314 TEST_EQ_STR(vecoftables->Get(2)->name()->c_str(), "Wilma");
315 TEST_NOTNULL(vecoftables->LookupByKey("Barney"));
316 TEST_NOTNULL(vecoftables->LookupByKey("Fred"));
317 TEST_NOTNULL(vecoftables->LookupByKey("Wilma"));
318
319 // Test accessing a vector of sorted structs
320 auto vecofstructs = monster->testarrayofsortedstruct();
321 if (vecofstructs) { // not filled in monster_test.bfbs
322 for (flatbuffers::uoffset_t i = 0; i < vecofstructs->size() - 1; i++) {
323 auto left = vecofstructs->Get(i);
324 auto right = vecofstructs->Get(i + 1);
325 TEST_EQ(true, (left->KeyCompareLessThan(right)));
326 }
327 TEST_NOTNULL(vecofstructs->LookupByKey(3));
328 TEST_EQ(static_cast<const Ability *>(nullptr),
329 vecofstructs->LookupByKey(5));
330 }
331
332 // Test nested FlatBuffers if available:
333 auto nested_buffer = monster->testnestedflatbuffer();
334 if (nested_buffer) {
335 // nested_buffer is a vector of bytes you can memcpy. However, if you
336 // actually want to access the nested data, this is a convenient
337 // accessor that directly gives you the root table:
338 auto nested_monster = monster->testnestedflatbuffer_nested_root();
339 TEST_EQ_STR(nested_monster->name()->c_str(), "NestedMonster");
340 }
341
342 // Test flexbuffer if available:
343 auto flex = monster->flex();
344 // flex is a vector of bytes you can memcpy etc.
345 TEST_EQ(flex->size(), 4); // Encoded FlexBuffer bytes.
346 // However, if you actually want to access the nested data, this is a
347 // convenient accessor that directly gives you the root value:
348 TEST_EQ(monster->flex_flexbuffer_root().AsInt16(), 1234);
349
350 // Test vector of enums:
351 auto colors = monster->vector_of_enums();
352 if (colors) {
353 TEST_EQ(colors->size(), 2);
354 TEST_EQ(colors->Get(0), Color_Blue);
355 TEST_EQ(colors->Get(1), Color_Green);
356 }
357
358 // Since Flatbuffers uses explicit mechanisms to override the default
359 // compiler alignment, double check that the compiler indeed obeys them:
360 // (Test consists of a short and byte):
361 TEST_EQ(flatbuffers::AlignOf<Test>(), 2UL);
362 TEST_EQ(sizeof(Test), 4UL);
363
364 const flatbuffers::Vector<const Test *> *tests_array[] = {
365 monster->test4(),
366 monster->test5(),
367 };
368 for (size_t i = 0; i < sizeof(tests_array) / sizeof(tests_array[0]); ++i) {
369 auto tests = tests_array[i];
370 TEST_NOTNULL(tests);
371 auto test_0 = tests->Get(0);
372 auto test_1 = tests->Get(1);
373 TEST_EQ(test_0->a(), 10);
374 TEST_EQ(test_0->b(), 20);
375 TEST_EQ(test_1->a(), 30);
376 TEST_EQ(test_1->b(), 40);
377 for (auto it = tests->begin(); it != tests->end(); ++it) {
378 TEST_EQ(it->a() == 10 || it->a() == 30, true); // Just testing iterators.
379 }
380 }
381
382 // Checking for presence of fields:
383 TEST_EQ(flatbuffers::IsFieldPresent(monster, Monster::VT_HP), true);
384 TEST_EQ(flatbuffers::IsFieldPresent(monster, Monster::VT_MANA), false);
385
386 // Obtaining a buffer from a root:
387 TEST_EQ(GetBufferStartFromRootPointer(monster), flatbuf);
388 }
389
390 // Change a FlatBuffer in-place, after it has been constructed.
MutateFlatBuffersTest(uint8_t * flatbuf,std::size_t length)391 void MutateFlatBuffersTest(uint8_t *flatbuf, std::size_t length) {
392 // Get non-const pointer to root.
393 auto monster = GetMutableMonster(flatbuf);
394
395 // Each of these tests mutates, then tests, then set back to the original,
396 // so we can test that the buffer in the end still passes our original test.
397 auto hp_ok = monster->mutate_hp(10);
398 TEST_EQ(hp_ok, true); // Field was present.
399 TEST_EQ(monster->hp(), 10);
400 // Mutate to default value
401 auto hp_ok_default = monster->mutate_hp(100);
402 TEST_EQ(hp_ok_default, true); // Field was present.
403 TEST_EQ(monster->hp(), 100);
404 // Test that mutate to default above keeps field valid for further mutations
405 auto hp_ok_2 = monster->mutate_hp(20);
406 TEST_EQ(hp_ok_2, true);
407 TEST_EQ(monster->hp(), 20);
408 monster->mutate_hp(80);
409
410 // Monster originally at 150 mana (default value)
411 auto mana_default_ok = monster->mutate_mana(150); // Mutate to default value.
412 TEST_EQ(mana_default_ok,
413 true); // Mutation should succeed, because default value.
414 TEST_EQ(monster->mana(), 150);
415 auto mana_ok = monster->mutate_mana(10);
416 TEST_EQ(mana_ok, false); // Field was NOT present, because default value.
417 TEST_EQ(monster->mana(), 150);
418
419 // Mutate structs.
420 auto pos = monster->mutable_pos();
421 auto test3 = pos->mutable_test3(); // Struct inside a struct.
422 test3.mutate_a(50); // Struct fields never fail.
423 TEST_EQ(test3.a(), 50);
424 test3.mutate_a(10);
425
426 // Mutate vectors.
427 auto inventory = monster->mutable_inventory();
428 inventory->Mutate(9, 100);
429 TEST_EQ(inventory->Get(9), 100);
430 inventory->Mutate(9, 9);
431
432 auto tables = monster->mutable_testarrayoftables();
433 auto first = tables->GetMutableObject(0);
434 TEST_EQ(first->hp(), 1000);
435 first->mutate_hp(0);
436 TEST_EQ(first->hp(), 0);
437 first->mutate_hp(1000);
438
439 // Run the verifier and the regular test to make sure we didn't trample on
440 // anything.
441 AccessFlatBufferTest(flatbuf, length);
442 }
443
444 // Unpack a FlatBuffer into objects.
ObjectFlatBuffersTest(uint8_t * flatbuf)445 void ObjectFlatBuffersTest(uint8_t *flatbuf) {
446 // Optional: we can specify resolver and rehasher functions to turn hashed
447 // strings into object pointers and back, to implement remote references
448 // and such.
449 auto resolver = flatbuffers::resolver_function_t(
450 [](void **pointer_adr, flatbuffers::hash_value_t hash) {
451 (void)pointer_adr;
452 (void)hash;
453 // Don't actually do anything, leave variable null.
454 });
455 auto rehasher = flatbuffers::rehasher_function_t(
456 [](void *pointer) -> flatbuffers::hash_value_t {
457 (void)pointer;
458 return 0;
459 });
460
461 // Turn a buffer into C++ objects.
462 auto monster1 = UnPackMonster(flatbuf, &resolver);
463
464 // Re-serialize the data.
465 flatbuffers::FlatBufferBuilder fbb1;
466 fbb1.Finish(CreateMonster(fbb1, monster1.get(), &rehasher),
467 MonsterIdentifier());
468
469 // Unpack again, and re-serialize again.
470 auto monster2 = UnPackMonster(fbb1.GetBufferPointer(), &resolver);
471 flatbuffers::FlatBufferBuilder fbb2;
472 fbb2.Finish(CreateMonster(fbb2, monster2.get(), &rehasher),
473 MonsterIdentifier());
474
475 // Now we've gone full round-trip, the two buffers should match.
476 auto len1 = fbb1.GetSize();
477 auto len2 = fbb2.GetSize();
478 TEST_EQ(len1, len2);
479 TEST_EQ(memcmp(fbb1.GetBufferPointer(), fbb2.GetBufferPointer(), len1), 0);
480
481 // Test it with the original buffer test to make sure all data survived.
482 AccessFlatBufferTest(fbb2.GetBufferPointer(), len2, false);
483
484 // Test accessing fields, similar to AccessFlatBufferTest above.
485 TEST_EQ(monster2->hp, 80);
486 TEST_EQ(monster2->mana, 150); // default
487 TEST_EQ_STR(monster2->name.c_str(), "MyMonster");
488
489 auto &pos = monster2->pos;
490 TEST_NOTNULL(pos);
491 TEST_EQ(pos->z(), 3);
492 TEST_EQ(pos->test3().a(), 10);
493 TEST_EQ(pos->test3().b(), 20);
494
495 auto &inventory = monster2->inventory;
496 TEST_EQ(inventory.size(), 10UL);
497 unsigned char inv_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
498 for (auto it = inventory.begin(); it != inventory.end(); ++it)
499 TEST_EQ(*it, inv_data[it - inventory.begin()]);
500
501 TEST_EQ(monster2->color, Color_Blue);
502
503 auto monster3 = monster2->test.AsMonster();
504 TEST_NOTNULL(monster3);
505 TEST_EQ_STR(monster3->name.c_str(), "Fred");
506
507 auto &vecofstrings = monster2->testarrayofstring;
508 TEST_EQ(vecofstrings.size(), 4U);
509 TEST_EQ_STR(vecofstrings[0].c_str(), "bob");
510 TEST_EQ_STR(vecofstrings[1].c_str(), "fred");
511
512 auto &vecofstrings2 = monster2->testarrayofstring2;
513 TEST_EQ(vecofstrings2.size(), 2U);
514 TEST_EQ_STR(vecofstrings2[0].c_str(), "jane");
515 TEST_EQ_STR(vecofstrings2[1].c_str(), "mary");
516
517 auto &vecoftables = monster2->testarrayoftables;
518 TEST_EQ(vecoftables.size(), 3U);
519 TEST_EQ_STR(vecoftables[0]->name.c_str(), "Barney");
520 TEST_EQ(vecoftables[0]->hp, 1000);
521 TEST_EQ_STR(vecoftables[1]->name.c_str(), "Fred");
522 TEST_EQ_STR(vecoftables[2]->name.c_str(), "Wilma");
523
524 auto &tests = monster2->test4;
525 TEST_EQ(tests[0].a(), 10);
526 TEST_EQ(tests[0].b(), 20);
527 TEST_EQ(tests[1].a(), 30);
528 TEST_EQ(tests[1].b(), 40);
529 }
530
531 // Prefix a FlatBuffer with a size field.
SizePrefixedTest()532 void SizePrefixedTest() {
533 // Create size prefixed buffer.
534 flatbuffers::FlatBufferBuilder fbb;
535 FinishSizePrefixedMonsterBuffer(
536 fbb,
537 CreateMonster(fbb, 0, 200, 300, fbb.CreateString("bob")));
538
539 // Verify it.
540 flatbuffers::Verifier verifier(fbb.GetBufferPointer(), fbb.GetSize());
541 TEST_EQ(VerifySizePrefixedMonsterBuffer(verifier), true);
542
543 // Access it.
544 auto m = GetSizePrefixedMonster(fbb.GetBufferPointer());
545 TEST_EQ(m->mana(), 200);
546 TEST_EQ(m->hp(), 300);
547 TEST_EQ_STR(m->name()->c_str(), "bob");
548 }
549
TriviallyCopyableTest()550 void TriviallyCopyableTest() {
551 // clang-format off
552 #if __GNUG__ && __GNUC__ < 5
553 TEST_EQ(__has_trivial_copy(Vec3), true);
554 #else
555 #if __cplusplus >= 201103L
556 TEST_EQ(std::is_trivially_copyable<Vec3>::value, true);
557 #endif
558 #endif
559 // clang-format on
560 }
561
562 // Check stringify of an default enum value to json
JsonDefaultTest()563 void JsonDefaultTest() {
564 // load FlatBuffer schema (.fbs) from disk
565 std::string schemafile;
566 TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.fbs").c_str(),
567 false, &schemafile), true);
568 // parse schema first, so we can use it to parse the data after
569 flatbuffers::Parser parser;
570 auto include_test_path =
571 flatbuffers::ConCatPathFileName(test_data_path, "include_test");
572 const char *include_directories[] = { test_data_path.c_str(),
573 include_test_path.c_str(), nullptr };
574
575 TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true);
576 // create incomplete monster and store to json
577 parser.opts.output_default_scalars_in_json = true;
578 parser.opts.output_enum_identifiers = true;
579 flatbuffers::FlatBufferBuilder builder;
580 auto name = builder.CreateString("default_enum");
581 MonsterBuilder color_monster(builder);
582 color_monster.add_name(name);
583 FinishMonsterBuffer(builder, color_monster.Finish());
584 std::string jsongen;
585 auto result = GenerateText(parser, builder.GetBufferPointer(), &jsongen);
586 TEST_EQ(result, true);
587 // default value of the "color" field is Blue
588 TEST_EQ(std::string::npos != jsongen.find("color: \"Blue\""), true);
589 // default value of the "testf" field is 3.14159
590 TEST_EQ(std::string::npos != jsongen.find("testf: 3.14159"), true);
591 }
592
593 // example of parsing text straight into a buffer, and generating
594 // text back from it:
ParseAndGenerateTextTest(bool binary)595 void ParseAndGenerateTextTest(bool binary) {
596 // load FlatBuffer schema (.fbs) and JSON from disk
597 std::string schemafile;
598 std::string jsonfile;
599 TEST_EQ(flatbuffers::LoadFile(
600 (test_data_path + "monster_test." + (binary ? "bfbs" : "fbs"))
601 .c_str(),
602 binary, &schemafile),
603 true);
604 TEST_EQ(flatbuffers::LoadFile(
605 (test_data_path + "monsterdata_test.golden").c_str(), false,
606 &jsonfile),
607 true);
608
609 auto include_test_path =
610 flatbuffers::ConCatPathFileName(test_data_path, "include_test");
611 const char *include_directories[] = { test_data_path.c_str(),
612 include_test_path.c_str(), nullptr };
613
614 // parse schema first, so we can use it to parse the data after
615 flatbuffers::Parser parser;
616 if (binary) {
617 flatbuffers::Verifier verifier(
618 reinterpret_cast<const uint8_t *>(schemafile.c_str()),
619 schemafile.size());
620 TEST_EQ(reflection::VerifySchemaBuffer(verifier), true);
621 //auto schema = reflection::GetSchema(schemafile.c_str());
622 TEST_EQ(parser.Deserialize((const uint8_t *)schemafile.c_str(), schemafile.size()), true);
623 } else {
624 TEST_EQ(parser.Parse(schemafile.c_str(), include_directories), true);
625 }
626 TEST_EQ(parser.Parse(jsonfile.c_str(), include_directories), true);
627
628 // here, parser.builder_ contains a binary buffer that is the parsed data.
629
630 // First, verify it, just in case:
631 flatbuffers::Verifier verifier(parser.builder_.GetBufferPointer(),
632 parser.builder_.GetSize());
633 TEST_EQ(VerifyMonsterBuffer(verifier), true);
634
635 AccessFlatBufferTest(parser.builder_.GetBufferPointer(),
636 parser.builder_.GetSize(), false);
637
638 // to ensure it is correct, we now generate text back from the binary,
639 // and compare the two:
640 std::string jsongen;
641 auto result =
642 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
643 TEST_EQ(result, true);
644 TEST_EQ_STR(jsongen.c_str(), jsonfile.c_str());
645
646 // We can also do the above using the convenient Registry that knows about
647 // a set of file_identifiers mapped to schemas.
648 flatbuffers::Registry registry;
649 // Make sure schemas can find their includes.
650 registry.AddIncludeDirectory(test_data_path.c_str());
651 registry.AddIncludeDirectory(include_test_path.c_str());
652 // Call this with many schemas if possible.
