• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  *
5  * Author: Artem Bityutskiy (Битюцкий Артём)
6  */
7 
8 /*
9  * UBI attaching sub-system.
10  *
11  * This sub-system is responsible for attaching MTD devices and it also
12  * implements flash media scanning.
13  *
14  * The attaching information is represented by a &struct ubi_attach_info'
15  * object. Information about volumes is represented by &struct ubi_ainf_volume
16  * objects which are kept in volume RB-tree with root at the @volumes field.
17  * The RB-tree is indexed by the volume ID.
18  *
19  * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
20  * objects are kept in per-volume RB-trees with the root at the corresponding
21  * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
22  * per-volume objects and each of these objects is the root of RB-tree of
23  * per-LEB objects.
24  *
25  * Corrupted physical eraseblocks are put to the @corr list, free physical
26  * eraseblocks are put to the @free list and the physical eraseblock to be
27  * erased are put to the @erase list.
28  *
29  * About corruptions
30  * ~~~~~~~~~~~~~~~~~
31  *
32  * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
33  * whether the headers are corrupted or not. Sometimes UBI also protects the
34  * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
35  * when it moves the contents of a PEB for wear-leveling purposes.
36  *
37  * UBI tries to distinguish between 2 types of corruptions.
38  *
39  * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
40  * tries to handle them gracefully, without printing too many warnings and
41  * error messages. The idea is that we do not lose important data in these
42  * cases - we may lose only the data which were being written to the media just
43  * before the power cut happened, and the upper layers (e.g., UBIFS) are
44  * supposed to handle such data losses (e.g., by using the FS journal).
45  *
46  * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
47  * the reason is a power cut, UBI puts this PEB to the @erase list, and all
48  * PEBs in the @erase list are scheduled for erasure later.
49  *
50  * 2. Unexpected corruptions which are not caused by power cuts. During
51  * attaching, such PEBs are put to the @corr list and UBI preserves them.
52  * Obviously, this lessens the amount of available PEBs, and if at some  point
53  * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
54  * about such PEBs every time the MTD device is attached.
55  *
56  * However, it is difficult to reliably distinguish between these types of
57  * corruptions and UBI's strategy is as follows (in case of attaching by
58  * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
59  * the data area does not contain all 0xFFs, and there were no bit-flips or
60  * integrity errors (e.g., ECC errors in case of NAND) while reading the data
61  * area.  Otherwise UBI assumes corruption type 1. So the decision criteria
62  * are as follows.
63  *   o If the data area contains only 0xFFs, there are no data, and it is safe
64  *     to just erase this PEB - this is corruption type 1.
65  *   o If the data area has bit-flips or data integrity errors (ECC errors on
66  *     NAND), it is probably a PEB which was being erased when power cut
67  *     happened, so this is corruption type 1. However, this is just a guess,
68  *     which might be wrong.
69  *   o Otherwise this is corruption type 2.
70  */
71 
72 #ifndef __UBOOT__
73 #include <linux/err.h>
74 #include <linux/slab.h>
75 #include <linux/crc32.h>
76 #include <linux/random.h>
77 #include <u-boot/crc.h>
78 #else
79 #include <div64.h>
80 #include <linux/err.h>
81 #endif
82 
83 #include <linux/math64.h>
84 
85 #include <ubi_uboot.h>
86 #include "ubi.h"
87 
88 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
89 
90 /* Temporary variables used during scanning */
91 static struct ubi_ec_hdr *ech;
92 static struct ubi_vid_hdr *vidh;
93 
94 /**
95  * add_to_list - add physical eraseblock to a list.
96  * @ai: attaching information
97  * @pnum: physical eraseblock number to add
98  * @vol_id: the last used volume id for the PEB
99  * @lnum: the last used LEB number for the PEB
100  * @ec: erase counter of the physical eraseblock
101  * @to_head: if not zero, add to the head of the list
102  * @list: the list to add to
103  *
104  * This function allocates a 'struct ubi_ainf_peb' object for physical
105  * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
106  * It stores the @lnum and @vol_id alongside, which can both be
107  * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
108  * If @to_head is not zero, PEB will be added to the head of the list, which
109  * basically means it will be processed first later. E.g., we add corrupted
110  * PEBs (corrupted due to power cuts) to the head of the erase list to make
111  * sure we erase them first and get rid of corruptions ASAP. This function
112  * returns zero in case of success and a negative error code in case of
113  * failure.
114  */
add_to_list(struct ubi_attach_info * ai,int pnum,int vol_id,int lnum,int ec,int to_head,struct list_head * list)115 static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
116 		       int lnum, int ec, int to_head, struct list_head *list)
117 {
118 	struct ubi_ainf_peb *aeb;
119 
120 	if (list == &ai->free) {
121 		dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
122 	} else if (list == &ai->erase) {
123 		dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
124 	} else if (list == &ai->alien) {
125 		dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
126 		ai->alien_peb_count += 1;
127 	} else
128 		BUG();
129 
130 	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
131 	if (!aeb)
132 		return -ENOMEM;
133 
134 	aeb->pnum = pnum;
135 	aeb->vol_id = vol_id;
136 	aeb->lnum = lnum;
137 	aeb->ec = ec;
138 	if (to_head)
139 		list_add(&aeb->u.list, list);
140 	else
141 		list_add_tail(&aeb->u.list, list);
142 	return 0;
143 }
144 
145 /**
146  * add_corrupted - add a corrupted physical eraseblock.
147  * @ai: attaching information
148  * @pnum: physical eraseblock number to add
149  * @ec: erase counter of the physical eraseblock
150  *
151  * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
152  * physical eraseblock @pnum and adds it to the 'corr' list.  The corruption
153  * was presumably not caused by a power cut. Returns zero in case of success
154  * and a negative error code in case of failure.
155  */
add_corrupted(struct ubi_attach_info * ai,int pnum,int ec)156 static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
157 {
158 	struct ubi_ainf_peb *aeb;
159 
160 	dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
161 
162 	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
163 	if (!aeb)
164 		return -ENOMEM;
165 
166 	ai->corr_peb_count += 1;
167 	aeb->pnum = pnum;
168 	aeb->ec = ec;
169 	list_add(&aeb->u.list, &ai->corr);
170 	return 0;
171 }
172 
173 /**
174  * validate_vid_hdr - check volume identifier header.
175  * @ubi: UBI device description object
176  * @vid_hdr: the volume identifier header to check
177  * @av: information about the volume this logical eraseblock belongs to
178  * @pnum: physical eraseblock number the VID header came from
179  *
180  * This function checks that data stored in @vid_hdr is consistent. Returns
181  * non-zero if an inconsistency was found and zero if not.
182  *
183  * Note, UBI does sanity check of everything it reads from the flash media.
184  * Most of the checks are done in the I/O sub-system. Here we check that the
185  * information in the VID header is consistent to the information in other VID
186  * headers of the same volume.
187  */
validate_vid_hdr(const struct ubi_device * ubi,const struct ubi_vid_hdr * vid_hdr,const struct ubi_ainf_volume * av,int pnum)188 static int validate_vid_hdr(const struct ubi_device *ubi,
189 			    const struct ubi_vid_hdr *vid_hdr,
190 			    const struct ubi_ainf_volume *av, int pnum)
191 {
192 	int vol_type = vid_hdr->vol_type;
193 	int vol_id = be32_to_cpu(vid_hdr->vol_id);
194 	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
195 	int data_pad = be32_to_cpu(vid_hdr->data_pad);
196 
197 	if (av->leb_count != 0) {
198 		int av_vol_type;
199 
200 		/*
201 		 * This is not the first logical eraseblock belonging to this
202 		 * volume. Ensure that the data in its VID header is consistent
203 		 * to the data in previous logical eraseblock headers.