653 registry.Register(MonsterIdentifier(),
654 (test_data_path + "monster_test.fbs").c_str());
655 // Now we got this set up, we can parse by just specifying the identifier,
656 // the correct schema will be loaded on the fly:
657 auto buf = registry.TextToFlatBuffer(jsonfile.c_str(), MonsterIdentifier());
658 // If this fails, check registry.lasterror_.
659 TEST_NOTNULL(buf.data());
660 // Test the buffer, to be sure:
661 AccessFlatBufferTest(buf.data(), buf.size(), false);
662 // We can use the registry to turn this back into text, in this case it
663 // will get the file_identifier from the binary:
664 std::string text;
665 auto ok = registry.FlatBufferToText(buf.data(), buf.size(), &text);
666 // If this fails, check registry.lasterror_.
667 TEST_EQ(ok, true);
668 TEST_EQ_STR(text.c_str(), jsonfile.c_str());
669
670 // Generate text for UTF-8 strings without escapes.
671 std::string jsonfile_utf8;
672 TEST_EQ(flatbuffers::LoadFile((test_data_path + "unicode_test.json").c_str(),
673 false, &jsonfile_utf8),
674 true);
675 TEST_EQ(parser.Parse(jsonfile_utf8.c_str(), include_directories), true);
676 // To ensure it is correct, generate utf-8 text back from the binary.
677 std::string jsongen_utf8;
678 // request natural printing for utf-8 strings
679 parser.opts.natural_utf8 = true;
680 parser.opts.strict_json = true;
681 TEST_EQ(
682 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen_utf8),
683 true);
684 TEST_EQ_STR(jsongen_utf8.c_str(), jsonfile_utf8.c_str());
685 }
686
ReflectionTest(uint8_t * flatbuf,size_t length)687 void ReflectionTest(uint8_t *flatbuf, size_t length) {
688 // Load a binary schema.
689 std::string bfbsfile;
690 TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.bfbs").c_str(),
691 true, &bfbsfile),
692 true);
693
694 // Verify it, just in case:
695 flatbuffers::Verifier verifier(
696 reinterpret_cast<const uint8_t *>(bfbsfile.c_str()), bfbsfile.length());
697 TEST_EQ(reflection::VerifySchemaBuffer(verifier), true);
698
699 // Make sure the schema is what we expect it to be.
700 auto &schema = *reflection::GetSchema(bfbsfile.c_str());
701 auto root_table = schema.root_table();
702 TEST_EQ_STR(root_table->name()->c_str(), "MyGame.Example.Monster");
703 auto fields = root_table->fields();
704 auto hp_field_ptr = fields->LookupByKey("hp");
705 TEST_NOTNULL(hp_field_ptr);
706 auto &hp_field = *hp_field_ptr;
707 TEST_EQ_STR(hp_field.name()->c_str(), "hp");
708 TEST_EQ(hp_field.id(), 2);
709 TEST_EQ(hp_field.type()->base_type(), reflection::Short);
710 auto friendly_field_ptr = fields->LookupByKey("friendly");
711 TEST_NOTNULL(friendly_field_ptr);
712 TEST_NOTNULL(friendly_field_ptr->attributes());
713 TEST_NOTNULL(friendly_field_ptr->attributes()->LookupByKey("priority"));
714
715 // Make sure the table index is what we expect it to be.
716 auto pos_field_ptr = fields->LookupByKey("pos");
717 TEST_NOTNULL(pos_field_ptr);
718 TEST_EQ(pos_field_ptr->type()->base_type(), reflection::Obj);
719 auto pos_table_ptr = schema.objects()->Get(pos_field_ptr->type()->index());
720 TEST_NOTNULL(pos_table_ptr);
721 TEST_EQ_STR(pos_table_ptr->name()->c_str(), "MyGame.Example.Vec3");
722
723 // Now use it to dynamically access a buffer.
724 auto &root = *flatbuffers::GetAnyRoot(flatbuf);
725
726 // Verify the buffer first using reflection based verification
727 TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(), flatbuf, length),
728 true);
729
730 auto hp = flatbuffers::GetFieldI<uint16_t>(root, hp_field);
731 TEST_EQ(hp, 80);
732
733 // Rather than needing to know the type, we can also get the value of
734 // any field as an int64_t/double/string, regardless of what it actually is.
735 auto hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
736 TEST_EQ(hp_int64, 80);
737 auto hp_double = flatbuffers::GetAnyFieldF(root, hp_field);
738 TEST_EQ(hp_double, 80.0);
739 auto hp_string = flatbuffers::GetAnyFieldS(root, hp_field, &schema);
740 TEST_EQ_STR(hp_string.c_str(), "80");
741
742 // Get struct field through reflection
743 auto pos_struct = flatbuffers::GetFieldStruct(root, *pos_field_ptr);
744 TEST_NOTNULL(pos_struct);
745 TEST_EQ(flatbuffers::GetAnyFieldF(*pos_struct,
746 *pos_table_ptr->fields()->LookupByKey("z")),
747 3.0f);
748
749 auto test3_field = pos_table_ptr->fields()->LookupByKey("test3");
750 auto test3_struct = flatbuffers::GetFieldStruct(*pos_struct, *test3_field);
751 TEST_NOTNULL(test3_struct);
752 auto test3_object = schema.objects()->Get(test3_field->type()->index());
753
754 TEST_EQ(flatbuffers::GetAnyFieldF(*test3_struct,
755 *test3_object->fields()->LookupByKey("a")),
756 10);
757
758 // We can also modify it.
759 flatbuffers::SetField<uint16_t>(&root, hp_field, 200);
760 hp = flatbuffers::GetFieldI<uint16_t>(root, hp_field);
761 TEST_EQ(hp, 200);
762
763 // We can also set fields generically:
764 flatbuffers::SetAnyFieldI(&root, hp_field, 300);
765 hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
766 TEST_EQ(hp_int64, 300);
767 flatbuffers::SetAnyFieldF(&root, hp_field, 300.5);
768 hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
769 TEST_EQ(hp_int64, 300);
770 flatbuffers::SetAnyFieldS(&root, hp_field, "300");
771 hp_int64 = flatbuffers::GetAnyFieldI(root, hp_field);
772 TEST_EQ(hp_int64, 300);
773
774 // Test buffer is valid after the modifications
775 TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(), flatbuf, length),
776 true);
777
778 // Reset it, for further tests.
779 flatbuffers::SetField<uint16_t>(&root, hp_field, 80);
780
781 // More advanced functionality: changing the size of items in-line!
782 // First we put the FlatBuffer inside an std::vector.
783 std::vector<uint8_t> resizingbuf(flatbuf, flatbuf + length);
784 // Find the field we want to modify.
785 auto &name_field = *fields->LookupByKey("name");
786 // Get the root.
787 // This time we wrap the result from GetAnyRoot in a smartpointer that
788 // will keep rroot valid as resizingbuf resizes.
789 auto rroot = flatbuffers::piv(
790 flatbuffers::GetAnyRoot(flatbuffers::vector_data(resizingbuf)),
791 resizingbuf);
792 SetString(schema, "totally new string", GetFieldS(**rroot, name_field),
793 &resizingbuf);
794 // Here resizingbuf has changed, but rroot is still valid.
795 TEST_EQ_STR(GetFieldS(**rroot, name_field)->c_str(), "totally new string");
796 // Now lets extend a vector by 100 elements (10 -> 110).
797 auto &inventory_field = *fields->LookupByKey("inventory");
798 auto rinventory = flatbuffers::piv(
799 flatbuffers::GetFieldV<uint8_t>(**rroot, inventory_field), resizingbuf);
800 flatbuffers::ResizeVector<uint8_t>(schema, 110, 50, *rinventory,
801 &resizingbuf);
802 // rinventory still valid, so lets read from it.
803 TEST_EQ(rinventory->Get(10), 50);
804
805 // For reflection uses not covered already, there is a more powerful way:
806 // we can simply generate whatever object we want to add/modify in a
807 // FlatBuffer of its own, then add that to an existing FlatBuffer:
808 // As an example, let's add a string to an array of strings.
809 // First, find our field:
810 auto &testarrayofstring_field = *fields->LookupByKey("testarrayofstring");
811 // Find the vector value:
812 auto rtestarrayofstring = flatbuffers::piv(
813 flatbuffers::GetFieldV<flatbuffers::Offset<flatbuffers::String>>(
814 **rroot, testarrayofstring_field),
815 resizingbuf);
816 // It's a vector of 2 strings, to which we add one more, initialized to
817 // offset 0.
818 flatbuffers::ResizeVector<flatbuffers::Offset<flatbuffers::String>>(
819 schema, 3, 0, *rtestarrayofstring, &resizingbuf);
820 // Here we just create a buffer that contans a single string, but this
821 // could also be any complex set of tables and other values.
822 flatbuffers::FlatBufferBuilder stringfbb;
823 stringfbb.Finish(stringfbb.CreateString("hank"));
824 // Add the contents of it to our existing FlatBuffer.
825 // We do this last, so the pointer doesn't get invalidated (since it is
826 // at the end of the buffer):
827 auto string_ptr = flatbuffers::AddFlatBuffer(
828 resizingbuf, stringfbb.GetBufferPointer(), stringfbb.GetSize());
829 // Finally, set the new value in the vector.
830 rtestarrayofstring->MutateOffset(2, string_ptr);
831 TEST_EQ_STR(rtestarrayofstring->Get(0)->c_str(), "bob");
832 TEST_EQ_STR(rtestarrayofstring->Get(2)->c_str(), "hank");
833 // Test integrity of all resize operations above.
834 flatbuffers::Verifier resize_verifier(
835 reinterpret_cast<const uint8_t *>(flatbuffers::vector_data(resizingbuf)),
836 resizingbuf.size());
837 TEST_EQ(VerifyMonsterBuffer(resize_verifier), true);
838
839 // Test buffer is valid using reflection as well
840 TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(),
841 flatbuffers::vector_data(resizingbuf),
842 resizingbuf.size()),
843 true);
844
845 // As an additional test, also set it on the name field.
846 // Note: unlike the name change above, this just overwrites the offset,
847 // rather than changing the string in-place.
848 SetFieldT(*rroot, name_field, string_ptr);
849 TEST_EQ_STR(GetFieldS(**rroot, name_field)->c_str(), "hank");
850
851 // Using reflection, rather than mutating binary FlatBuffers, we can also copy
852 // tables and other things out of other FlatBuffers into a FlatBufferBuilder,
853 // either part or whole.
854 flatbuffers::FlatBufferBuilder fbb;
855 auto root_offset = flatbuffers::CopyTable(
856 fbb, schema, *root_table, *flatbuffers::GetAnyRoot(flatbuf), true);
857 fbb.Finish(root_offset, MonsterIdentifier());
858 // Test that it was copied correctly:
859 AccessFlatBufferTest(fbb.GetBufferPointer(), fbb.GetSize());
860
861 // Test buffer is valid using reflection as well
862 TEST_EQ(flatbuffers::Verify(schema, *schema.root_table(),
863 fbb.GetBufferPointer(), fbb.GetSize()),
864 true);
865 }
866
MiniReflectFlatBuffersTest(uint8_t * flatbuf)867 void MiniReflectFlatBuffersTest(uint8_t *flatbuf) {
868 auto s = flatbuffers::FlatBufferToString(flatbuf, Monster::MiniReflectTypeTable());
869 TEST_EQ_STR(
870 s.c_str(),
871 "{ "
872 "pos: { x: 1.0, y: 2.0, z: 3.0, test1: 0.0, test2: Red, test3: "
873 "{ a: 10, b: 20 } }, "
874 "hp: 80, "
875 "name: \"MyMonster\", "
876 "inventory: [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ], "
877 "test_type: Monster, "
878 "test: { name: \"Fred\" }, "
879 "test4: [ { a: 10, b: 20 }, { a: 30, b: 40 } ], "
880 "testarrayofstring: [ \"bob\", \"fred\", \"bob\", \"fred\" ], "
881 "testarrayoftables: [ { hp: 1000, name: \"Barney\" }, { name: \"Fred\" "
882 "}, "
883 "{ name: \"Wilma\" } ], "
884 // TODO(wvo): should really print this nested buffer correctly.
885 "testnestedflatbuffer: [ 20, 0, 0, 0, 77, 79, 78, 83, 12, 0, 12, 0, 0, "
886 "0, "
887 "4, 0, 6, 0, 8, 0, 12, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 13, 0, 0, 0, 78, "
888 "101, 115, 116, 101, 100, 77, 111, 110, 115, 116, 101, 114, 0, 0, 0 ], "
889 "testarrayofstring2: [ \"jane\", \"mary\" ], "
890 "testarrayofsortedstruct: [ { id: 1, distance: 10 }, "
891 "{ id: 2, distance: 20 }, { id: 3, distance: 30 }, "
892 "{ id: 4, distance: 40 } ], "
893 "flex: [ 210, 4, 5, 2 ], "
894 "test5: [ { a: 10, b: 20 }, { a: 30, b: 40 } ], "
895 "vector_of_enums: [ Blue, Green ] "
896 "}");
897
898 Test test(16, 32);
899 Vec3 vec(1,2,3, 1.5, Color_Red, test);
900 flatbuffers::FlatBufferBuilder vec_builder;
901 vec_builder.Finish(vec_builder.CreateStruct(vec));
902 auto vec_buffer = vec_builder.Release();
903 auto vec_str = flatbuffers::FlatBufferToString(vec_buffer.data(),
904 Vec3::MiniReflectTypeTable());
905 TEST_EQ_STR(
906 vec_str.c_str(),
907 "{ x: 1.0, y: 2.0, z: 3.0, test1: 1.5, test2: Red, test3: { a: 16, b: 32 } }");
908 }
909
910 // Parse a .proto schema, output as .fbs
ParseProtoTest()911 void ParseProtoTest() {
912 // load the .proto and the golden file from disk
913 std::string protofile;
914 std::string goldenfile;
915 std::string goldenunionfile;
916 TEST_EQ(
917 flatbuffers::LoadFile((test_data_path + "prototest/test.proto").c_str(),
918 false, &protofile),
919 true);
920 TEST_EQ(
921 flatbuffers::LoadFile((test_data_path + "prototest/test.golden").c_str(),
922 false, &goldenfile),
923 true);
924 TEST_EQ(
925 flatbuffers::LoadFile((test_data_path +
926 "prototest/test_union.golden").c_str(),
927 false, &goldenunionfile),
928 true);
929
930 flatbuffers::IDLOptions opts;
931 opts.include_dependence_headers = false;
932 opts.proto_mode = true;
933
934 // Parse proto.
935 flatbuffers::Parser parser(opts);
936 auto protopath = test_data_path + "prototest/";
937 const char *include_directories[] = { protopath.c_str(), nullptr };
938 TEST_EQ(parser.Parse(protofile.c_str(), include_directories), true);
939
940 // Generate fbs.
941 auto fbs = flatbuffers::GenerateFBS(parser, "test");
942
943 // Ensure generated file is parsable.
944 flatbuffers::Parser parser2;
945 TEST_EQ(parser2.Parse(fbs.c_str(), nullptr), true);
946 TEST_EQ_STR(fbs.c_str(), goldenfile.c_str());
947
948 // Parse proto with --oneof-union option.
949 opts.proto_oneof_union = true;
950 flatbuffers::Parser parser3(opts);
951 TEST_EQ(parser3.Parse(protofile.c_str(), include_directories), true);
952
953 // Generate fbs.
954 auto fbs_union = flatbuffers::GenerateFBS(parser3, "test");
955
956 // Ensure generated file is parsable.