204 		 */
205 
206 		if (vol_id != av->vol_id) {
207 			ubi_err(ubi, "inconsistent vol_id");
208 			goto bad;
209 		}
210 
211 		if (av->vol_type == UBI_STATIC_VOLUME)
212 			av_vol_type = UBI_VID_STATIC;
213 		else
214 			av_vol_type = UBI_VID_DYNAMIC;
215 
216 		if (vol_type != av_vol_type) {
217 			ubi_err(ubi, "inconsistent vol_type");
218 			goto bad;
219 		}
220 
221 		if (used_ebs != av->used_ebs) {
222 			ubi_err(ubi, "inconsistent used_ebs");
223 			goto bad;
224 		}
225 
226 		if (data_pad != av->data_pad) {
227 			ubi_err(ubi, "inconsistent data_pad");
228 			goto bad;
229 		}
230 	}
231 
232 	return 0;
233 
234 bad:
235 	ubi_err(ubi, "inconsistent VID header at PEB %d", pnum);
236 	ubi_dump_vid_hdr(vid_hdr);
237 	ubi_dump_av(av);
238 	return -EINVAL;
239 }
240 
241 /**
242  * add_volume - add volume to the attaching information.
243  * @ai: attaching information
244  * @vol_id: ID of the volume to add
245  * @pnum: physical eraseblock number
246  * @vid_hdr: volume identifier header
247  *
248  * If the volume corresponding to the @vid_hdr logical eraseblock is already
249  * present in the attaching information, this function does nothing. Otherwise
250  * it adds corresponding volume to the attaching information. Returns a pointer
251  * to the allocated "av" object in case of success and a negative error code in
252  * case of failure.
253  */
add_volume(struct ubi_attach_info * ai,int vol_id,int pnum,const struct ubi_vid_hdr * vid_hdr)254 static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
255 					  int vol_id, int pnum,
256 					  const struct ubi_vid_hdr *vid_hdr)
257 {
258 	struct ubi_ainf_volume *av;
259 	struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
260 
261 	ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
262 
263 	/* Walk the volume RB-tree to look if this volume is already present */
264 	while (*p) {
265 		parent = *p;
266 		av = rb_entry(parent, struct ubi_ainf_volume, rb);
267 
268 		if (vol_id == av->vol_id)
269 			return av;
270 
271 		if (vol_id > av->vol_id)
272 			p = &(*p)->rb_left;
273 		else
274 			p = &(*p)->rb_right;
275 	}
276 
277 	/* The volume is absent - add it */
278 	av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
279 	if (!av)
280 		return ERR_PTR(-ENOMEM);
281 
282 	av->highest_lnum = av->leb_count = 0;
283 	av->vol_id = vol_id;
284 	av->root = RB_ROOT;
285 	av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
286 	av->data_pad = be32_to_cpu(vid_hdr->data_pad);
287 	av->compat = vid_hdr->compat;
288 	av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
289 							    : UBI_STATIC_VOLUME;
290 	if (vol_id > ai->highest_vol_id)
291 		ai->highest_vol_id = vol_id;
292 
293 	rb_link_node(&av->rb, parent, p);
294 	rb_insert_color(&av->rb, &ai->volumes);
295 	ai->vols_found += 1;
296 	dbg_bld("added volume %d", vol_id);
297 	return av;
298 }
299 
300 /**
301  * ubi_compare_lebs - find out which logical eraseblock is newer.
302  * @ubi: UBI device description object
303  * @aeb: first logical eraseblock to compare
304  * @pnum: physical eraseblock number of the second logical eraseblock to
305  * compare
306  * @vid_hdr: volume identifier header of the second logical eraseblock
307  *
308  * This function compares 2 copies of a LEB and informs which one is newer. In
309  * case of success this function returns a positive value, in case of failure, a
310  * negative error code is returned. The success return codes use the following
311  * bits:
312  *     o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
313  *       second PEB (described by @pnum and @vid_hdr);
314  *     o bit 0 is set: the second PEB is newer;
315  *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
316  *     o bit 1 is set: bit-flips were detected in the newer LEB;
317  *     o bit 2 is cleared: the older LEB is not corrupted;
318  *     o bit 2 is set: the older LEB is corrupted.
319  */
ubi_compare_lebs(struct ubi_device * ubi,const struct ubi_ainf_peb * aeb,int pnum,const struct ubi_vid_hdr * vid_hdr)320 int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
321 			int pnum, const struct ubi_vid_hdr *vid_hdr)
322 {
323 	int len, err, second_is_newer, bitflips = 0, corrupted = 0;
324 	uint32_t data_crc, crc;
325 	struct ubi_vid_hdr *vh = NULL;
326 	unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
327 
328 	if (sqnum2 == aeb->sqnum) {
329 		/*
330 		 * This must be a really ancient UBI image which has been
331 		 * created before sequence numbers support has been added. At
332 		 * that times we used 32-bit LEB versions stored in logical
333 		 * eraseblocks. That was before UBI got into mainline. We do not
334 		 * support these images anymore. Well, those images still work,
335 		 * but only if no unclean reboots happened.
336 		 */
337 		ubi_err(ubi, "unsupported on-flash UBI format");
338 		return -EINVAL;
339 	}
340 
341 	/* Obviously the LEB with lower sequence counter is older */
342 	second_is_newer = (sqnum2 > aeb->sqnum);
343 
344 	/*
345 	 * Now we know which copy is newer. If the copy flag of the PEB with
346 	 * newer version is not set, then we just return, otherwise we have to
347 	 * check data CRC. For the second PEB we already have the VID header,
348 	 * for the first one - we'll need to re-read it from flash.
349 	 *
350 	 * Note: this may be optimized so that we wouldn't read twice.
351 	 */
352 
353 	if (second_is_newer) {
354 		if (!vid_hdr->copy_flag) {
355 			/* It is not a copy, so it is newer */
356 			dbg_bld("second PEB %d is newer, copy_flag is unset",
357 				pnum);
358 			return 1;
359 		}
360 	} else {
361 		if (!aeb->copy_flag) {
362 			/* It is not a copy, so it is newer */
363 			dbg_bld("first PEB %d is newer, copy_flag is unset",
364 				pnum);
365 			return bitflips << 1;
366 		}
367 
368 		vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
369 		if (!vh)
370 			return -ENOMEM;
371 
372 		pnum = aeb->pnum;
373 		err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
374 		if (err) {
375 			if (err == UBI_IO_BITFLIPS)
376 				bitflips = 1;
377 			else {
378 				ubi_err(ubi, "VID of PEB %d header is bad, but it was OK earlier, err %d",
379 					pnum, err);
380 				if (err > 0)
381 					err = -EIO;
382 
383 				goto out_free_vidh;
384 			}
385 		}
386 
387 		vid_hdr = vh;
388 	}
389 
390 	/* Read the data of the copy and check the CRC */
391 
392 	len = be32_to_cpu(vid_hdr->data_size);
393 
394 	mutex_lock(&ubi->buf_mutex);
395 	err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
396 	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
397 		goto out_unlock;
398 
399 	data_crc = be32_to_cpu(vid_hdr->data_crc);
400 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
401 	if (crc != data_crc) {
402 		dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
403 			pnum, crc, data_crc);
404 		corrupted = 1;
405 		bitflips = 0;
406 		second_is_newer = !second_is_newer;
407 	} else {
408 		dbg_bld("PEB %d CRC is OK", pnum);
409 		bitflips |= !!err;
410 	}
411 	mutex_unlock(&ubi->buf_mutex);
412 
413 	ubi_free_vid_hdr(ubi, vh);
414 
415 	if (second_is_newer)
416 		dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
417 	else
418 		dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
419 
420 	return second_is_newer | (bitflips << 1) | (corrupted << 2);
421 
422 out_unlock:
423 	mutex_unlock(&ubi->buf_mutex);
424 out_free_vidh:
425 	ubi_free_vid_hdr(ubi, vh);
426 	return err;
427 }
428 
429 /**
430  * ubi_add_to_av - add used physical eraseblock to the attaching information.