957 flatbuffers::Parser parser4;
958 TEST_EQ(parser4.Parse(fbs_union.c_str(), nullptr), true);
959 TEST_EQ_STR(fbs_union.c_str(), goldenunionfile.c_str());
960 }
961
962 template<typename T>
CompareTableFieldValue(flatbuffers::Table * table,flatbuffers::voffset_t voffset,T val)963 void CompareTableFieldValue(flatbuffers::Table *table,
964 flatbuffers::voffset_t voffset, T val) {
965 T read = table->GetField(voffset, static_cast<T>(0));
966 TEST_EQ(read, val);
967 }
968
969 // Low level stress/fuzz test: serialize/deserialize a variety of
970 // different kinds of data in different combinations
FuzzTest1()971 void FuzzTest1() {
972 // Values we're testing against: chosen to ensure no bits get chopped
973 // off anywhere, and also be different from eachother.
974 const uint8_t bool_val = true;
975 const int8_t char_val = -127; // 0x81
976 const uint8_t uchar_val = 0xFF;
977 const int16_t short_val = -32222; // 0x8222;
978 const uint16_t ushort_val = 0xFEEE;
979 const int32_t int_val = 0x83333333;
980 const uint32_t uint_val = 0xFDDDDDDD;
981 const int64_t long_val = 0x8444444444444444LL;
982 const uint64_t ulong_val = 0xFCCCCCCCCCCCCCCCULL;
983 const float float_val = 3.14159f;
984 const double double_val = 3.14159265359;
985
986 const int test_values_max = 11;
987 const flatbuffers::voffset_t fields_per_object = 4;
988 const int num_fuzz_objects = 10000; // The higher, the more thorough :)
989
990 flatbuffers::FlatBufferBuilder builder;
991
992 lcg_reset(); // Keep it deterministic.
993
994 flatbuffers::uoffset_t objects[num_fuzz_objects];
995
996 // Generate num_fuzz_objects random objects each consisting of
997 // fields_per_object fields, each of a random type.
998 for (int i = 0; i < num_fuzz_objects; i++) {
999 auto start = builder.StartTable();
1000 for (flatbuffers::voffset_t f = 0; f < fields_per_object; f++) {
1001 int choice = lcg_rand() % test_values_max;
1002 auto off = flatbuffers::FieldIndexToOffset(f);
1003 switch (choice) {
1004 case 0: builder.AddElement<uint8_t>(off, bool_val, 0); break;
1005 case 1: builder.AddElement<int8_t>(off, char_val, 0); break;
1006 case 2: builder.AddElement<uint8_t>(off, uchar_val, 0); break;
1007 case 3: builder.AddElement<int16_t>(off, short_val, 0); break;
1008 case 4: builder.AddElement<uint16_t>(off, ushort_val, 0); break;
1009 case 5: builder.AddElement<int32_t>(off, int_val, 0); break;
1010 case 6: builder.AddElement<uint32_t>(off, uint_val, 0); break;
1011 case 7: builder.AddElement<int64_t>(off, long_val, 0); break;
1012 case 8: builder.AddElement<uint64_t>(off, ulong_val, 0); break;
1013 case 9: builder.AddElement<float>(off, float_val, 0); break;
1014 case 10: builder.AddElement<double>(off, double_val, 0); break;
1015 }
1016 }
1017 objects[i] = builder.EndTable(start);
1018 }
1019 builder.PreAlign<flatbuffers::largest_scalar_t>(0); // Align whole buffer.
1020
1021 lcg_reset(); // Reset.
1022
1023 uint8_t *eob = builder.GetCurrentBufferPointer() + builder.GetSize();
1024
1025 // Test that all objects we generated are readable and return the
1026 // expected values. We generate random objects in the same order
1027 // so this is deterministic.
1028 for (int i = 0; i < num_fuzz_objects; i++) {
1029 auto table = reinterpret_cast<flatbuffers::Table *>(eob - objects[i]);
1030 for (flatbuffers::voffset_t f = 0; f < fields_per_object; f++) {
1031 int choice = lcg_rand() % test_values_max;
1032 flatbuffers::voffset_t off = flatbuffers::FieldIndexToOffset(f);
1033 switch (choice) {
1034 case 0: CompareTableFieldValue(table, off, bool_val); break;
1035 case 1: CompareTableFieldValue(table, off, char_val); break;
1036 case 2: CompareTableFieldValue(table, off, uchar_val); break;
1037 case 3: CompareTableFieldValue(table, off, short_val); break;
1038 case 4: CompareTableFieldValue(table, off, ushort_val); break;
1039 case 5: CompareTableFieldValue(table, off, int_val); break;
1040 case 6: CompareTableFieldValue(table, off, uint_val); break;
1041 case 7: CompareTableFieldValue(table, off, long_val); break;
1042 case 8: CompareTableFieldValue(table, off, ulong_val); break;
1043 case 9: CompareTableFieldValue(table, off, float_val); break;
1044 case 10: CompareTableFieldValue(table, off, double_val); break;
1045 }
1046 }
1047 }
1048 }
1049
1050 // High level stress/fuzz test: generate a big schema and
1051 // matching json data in random combinations, then parse both,
1052 // generate json back from the binary, and compare with the original.
FuzzTest2()1053 void FuzzTest2() {
1054 lcg_reset(); // Keep it deterministic.
1055
1056 const int num_definitions = 30;
1057 const int num_struct_definitions = 5; // Subset of num_definitions.
1058 const int fields_per_definition = 15;
1059 const int instances_per_definition = 5;
1060 const int deprecation_rate = 10; // 1 in deprecation_rate fields will
1061 // be deprecated.
1062
1063 std::string schema = "namespace test;\n\n";
1064
1065 struct RndDef {
1066 std::string instances[instances_per_definition];
1067
1068 // Since we're generating schema and corresponding data in tandem,
1069 // this convenience function adds strings to both at once.
1070 static void Add(RndDef (&definitions_l)[num_definitions],
1071 std::string &schema_l, const int instances_per_definition_l,
1072 const char *schema_add, const char *instance_add,
1073 int definition) {
1074 schema_l += schema_add;
1075 for (int i = 0; i < instances_per_definition_l; i++)
1076 definitions_l[definition].instances[i] += instance_add;
1077 }
1078 };
1079
1080 // clang-format off
1081 #define AddToSchemaAndInstances(schema_add, instance_add) \
1082 RndDef::Add(definitions, schema, instances_per_definition, \
1083 schema_add, instance_add, definition)
1084
1085 #define Dummy() \
1086 RndDef::Add(definitions, schema, instances_per_definition, \
1087 "byte", "1", definition)
1088 // clang-format on
1089
1090 RndDef definitions[num_definitions];
1091
1092 // We are going to generate num_definitions, the first
1093 // num_struct_definitions will be structs, the rest tables. For each
1094 // generate random fields, some of which may be struct/table types
1095 // referring to previously generated structs/tables.
1096 // Simultanenously, we generate instances_per_definition JSON data
1097 // definitions, which will have identical structure to the schema
1098 // being generated. We generate multiple instances such that when creating
1099 // hierarchy, we get some variety by picking one randomly.
1100 for (int definition = 0; definition < num_definitions; definition++) {
1101 std::string definition_name = "D" + flatbuffers::NumToString(definition);
1102
1103 bool is_struct = definition < num_struct_definitions;
1104
1105 AddToSchemaAndInstances(
1106 ((is_struct ? "struct " : "table ") + definition_name + " {\n").c_str(),
1107 "{\n");
1108
1109 for (int field = 0; field < fields_per_definition; field++) {
1110 const bool is_last_field = field == fields_per_definition - 1;
1111
1112 // Deprecate 1 in deprecation_rate fields. Only table fields can be
1113 // deprecated.
1114 // Don't deprecate the last field to avoid dangling commas in JSON.
1115 const bool deprecated =
1116 !is_struct && !is_last_field && (lcg_rand() % deprecation_rate == 0);
1117
1118 std::string field_name = "f" + flatbuffers::NumToString(field);
1119 AddToSchemaAndInstances((" " + field_name + ":").c_str(),
1120 deprecated ? "" : (field_name + ": ").c_str());
1121 // Pick random type:
1122 auto base_type = static_cast<flatbuffers::BaseType>(
1123 lcg_rand() % (flatbuffers::BASE_TYPE_UNION + 1));
1124 switch (base_type) {
1125 case flatbuffers::BASE_TYPE_STRING:
1126 if (is_struct) {
1127 Dummy(); // No strings in structs.
1128 } else {
1129 AddToSchemaAndInstances("string", deprecated ? "" : "\"hi\"");
1130 }
1131 break;
1132 case flatbuffers::BASE_TYPE_VECTOR:
1133 if (is_struct) {
1134 Dummy(); // No vectors in structs.
1135 } else {
1136 AddToSchemaAndInstances("[ubyte]",
1137 deprecated ? "" : "[\n0,\n1,\n255\n]");
1138 }
1139 break;
1140 case flatbuffers::BASE_TYPE_NONE:
1141 case flatbuffers::BASE_TYPE_UTYPE:
1142 case flatbuffers::BASE_TYPE_STRUCT:
1143 case flatbuffers::BASE_TYPE_UNION:
1144 if (definition) {
1145 // Pick a random previous definition and random data instance of
1146 // that definition.
1147 int defref = lcg_rand() % definition;
1148 int instance = lcg_rand() % instances_per_definition;
1149 AddToSchemaAndInstances(
1150 ("D" + flatbuffers::NumToString(defref)).c_str(),
1151 deprecated ? ""
1152 : definitions[defref].instances[instance].c_str());
1153 } else {
1154 // If this is the first definition, we have no definition we can
1155 // refer to.
1156 Dummy();
1157 }
1158 break;
1159 case flatbuffers::BASE_TYPE_BOOL:
1160 AddToSchemaAndInstances(
1161 "bool", deprecated ? "" : (lcg_rand() % 2 ? "true" : "false"));
1162 break;
1163 default:
1164 // All the scalar types.
1165 schema += flatbuffers::kTypeNames[base_type];
1166
1167 if (!deprecated) {
1168 // We want each instance to use its own random value.
1169 for (int inst = 0; inst < instances_per_definition; inst++)
1170 definitions[definition].instances[inst] +=
1171 flatbuffers::IsFloat(base_type)
1172 ? flatbuffers::NumToString<double>(lcg_rand() % 128)
1173 .c_str()
1174 : flatbuffers::NumToString<int>(lcg_rand() % 128).c_str();
1175 }
1176 }
1177 AddToSchemaAndInstances(deprecated ? "(deprecated);\n" : ";\n",
1178 deprecated ? "" : is_last_field ? "\n" : ",\n");
1179 }
1180 AddToSchemaAndInstances("}\n\n", "}");
1181 }
1182
1183 schema += "root_type D" + flatbuffers::NumToString(num_definitions - 1);
1184 schema += ";\n";
1185
1186 flatbuffers::Parser parser;
1187
1188 // Will not compare against the original if we don't write defaults
1189 parser.builder_.ForceDefaults(true);
1190
1191 // Parse the schema, parse the generated data, then generate text back
1192 // from the binary and compare against the original.
1193 TEST_EQ(parser.Parse(schema.c_str()), true);
1194
1195 const std::string &json =
1196 definitions[num_definitions - 1].instances[0] + "\n";
1197
1198 TEST_EQ(parser.Parse(json.c_str()), true);
1199
1200 std::string jsongen;
1201 parser.opts.indent_step = 0;
1202 auto result =
1203 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
1204 TEST_EQ(result, true);
1205
1206 if (jsongen != json) {
1207 // These strings are larger than a megabyte, so we show the bytes around
1208 // the first bytes that are different rather than the whole string.
1209 size_t len = std::min(json.length(), jsongen.length());
1210 for (size_t i = 0; i < len; i++) {
1211 if (json[i] != jsongen[i]) {
1212 i -= std::min(static_cast<size_t>(10), i); // show some context;
1213 size_t end = std::min(len, i + 20);
1214 for (; i < end; i++)
1215 TEST_OUTPUT_LINE("at %d: found \"%c\", expected \"%c\"\n",
1216 static_cast<int>(i), jsongen[i], json[i]);
1217 break;
1218 }
1219 }
1220 TEST_NOTNULL(NULL);
1221 }
1222
1223 // clang-format off
1224 #ifdef FLATBUFFERS_TEST_VERBOSE
1225 TEST_OUTPUT_LINE("%dk schema tested with %dk of json\n",
1226 static_cast<int>(schema.length() / 1024),
1227 static_cast<int>(json.length() / 1024));
1228 #endif
1229 // clang-format on
1230 }
1231
1232 // Test that parser errors are actually generated.
TestError_(const char * src,const char * error_substr,bool strict_json,const char * file,int line,const char * func)1233 void TestError_(const char *src, const char *error_substr, bool strict_json,
1234 const char *file, int line, const char *func) {
1235 flatbuffers::IDLOptions opts;
1236 opts.strict_json = strict_json;
1237 flatbuffers::Parser parser(opts);
1238 if (parser.Parse(src)) {
1239 TestFail("true", "false",
1240 ("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line,
1241 func);
1242 } else if (!strstr(parser.error_.c_str(), error_substr)) {
1243 TestFail(parser.error_.c_str(), error_substr,
1244 ("parser.Parse(\"" + std::string(src) + "\")").c_str(), file, line,
1245 func);
1246 }
1247 }
1248
TestError_(const char * src,const char * error_substr,const char * file,int line,const char * func)1249 void TestError_(const char *src, const char *error_substr, const char *file,
1250 int line, const char *func) {
1251 TestError_(src, error_substr, false, file, line, func);
1252 }
1253
1254 #ifdef _WIN32
1255 # define TestError(src, ...) \
1256 TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __FUNCTION__)
1257 #else
1258 # define TestError(src, ...) \
1259 TestError_(src, __VA_ARGS__, __FILE__, __LINE__, __PRETTY_FUNCTION__)
1260 #endif
1261
1262 // Test that parsing errors occur as we'd expect.
1263 // Also useful for coverage, making sure these paths are run.
ErrorTest()1264 void ErrorTest() {
1265 // In order they appear in idl_parser.cpp
1266 TestError("table X { Y:byte; } root_type X; { Y: 999 }", "does not fit");
1267 TestError("\"\0", "illegal");
1268 TestError("\"\\q", "escape code");
1269 TestError("table ///", "documentation");
1270 TestError("@", "illegal");
1271 TestError("table 1", "expecting");
1272 TestError("table X { Y:[[int]]; }", "nested vector");
1273 TestError("table X { Y:1; }", "illegal type");
1274 TestError("table X { Y:int; Y:int; }", "field already");
1275 TestError("table Y {} table X { Y:int; }", "same as table");
1276 TestError("struct X { Y:string; }", "only scalar");
1277 TestError("table X { Y:string = \"\"; }", "default values");
1278 TestError("struct X { a:uint = 42; }", "default values");
1279 TestError("enum Y:byte { Z = 1 } table X { y:Y; }", "not part of enum");
1280 TestError("struct X { Y:int (deprecated); }", "deprecate");
1281 TestError("union Z { X } table X { Y:Z; } root_type X; { Y: {}, A:1 }",
1282 "missing type field");
1283 TestError("union Z { X } table X { Y:Z; } root_type X; { Y_type: 99, Y: {",
1284 "type id");
1285 TestError("table X { Y:int; } root_type X; { Z:", "unknown field");
1286 TestError("table X { Y:int; } root_type X; { Y:", "string constant", true);
1287 TestError("table X { Y:int; } root_type X; { \"Y\":1, }", "string constant",
1288 true);
1289 TestError(
1290 "struct X { Y:int; Z:int; } table W { V:X; } root_type W; "
1291 "{ V:{ Y:1 } }",
1292 "wrong number");
1293 TestError("enum E:byte { A } table X { Y:E; } root_type X; { Y:U }",
1294 "unknown enum value");
1295 TestError("table X { Y:byte; } root_type X; { Y:; }", "starting");
1296 TestError("enum X:byte { Y } enum X {", "enum already");
1297 TestError("enum X:float {}", "underlying");
1298 TestError("enum X:byte { Y, Y }", "value already");
1299 TestError("enum X:byte { Y=2, Z=1 }", "ascending");
1300 TestError("enum X:byte (bit_flags) { Y=8 }", "bit flag out");
1301 TestError("table X { Y:int; } table X {", "datatype already");
1302 TestError("struct X (force_align: 7) { Y:int; }", "force_align");
1303 TestError("struct X {}", "size 0");
1304 TestError("{}", "no root");
1305 TestError("table X { Y:byte; } root_type X; { Y:1 } { Y:1 }", "end of file");
1306 TestError("table X { Y:byte; } root_type X; { Y:1 } table Y{ Z:int }",
1307 "end of file");
1308 TestError("root_type X;", "unknown root");
1309 TestError("struct X { Y:int; } root_type X;", "a table");
1310 TestError("union X { Y }", "referenced");
1311 TestError("union Z { X } struct X { Y:int; }", "only tables");
1312 TestError("table X { Y:[int]; YLength:int; }", "clash");
1313 TestError("table X { Y:byte; } root_type X; { Y:1, Y:2 }", "more than once");
1314 // float to integer conversion is forbidden
1315 TestError("table X { Y:int; } root_type X; { Y:1.0 }", "float");
1316 TestError("table X { Y:bool; } root_type X; { Y:1.0 }", "float");
1317 TestError("enum X:bool { Y = true }", "must be integral");
1318 }
1319
1320 template<typename T>
TestValue(const char * json,const char * type_name,const char * decls=nullptr)1321 T TestValue(const char *json, const char *type_name,
1322 const char *decls = nullptr) {
1323 flatbuffers::Parser parser;
1324 parser.builder_.ForceDefaults(true); // return defaults
1325 auto check_default = json ? false : true;
1326 if (check_default) { parser.opts.output_default_scalars_in_json = true; }
1327 // Simple schema.