431  * @ubi: UBI device description object
432  * @ai: attaching information
433  * @pnum: the physical eraseblock number
434  * @ec: erase counter
435  * @vid_hdr: the volume identifier header
436  * @bitflips: if bit-flips were detected when this physical eraseblock was read
437  *
438  * This function adds information about a used physical eraseblock to the
439  * 'used' tree of the corresponding volume. The function is rather complex
440  * because it has to handle cases when this is not the first physical
441  * eraseblock belonging to the same logical eraseblock, and the newer one has
442  * to be picked, while the older one has to be dropped. This function returns
443  * zero in case of success and a negative error code in case of failure.
444  */
ubi_add_to_av(struct ubi_device * ubi,struct ubi_attach_info * ai,int pnum,int ec,const struct ubi_vid_hdr * vid_hdr,int bitflips)445 int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
446 		  int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
447 {
448 	int err, vol_id, lnum;
449 	unsigned long long sqnum;
450 	struct ubi_ainf_volume *av;
451 	struct ubi_ainf_peb *aeb;
452 	struct rb_node **p, *parent = NULL;
453 
454 	vol_id = be32_to_cpu(vid_hdr->vol_id);
455 	lnum = be32_to_cpu(vid_hdr->lnum);
456 	sqnum = be64_to_cpu(vid_hdr->sqnum);
457 
458 	dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
459 		pnum, vol_id, lnum, ec, sqnum, bitflips);
460 
461 	av = add_volume(ai, vol_id, pnum, vid_hdr);
462 	if (IS_ERR(av))
463 		return PTR_ERR(av);
464 
465 	if (ai->max_sqnum < sqnum)
466 		ai->max_sqnum = sqnum;
467 
468 	/*
469 	 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
470 	 * if this is the first instance of this logical eraseblock or not.
471 	 */
472 	p = &av->root.rb_node;
473 	while (*p) {
474 		int cmp_res;
475 
476 		parent = *p;
477 		aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
478 		if (lnum != aeb->lnum) {
479 			if (lnum < aeb->lnum)
480 				p = &(*p)->rb_left;
481 			else
482 				p = &(*p)->rb_right;
483 			continue;
484 		}
485 
486 		/*
487 		 * There is already a physical eraseblock describing the same
488 		 * logical eraseblock present.
489 		 */
490 
491 		dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
492 			aeb->pnum, aeb->sqnum, aeb->ec);
493 
494 		/*
495 		 * Make sure that the logical eraseblocks have different
496 		 * sequence numbers. Otherwise the image is bad.
497 		 *
498 		 * However, if the sequence number is zero, we assume it must
499 		 * be an ancient UBI image from the era when UBI did not have
500 		 * sequence numbers. We still can attach these images, unless
501 		 * there is a need to distinguish between old and new
502 		 * eraseblocks, in which case we'll refuse the image in
503 		 * 'ubi_compare_lebs()'. In other words, we attach old clean
504 		 * images, but refuse attaching old images with duplicated
505 		 * logical eraseblocks because there was an unclean reboot.
506 		 */
507 		if (aeb->sqnum == sqnum && sqnum != 0) {
508 			ubi_err(ubi, "two LEBs with same sequence number %llu",
509 				sqnum);
510 			ubi_dump_aeb(aeb, 0);
511 			ubi_dump_vid_hdr(vid_hdr);
512 			return -EINVAL;
513 		}
514 
515 		/*
516 		 * Now we have to drop the older one and preserve the newer
517 		 * one.
518 		 */
519 		cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
520 		if (cmp_res < 0)
521 			return cmp_res;
522 
523 		if (cmp_res & 1) {
524 			/*
525 			 * This logical eraseblock is newer than the one
526 			 * found earlier.
527 			 */
528 			err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
529 			if (err)
530 				return err;
531 
532 			err = add_to_list(ai, aeb->pnum, aeb->vol_id,
533 					  aeb->lnum, aeb->ec, cmp_res & 4,
534 					  &ai->erase);
535 			if (err)
536 				return err;
537 
538 			aeb->ec = ec;
539 			aeb->pnum = pnum;
540 			aeb->vol_id = vol_id;
541 			aeb->lnum = lnum;
542 			aeb->scrub = ((cmp_res & 2) || bitflips);
543 			aeb->copy_flag = vid_hdr->copy_flag;
544 			aeb->sqnum = sqnum;
545 
546 			if (av->highest_lnum == lnum)
547 				av->last_data_size =
548 					be32_to_cpu(vid_hdr->data_size);
549 
550 			return 0;
551 		} else {
552 			/*
553 			 * This logical eraseblock is older than the one found
554 			 * previously.
555 			 */
556 			return add_to_list(ai, pnum, vol_id, lnum, ec,
557 					   cmp_res & 4, &ai->erase);
558 		}
559 	}
560 
561 	/*
562 	 * We've met this logical eraseblock for the first time, add it to the
563 	 * attaching information.
564 	 */
565 
566 	err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
567 	if (err)
568 		return err;
569 
570 	aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
571 	if (!aeb)
572 		return -ENOMEM;
573 
574 	aeb->ec = ec;
575 	aeb->pnum = pnum;
576 	aeb->vol_id = vol_id;
577 	aeb->lnum = lnum;
578 	aeb->scrub = bitflips;
579 	aeb->copy_flag = vid_hdr->copy_flag;
580 	aeb->sqnum = sqnum;
581 
582 	if (av->highest_lnum <= lnum) {
583 		av->highest_lnum = lnum;
584 		av->last_data_size = be32_to_cpu(vid_hdr->data_size);
585 	}
586 
587 	av->leb_count += 1;
588 	rb_link_node(&aeb->u.rb, parent, p);
589 	rb_insert_color(&aeb->u.rb, &av->root);
590 	return 0;
591 }
592 
593 /**
594  * ubi_find_av - find volume in the attaching information.
595  * @ai: attaching information
596  * @vol_id: the requested volume ID
597  *
598  * This function returns a pointer to the volume description or %NULL if there
599  * are no data about this volume in the attaching information.
600  */
ubi_find_av(const struct ubi_attach_info * ai,int vol_id)601 struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
602 				    int vol_id)
603 {
604 	struct ubi_ainf_volume *av;
605 	struct rb_node *p = ai->volumes.rb_node;
606 
607 	while (p) {
608 		av = rb_entry(p, struct ubi_ainf_volume, rb);
609 
610 		if (vol_id == av->vol_id)
611 			return av;
612 
613 		if (vol_id > av->vol_id)
614 			p = p->rb_left;
615 		else
616 			p = p->rb_right;
617 	}
618 
619 	return NULL;
620 }
621 
622 /**
623  * ubi_remove_av - delete attaching information about a volume.