1328 std::string schema = std::string(decls ? decls : "") + "\n" +
1329 "table X { Y:" + std::string(type_name) +
1330 "; } root_type X;";
1331 auto schema_done = parser.Parse(schema.c_str());
1332 TEST_EQ_STR(parser.error_.c_str(), "");
1333 TEST_EQ(schema_done, true);
1334
1335 auto done = parser.Parse(check_default ? "{}" : json);
1336 TEST_EQ_STR(parser.error_.c_str(), "");
1337 TEST_EQ(done, true);
1338
1339 // Check with print.
1340 std::string print_back;
1341 parser.opts.indent_step = -1;
1342 TEST_EQ(GenerateText(parser, parser.builder_.GetBufferPointer(), &print_back),
1343 true);
1344 // restore value from its default
1345 if (check_default) { TEST_EQ(parser.Parse(print_back.c_str()), true); }
1346
1347 auto root = flatbuffers::GetRoot<flatbuffers::Table>(
1348 parser.builder_.GetBufferPointer());
1349 return root->GetField<T>(flatbuffers::FieldIndexToOffset(0), 0);
1350 }
1351
FloatCompare(float a,float b)1352 bool FloatCompare(float a, float b) { return fabs(a - b) < 0.001; }
1353
1354 // Additional parser testing not covered elsewhere.
ValueTest()1355 void ValueTest() {
1356 // Test scientific notation numbers.
1357 TEST_EQ(FloatCompare(TestValue<float>("{ Y:0.0314159e+2 }", "float"),
1358 3.14159f),
1359 true);
1360 // number in string
1361 TEST_EQ(FloatCompare(TestValue<float>("{ Y:\"0.0314159e+2\" }", "float"),
1362 3.14159f),
1363 true);
1364
1365 // Test conversion functions.
1366 TEST_EQ(FloatCompare(TestValue<float>("{ Y:cos(rad(180)) }", "float"), -1),
1367 true);
1368
1369 // int embedded to string
1370 TEST_EQ(TestValue<int>("{ Y:\"-876\" }", "int=-123"), -876);
1371 TEST_EQ(TestValue<int>("{ Y:\"876\" }", "int=-123"), 876);
1372
1373 // Test negative hex constant.
1374 TEST_EQ(TestValue<int>("{ Y:-0x8ea0 }", "int=-0x8ea0"), -36512);
1375 TEST_EQ(TestValue<int>(nullptr, "int=-0x8ea0"), -36512);
1376
1377 // positive hex constant
1378 TEST_EQ(TestValue<int>("{ Y:0x1abcdef }", "int=0x1"), 0x1abcdef);
1379 // with optional '+' sign
1380 TEST_EQ(TestValue<int>("{ Y:+0x1abcdef }", "int=+0x1"), 0x1abcdef);
1381 // hex in string
1382 TEST_EQ(TestValue<int>("{ Y:\"0x1abcdef\" }", "int=+0x1"), 0x1abcdef);
1383
1384 // Make sure we do unsigned 64bit correctly.
1385 TEST_EQ(TestValue<uint64_t>("{ Y:12335089644688340133 }", "ulong"),
1386 12335089644688340133ULL);
1387
1388 // bool in string
1389 TEST_EQ(TestValue<bool>("{ Y:\"false\" }", "bool=true"), false);
1390 TEST_EQ(TestValue<bool>("{ Y:\"true\" }", "bool=\"true\""), true);
1391 TEST_EQ(TestValue<bool>("{ Y:'false' }", "bool=true"), false);
1392 TEST_EQ(TestValue<bool>("{ Y:'true' }", "bool=\"true\""), true);
1393
1394 // check comments before and after json object
1395 TEST_EQ(TestValue<int>("/*before*/ { Y:1 } /*after*/", "int"), 1);
1396 TEST_EQ(TestValue<int>("//before \n { Y:1 } //after", "int"), 1);
1397
1398 }
1399
NestedListTest()1400 void NestedListTest() {
1401 flatbuffers::Parser parser1;
1402 TEST_EQ(parser1.Parse("struct Test { a:short; b:byte; } table T { F:[Test]; }"
1403 "root_type T;"
1404 "{ F:[ [10,20], [30,40]] }"),
1405 true);
1406 }
1407
EnumStringsTest()1408 void EnumStringsTest() {
1409 flatbuffers::Parser parser1;
1410 TEST_EQ(parser1.Parse("enum E:byte { A, B, C } table T { F:[E]; }"
1411 "root_type T;"
1412 "{ F:[ A, B, \"C\", \"A B C\" ] }"),
1413 true);
1414 flatbuffers::Parser parser2;
1415 TEST_EQ(parser2.Parse("enum E:byte { A, B, C } table T { F:[int]; }"
1416 "root_type T;"
1417 "{ F:[ \"E.C\", \"E.A E.B E.C\" ] }"),
1418 true);
1419 }
1420
EnumNamesTest()1421 void EnumNamesTest() {
1422 TEST_EQ_STR("Red", EnumNameColor(Color_Red));
1423 TEST_EQ_STR("Green", EnumNameColor(Color_Green));
1424 TEST_EQ_STR("Blue", EnumNameColor(Color_Blue));
1425 // Check that Color to string don't crash while decode a mixture of Colors.
1426 // 1) Example::Color enum is enum with unfixed underlying type.
1427 // 2) Valid enum range: [0; 2^(ceil(log2(Color_ANY))) - 1].
1428 // Consequence: A value is out of this range will lead to UB (since C++17).
1429 // For details see C++17 standard or explanation on the SO:
1430 // stackoverflow.com/questions/18195312/what-happens-if-you-static-cast-invalid-value-to-enum-class
1431 TEST_EQ_STR("", EnumNameColor(static_cast<Color>(0)));
1432 TEST_EQ_STR("", EnumNameColor(static_cast<Color>(Color_ANY-1)));
1433 TEST_EQ_STR("", EnumNameColor(static_cast<Color>(Color_ANY+1)));
1434 }
1435
EnumOutOfRangeTest()1436 void EnumOutOfRangeTest() {
1437 TestError("enum X:byte { Y = 128 }", "enum value does not fit");
1438 TestError("enum X:byte { Y = -129 }", "enum value does not fit");
1439 TestError("enum X:byte { Y = 127, Z }", "enum value does not fit");
1440 TestError("enum X:ubyte { Y = -1 }", "enum value does not fit");
1441 TestError("enum X:ubyte { Y = 256 }", "enum value does not fit");
1442 // Unions begin with an implicit "NONE = 0".
1443 TestError("table Y{} union X { Y = -1 }",
1444 "enum values must be specified in ascending order");
1445 TestError("table Y{} union X { Y = 256 }", "enum value does not fit");
1446 TestError("table Y{} union X { Y = 255, Z:Y }", "enum value does not fit");
1447 TestError("enum X:int { Y = -2147483649 }", "enum value does not fit");
1448 TestError("enum X:int { Y = 2147483648 }", "enum value does not fit");
1449 TestError("enum X:uint { Y = -1 }", "enum value does not fit");
1450 TestError("enum X:uint { Y = 4294967297 }", "enum value does not fit");
1451 TestError("enum X:long { Y = 9223372036854775808 }", "constant does not fit");
1452 TestError("enum X:long { Y = 9223372036854775807, Z }", "enum value overflows");
1453 TestError("enum X:ulong { Y = -1 }", "enum value does not fit");
1454 // TODO: these are perfectly valid constants that shouldn't fail
1455 TestError("enum X:ulong { Y = 13835058055282163712 }", "constant does not fit");
1456 TestError("enum X:ulong { Y = 18446744073709551615 }", "constant does not fit");
1457 }
1458
EnumValueTest()1459 void EnumValueTest() {
1460 // json: "{ Y:0 }", schema: table X { Y : "E"}
1461 // 0 in enum (V=0) E then Y=0 is valid.
1462 TEST_EQ(TestValue<int>("{ Y:0 }", "E", "enum E:int { V }"), 0);
1463 TEST_EQ(TestValue<int>("{ Y:V }", "E", "enum E:int { V }"), 0);
1464 // A default value of Y is 0.
1465 TEST_EQ(TestValue<int>("{ }", "E", "enum E:int { V }"), 0);
1466 TEST_EQ(TestValue<int>("{ Y:5 }", "E=V", "enum E:int { V=5 }"), 5);
1467 // Generate json with defaults and check.
1468 TEST_EQ(TestValue<int>(nullptr, "E=V", "enum E:int { V=5 }"), 5);
1469 // 5 in enum
1470 TEST_EQ(TestValue<int>("{ Y:5 }", "E", "enum E:int { Z, V=5 }"), 5);
1471 TEST_EQ(TestValue<int>("{ Y:5 }", "E=V", "enum E:int { Z, V=5 }"), 5);
1472 // Generate json with defaults and check.
1473 TEST_EQ(TestValue<int>(nullptr, "E", "enum E:int { Z, V=5 }"), 0);
1474 TEST_EQ(TestValue<int>(nullptr, "E=V", "enum E:int { Z, V=5 }"), 5);
1475 }
1476
IntegerOutOfRangeTest()1477 void IntegerOutOfRangeTest() {
1478 TestError("table T { F:byte; } root_type T; { F:128 }",
1479 "constant does not fit");
1480 TestError("table T { F:byte; } root_type T; { F:-129 }",
1481 "constant does not fit");
1482 TestError("table T { F:ubyte; } root_type T; { F:256 }",
1483 "constant does not fit");
1484 TestError("table T { F:ubyte; } root_type T; { F:-1 }",
1485 "constant does not fit");
1486 TestError("table T { F:short; } root_type T; { F:32768 }",
1487 "constant does not fit");
1488 TestError("table T { F:short; } root_type T; { F:-32769 }",
1489 "constant does not fit");
1490 TestError("table T { F:ushort; } root_type T; { F:65536 }",
1491 "constant does not fit");
1492 TestError("table T { F:ushort; } root_type T; { F:-1 }",
1493 "constant does not fit");
1494 TestError("table T { F:int; } root_type T; { F:2147483648 }",
1495 "constant does not fit");
1496 TestError("table T { F:int; } root_type T; { F:-2147483649 }",
1497 "constant does not fit");
1498 TestError("table T { F:uint; } root_type T; { F:4294967296 }",
1499 "constant does not fit");
1500 TestError("table T { F:uint; } root_type T; { F:-1 }",
1501 "constant does not fit");
1502 // Check fixed width aliases
1503 TestError("table X { Y:uint8; } root_type X; { Y: -1 }", "does not fit");
1504 TestError("table X { Y:uint8; } root_type X; { Y: 256 }", "does not fit");
1505 TestError("table X { Y:uint16; } root_type X; { Y: -1 }", "does not fit");
1506 TestError("table X { Y:uint16; } root_type X; { Y: 65536 }", "does not fit");
1507 TestError("table X { Y:uint32; } root_type X; { Y: -1 }", "");
1508 TestError("table X { Y:uint32; } root_type X; { Y: 4294967296 }",
1509 "does not fit");
1510 TestError("table X { Y:uint64; } root_type X; { Y: -1 }", "");
1511 TestError("table X { Y:uint64; } root_type X; { Y: -9223372036854775809 }",
1512 "does not fit");
1513 TestError("table X { Y:uint64; } root_type X; { Y: 18446744073709551616 }",
1514 "does not fit");
1515
1516 TestError("table X { Y:int8; } root_type X; { Y: -129 }", "does not fit");
1517 TestError("table X { Y:int8; } root_type X; { Y: 128 }", "does not fit");
1518 TestError("table X { Y:int16; } root_type X; { Y: -32769 }", "does not fit");
1519 TestError("table X { Y:int16; } root_type X; { Y: 32768 }", "does not fit");
1520 TestError("table X { Y:int32; } root_type X; { Y: -2147483649 }", "");
1521 TestError("table X { Y:int32; } root_type X; { Y: 2147483648 }",
1522 "does not fit");
1523 TestError("table X { Y:int64; } root_type X; { Y: -9223372036854775809 }",
1524 "does not fit");
1525 TestError("table X { Y:int64; } root_type X; { Y: 9223372036854775808 }",
1526 "does not fit");
1527 // check out-of-int64 as int8
1528 TestError("table X { Y:int8; } root_type X; { Y: -9223372036854775809 }",
1529 "does not fit");
1530 TestError("table X { Y:int8; } root_type X; { Y: 9223372036854775808 }",
1531 "does not fit");
1532
1533 // Check default values
1534 TestError("table X { Y:int64=-9223372036854775809; } root_type X; {}",
1535 "does not fit");
1536 TestError("table X { Y:int64= 9223372036854775808; } root_type X; {}",
1537 "does not fit");
1538 TestError("table X { Y:uint64; } root_type X; { Y: -1 }", "");
1539 TestError("table X { Y:uint64=-9223372036854775809; } root_type X; {}",
1540 "does not fit");
1541 TestError("table X { Y:uint64= 18446744073709551616; } root_type X; {}",
1542 "does not fit");
1543 }
1544
IntegerBoundaryTest()1545 void IntegerBoundaryTest() {
1546 // Check numerical compatibility with non-C++ languages.
1547 // By the C++ standard, std::numerical_limits<int64_t>::min() == -9223372036854775807 (-2^63+1) or less*
1548 // The Flatbuffers grammar and most of the languages (C#, Java, Rust) expect
1549 // that minimum values are: -128, -32768,.., -9223372036854775808.
1550 // Since C++20, static_cast<int64>(0x8000000000000000ULL) is well-defined two's complement cast.
1551 // Therefore -9223372036854775808 should be valid negative value.
1552 TEST_EQ(flatbuffers::numeric_limits<int8_t>::min(), -128);
1553 TEST_EQ(flatbuffers::numeric_limits<int8_t>::max(), 127);
1554 TEST_EQ(flatbuffers::numeric_limits<int16_t>::min(), -32768);
1555 TEST_EQ(flatbuffers::numeric_limits<int16_t>::max(), 32767);
1556 TEST_EQ(flatbuffers::numeric_limits<int32_t>::min() + 1, -2147483647);
1557 TEST_EQ(flatbuffers::numeric_limits<int32_t>::max(), 2147483647ULL);
1558 TEST_EQ(flatbuffers::numeric_limits<int64_t>::min() + 1LL,
1559 -9223372036854775807LL);
1560 TEST_EQ(flatbuffers::numeric_limits<int64_t>::max(), 9223372036854775807ULL);
1561 TEST_EQ(flatbuffers::numeric_limits<uint8_t>::max(), 255);
1562 TEST_EQ(flatbuffers::numeric_limits<uint16_t>::max(), 65535);
1563 TEST_EQ(flatbuffers::numeric_limits<uint32_t>::max(), 4294967295ULL);
1564 TEST_EQ(flatbuffers::numeric_limits<uint64_t>::max(),
1565 18446744073709551615ULL);
1566
1567 TEST_EQ(TestValue<int8_t>("{ Y:127 }", "byte"), 127);
1568 TEST_EQ(TestValue<int8_t>("{ Y:-128 }", "byte"), -128);
1569 TEST_EQ(TestValue<uint8_t>("{ Y:255 }", "ubyte"), 255);
1570 TEST_EQ(TestValue<uint8_t>("{ Y:0 }", "ubyte"), 0);
1571 TEST_EQ(TestValue<int16_t>("{ Y:32767 }", "short"), 32767);
1572 TEST_EQ(TestValue<int16_t>("{ Y:-32768 }", "short"), -32768);
1573 TEST_EQ(TestValue<uint16_t>("{ Y:65535 }", "ushort"), 65535);
1574 TEST_EQ(TestValue<uint16_t>("{ Y:0 }", "ushort"), 0);
1575 TEST_EQ(TestValue<int32_t>("{ Y:2147483647 }", "int"), 2147483647);
1576 TEST_EQ(TestValue<int32_t>("{ Y:-2147483648 }", "int") + 1, -2147483647);
1577 TEST_EQ(TestValue<uint32_t>("{ Y:4294967295 }", "uint"), 4294967295);
1578 TEST_EQ(TestValue<uint32_t>("{ Y:0 }", "uint"), 0);
1579 TEST_EQ(TestValue<int64_t>("{ Y:9223372036854775807 }", "long"),
1580 9223372036854775807LL);
1581 TEST_EQ(TestValue<int64_t>("{ Y:-9223372036854775808 }", "long") + 1LL,
1582 -9223372036854775807LL);
1583 TEST_EQ(TestValue<uint64_t>("{ Y:18446744073709551615 }", "ulong"),
1584 18446744073709551615ULL);
1585 TEST_EQ(TestValue<uint64_t>("{ Y:0 }", "ulong"), 0);
1586 TEST_EQ(TestValue<uint64_t>("{ Y: 18446744073709551615 }", "uint64"),
1587 18446744073709551615ULL);
1588 // check that the default works
1589 TEST_EQ(TestValue<uint64_t>(nullptr, "uint64 = 18446744073709551615"),
1590 18446744073709551615ULL);
1591 }
1592
ValidFloatTest()1593 void ValidFloatTest() {
1594 const auto infinityf = flatbuffers::numeric_limits<float>::infinity();
1595 const auto infinityd = flatbuffers::numeric_limits<double>::infinity();
1596 // check rounding to infinity
1597 TEST_EQ(TestValue<float>("{ Y:+3.4029e+38 }", "float"), +infinityf);
1598 TEST_EQ(TestValue<float>("{ Y:-3.4029e+38 }", "float"), -infinityf);
1599 TEST_EQ(TestValue<double>("{ Y:+1.7977e+308 }", "double"), +infinityd);
1600 TEST_EQ(TestValue<double>("{ Y:-1.7977e+308 }", "double"), -infinityd);
1601
1602 TEST_EQ(
1603 FloatCompare(TestValue<float>("{ Y:0.0314159e+2 }", "float"), 3.14159f),
1604 true);
1605 // float in string
1606 TEST_EQ(FloatCompare(TestValue<float>("{ Y:\" 0.0314159e+2 \" }", "float"),
1607 3.14159f),
1608 true);
1609
1610 TEST_EQ(TestValue<float>("{ Y:1 }", "float"), 1.0f);
1611 TEST_EQ(TestValue<float>("{ Y:1.0 }", "float"), 1.0f);
1612 TEST_EQ(TestValue<float>("{ Y:1. }", "float"), 1.0f);
1613 TEST_EQ(TestValue<float>("{ Y:+1. }", "float"), 1.0f);
1614 TEST_EQ(TestValue<float>("{ Y:-1. }", "float"), -1.0f);
1615 TEST_EQ(TestValue<float>("{ Y:1.e0 }", "float"), 1.0f);
1616 TEST_EQ(TestValue<float>("{ Y:1.e+0 }", "float"), 1.0f);
1617 TEST_EQ(TestValue<float>("{ Y:1.e-0 }", "float"), 1.0f);
1618 TEST_EQ(TestValue<float>("{ Y:0.125 }", "float"), 0.125f);
1619 TEST_EQ(TestValue<float>("{ Y:.125 }", "float"), 0.125f);
1620 TEST_EQ(TestValue<float>("{ Y:-.125 }", "float"), -0.125f);
1621 TEST_EQ(TestValue<float>("{ Y:+.125 }", "float"), +0.125f);
1622 TEST_EQ(TestValue<float>("{ Y:5 }", "float"), 5.0f);
1623 TEST_EQ(TestValue<float>("{ Y:\"5\" }", "float"), 5.0f);
1624
1625 #if defined(FLATBUFFERS_HAS_NEW_STRTOD)
1626 // Old MSVC versions may have problem with this check.
1627 // https://www.exploringbinary.com/visual-c-plus-plus-strtod-still-broken/
1628 TEST_EQ(TestValue<double>("{ Y:6.9294956446009195e15 }", "double"),
1629 6929495644600920.0);
1630 // check nan's
1631 TEST_EQ(std::isnan(TestValue<double>("{ Y:nan }", "double")), true);
1632 TEST_EQ(std::isnan(TestValue<float>("{ Y:nan }", "float")), true);
1633 TEST_EQ(std::isnan(TestValue<float>("{ Y:\"nan\" }", "float")), true);
1634 TEST_EQ(std::isnan(TestValue<float>("{ Y:+nan }", "float")), true);
1635 TEST_EQ(std::isnan(TestValue<float>("{ Y:-nan }", "float")), true);
1636 TEST_EQ(std::isnan(TestValue<float>(nullptr, "float=nan")), true);
1637 TEST_EQ(std::isnan(TestValue<float>(nullptr, "float=-nan")), true);
1638 // check inf
1639 TEST_EQ(TestValue<float>("{ Y:inf }", "float"), infinityf);
1640 TEST_EQ(TestValue<float>("{ Y:\"inf\" }", "float"), infinityf);
1641 TEST_EQ(TestValue<float>("{ Y:+inf }", "float"), infinityf);
1642 TEST_EQ(TestValue<float>("{ Y:-inf }", "float"), -infinityf);
1643 TEST_EQ(TestValue<float>(nullptr, "float=inf"), infinityf);
1644 TEST_EQ(TestValue<float>(nullptr, "float=-inf"), -infinityf);
1645 TestValue<double>(
1646 "{ Y : [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, "
1647 "3.0e2] }",
1648 "[double]");
1649 TestValue<float>(
1650 "{ Y : [0.2, .2, 1.0, -1.0, -2., 2., 1e0, -1e0, 1.0e0, -1.0e0, -3.e2, "
1651 "3.0e2] }",
1652 "[float]");
1653
1654 // Test binary format of float point.
1655 // https://en.cppreference.com/w/cpp/language/floating_literal
1656 // 0x11.12p-1 = (1*16^1 + 2*16^0 + 3*16^-1 + 4*16^-2) * 2^-1 =
1657 TEST_EQ(TestValue<double>("{ Y:0x12.34p-1 }", "double"), 9.1015625);
1658 // hex fraction 1.2 (decimal 1.125) scaled by 2^3, that is 9.0
1659 TEST_EQ(TestValue<float>("{ Y:-0x0.2p0 }", "float"), -0.125f);
1660 TEST_EQ(TestValue<float>("{ Y:-0x.2p1 }", "float"), -0.25f);
1661 TEST_EQ(TestValue<float>("{ Y:0x1.2p3 }", "float"), 9.0f);
1662 TEST_EQ(TestValue<float>("{ Y:0x10.1p0 }", "float"), 16.0625f);
1663 TEST_EQ(TestValue<double>("{ Y:0x1.2p3 }", "double"), 9.0);
1664 TEST_EQ(TestValue<double>("{ Y:0x10.1p0 }", "double"), 16.0625);
1665 TEST_EQ(TestValue<double>("{ Y:0xC.68p+2 }", "double"), 49.625);
1666 TestValue<double>("{ Y : [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[double]");
1667 TestValue<float>("{ Y : [0x20.4ep1, +0x20.4ep1, -0x20.4ep1] }", "[float]");
1668
1669 #else // FLATBUFFERS_HAS_NEW_STRTOD
1670 TEST_OUTPUT_LINE("FLATBUFFERS_HAS_NEW_STRTOD tests skipped");
1671 #endif // FLATBUFFERS_HAS_NEW_STRTOD
1672 }
1673
InvalidFloatTest()1674 void InvalidFloatTest() {
1675 auto invalid_msg = "invalid number";
1676 auto comma_msg = "expecting: ,";
1677 TestError("table T { F:float; } root_type T; { F:1,0 }", "");
1678 TestError("table T { F:float; } root_type T; { F:. }", "");
1679 TestError("table T { F:float; } root_type T; { F:- }", invalid_msg);
1680 TestError("table T { F:float; } root_type T; { F:+ }", invalid_msg);
1681 TestError("table T { F:float; } root_type T; { F:-. }", invalid_msg);
1682 TestError("table T { F:float; } root_type T; { F:+. }", invalid_msg);
1683 TestError("table T { F:float; } root_type T; { F:.e }", "");
1684 TestError("table T { F:float; } root_type T; { F:-e }", invalid_msg);
1685 TestError("table T { F:float; } root_type T; { F:+e }", invalid_msg);
1686 TestError("table T { F:float; } root_type T; { F:-.e }", invalid_msg);
1687 TestError("table T { F:float; } root_type T; { F:+.e }", invalid_msg);
1688 TestError("table T { F:float; } root_type T; { F:-e1 }", invalid_msg);
1689 TestError("table T { F:float; } root_type T; { F:+e1 }", invalid_msg);
1690 TestError("table T { F:float; } root_type T; { F:1.0e+ }", invalid_msg);
1691 TestError("table T { F:float; } root_type T; { F:1.0e- }", invalid_msg);
1692 // exponent pP is mandatory for hex-float
1693 TestError("table T { F:float; } root_type T; { F:0x0 }", invalid_msg);
1694 TestError("table T { F:float; } root_type T; { F:-0x. }", invalid_msg);
1695 TestError("table T { F:float; } root_type T; { F:0x. }", invalid_msg);
1696 // eE not exponent in hex-float!
1697 TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg);
1698 TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg);
1699 TestError("table T { F:float; } root_type T; { F:0x0.0p }", invalid_msg);
1700 TestError("table T { F:float; } root_type T; { F:0x0.0p+ }", invalid_msg);
1701 TestError("table T { F:float; } root_type T; { F:0x0.0p- }", invalid_msg);
1702 TestError("table T { F:float; } root_type T; { F:0x0.0pa1 }", invalid_msg);
1703 TestError("table T { F:float; } root_type T; { F:0x0.0e+ }", invalid_msg);
1704 TestError("table T { F:float; } root_type T; { F:0x0.0e- }", invalid_msg);
1705 TestError("table T { F:float; } root_type T; { F:0x0.0e+0 }", invalid_msg);
1706 TestError("table T { F:float; } root_type T; { F:0x0.0e-0 }", invalid_msg);
1707 TestError("table T { F:float; } root_type T; { F:0x0.0ep+ }", invalid_msg);
1708 TestError("table T { F:float; } root_type T; { F:0x0.0ep- }", invalid_msg);
1709 TestError("table T { F:float; } root_type T; { F:1.2.3 }", invalid_msg);
1710 TestError("table T { F:float; } root_type T; { F:1.2.e3 }", invalid_msg);
1711 TestError("table T { F:float; } root_type T; { F:1.2e.3 }", invalid_msg);
1712 TestError("table T { F:float; } root_type T; { F:1.2e0.3 }", invalid_msg);
1713 TestError("table T { F:float; } root_type T; { F:1.2e3. }", invalid_msg);
1714 TestError("table T { F:float; } root_type T; { F:1.2e3.0 }", invalid_msg);
1715 TestError("table T { F:float; } root_type T; { F:+-1.0 }", invalid_msg);
1716 TestError("table T { F:float; } root_type T; { F:1.0e+-1 }", invalid_msg);
1717 TestError("table T { F:float; } root_type T; { F:\"1.0e+-1\" }", invalid_msg);
1718 TestError("table T { F:float; } root_type T; { F:1.e0e }", comma_msg);
1719 TestError("table T { F:float; } root_type T; { F:0x1.p0e }", comma_msg);
1720 TestError("table T { F:float; } root_type T; { F:\" 0x10 \" }", invalid_msg);
1721 // floats in string
1722 TestError("table T { F:float; } root_type T; { F:\"1,2.\" }", invalid_msg);
1723 TestError("table T { F:float; } root_type T; { F:\"1.2e3.\" }", invalid_msg);
1724 TestError("table T { F:float; } root_type T; { F:\"0x1.p0e\" }", invalid_msg);
1725 TestError("table T { F:float; } root_type T; { F:\"0x1.0\" }", invalid_msg);
1726 TestError("table T { F:float; } root_type T; { F:\" 0x1.0\" }", invalid_msg);
1727 TestError("table T { F:float; } root_type T; { F:\"+ 0\" }", invalid_msg);
1728 // disable escapes for "number-in-string"
1729 TestError("table T { F:float; } root_type T; { F:\"\\f1.2e3.\" }", "invalid");
1730 TestError("table T { F:float; } root_type T; { F:\"\\t1.2e3.\" }", "invalid");
1731 TestError("table T { F:float; } root_type T; { F:\"\\n1.2e3.\" }", "invalid");
1732 TestError("table T { F:float; } root_type T; { F:\"\\r1.2e3.\" }", "invalid");
1733 TestError("table T { F:float; } root_type T; { F:\"4\\x005\" }", "invalid");
1734 TestError("table T { F:float; } root_type T; { F:\"\'12\'\" }", invalid_msg);
1735 // null is not a number constant!