624  * @ai: attaching information
625  * @av: the volume attaching information to delete
626  */
ubi_remove_av(struct ubi_attach_info * ai,struct ubi_ainf_volume * av)627 void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
628 {
629 	struct rb_node *rb;
630 	struct ubi_ainf_peb *aeb;
631 
632 	dbg_bld("remove attaching information about volume %d", av->vol_id);
633 
634 	while ((rb = rb_first(&av->root))) {
635 		aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
636 		rb_erase(&aeb->u.rb, &av->root);
637 		list_add_tail(&aeb->u.list, &ai->erase);
638 	}
639 
640 	rb_erase(&av->rb, &ai->volumes);
641 	kfree(av);
642 	ai->vols_found -= 1;
643 }
644 
645 /**
646  * early_erase_peb - erase a physical eraseblock.
647  * @ubi: UBI device description object
648  * @ai: attaching information
649  * @pnum: physical eraseblock number to erase;
650  * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
651  *
652  * This function erases physical eraseblock 'pnum', and writes the erase
653  * counter header to it. This function should only be used on UBI device
654  * initialization stages, when the EBA sub-system had not been yet initialized.
655  * This function returns zero in case of success and a negative error code in
656  * case of failure.
657  */
early_erase_peb(struct ubi_device * ubi,const struct ubi_attach_info * ai,int pnum,int ec)658 static int early_erase_peb(struct ubi_device *ubi,
659 			   const struct ubi_attach_info *ai, int pnum, int ec)
660 {
661 	int err;
662 	struct ubi_ec_hdr *ec_hdr;
663 
664 	if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
665 		/*
666 		 * Erase counter overflow. Upgrade UBI and use 64-bit
667 		 * erase counters internally.
668 		 */
669 		ubi_err(ubi, "erase counter overflow at PEB %d, EC %d",
670 			pnum, ec);
671 		return -EINVAL;
672 	}
673 
674 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
675 	if (!ec_hdr)
676 		return -ENOMEM;
677 
678 	ec_hdr->ec = cpu_to_be64(ec);
679 
680 	err = ubi_io_sync_erase(ubi, pnum, 0);
681 	if (err < 0)
682 		goto out_free;
683 
684 	err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
685 
686 out_free:
687 	kfree(ec_hdr);
688 	return err;
689 }
690 
691 /**
692  * ubi_early_get_peb - get a free physical eraseblock.
693  * @ubi: UBI device description object
694  * @ai: attaching information
695  *
696  * This function returns a free physical eraseblock. It is supposed to be
697  * called on the UBI initialization stages when the wear-leveling sub-system is
698  * not initialized yet. This function picks a physical eraseblocks from one of
699  * the lists, writes the EC header if it is needed, and removes it from the
700  * list.
701  *
702  * This function returns a pointer to the "aeb" of the found free PEB in case
703  * of success and an error code in case of failure.
704  */
ubi_early_get_peb(struct ubi_device * ubi,struct ubi_attach_info * ai)705 struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
706 				       struct ubi_attach_info *ai)
707 {
708 	int err = 0;
709 	struct ubi_ainf_peb *aeb, *tmp_aeb;
710 
711 	if (!list_empty(&ai->free)) {
712 		aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
713 		list_del(&aeb->u.list);
714 		dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
715 		return aeb;
716 	}
717 
718 	/*
719 	 * We try to erase the first physical eraseblock from the erase list
720 	 * and pick it if we succeed, or try to erase the next one if not. And
721 	 * so forth. We don't want to take care about bad eraseblocks here -
722 	 * they'll be handled later.
723 	 */
724 	list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
725 		if (aeb->ec == UBI_UNKNOWN)
726 			aeb->ec = ai->mean_ec;
727 
728 		err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
729 		if (err)
730 			continue;
731 
732 		aeb->ec += 1;
733 		list_del(&aeb->u.list);
734 		dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
735 		return aeb;
736 	}
737 
738 	ubi_err(ubi, "no free eraseblocks");
739 	return ERR_PTR(-ENOSPC);
740 }
741 
742 /**
743  * check_corruption - check the data area of PEB.
744  * @ubi: UBI device description object
745  * @vid_hdr: the (corrupted) VID header of this PEB
746  * @pnum: the physical eraseblock number to check
747  *
748  * This is a helper function which is used to distinguish between VID header
749  * corruptions caused by power cuts and other reasons. If the PEB contains only
750  * 0xFF bytes in the data area, the VID header is most probably corrupted
751  * because of a power cut (%0 is returned in this case). Otherwise, it was
752  * probably corrupted for some other reasons (%1 is returned in this case). A
753  * negative error code is returned if a read error occurred.
754  *
755  * If the corruption reason was a power cut, UBI can safely erase this PEB.
756  * Otherwise, it should preserve it to avoid possibly destroying important
757  * information.
758  */
check_corruption(struct ubi_device * ubi,struct ubi_vid_hdr * vid_hdr,int pnum)759 static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
760 			    int pnum)
761 {
762 	int err;
763 
764 	mutex_lock(&ubi->buf_mutex);
765 	memset(ubi->peb_buf, 0x00, ubi->leb_size);
766 
767 	err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
768 			  ubi->leb_size);
769 	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
770 		/*
771 		 * Bit-flips or integrity errors while reading the data area.
772 		 * It is difficult to say for sure what type of corruption is
773 		 * this, but presumably a power cut happened while this PEB was
774 		 * erased, so it became unstable and corrupted, and should be
775 		 * erased.
776 		 */
777 		err = 0;
778 		goto out_unlock;
779 	}
780 
781 	if (err)
782 		goto out_unlock;
783 
784 	if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
785 		goto out_unlock;
786 
787 	ubi_err(ubi, "PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
788 		pnum);
789 	ubi_err(ubi, "this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
790 	ubi_dump_vid_hdr(vid_hdr);
791 	pr_err("hexdump of PEB %d offset %d, length %d",
792 	       pnum, ubi->leb_start, ubi->leb_size);
793 	ubi_dbg_print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1,
794 			       ubi->peb_buf, ubi->leb_size, 1);
795 	err = 1;
796 
797 out_unlock:
798 	mutex_unlock(&ubi->buf_mutex);
799 	return err;
800 }
801 
802 /**
803  * scan_peb - scan and process UBI headers of a PEB.
804  * @ubi: UBI device description object
805  * @ai: attaching information
806  * @pnum: the physical eraseblock number
807  * @vid: The volume ID of the found volume will be stored in this pointer
808  * @sqnum: The sqnum of the found volume will be stored in this pointer
809  *
810  * This function reads UBI headers of PEB @pnum, checks them, and adds
811  * information about this PEB to the corresponding list or RB-tree in the
812  * "attaching info" structure. Returns zero if the physical eraseblock was
813  * successfully handled and a negative error code in case of failure.
814  */
scan_peb(struct ubi_device * ubi,struct ubi_attach_info * ai,int pnum,int * vid,unsigned long long * sqnum)815 static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
816 		    int pnum, int *vid, unsigned long long *sqnum)
817 {
818 	long long uninitialized_var(ec);
819 	int err, bitflips = 0, vol_id = -1, ec_err = 0;
820 
821 	dbg_bld("scan PEB %d", pnum);
822 
823 	/* Skip bad physical eraseblocks */
824 	err = ubi_io_is_bad(ubi, pnum);
825 	if (err < 0)
826 		return err;
827 	else if (err) {
828 		ai->bad_peb_count += 1;
829 		return 0;
830 	}
831 
832 	err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
833 	if (err < 0)
834 		return err;
835 	switch (err) {
836 	case 0:
837 		break;
838 	case UBI_IO_BITFLIPS:
839 		bitflips = 1;
840 		break;
841 	case UBI_IO_FF:
842 		ai->empty_peb_count += 1;
843 		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
844 				   UBI_UNKNOWN, 0, &ai->erase);
845 	case UBI_IO_FF_BITFLIPS:
846 		ai->empty_peb_count += 1;
847 		return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
848 				   UBI_UNKNOWN, 1, &ai->erase);
849 	case UBI_IO_BAD_HDR_EBADMSG:
850 	case UBI_IO_BAD_HDR:
851 		/*
852 		 * We have to also look at the VID header, possibly it is not
853 		 * corrupted. Set %bitflips flag in order to make this PEB be
854 		 * moved and EC be re-created.
855 		 */
856 		ec_err = err;
857 		ec = UBI_UNKNOWN;
858 		bitflips = 1;
859 		break;
860 	default:
861 		ubi_err(ubi, "'ubi_io_read_ec_hdr()' returned unknown code %d",
862 			err);
863 		return -EINVAL;
864 	}
865 
866 	if (!ec_err) {
867 		int image_seq;
868 
869 		/* Make sure UBI version is OK */
870 		if (ech->version != UBI_VERSION) {
871 			ubi_err(ubi, "this UBI version is %d, image version is %d",
872 				UBI_VERSION, (int)ech->version);
873 			return -EINVAL;
874 		}
875 
876 		ec = be64_to_cpu(ech->ec);
877 		if (ec > UBI_MAX_ERASECOUNTER) {
878 			/*
879 			 * Erase counter overflow. The EC headers have 64 bits
880 			 * reserved, but we anyway make use of only 31 bit
881 			 * values, as this seems to be enough for any existing
882 			 * flash. Upgrade UBI and use 64-bit erase counters
883 			 * internally.
884 			 */
885 			ubi_err(ubi, "erase counter overflow, max is %d",
886 				UBI_MAX_ERASECOUNTER);
887 			ubi_dump_ec_hdr(ech);
888 			return -EINVAL;
889 		}
890 
891 		/*
892 		 * Make sure that all PEBs have the same image sequence number.
893 		 * This allows us to detect situations when users flash UBI
894 		 * images incorrectly, so that the flash has the new UBI image
895 		 * and leftovers from the old one. This feature was added
896 		 * relatively recently, and the sequence number was always
897 		 * zero, because old UBI implementations always set it to zero.
898 		 * For this reasons, we do not panic if some PEBs have zero
899 		 * sequence number, while other PEBs have non-zero sequence
900 		 * number.
901 		 */
902 		image_seq = be32_to_cpu(ech->image_seq);
903 		if (!ubi->image_seq)
904 			ubi->image_seq = image_seq;
905 		if (image_seq && ubi->image_seq != image_seq) {
906 			ubi_err(ubi, "bad image sequence number %d in PEB %d, expected %d",
907 				image_seq, pnum, ubi->image_seq);
908 			ubi_dump_ec_hdr(ech);
909 			return -EINVAL;
910 		}
911 	}
912 
913 	/* OK, we've done with the EC header, let's look at the VID header */
914 
915 	err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
916 	if (err < 0)
917 		return err;
918 	switch (err) {
919 	case 0:
920 		break;
921 	case UBI_IO_BITFLIPS:
922 		bitflips = 1;
923 		break;
924 	case UBI_IO_BAD_HDR_EBADMSG:
925 		if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
926 			/*
927 			 * Both EC and VID headers are corrupted and were read
928 			 * with data integrity error, probably this is a bad
929 			 * PEB, bit it is not marked as bad yet. This may also
930 			 * be a result of power cut during erasure.
931 			 */
932 			ai->maybe_bad_peb_count += 1;
933 	case UBI_IO_BAD_HDR:
934 		if (ec_err)
935 			/*
936 			 * Both headers are corrupted. There is a possibility
937 			 * that this a valid UBI PEB which has corresponding
938 			 * LEB, but the headers are corrupted. However, it is
939 			 * impossible to distinguish it from a PEB which just
940 			 * contains garbage because of a power cut during erase
941 			 * operation. So we just schedule this PEB for erasure.
942 			 *
943 			 * Besides, in case of NOR flash, we deliberately
944 			 * corrupt both headers because NOR flash erasure is
945 			 * slow and can start from the end.
946 			 */
947 			err = 0;
948 		else
949 			/*
950 			 * The EC was OK, but the VID header is corrupted. We
951 			 * have to check what is in the data area.
952 			 */
953 			err = check_corruption(ubi, vidh, pnum);
954 
955 		if (err < 0)
956 			return err;
957 		else if (!err)
958 			/* This corruption is caused by a power cut */
959 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
960 					  UBI_UNKNOWN, ec, 1, &ai->erase);
961 		else
962 			/* This is an unexpected corruption */
963 			err = add_corrupted(ai, pnum, ec);
964 		if (err)
965 			return err;
966 		goto adjust_mean_ec;
967 	case UBI_IO_FF_BITFLIPS:
968 		err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
969 				  ec, 1, &ai->erase);
970 		if (err)
971 			return err;
972 		goto adjust_mean_ec;
973 	case UBI_IO_FF:
974 		if (ec_err || bitflips)
975 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
976 					  UBI_UNKNOWN, ec, 1, &ai->erase);
977 		else
978 			err = add_to_list(ai, pnum, UBI_UNKNOWN,
979 					  UBI_UNKNOWN, ec, 0, &ai->free);
980 		if (err)
981 			return err;
982 		goto adjust_mean_ec;
983 	default:
984 		ubi_err(ubi, "'ubi_io_read_vid_hdr()' returned unknown code %d",
985 			err);
986 		return -EINVAL;
987 	}
988 
989 	vol_id = be32_to_cpu(vidh->vol_id);
990 	if (vid)
991 		*vid = vol_id;
992 	if (sqnum)
993 		*sqnum = be64_to_cpu(vidh->sqnum);
994 	if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
995 		int lnum = be32_to_cpu(vidh->lnum);
996 
997 		/* Unsupported internal volume */
998 		switch (vidh->compat) {
999 		case UBI_COMPAT_DELETE:
1000 			if (vol_id != UBI_FM_SB_VOLUME_ID
1001 			    && vol_id != UBI_FM_DATA_VOLUME_ID) {
1002 				ubi_msg(ubi, "\"delete\" compatible internal volume %d:%d found, will remove it",
1003 					vol_id, lnum);
1004 			}
1005 			err = add_to_list(ai, pnum, vol_id, lnum,
1006 					  ec, 1, &ai->erase);
1007 			if (err)
1008 				return err;
1009 			return 0;
1010 
1011 		case UBI_COMPAT_RO:
1012 			ubi_msg(ubi, "read-only compatible internal volume %d:%d found, switch to read-only mode",
1013 				vol_id, lnum);
1014 			ubi->ro_mode = 1;
1015 			break;
1016 
1017 		case UBI_COMPAT_PRESERVE:
1018 			ubi_msg(ubi, "\"preserve\" compatible internal volume %d:%d found",
1019 				vol_id, lnum);
1020 			err = add_to_list(ai, pnum, vol_id, lnum,
1021 					  ec, 0, &ai->alien);
1022 			if (err)
1023 				return err;
1024 			return 0;
1025 
1026 		case UBI_COMPAT_REJECT:
1027 			ubi_err(ubi, "incompatible internal volume %d:%d found",
1028 				vol_id, lnum);
1029 			return -EINVAL;
1030 		}
1031 	}
1032 
1033 	if (ec_err)
1034 		ubi_warn(ubi, "valid VID header but corrupted EC header at PEB %d",
1035 			 pnum);
1036 	err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1037 	if (err)
1038 		return err;
1039 
1040 adjust_mean_ec:
1041 	if (!ec_err) {
1042 		ai->ec_sum += ec;
1043 		ai->ec_count += 1;
1044 		if (ec > ai->max_ec)
1045 			ai->max_ec = ec;
1046 		if (ec < ai->min_ec)
1047 			ai->min_ec = ec;
1048 	}
1049 
1050 	return 0;
1051 }
1052 
1053 /**
1054  * late_analysis - analyze the overall situation with PEB.