1736 TestError("table T { F:float; } root_type T; { F:\"null\" }", invalid_msg);
1737 TestError("table T { F:float; } root_type T; { F:null }", invalid_msg);
1738 }
1739
GenerateTableTextTest()1740 void GenerateTableTextTest() {
1741 std::string schemafile;
1742 std::string jsonfile;
1743 bool ok =
1744 flatbuffers::LoadFile((test_data_path + "monster_test.fbs").c_str(),
1745 false, &schemafile) &&
1746 flatbuffers::LoadFile((test_data_path + "monsterdata_test.json").c_str(),
1747 false, &jsonfile);
1748 TEST_EQ(ok, true);
1749 auto include_test_path =
1750 flatbuffers::ConCatPathFileName(test_data_path, "include_test");
1751 const char *include_directories[] = {test_data_path.c_str(),
1752 include_test_path.c_str(), nullptr};
1753 flatbuffers::IDLOptions opt;
1754 opt.indent_step = -1;
1755 flatbuffers::Parser parser(opt);
1756 ok = parser.Parse(schemafile.c_str(), include_directories) &&
1757 parser.Parse(jsonfile.c_str(), include_directories);
1758 TEST_EQ(ok, true);
1759 // Test root table
1760 const Monster *monster = GetMonster(parser.builder_.GetBufferPointer());
1761 std::string jsongen;
1762 auto result = GenerateTextFromTable(parser, monster, "MyGame.Example.Monster",
1763 &jsongen);
1764 TEST_EQ(result, true);
1765 // Test sub table
1766 const Vec3 *pos = monster->pos();
1767 jsongen.clear();
1768 result = GenerateTextFromTable(parser, pos, "MyGame.Example.Vec3", &jsongen);
1769 TEST_EQ(result, true);
1770 TEST_EQ_STR(
1771 jsongen.c_str(),
1772 "{x: 1.0,y: 2.0,z: 3.0,test1: 3.0,test2: \"Green\",test3: {a: 5,b: 6}}");
1773 const Test &test3 = pos->test3();
1774 jsongen.clear();
1775 result =
1776 GenerateTextFromTable(parser, &test3, "MyGame.Example.Test", &jsongen);
1777 TEST_EQ(result, true);
1778 TEST_EQ_STR(jsongen.c_str(), "{a: 5,b: 6}");
1779 const Test *test4 = monster->test4()->Get(0);
1780 jsongen.clear();
1781 result =
1782 GenerateTextFromTable(parser, test4, "MyGame.Example.Test", &jsongen);
1783 TEST_EQ(result, true);
1784 TEST_EQ_STR(jsongen.c_str(), "{a: 10,b: 20}");
1785 }
1786
1787 template<typename T>
NumericUtilsTestInteger(const char * lower,const char * upper)1788 void NumericUtilsTestInteger(const char *lower, const char *upper) {
1789 T x;
1790 TEST_EQ(flatbuffers::StringToNumber("1q", &x), false);
1791 TEST_EQ(x, 0);
1792 TEST_EQ(flatbuffers::StringToNumber(upper, &x), false);
1793 TEST_EQ(x, flatbuffers::numeric_limits<T>::max());
1794 TEST_EQ(flatbuffers::StringToNumber(lower, &x), false);
1795 auto expval = flatbuffers::is_unsigned<T>::value
1796 ? flatbuffers::numeric_limits<T>::max()
1797 : flatbuffers::numeric_limits<T>::lowest();
1798 TEST_EQ(x, expval);
1799 }
1800
1801 template<typename T>
NumericUtilsTestFloat(const char * lower,const char * upper)1802 void NumericUtilsTestFloat(const char *lower, const char *upper) {
1803 T f;
1804 TEST_EQ(flatbuffers::StringToNumber("", &f), false);
1805 TEST_EQ(flatbuffers::StringToNumber("1q", &f), false);
1806 TEST_EQ(f, 0);
1807 TEST_EQ(flatbuffers::StringToNumber(upper, &f), true);
1808 TEST_EQ(f, +flatbuffers::numeric_limits<T>::infinity());
1809 TEST_EQ(flatbuffers::StringToNumber(lower, &f), true);
1810 TEST_EQ(f, -flatbuffers::numeric_limits<T>::infinity());
1811 }
1812
NumericUtilsTest()1813 void NumericUtilsTest() {
1814 NumericUtilsTestInteger<uint64_t>("-1", "18446744073709551616");
1815 NumericUtilsTestInteger<uint8_t>("-1", "256");
1816 NumericUtilsTestInteger<int64_t>("-9223372036854775809",
1817 "9223372036854775808");
1818 NumericUtilsTestInteger<int8_t>("-129", "128");
1819 NumericUtilsTestFloat<float>("-3.4029e+38", "+3.4029e+38");
1820 NumericUtilsTestFloat<float>("-1.7977e+308", "+1.7977e+308");
1821 }
1822
IsAsciiUtilsTest()1823 void IsAsciiUtilsTest() {
1824 char c = -128;
1825 for (int cnt = 0; cnt < 256; cnt++) {
1826 auto alpha = (('a' <= c) && (c <= 'z')) || (('A' <= c) && (c <= 'Z'));
1827 auto dec = (('0' <= c) && (c <= '9'));
1828 auto hex = (('a' <= c) && (c <= 'f')) || (('A' <= c) && (c <= 'F'));
1829 TEST_EQ(flatbuffers::is_alpha(c), alpha);
1830 TEST_EQ(flatbuffers::is_alnum(c), alpha || dec);
1831 TEST_EQ(flatbuffers::is_digit(c), dec);
1832 TEST_EQ(flatbuffers::is_xdigit(c), dec || hex);
1833 c += 1;
1834 }
1835 }
1836
UnicodeTest()1837 void UnicodeTest() {
1838 flatbuffers::Parser parser;
1839 // Without setting allow_non_utf8 = true, we treat \x sequences as byte
1840 // sequences which are then validated as UTF-8.
1841 TEST_EQ(parser.Parse("table T { F:string; }"
1842 "root_type T;"
1843 "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
1844 "\\u5225\\u30B5\\u30A4\\u30C8\\xE2\\x82\\xAC\\u0080\\uD8"
1845 "3D\\uDE0E\" }"),
1846 true);
1847 std::string jsongen;
1848 parser.opts.indent_step = -1;
1849 auto result =
1850 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
1851 TEST_EQ(result, true);
1852 TEST_EQ_STR(jsongen.c_str(),
1853 "{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
1854 "\\u5225\\u30B5\\u30A4\\u30C8\\u20AC\\u0080\\uD83D\\uDE0E\"}");
1855 }
1856
UnicodeTestAllowNonUTF8()1857 void UnicodeTestAllowNonUTF8() {
1858 flatbuffers::Parser parser;
1859 parser.opts.allow_non_utf8 = true;
1860 TEST_EQ(
1861 parser.Parse(
1862 "table T { F:string; }"
1863 "root_type T;"
1864 "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
1865 "\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"),
1866 true);
1867 std::string jsongen;
1868 parser.opts.indent_step = -1;
1869 auto result =
1870 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
1871 TEST_EQ(result, true);
1872 TEST_EQ_STR(
1873 jsongen.c_str(),
1874 "{F: \"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
1875 "\\u5225\\u30B5\\u30A4\\u30C8\\u0001\\x80\\u0080\\uD83D\\uDE0E\"}");
1876 }
1877
UnicodeTestGenerateTextFailsOnNonUTF8()1878 void UnicodeTestGenerateTextFailsOnNonUTF8() {
1879 flatbuffers::Parser parser;
1880 // Allow non-UTF-8 initially to model what happens when we load a binary
1881 // flatbuffer from disk which contains non-UTF-8 strings.
1882 parser.opts.allow_non_utf8 = true;
1883 TEST_EQ(
1884 parser.Parse(
1885 "table T { F:string; }"
1886 "root_type T;"
1887 "{ F:\"\\u20AC\\u00A2\\u30E6\\u30FC\\u30B6\\u30FC"
1888 "\\u5225\\u30B5\\u30A4\\u30C8\\x01\\x80\\u0080\\uD83D\\uDE0E\" }"),
1889 true);
1890 std::string jsongen;
1891 parser.opts.indent_step = -1;
1892 // Now, disallow non-UTF-8 (the default behavior) so GenerateText indicates
1893 // failure.
1894 parser.opts.allow_non_utf8 = false;
1895 auto result =
1896 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
1897 TEST_EQ(result, false);
1898 }
1899
UnicodeSurrogatesTest()1900 void UnicodeSurrogatesTest() {
1901 flatbuffers::Parser parser;
1902
1903 TEST_EQ(parser.Parse("table T { F:string (id: 0); }"
1904 "root_type T;"
1905 "{ F:\"\\uD83D\\uDCA9\"}"),
1906 true);
1907 auto root = flatbuffers::GetRoot<flatbuffers::Table>(
1908 parser.builder_.GetBufferPointer());
1909 auto string = root->GetPointer<flatbuffers::String *>(
1910 flatbuffers::FieldIndexToOffset(0));
1911 TEST_EQ_STR(string->c_str(), "\xF0\x9F\x92\xA9");
1912 }
1913
UnicodeInvalidSurrogatesTest()1914 void UnicodeInvalidSurrogatesTest() {
1915 TestError(
1916 "table T { F:string; }"
1917 "root_type T;"
1918 "{ F:\"\\uD800\"}",
1919 "unpaired high surrogate");
1920 TestError(
1921 "table T { F:string; }"
1922 "root_type T;"
1923 "{ F:\"\\uD800abcd\"}",
1924 "unpaired high surrogate");
1925 TestError(
1926 "table T { F:string; }"
1927 "root_type T;"
1928 "{ F:\"\\uD800\\n\"}",
1929 "unpaired high surrogate");
1930 TestError(
1931 "table T { F:string; }"
1932 "root_type T;"
1933 "{ F:\"\\uD800\\uD800\"}",
1934 "multiple high surrogates");
1935 TestError(
1936 "table T { F:string; }"
1937 "root_type T;"
1938 "{ F:\"\\uDC00\"}",
1939 "unpaired low surrogate");
1940 }
1941
InvalidUTF8Test()1942 void InvalidUTF8Test() {
1943 // "1 byte" pattern, under min length of 2 bytes
1944 TestError(
1945 "table T { F:string; }"
1946 "root_type T;"
1947 "{ F:\"\x80\"}",
1948 "illegal UTF-8 sequence");
1949 // 2 byte pattern, string too short
1950 TestError(
1951 "table T { F:string; }"
1952 "root_type T;"
1953 "{ F:\"\xDF\"}",
1954 "illegal UTF-8 sequence");
1955 // 3 byte pattern, string too short
1956 TestError(
1957 "table T { F:string; }"
1958 "root_type T;"
1959 "{ F:\"\xEF\xBF\"}",
1960 "illegal UTF-8 sequence");
1961 // 4 byte pattern, string too short
1962 TestError(
1963 "table T { F:string; }"
1964 "root_type T;"
1965 "{ F:\"\xF7\xBF\xBF\"}",
1966 "illegal UTF-8 sequence");
1967 // "5 byte" pattern, string too short
1968 TestError(
1969 "table T { F:string; }"
1970 "root_type T;"
1971 "{ F:\"\xFB\xBF\xBF\xBF\"}",
1972 "illegal UTF-8 sequence");
1973 // "6 byte" pattern, string too short
1974 TestError(
1975 "table T { F:string; }"
1976 "root_type T;"
1977 "{ F:\"\xFD\xBF\xBF\xBF\xBF\"}",
1978 "illegal UTF-8 sequence");
1979 // "7 byte" pattern, string too short
1980 TestError(
1981 "table T { F:string; }"
1982 "root_type T;"
1983 "{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\"}",
1984 "illegal UTF-8 sequence");
1985 // "5 byte" pattern, over max length of 4 bytes
1986 TestError(
1987 "table T { F:string; }"
1988 "root_type T;"
1989 "{ F:\"\xFB\xBF\xBF\xBF\xBF\"}",
1990 "illegal UTF-8 sequence");
1991 // "6 byte" pattern, over max length of 4 bytes
1992 TestError(
1993 "table T { F:string; }"
1994 "root_type T;"
1995 "{ F:\"\xFD\xBF\xBF\xBF\xBF\xBF\"}",
1996 "illegal UTF-8 sequence");
1997 // "7 byte" pattern, over max length of 4 bytes
1998 TestError(
1999 "table T { F:string; }"
2000 "root_type T;"
2001 "{ F:\"\xFE\xBF\xBF\xBF\xBF\xBF\xBF\"}",
2002 "illegal UTF-8 sequence");
2003
2004 // Three invalid encodings for U+000A (\n, aka NEWLINE)
2005 TestError(
2006 "table T { F:string; }"
2007 "root_type T;"
2008 "{ F:\"\xC0\x8A\"}",
2009 "illegal UTF-8 sequence");
2010 TestError(
2011 "table T { F:string; }"
2012 "root_type T;"
2013 "{ F:\"\xE0\x80\x8A\"}",
2014 "illegal UTF-8 sequence");
2015 TestError(
2016 "table T { F:string; }"
2017 "root_type T;"
2018 "{ F:\"\xF0\x80\x80\x8A\"}",
2019 "illegal UTF-8 sequence");
2020
2021 // Two invalid encodings for U+00A9 (COPYRIGHT SYMBOL)
2022 TestError(
2023 "table T { F:string; }"
2024 "root_type T;"
2025 "{ F:\"\xE0\x81\xA9\"}",
2026 "illegal UTF-8 sequence");
2027 TestError(
2028 "table T { F:string; }"
2029 "root_type T;"
2030 "{ F:\"\xF0\x80\x81\xA9\"}",
2031 "illegal UTF-8 sequence");
2032
2033 // Invalid encoding for U+20AC (EURO SYMBOL)
2034 TestError(
2035 "table T { F:string; }"
2036 "root_type T;"
2037 "{ F:\"\xF0\x82\x82\xAC\"}",
2038 "illegal UTF-8 sequence");
2039
2040 // UTF-16 surrogate values between U+D800 and U+DFFF cannot be encoded in
2041 // UTF-8
2042 TestError(
2043 "table T { F:string; }"
2044 "root_type T;"
2045 // U+10400 "encoded" as U+D801 U+DC00
2046 "{ F:\"\xED\xA0\x81\xED\xB0\x80\"}",
2047 "illegal UTF-8 sequence");
2048
2049 // Check independence of identifier from locale.
2050 std::string locale_ident;
2051 locale_ident += "table T { F";
2052 locale_ident += static_cast<char>(-32); // unsigned 0xE0
2053 locale_ident += " :string; }";
2054 locale_ident += "root_type T;";
2055 locale_ident += "{}";
2056 TestError(locale_ident.c_str(), "");
2057 }
2058
UnknownFieldsTest()2059 void UnknownFieldsTest() {
2060 flatbuffers::IDLOptions opts;
2061 opts.skip_unexpected_fields_in_json = true;
2062 flatbuffers::Parser parser(opts);
2063
2064 TEST_EQ(parser.Parse("table T { str:string; i:int;}"
2065 "root_type T;"
2066 "{ str:\"test\","
2067 "unknown_string:\"test\","
2068 "\"unknown_string\":\"test\","
2069 "unknown_int:10,"
2070 "unknown_float:1.0,"
2071 "unknown_array: [ 1, 2, 3, 4],"
2072 "unknown_object: { i: 10 },"
2073 "\"unknown_object\": { \"i\": 10 },"
2074 "i:10}"),
2075 true);
2076
2077 std::string jsongen;
2078 parser.opts.indent_step = -1;
2079 auto result =
2080 GenerateText(parser, parser.builder_.GetBufferPointer(), &jsongen);
2081 TEST_EQ(result, true);
2082 TEST_EQ_STR(jsongen.c_str(), "{str: \"test\",i: 10}");
2083 }
2084
ParseUnionTest()2085 void ParseUnionTest() {
2086 // Unions must be parseable with the type field following the object.
2087 flatbuffers::Parser parser;
2088 TEST_EQ(parser.Parse("table T { A:int; }"
2089 "union U { T }"
2090 "table V { X:U; }"
2091 "root_type V;"
2092 "{ X:{ A:1 }, X_type: T }"),
2093 true);
2094 // Unions must be parsable with prefixed namespace.
2095 flatbuffers::Parser parser2;
2096 TEST_EQ(parser2.Parse("namespace N; table A {} namespace; union U { N.A }"
2097 "table B { e:U; } root_type B;"
2098 "{ e_type: N_A, e: {} }"),
2099 true);
2100 }
2101
InvalidNestedFlatbufferTest()2102 void InvalidNestedFlatbufferTest() {
2103 // First, load and parse FlatBuffer schema (.fbs)
2104 std::string schemafile;
2105 TEST_EQ(flatbuffers::LoadFile((test_data_path + "monster_test.fbs").c_str(),
2106 false, &schemafile),
2107 true);
2108 auto include_test_path =
2109 flatbuffers::ConCatPathFileName(test_data_path, "include_test");
2110 const char *include_directories[] = { test_data_path.c_str(),
2111 include_test_path.c_str(), nullptr };
2112 flatbuffers::Parser parser1;
2113 TEST_EQ(parser1.Parse(schemafile.c_str(), include_directories), true);
2114
2115 // "color" inside nested flatbuffer contains invalid enum value
2116 TEST_EQ(parser1.Parse("{ name: \"Bender\", testnestedflatbuffer: { name: "
2117 "\"Leela\", color: \"nonexistent\"}}"),
2118 false);
2119 // Check that Parser is destroyed correctly after parsing invalid json
2120 }
2121
UnionVectorTest()2122 void UnionVectorTest() {
2123 // load FlatBuffer fbs schema and json.
2124 std::string schemafile, jsonfile;
2125 TEST_EQ(flatbuffers::LoadFile(
2126 (test_data_path + "union_vector/union_vector.fbs").c_str(),
2127 false, &schemafile),
2128 true);
2129 TEST_EQ(flatbuffers::LoadFile(
2130 (test_data_path + "union_vector/union_vector.json").c_str(),
2131 false, &jsonfile),
2132 true);
2133
2134 // parse schema.
2135 flatbuffers::IDLOptions idl_opts;
2136 idl_opts.lang_to_generate |= flatbuffers::IDLOptions::kBinary;
2137 flatbuffers::Parser parser(idl_opts);
2138 TEST_EQ(parser.Parse(schemafile.c_str()), true);
2139
2140 flatbuffers::FlatBufferBuilder fbb;
2141
2142 // union types.
2143 std::vector<uint8_t> types;
2144 types.push_back(static_cast<uint8_t>(Character_Belle));
2145 types.push_back(static_cast<uint8_t>(Character_MuLan));
2146 types.push_back(static_cast<uint8_t>(Character_BookFan));
2147 types.push_back(static_cast<uint8_t>(Character_Other));
2148 types.push_back(static_cast<uint8_t>(Character_Unused));
2149
2150 // union values.
2151 std::vector<flatbuffers::Offset<void>> characters;
2152 characters.push_back(fbb.CreateStruct(BookReader(/*books_read=*/7)).Union());
2153 characters.push_back(CreateAttacker(fbb, /*sword_attack_damage=*/5).Union());
2154 characters.push_back(fbb.CreateStruct(BookReader(/*books_read=*/2)).Union());
2155 characters.push_back(fbb.CreateString("Other").Union());
2156 characters.push_back(fbb.CreateString("Unused").Union());
2157
2158 // create Movie.
2159 const auto movie_offset =
2160 CreateMovie(fbb, Character_Rapunzel,
2161 fbb.CreateStruct(Rapunzel(/*hair_length=*/6)).Union(),
2162 fbb.CreateVector(types), fbb.CreateVector(characters));
2163 FinishMovieBuffer(fbb, movie_offset);
2164 auto buf = fbb.GetBufferPointer();
2165
2166 flatbuffers::Verifier verifier(buf, fbb.GetSize());
2167 TEST_EQ(VerifyMovieBuffer(verifier), true);
2168
2169 auto flat_movie = GetMovie(buf);
2170
2171 auto TestMovie = [](const Movie *movie) {
2172 TEST_EQ(movie->main_character_type() == Character_Rapunzel, true);
2173
2174 auto cts = movie->characters_type();
2175 TEST_EQ(movie->characters_type()->size(), 5);
2176 TEST_EQ(cts->GetEnum<Character>(0) == Character_Belle, true);
2177 TEST_EQ(cts->GetEnum<Character>(1) == Character_MuLan, true);
2178 TEST_EQ(cts->GetEnum<Character>(2) == Character_BookFan, true);
2179 TEST_EQ(cts->GetEnum<Character>(3) == Character_Other, true);
2180 TEST_EQ(cts->GetEnum<Character>(4) == Character_Unused, true);
2181
2182 auto rapunzel = movie->main_character_as_Rapunzel();
2183 TEST_NOTNULL(rapunzel);
2184 TEST_EQ(rapunzel->hair_length(), 6);
2185
2186 auto cs = movie->characters();
2187 TEST_EQ(cs->size(), 5);
2188 auto belle = cs->GetAs<BookReader>(0);
2189 TEST_EQ(belle->books_read(), 7);
2190 auto mu_lan = cs->GetAs<Attacker>(1);
2191 TEST_EQ(mu_lan->sword_attack_damage(), 5);
2192 auto book_fan = cs->GetAs<BookReader>(2);
2193 TEST_EQ(book_fan->books_read(), 2);
2194 auto other = cs->GetAsString(3);
2195 TEST_EQ_STR(other->c_str(), "Other");
2196 auto unused = cs->GetAsString(4);
2197 TEST_EQ_STR(unused->c_str(), "Unused");
2198 };
2199
2200 TestMovie(flat_movie);
2201
2202 // Also test the JSON we loaded above.
2203 TEST_EQ(parser.Parse(jsonfile.c_str()), true);
2204 auto jbuf = parser.builder_.GetBufferPointer();
2205 flatbuffers::Verifier jverifier(jbuf, parser.builder_.GetSize());
2206 TEST_EQ(VerifyMovieBuffer(jverifier), true);
2207 TestMovie(GetMovie(jbuf));
2208
2209 auto movie_object = flat_movie->UnPack();
2210 TEST_EQ(movie_object->main_character.AsRapunzel()->hair_length(), 6);
2211 TEST_EQ(movie_object->characters[0].AsBelle()->books_read(), 7);
2212 TEST_EQ(movie_object->characters[1].AsMuLan()->sword_attack_damage, 5);
2213 TEST_EQ(movie_object->characters[2].AsBookFan()->books_read(), 2);
2214 TEST_EQ_STR(movie_object->characters[3].AsOther()->c_str(), "Other");
2215 TEST_EQ_STR(movie_object->characters[4].AsUnused()->c_str(), "Unused");
2216
2217 fbb.Clear();
2218 fbb.Finish(Movie::Pack(fbb, movie_object));
2219
2220 delete movie_object;
2221
2222 auto repacked_movie = GetMovie(fbb.GetBufferPointer());
2223
2224 TestMovie(repacked_movie);
2225
2226 auto s =
2227 flatbuffers::FlatBufferToString(fbb.GetBufferPointer(), MovieTypeTable());
2228 TEST_EQ_STR(
2229 s.c_str(),
2230 "{ main_character_type: Rapunzel, main_character: { hair_length: 6 }, "
2231 "characters_type: [ Belle, MuLan, BookFan, Other, Unused ], "
2232 "characters: [ { books_read: 7 }, { sword_attack_damage: 5 }, "
2233 "{ books_read: 2 }, \"Other\", \"Unused\" ] }");
2234
2235
2236 flatbuffers::ToStringVisitor visitor("\n", true, " ");
2237 IterateFlatBuffer(fbb.GetBufferPointer(), MovieTypeTable(), &visitor);
2238 TEST_EQ_STR(
2239 visitor.s.c_str(),
2240 "{\n"
2241 " \"main_character_type\": \"Rapunzel\",\n"
2242 " \"main_character\": {\n"
2243 " \"hair_length\": 6\n"
2244 " },\n"
2245 " \"characters_type\": [\n"
2246 " \"Belle\",\n"
2247 " \"MuLan\",\n"
2248 " \"BookFan\",\n"
2249 " \"Other\",\n"
2250 " \"Unused\"\n"
2251 " ],\n"
2252 " \"characters\": [\n"
2253 " {\n"
2254 " \"books_read\": 7\n"
2255 " },\n"
2256 " {\n"
2257 " \"sword_attack_damage\": 5\n"
2258 " },\n"
2259 " {\n"
2260 " \"books_read\": 2\n"
2261 " },\n"
2262 " \"Other\",\n"
2263 " \"Unused\"\n"
2264 " ]\n"
2265 "}");
2266
2267 flatbuffers::Parser parser2(idl_opts);
2268 TEST_EQ(parser2.Parse("struct Bool { b:bool; }"
2269 "union Any { Bool }"
2270 "table Root { a:Any; }"
2271 "root_type Root;"), true);
2272 TEST_EQ(parser2.Parse("{a_type:Bool,a:{b:true}}"), true);
2273 }
2274
ConformTest()2275 void ConformTest() {
2276 flatbuffers::Parser parser;
2277 TEST_EQ(parser.Parse("table T { A:int; } enum E:byte { A }"), true);
2278
2279 auto test_conform = [](flatbuffers::Parser &parser1, const char *test,
2280 const char *expected_err) {
2281 flatbuffers::Parser parser2;
2282 TEST_EQ(parser2.Parse(test), true);
2283 auto err = parser2.ConformTo(parser1);
2284 TEST_NOTNULL(strstr(err.c_str(), expected_err));
2285 };
2286
2287 test_conform(parser, "table T { A:byte; }", "types differ for field");
2288 test_conform(parser, "table T { B:int; A:int; }", "offsets differ for field");
2289 test_conform(parser, "table T { A:int = 1; }", "defaults differ for field");
2290 test_conform(parser, "table T { B:float; }",
2291 "field renamed to different type");
2292 test_conform(parser, "enum E:byte { B, A }", "values differ for enum");
2293 }
2294
ParseProtoBufAsciiTest()2295 void ParseProtoBufAsciiTest() {
2296 // We can put the parser in a mode where it will accept JSON that looks more
2297 // like Protobuf ASCII, for users that have data in that format.
2298 // This uses no "" for field names (which we already support by default,
2299 // omits `,`, `:` before `{` and a couple of other features.
2300 flatbuffers::Parser parser;
2301 parser.opts.protobuf_ascii_alike = true;
2302 TEST_EQ(
2303 parser.Parse("table S { B:int; } table T { A:[int]; C:S; } root_type T;"),
2304 true);
2305 TEST_EQ(parser.Parse("{ A [1 2] C { B:2 }}"), true);
2306 // Similarly, in text output, it should omit these.
2307 std::string text;
2308 auto ok = flatbuffers::GenerateText(
2309 parser, parser.builder_.GetBufferPointer(), &text);
2310 TEST_EQ(ok, true);
2311 TEST_EQ_STR(text.c_str(),
2312 "{\n A [\n 1\n 2\n ]\n C {\n B: 2\n }\n}\n");
2313 }
2314
FlexBuffersTest()2315 void FlexBuffersTest() {
2316 flexbuffers::Builder slb(512,
2317 flexbuffers::BUILDER_FLAG_SHARE_KEYS_AND_STRINGS);
2318
2319 // Write the equivalent of:
2320 // { vec: [ -100, "Fred", 4.0, false ], bar: [ 1, 2, 3 ], bar3: [ 1, 2, 3 ],
2321 // foo: 100, bool: true, mymap: { foo: "Fred" } }
2322 // clang-format off
2323 #ifndef FLATBUFFERS_CPP98_STL
2324 // It's possible to do this without std::function support as well.
2325 slb.Map([&]() {
2326 slb.Vector("vec", [&]() {
2327 slb += -100; // Equivalent to slb.Add(-100) or slb.Int(-100);
2328 slb += "Fred";
2329 slb.IndirectFloat(4.0f);
2330 uint8_t blob[] = { 77 };
2331 slb.Blob(blob, 1);
2332 slb += false;
2333 });
2334 int ints[] = { 1, 2, 3 };
2335 slb.Vector("bar", ints, 3);
2336 slb.FixedTypedVector("bar3", ints, 3);
2337 bool bools[] = {true, false, true, false};
2338 slb.Vector("bools", bools, 4);
2339 slb.Bool("bool", true);
2340 slb.Double("foo", 100);
2341 slb.Map("mymap", [&]() {
2342 slb.String("foo", "Fred"); // Testing key and string reuse.
2343 });
2344 });
2345 slb.Finish();
2346 #else
2347 // It's possible to do this without std::function support as well.
2348 slb.Map([](flexbuffers::Builder& slb2) {
2349 slb2.Vector("vec", [](flexbuffers::Builder& slb3) {
2350 slb3 += -100; // Equivalent to slb.Add(-100) or slb.Int(-100);
2351 slb3 += "Fred";
2352 slb3.IndirectFloat(4.0f);
2353 uint8_t blob[] = { 77 };
2354 slb3.Blob(blob, 1);
2355 slb3 += false;
2356 }, slb2);
2357 int ints[] = { 1, 2, 3 };
2358 slb2.Vector("bar", ints, 3);
2359 slb2.FixedTypedVector("bar3", ints, 3);
2360 slb2.Bool("bool", true);
2361 slb2.Double("foo", 100);
2362 slb2.Map("mymap", [](flexbuffers::Builder& slb3) {
2363 slb3.String("foo", "Fred"); // Testing key and string reuse.
2364 }, slb2);
2365 }, slb);
2366 slb.Finish();
2367 #endif // FLATBUFFERS_CPP98_STL
2368
2369 #ifdef FLATBUFFERS_TEST_VERBOSE
2370 for (size_t i = 0; i < slb.GetBuffer().size(); i++)
2371 printf("%d ", flatbuffers::vector_data(slb.GetBuffer())[i]);
2372 printf("\n");
2373 #endif
2374 // clang-format on
2375
2376 auto map = flexbuffers::GetRoot(slb.GetBuffer()).AsMap();
2377 TEST_EQ(map.size(), 7);
2378 auto vec = map["vec"].AsVector();
2379 TEST_EQ(vec.size(), 5);
2380 TEST_EQ(vec[0].AsInt64(), -100);
2381 TEST_EQ_STR(vec[1].AsString().c_str(), "Fred");
2382 TEST_EQ(vec[1].AsInt64(), 0); // Number parsing failed.
2383 TEST_EQ(vec[2].AsDouble(), 4.0);
2384 TEST_EQ(vec[2].AsString().IsTheEmptyString(), true); // Wrong Type.
2385 TEST_EQ_STR(vec[2].AsString().c_str(), ""); // This still works though.
2386 TEST_EQ_STR(vec[2].ToString().c_str(), "4.0"); // Or have it converted.
2387
2388 // Few tests for templated version of As.
2389 TEST_EQ(vec[0].As<int64_t>(), -100);
2390 TEST_EQ_STR(vec[1].As<std::string>().c_str(), "Fred");
2391 TEST_EQ(vec[1].As<int64_t>(), 0); // Number parsing failed.
2392 TEST_EQ(vec[2].As<double>(), 4.0);
2393
2394 // Test that the blob can be accessed.
2395 TEST_EQ(vec[3].IsBlob(), true);
2396 auto blob = vec[3].AsBlob();
2397 TEST_EQ(blob.size(), 1);
2398 TEST_EQ(blob.data()[0], 77);
2399 TEST_EQ(vec[4].IsBool(), true); // Check if type is a bool
2400 TEST_EQ(vec[4].AsBool(), false); // Check if value is false
2401 auto tvec = map["bar"].AsTypedVector();
2402 TEST_EQ(tvec.size(), 3);
2403 TEST_EQ(tvec[2].AsInt8(), 3);
2404 auto tvec3 = map["bar3"].AsFixedTypedVector();
2405 TEST_EQ(tvec3.size(), 3);
2406 TEST_EQ(tvec3[2].AsInt8(), 3);
2407 TEST_EQ(map["bool"].AsBool(), true);
2408 auto tvecb = map["bools"].AsTypedVector();
2409 TEST_EQ(tvecb.ElementType(), flexbuffers::FBT_BOOL);
2410 TEST_EQ(map["foo"].AsUInt8(), 100);
2411 TEST_EQ(map["unknown"].IsNull(), true);
2412 auto mymap = map["mymap"].AsMap();
2413 // These should be equal by pointer equality, since key and value are shared.
2414 TEST_EQ(mymap.Keys()[0].AsKey(), map.Keys()[4].AsKey());
2415 TEST_EQ(mymap.Values()[0].AsString().c_str(), vec[1].AsString().c_str());
2416 // We can mutate values in the buffer.