1055  * @ubi: UBI device description object
1056  * @ai: attaching information
1057  *
1058  * This is a helper function which takes a look what PEBs we have after we
1059  * gather information about all of them ("ai" is compete). It decides whether
1060  * the flash is empty and should be formatted of whether there are too many
1061  * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1062  * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1063  */
late_analysis(struct ubi_device * ubi,struct ubi_attach_info * ai)1064 static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1065 {
1066 	struct ubi_ainf_peb *aeb;
1067 	int max_corr, peb_count;
1068 
1069 	peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1070 	max_corr = peb_count / 20 ?: 8;
1071 
1072 	/*
1073 	 * Few corrupted PEBs is not a problem and may be just a result of
1074 	 * unclean reboots. However, many of them may indicate some problems
1075 	 * with the flash HW or driver.
1076 	 */
1077 	if (ai->corr_peb_count) {
1078 		ubi_err(ubi, "%d PEBs are corrupted and preserved",
1079 			ai->corr_peb_count);
1080 		pr_err("Corrupted PEBs are:");
1081 		list_for_each_entry(aeb, &ai->corr, u.list)
1082 			pr_cont(" %d", aeb->pnum);
1083 		pr_cont("\n");
1084 
1085 		/*
1086 		 * If too many PEBs are corrupted, we refuse attaching,
1087 		 * otherwise, only print a warning.
1088 		 */
1089 		if (ai->corr_peb_count >= max_corr) {
1090 			ubi_err(ubi, "too many corrupted PEBs, refusing");
1091 			return -EINVAL;
1092 		}
1093 	}
1094 
1095 	if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1096 		/*
1097 		 * All PEBs are empty, or almost all - a couple PEBs look like
1098 		 * they may be bad PEBs which were not marked as bad yet.
1099 		 *
1100 		 * This piece of code basically tries to distinguish between
1101 		 * the following situations:
1102 		 *
1103 		 * 1. Flash is empty, but there are few bad PEBs, which are not
1104 		 *    marked as bad so far, and which were read with error. We
1105 		 *    want to go ahead and format this flash. While formatting,
1106 		 *    the faulty PEBs will probably be marked as bad.
1107 		 *
1108 		 * 2. Flash contains non-UBI data and we do not want to format
1109 		 *    it and destroy possibly important information.
1110 		 */
1111 		if (ai->maybe_bad_peb_count <= 2) {
1112 			ai->is_empty = 1;
1113 			ubi_msg(ubi, "empty MTD device detected");
1114 			get_random_bytes(&ubi->image_seq,
1115 					 sizeof(ubi->image_seq));
1116 		} else {
1117 			ubi_err(ubi, "MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1118 			return -EINVAL;
1119 		}
1120 
1121 	}
1122 
1123 	return 0;
1124 }
1125 
1126 /**
1127  * destroy_av - free volume attaching information.
1128  * @av: volume attaching information
1129  * @ai: attaching information
1130  *
1131  * This function destroys the volume attaching information.
1132  */
destroy_av(struct ubi_attach_info * ai,struct ubi_ainf_volume * av)1133 static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1134 {
1135 	struct ubi_ainf_peb *aeb;
1136 	struct rb_node *this = av->root.rb_node;
1137 
1138 	while (this) {
1139 		if (this->rb_left)
1140 			this = this->rb_left;
1141 		else if (this->rb_right)
1142 			this = this->rb_right;
1143 		else {
1144 			aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1145 			this = rb_parent(this);
1146 			if (this) {
1147 				if (this->rb_left == &aeb->u.rb)
1148 					this->rb_left = NULL;
1149 				else
1150 					this->rb_right = NULL;
1151 			}
1152 
1153 			kmem_cache_free(ai->aeb_slab_cache, aeb);
1154 		}
1155 	}
1156 	kfree(av);
1157 }
1158 
1159 /**
1160  * destroy_ai - destroy attaching information.
1161  * @ai: attaching information
1162  */
destroy_ai(struct ubi_attach_info * ai)1163 static void destroy_ai(struct ubi_attach_info *ai)
1164 {
1165 	struct ubi_ainf_peb *aeb, *aeb_tmp;
1166 	struct ubi_ainf_volume *av;
1167 	struct rb_node *rb;
1168 
1169 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1170 		list_del(&aeb->u.list);
1171 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1172 	}
1173 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1174 		list_del(&aeb->u.list);
1175 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1176 	}
1177 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1178 		list_del(&aeb->u.list);
1179 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1180 	}
1181 	list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1182 		list_del(&aeb->u.list);
1183 		kmem_cache_free(ai->aeb_slab_cache, aeb);
1184 	}
1185 
1186 	/* Destroy the volume RB-tree */
1187 	rb = ai->volumes.rb_node;
1188 	while (rb) {
1189 		if (rb->rb_left)
1190 			rb = rb->rb_left;
1191 		else if (rb->rb_right)
1192 			rb = rb->rb_right;
1193 		else {
1194 			av = rb_entry(rb, struct ubi_ainf_volume, rb);
1195 
1196 			rb = rb_parent(rb);
1197 			if (rb) {
1198 				if (rb->rb_left == &av->rb)
1199 					rb->rb_left = NULL;
1200 				else
1201 					rb->rb_right = NULL;
1202 			}
1203 
1204 			destroy_av(ai, av);
1205 		}
1206 	}
1207 
1208 	kmem_cache_destroy(ai->aeb_slab_cache);
1209 
1210 	kfree(ai);
1211 }
1212 
1213 /**
1214  * scan_all - scan entire MTD device.
1215  * @ubi: UBI device description object
1216  * @ai: attach info object
1217  * @start: start scanning at this PEB
1218  *
1219  * This function does full scanning of an MTD device and returns complete
1220  * information about it in form of a "struct ubi_attach_info" object. In case
1221  * of failure, an error code is returned.
1222  */
scan_all(struct ubi_device * ubi,struct ubi_attach_info * ai,int start)1223 static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1224 		    int start)
1225 {
1226 	int err, pnum;
1227 	struct rb_node *rb1, *rb2;
1228 	struct ubi_ainf_volume *av;
1229 	struct ubi_ainf_peb *aeb;
1230 
1231 	err = -ENOMEM;
1232 
1233 	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1234 	if (!ech)
1235 		return err;
1236 
1237 	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1238 	if (!vidh)
1239 		goto out_ech;
1240 
1241 	for (pnum = start; pnum < ubi->peb_count; pnum++) {
1242 		cond_resched();
1243 
1244 		dbg_gen("process PEB %d", pnum);
1245 		err = scan_peb(ubi, ai, pnum, NULL, NULL);
1246 		if (err < 0)
1247 			goto out_vidh;
1248 	}
1249 
1250 	ubi_msg(ubi, "scanning is finished");
1251 
1252 	/* Calculate mean erase counter */
1253 	if (ai->ec_count)
1254 		ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1255 
1256 	err = late_analysis(ubi, ai);
1257 	if (err)
1258 		goto out_vidh;
1259 
1260 	/*
1261 	 * In case of unknown erase counter we use the mean erase counter
1262 	 * value.
1263 	 */
1264 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1265 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1266 			if (aeb->ec == UBI_UNKNOWN)
1267 				aeb->ec = ai->mean_ec;
1268 	}
1269 
1270 	list_for_each_entry(aeb, &ai->free, u.list) {
1271 		if (aeb->ec == UBI_UNKNOWN)
1272 			aeb->ec = ai->mean_ec;
1273 	}
1274 
1275 	list_for_each_entry(aeb, &ai->corr, u.list)
1276 		if (aeb->ec == UBI_UNKNOWN)
1277 			aeb->ec = ai->mean_ec;
1278 
1279 	list_for_each_entry(aeb, &ai->erase, u.list)
1280 		if (aeb->ec == UBI_UNKNOWN)
1281 			aeb->ec = ai->mean_ec;
1282 
1283 	err = self_check_ai(ubi, ai);
1284 	if (err)
1285 		goto out_vidh;
1286 
1287 	ubi_free_vid_hdr(ubi, vidh);
1288 	kfree(ech);
1289 
1290 	return 0;
1291 
1292 out_vidh:
1293 	ubi_free_vid_hdr(ubi, vidh);
1294 out_ech:
1295 	kfree(ech);
1296 	return err;
1297 }
1298 
alloc_ai(void)1299 static struct ubi_attach_info *alloc_ai(void)
1300 {
1301 	struct ubi_attach_info *ai;
1302 
1303 	ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1304 	if (!ai)
1305 		return ai;
1306 
1307 	INIT_LIST_HEAD(&ai->corr);
1308 	INIT_LIST_HEAD(&ai->free);
1309 	INIT_LIST_HEAD(&ai->erase);
1310 	INIT_LIST_HEAD(&ai->alien);
1311 	ai->volumes = RB_ROOT;
1312 	ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache",
1313 					       sizeof(struct ubi_ainf_peb),
1314 					       0, 0, NULL);
1315 	if (!ai->aeb_slab_cache) {
1316 		kfree(ai);
1317 		ai = NULL;
1318 	}
1319 
1320 	return ai;
1321 }
1322 
1323 #ifdef CONFIG_MTD_UBI_FASTMAP
1324 
1325 /**
1326  * scan_fastmap - try to find a fastmap and attach from it.
1327  * @ubi: UBI device description object
1328  * @ai: attach info object
1329  *
1330  * Returns 0 on success, negative return values indicate an internal
1331  * error.
1332  * UBI_NO_FASTMAP denotes that no fastmap was found.
1333  * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1334  */
scan_fast(struct ubi_device * ubi,struct ubi_attach_info ** ai)1335 static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info **ai)
1336 {
1337 	int err, pnum, fm_anchor = -1;
1338 	unsigned long long max_sqnum = 0;
1339 
1340 	err = -ENOMEM;
1341 
1342 	ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1343 	if (!ech)
1344 		goto out;
1345 
1346 	vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1347 	if (!vidh)
1348 		goto out_ech;
1349 
1350 	for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1351 		int vol_id = -1;
1352 		unsigned long long sqnum = -1;
1353 		cond_resched();
1354 
1355 		dbg_gen("process PEB %d", pnum);
1356 		err = scan_peb(ubi, *ai, pnum, &vol_id, &sqnum);
1357 		if (err < 0)
1358 			goto out_vidh;
1359 
1360 		if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) {
1361 			max_sqnum = sqnum;
1362 			fm_anchor = pnum;
1363 		}
1364 	}
1365 
1366 	ubi_free_vid_hdr(ubi, vidh);
1367 	kfree(ech);
1368 
1369 	if (fm_anchor < 0)
1370 		return UBI_NO_FASTMAP;
1371 
1372 	destroy_ai(*ai);
1373 	*ai = alloc_ai();
1374 	if (!*ai)
1375 		return -ENOMEM;
1376 
1377 	return ubi_scan_fastmap(ubi, *ai, fm_anchor);
1378 
1379 out_vidh:
1380 	ubi_free_vid_hdr(ubi, vidh);
1381 out_ech:
1382 	kfree(ech);
1383 out:
1384 	return err;
1385 }
1386 
1387 #endif
1388 
1389 /**
1390  * ubi_attach - attach an MTD device.
1391  * @ubi: UBI device descriptor
1392  * @force_scan: if set to non-zero attach by scanning
1393  *
1394  * This function returns zero in case of success and a negative error code in
1395  * case of failure.
1396  */
ubi_attach(struct ubi_device * ubi,int force_scan)1397 int ubi_attach(struct ubi_device *ubi, int force_scan)
1398 {
1399 	int err;
1400 	struct ubi_attach_info *ai;
1401 
1402 	ai = alloc_ai();
1403 	if (!ai)
1404 		return -ENOMEM;
1405 
1406 #ifdef CONFIG_MTD_UBI_FASTMAP
1407 	/* On small flash devices we disable fastmap in any case. */
1408 	if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1409 		ubi->fm_disabled = 1;
1410 		force_scan = 1;
1411 	}
1412 
1413 	if (force_scan)
1414 		err = scan_all(ubi, ai, 0);
1415 	else {
1416 		err = scan_fast(ubi, &ai);
1417 		if (err > 0 || mtd_is_eccerr(err)) {
1418 			if (err != UBI_NO_FASTMAP) {
1419 				destroy_ai(ai);
1420 				ai = alloc_ai();
1421 				if (!ai)
1422 					return -ENOMEM;
1423 
1424 				err = scan_all(ubi, ai, 0);
1425 			} else {
1426 				err = scan_all(ubi, ai, UBI_FM_MAX_START);
1427 			}
1428 		}
1429 	}
1430 #else
1431 	err = scan_all(ubi, ai, 0);
1432 #endif
1433 	if (err)
1434 		goto out_ai;
1435 
1436 	ubi->bad_peb_count = ai->bad_peb_count;
1437 	ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1438 	ubi->corr_peb_count = ai->corr_peb_count;
1439 	ubi->max_ec = ai->max_ec;
1440 	ubi->mean_ec = ai->mean_ec;
1441 	dbg_gen("max. sequence number:       %llu", ai->max_sqnum);
1442 
1443 	err = ubi_read_volume_table(ubi, ai);
1444 	if (err)
1445 		goto out_ai;
1446 
1447 	err = ubi_wl_init(ubi, ai);
1448 	if (err)
1449 		goto out_vtbl;
1450 
1451 	err = ubi_eba_init(ubi, ai);
1452 	if (err)
1453 		goto out_wl;
1454 
1455 #ifdef CONFIG_MTD_UBI_FASTMAP
1456 	if (ubi->fm && ubi_dbg_chk_fastmap(ubi)) {
1457 		struct ubi_attach_info *scan_ai;
1458 
1459 		scan_ai = alloc_ai();
1460 		if (!scan_ai) {
1461 			err = -ENOMEM;
1462 			goto out_wl;
1463 		}
1464 
1465 		err = scan_all(ubi, scan_ai, 0);
1466 		if (err) {
1467 			destroy_ai(scan_ai);
1468 			goto out_wl;
1469 		}
1470 
1471 		err = self_check_eba(ubi, ai, scan_ai);
1472 		destroy_ai(scan_ai);
1473 
1474 		if (err)
1475 			goto out_wl;
1476 	}
1477 #endif
1478 
1479 	destroy_ai(ai);
1480 	return 0;
1481 
1482 out_wl:
1483 	ubi_wl_close(ubi);
1484 out_vtbl:
1485 	ubi_free_internal_volumes(ubi);
1486 	vfree(ubi->vtbl);
1487 out_ai:
1488 	destroy_ai(ai);
1489 	return err;
1490 }
1491 
1492 /**
1493  * self_check_ai - check the attaching information.