2417 TEST_EQ(vec[0].MutateInt(-99), true);
2418 TEST_EQ(vec[0].AsInt64(), -99);
2419 TEST_EQ(vec[1].MutateString("John"), true); // Size must match.
2420 TEST_EQ_STR(vec[1].AsString().c_str(), "John");
2421 TEST_EQ(vec[1].MutateString("Alfred"), false); // Too long.
2422 TEST_EQ(vec[2].MutateFloat(2.0f), true);
2423 TEST_EQ(vec[2].AsFloat(), 2.0f);
2424 TEST_EQ(vec[2].MutateFloat(3.14159), false); // Double does not fit in float.
2425 TEST_EQ(vec[4].AsBool(), false); // Is false before change
2426 TEST_EQ(vec[4].MutateBool(true), true); // Can change a bool
2427 TEST_EQ(vec[4].AsBool(), true); // Changed bool is now true
2428
2429 // Parse from JSON:
2430 flatbuffers::Parser parser;
2431 slb.Clear();
2432 auto jsontest = "{ a: [ 123, 456.0 ], b: \"hello\", c: true, d: false }";
2433 TEST_EQ(parser.ParseFlexBuffer(jsontest, nullptr, &slb), true);
2434 auto jroot = flexbuffers::GetRoot(slb.GetBuffer());
2435 auto jmap = jroot.AsMap();
2436 auto jvec = jmap["a"].AsVector();
2437 TEST_EQ(jvec[0].AsInt64(), 123);
2438 TEST_EQ(jvec[1].AsDouble(), 456.0);
2439 TEST_EQ_STR(jmap["b"].AsString().c_str(), "hello");
2440 TEST_EQ(jmap["c"].IsBool(), true); // Parsed correctly to a bool
2441 TEST_EQ(jmap["c"].AsBool(), true); // Parsed correctly to true
2442 TEST_EQ(jmap["d"].IsBool(), true); // Parsed correctly to a bool
2443 TEST_EQ(jmap["d"].AsBool(), false); // Parsed correctly to false
2444 // And from FlexBuffer back to JSON:
2445 auto jsonback = jroot.ToString();
2446 TEST_EQ_STR(jsontest, jsonback.c_str());
2447 }
2448
TypeAliasesTest()2449 void TypeAliasesTest() {
2450 flatbuffers::FlatBufferBuilder builder;
2451
2452 builder.Finish(CreateTypeAliases(
2453 builder, flatbuffers::numeric_limits<int8_t>::min(),
2454 flatbuffers::numeric_limits<uint8_t>::max(),
2455 flatbuffers::numeric_limits<int16_t>::min(),
2456 flatbuffers::numeric_limits<uint16_t>::max(),
2457 flatbuffers::numeric_limits<int32_t>::min(),
2458 flatbuffers::numeric_limits<uint32_t>::max(),
2459 flatbuffers::numeric_limits<int64_t>::min(),
2460 flatbuffers::numeric_limits<uint64_t>::max(), 2.3f, 2.3));
2461
2462 auto p = builder.GetBufferPointer();
2463 auto ta = flatbuffers::GetRoot<TypeAliases>(p);
2464
2465 TEST_EQ(ta->i8(), flatbuffers::numeric_limits<int8_t>::min());
2466 TEST_EQ(ta->u8(), flatbuffers::numeric_limits<uint8_t>::max());
2467 TEST_EQ(ta->i16(), flatbuffers::numeric_limits<int16_t>::min());
2468 TEST_EQ(ta->u16(), flatbuffers::numeric_limits<uint16_t>::max());
2469 TEST_EQ(ta->i32(), flatbuffers::numeric_limits<int32_t>::min());
2470 TEST_EQ(ta->u32(), flatbuffers::numeric_limits<uint32_t>::max());
2471 TEST_EQ(ta->i64(), flatbuffers::numeric_limits<int64_t>::min());
2472 TEST_EQ(ta->u64(), flatbuffers::numeric_limits<uint64_t>::max());
2473 TEST_EQ(ta->f32(), 2.3f);
2474 TEST_EQ(ta->f64(), 2.3);
2475 using namespace flatbuffers; // is_same
2476 static_assert(is_same<decltype(ta->i8()), int8_t>::value, "invalid type");
2477 static_assert(is_same<decltype(ta->i16()), int16_t>::value, "invalid type");
2478 static_assert(is_same<decltype(ta->i32()), int32_t>::value, "invalid type");
2479 static_assert(is_same<decltype(ta->i64()), int64_t>::value, "invalid type");
2480 static_assert(is_same<decltype(ta->u8()), uint8_t>::value, "invalid type");
2481 static_assert(is_same<decltype(ta->u16()), uint16_t>::value, "invalid type");
2482 static_assert(is_same<decltype(ta->u32()), uint32_t>::value, "invalid type");
2483 static_assert(is_same<decltype(ta->u64()), uint64_t>::value, "invalid type");
2484 static_assert(is_same<decltype(ta->f32()), float>::value, "invalid type");
2485 static_assert(is_same<decltype(ta->f64()), double>::value, "invalid type");
2486 }
2487
EndianSwapTest()2488 void EndianSwapTest() {
2489 TEST_EQ(flatbuffers::EndianSwap(static_cast<int16_t>(0x1234)), 0x3412);
2490 TEST_EQ(flatbuffers::EndianSwap(static_cast<int32_t>(0x12345678)),
2491 0x78563412);
2492 TEST_EQ(flatbuffers::EndianSwap(static_cast<int64_t>(0x1234567890ABCDEF)),
2493 0xEFCDAB9078563412);
2494 TEST_EQ(flatbuffers::EndianSwap(flatbuffers::EndianSwap(3.14f)), 3.14f);
2495 }
2496
UninitializedVectorTest()2497 void UninitializedVectorTest() {
2498 flatbuffers::FlatBufferBuilder builder;
2499
2500 Test *buf = nullptr;
2501 auto vector_offset = builder.CreateUninitializedVectorOfStructs<Test>(2, &buf);
2502 TEST_NOTNULL(buf);
2503 buf[0] = Test(10, 20);
2504 buf[1] = Test(30, 40);
2505
2506 auto required_name = builder.CreateString("myMonster");
2507 auto monster_builder = MonsterBuilder(builder);
2508 monster_builder.add_name(required_name); // required field mandated for monster.
2509 monster_builder.add_test4(vector_offset);
2510 builder.Finish(monster_builder.Finish());
2511
2512 auto p = builder.GetBufferPointer();
2513 auto uvt = flatbuffers::GetRoot<Monster>(p);
2514 TEST_NOTNULL(uvt);
2515 auto vec = uvt->test4();
2516 TEST_NOTNULL(vec);
2517 auto test_0 = vec->Get(0);
2518 auto test_1 = vec->Get(1);
2519 TEST_EQ(test_0->a(), 10);
2520 TEST_EQ(test_0->b(), 20);
2521 TEST_EQ(test_1->a(), 30);
2522 TEST_EQ(test_1->b(), 40);
2523 }
2524
EqualOperatorTest()2525 void EqualOperatorTest() {
2526 MonsterT a;
2527 MonsterT b;
2528 TEST_EQ(b == a, true);
2529 TEST_EQ(b != a, false);
2530
2531 b.mana = 33;
2532 TEST_EQ(b == a, false);
2533 TEST_EQ(b != a, true);
2534 b.mana = 150;
2535 TEST_EQ(b == a, true);
2536 TEST_EQ(b != a, false);
2537
2538 b.inventory.push_back(3);
2539 TEST_EQ(b == a, false);
2540 TEST_EQ(b != a, true);
2541 b.inventory.clear();
2542 TEST_EQ(b == a, true);
2543 TEST_EQ(b != a, false);
2544
2545 b.test.type = Any_Monster;
2546 TEST_EQ(b == a, false);
2547 TEST_EQ(b != a, true);
2548 }
2549
2550 // For testing any binaries, e.g. from fuzzing.
LoadVerifyBinaryTest()2551 void LoadVerifyBinaryTest() {
2552 std::string binary;
2553 if (flatbuffers::LoadFile((test_data_path +
2554 "fuzzer/your-filename-here").c_str(),
2555 true, &binary)) {
2556 flatbuffers::Verifier verifier(
2557 reinterpret_cast<const uint8_t *>(binary.data()), binary.size());
2558 TEST_EQ(VerifyMonsterBuffer(verifier), true);
2559 }
2560 }
2561
CreateSharedStringTest()2562 void CreateSharedStringTest() {
2563 flatbuffers::FlatBufferBuilder builder;
2564 const auto one1 = builder.CreateSharedString("one");
2565 const auto two = builder.CreateSharedString("two");
2566 const auto one2 = builder.CreateSharedString("one");
2567 TEST_EQ(one1.o, one2.o);
2568 const auto onetwo = builder.CreateSharedString("onetwo");
2569 TEST_EQ(onetwo.o != one1.o, true);
2570 TEST_EQ(onetwo.o != two.o, true);
2571
2572 // Support for embedded nulls
2573 const char chars_b[] = {'a', '\0', 'b'};
2574 const char chars_c[] = {'a', '\0', 'c'};
2575 const auto null_b1 = builder.CreateSharedString(chars_b, sizeof(chars_b));
2576 const auto null_c = builder.CreateSharedString(chars_c, sizeof(chars_c));
2577 const auto null_b2 = builder.CreateSharedString(chars_b, sizeof(chars_b));
2578 TEST_EQ(null_b1.o != null_c.o, true); // Issue#5058 repro
2579 TEST_EQ(null_b1.o, null_b2.o);
2580
2581 // Put the strings into an array for round trip verification.
2582 const flatbuffers::Offset<flatbuffers::String> array[7] = { one1, two, one2, onetwo, null_b1, null_c, null_b2 };
2583 const auto vector_offset = builder.CreateVector(array, flatbuffers::uoffset_t(7));
2584 MonsterBuilder monster_builder(builder);
2585 monster_builder.add_name(two);
2586 monster_builder.add_testarrayofstring(vector_offset);
2587 builder.Finish(monster_builder.Finish());
2588
2589 // Read the Monster back.
2590 const auto *monster = flatbuffers::GetRoot<Monster>(builder.GetBufferPointer());
2591 TEST_EQ_STR(monster->name()->c_str(), "two");
2592 const auto *testarrayofstring = monster->testarrayofstring();
2593 TEST_EQ(testarrayofstring->size(), flatbuffers::uoffset_t(7));
2594 const auto &a = *testarrayofstring;
2595 TEST_EQ_STR(a[0]->c_str(), "one");
2596 TEST_EQ_STR(a[1]->c_str(), "two");
2597 TEST_EQ_STR(a[2]->c_str(), "one");
2598 TEST_EQ_STR(a[3]->c_str(), "onetwo");
2599 TEST_EQ(a[4]->str(), (std::string(chars_b, sizeof(chars_b))));
2600 TEST_EQ(a[5]->str(), (std::string(chars_c, sizeof(chars_c))));
2601 TEST_EQ(a[6]->str(), (std::string(chars_b, sizeof(chars_b))));
2602
2603 // Make sure String::operator< works, too, since it is related to StringOffsetCompare.
2604 TEST_EQ((*a[0]) < (*a[1]), true);
2605 TEST_EQ((*a[1]) < (*a[0]), false);
2606 TEST_EQ((*a[1]) < (*a[2]), false);
2607 TEST_EQ((*a[2]) < (*a[1]), true);
2608 TEST_EQ((*a[4]) < (*a[3]), true);
2609 TEST_EQ((*a[5]) < (*a[4]), false);
2610 TEST_EQ((*a[5]) < (*a[4]), false);
2611 TEST_EQ((*a[6]) < (*a[5]), true);
2612 }
2613
FlatBufferTests()2614 int FlatBufferTests() {
2615 // clang-format off
2616
2617 // Run our various test suites:
2618
2619 std::string rawbuf;
2620 auto flatbuf1 = CreateFlatBufferTest(rawbuf);
2621 #if !defined(FLATBUFFERS_CPP98_STL)
2622 auto flatbuf = std::move(flatbuf1); // Test move assignment.
2623 #else
2624 auto &flatbuf = flatbuf1;
2625 #endif // !defined(FLATBUFFERS_CPP98_STL)
2626
2627 TriviallyCopyableTest();
2628
2629 AccessFlatBufferTest(reinterpret_cast<const uint8_t *>(rawbuf.c_str()),
2630 rawbuf.length());
2631 AccessFlatBufferTest(flatbuf.data(), flatbuf.size());
2632
2633 MutateFlatBuffersTest(flatbuf.data(), flatbuf.size());
2634
2635 ObjectFlatBuffersTest(flatbuf.data());
2636
2637 MiniReflectFlatBuffersTest(flatbuf.data());
2638
2639 SizePrefixedTest();
2640
2641 #ifndef FLATBUFFERS_NO_FILE_TESTS
2642 #ifdef FLATBUFFERS_TEST_PATH_PREFIX
2643 test_data_path = FLATBUFFERS_STRING(FLATBUFFERS_TEST_PATH_PREFIX) +
2644 test_data_path;
2645 #endif
2646 ParseAndGenerateTextTest(false);
2647 ParseAndGenerateTextTest(true);
2648 ReflectionTest(flatbuf.data(), flatbuf.size());
2649 ParseProtoTest();
2650 UnionVectorTest();
2651 LoadVerifyBinaryTest();
2652 GenerateTableTextTest();
2653 #endif
2654 // clang-format on
2655
2656 FuzzTest1();
2657 FuzzTest2();
2658
2659 ErrorTest();
2660 ValueTest();
2661 EnumValueTest();
2662 EnumStringsTest();
2663 EnumNamesTest();
2664 EnumOutOfRangeTest();
2665 IntegerOutOfRangeTest();
2666 IntegerBoundaryTest();
2667 UnicodeTest();
2668 UnicodeTestAllowNonUTF8();
2669 UnicodeTestGenerateTextFailsOnNonUTF8();
2670 UnicodeSurrogatesTest();
2671 UnicodeInvalidSurrogatesTest();
2672 InvalidUTF8Test();
2673 UnknownFieldsTest();
2674 ParseUnionTest();
2675 InvalidNestedFlatbufferTest();
2676 ConformTest();
2677 ParseProtoBufAsciiTest();
2678 TypeAliasesTest();
2679 EndianSwapTest();
2680 CreateSharedStringTest();
2681 JsonDefaultTest();
2682 FlexBuffersTest();
2683 UninitializedVectorTest();
2684 EqualOperatorTest();
2685 NumericUtilsTest();
2686 IsAsciiUtilsTest();
2687 ValidFloatTest();
2688 InvalidFloatTest();
2689 return 0;
2690 }
2691
main(int,const char * [])2692 int main(int /*argc*/, const char * /*argv*/ []) {
2693 InitTestEngine();
2694
2695 std::string req_locale;
2696 if (flatbuffers::ReadEnvironmentVariable("FLATBUFFERS_TEST_LOCALE",
2697 &req_locale)) {
2698 TEST_OUTPUT_LINE("The environment variable FLATBUFFERS_TEST_LOCALE=%s",
2699 req_locale.c_str());
2700 req_locale = flatbuffers::RemoveStringQuotes(req_locale);
2701 std::string the_locale;
2702 TEST_ASSERT_FUNC(
2703 flatbuffers::SetGlobalTestLocale(req_locale.c_str(), &the_locale));
2704 TEST_OUTPUT_LINE("The global C-locale changed: %s", the_locale.c_str());
2705 }
2706
2707 FlatBufferTests();
2708 FlatBufferBuilderTest();
2709
2710 if (!testing_fails) {
2711 TEST_OUTPUT_LINE("ALL TESTS PASSED");
2712 } else {
2713 TEST_OUTPUT_LINE("%d FAILED TESTS", testing_fails);
2714 }
2715 return CloseTestEngine();
2716 }
2717