1494  * @ubi: UBI device description object
1495  * @ai: attaching information
1496  *
1497  * This function returns zero if the attaching information is all right, and a
1498  * negative error code if not or if an error occurred.
1499  */
self_check_ai(struct ubi_device * ubi,struct ubi_attach_info * ai)1500 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1501 {
1502 	int pnum, err, vols_found = 0;
1503 	struct rb_node *rb1, *rb2;
1504 	struct ubi_ainf_volume *av;
1505 	struct ubi_ainf_peb *aeb, *last_aeb;
1506 	uint8_t *buf;
1507 
1508 	if (!ubi_dbg_chk_gen(ubi))
1509 		return 0;
1510 
1511 	/*
1512 	 * At first, check that attaching information is OK.
1513 	 */
1514 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1515 		int leb_count = 0;
1516 
1517 		cond_resched();
1518 
1519 		vols_found += 1;
1520 
1521 		if (ai->is_empty) {
1522 			ubi_err(ubi, "bad is_empty flag");
1523 			goto bad_av;
1524 		}
1525 
1526 		if (av->vol_id < 0 || av->highest_lnum < 0 ||
1527 		    av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1528 		    av->data_pad < 0 || av->last_data_size < 0) {
1529 			ubi_err(ubi, "negative values");
1530 			goto bad_av;
1531 		}
1532 
1533 		if (av->vol_id >= UBI_MAX_VOLUMES &&
1534 		    av->vol_id < UBI_INTERNAL_VOL_START) {
1535 			ubi_err(ubi, "bad vol_id");
1536 			goto bad_av;
1537 		}
1538 
1539 		if (av->vol_id > ai->highest_vol_id) {
1540 			ubi_err(ubi, "highest_vol_id is %d, but vol_id %d is there",
1541 				ai->highest_vol_id, av->vol_id);
1542 			goto out;
1543 		}
1544 
1545 		if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1546 		    av->vol_type != UBI_STATIC_VOLUME) {
1547 			ubi_err(ubi, "bad vol_type");
1548 			goto bad_av;
1549 		}
1550 
1551 		if (av->data_pad > ubi->leb_size / 2) {
1552 			ubi_err(ubi, "bad data_pad");
1553 			goto bad_av;
1554 		}
1555 
1556 		last_aeb = NULL;
1557 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1558 			cond_resched();
1559 
1560 			last_aeb = aeb;
1561 			leb_count += 1;
1562 
1563 			if (aeb->pnum < 0 || aeb->ec < 0) {
1564 				ubi_err(ubi, "negative values");
1565 				goto bad_aeb;
1566 			}
1567 
1568 			if (aeb->ec < ai->min_ec) {
1569 				ubi_err(ubi, "bad ai->min_ec (%d), %d found",
1570 					ai->min_ec, aeb->ec);
1571 				goto bad_aeb;
1572 			}
1573 
1574 			if (aeb->ec > ai->max_ec) {
1575 				ubi_err(ubi, "bad ai->max_ec (%d), %d found",
1576 					ai->max_ec, aeb->ec);
1577 				goto bad_aeb;
1578 			}
1579 
1580 			if (aeb->pnum >= ubi->peb_count) {
1581 				ubi_err(ubi, "too high PEB number %d, total PEBs %d",
1582 					aeb->pnum, ubi->peb_count);
1583 				goto bad_aeb;
1584 			}
1585 
1586 			if (av->vol_type == UBI_STATIC_VOLUME) {
1587 				if (aeb->lnum >= av->used_ebs) {
1588 					ubi_err(ubi, "bad lnum or used_ebs");
1589 					goto bad_aeb;
1590 				}
1591 			} else {
1592 				if (av->used_ebs != 0) {
1593 					ubi_err(ubi, "non-zero used_ebs");
1594 					goto bad_aeb;
1595 				}
1596 			}
1597 
1598 			if (aeb->lnum > av->highest_lnum) {
1599 				ubi_err(ubi, "incorrect highest_lnum or lnum");
1600 				goto bad_aeb;
1601 			}
1602 		}
1603 
1604 		if (av->leb_count != leb_count) {
1605 			ubi_err(ubi, "bad leb_count, %d objects in the tree",
1606 				leb_count);
1607 			goto bad_av;
1608 		}
1609 
1610 		if (!last_aeb)
1611 			continue;
1612 
1613 		aeb = last_aeb;
1614 
1615 		if (aeb->lnum != av->highest_lnum) {
1616 			ubi_err(ubi, "bad highest_lnum");
1617 			goto bad_aeb;
1618 		}
1619 	}
1620 
1621 	if (vols_found != ai->vols_found) {
1622 		ubi_err(ubi, "bad ai->vols_found %d, should be %d",
1623 			ai->vols_found, vols_found);
1624 		goto out;
1625 	}
1626 
1627 	/* Check that attaching information is correct */
1628 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1629 		last_aeb = NULL;
1630 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1631 			int vol_type;
1632 
1633 			cond_resched();
1634 
1635 			last_aeb = aeb;
1636 
1637 			err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
1638 			if (err && err != UBI_IO_BITFLIPS) {
1639 				ubi_err(ubi, "VID header is not OK (%d)",
1640 					err);
1641 				if (err > 0)
1642 					err = -EIO;
1643 				return err;
1644 			}
1645 
1646 			vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1647 				   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1648 			if (av->vol_type != vol_type) {
1649 				ubi_err(ubi, "bad vol_type");
1650 				goto bad_vid_hdr;
1651 			}
1652 
1653 			if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1654 				ubi_err(ubi, "bad sqnum %llu", aeb->sqnum);
1655 				goto bad_vid_hdr;
1656 			}
1657 
1658 			if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1659 				ubi_err(ubi, "bad vol_id %d", av->vol_id);
1660 				goto bad_vid_hdr;
1661 			}
1662 
1663 			if (av->compat != vidh->compat) {
1664 				ubi_err(ubi, "bad compat %d", vidh->compat);
1665 				goto bad_vid_hdr;
1666 			}
1667 
1668 			if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1669 				ubi_err(ubi, "bad lnum %d", aeb->lnum);
1670 				goto bad_vid_hdr;
1671 			}
1672 
1673 			if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1674 				ubi_err(ubi, "bad used_ebs %d", av->used_ebs);
1675 				goto bad_vid_hdr;
1676 			}
1677 
1678 			if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1679 				ubi_err(ubi, "bad data_pad %d", av->data_pad);
1680 				goto bad_vid_hdr;
1681 			}
1682 		}
1683 
1684 		if (!last_aeb)
1685 			continue;
1686 
1687 		if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1688 			ubi_err(ubi, "bad highest_lnum %d", av->highest_lnum);
1689 			goto bad_vid_hdr;
1690 		}
1691 
1692 		if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1693 			ubi_err(ubi, "bad last_data_size %d",
1694 				av->last_data_size);
1695 			goto bad_vid_hdr;
1696 		}
1697 	}
1698 
1699 	/*
1700 	 * Make sure that all the physical eraseblocks are in one of the lists
1701 	 * or trees.
1702 	 */
1703 	buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1704 	if (!buf)
1705 		return -ENOMEM;
1706 
1707 	for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1708 		err = ubi_io_is_bad(ubi, pnum);
1709 		if (err < 0) {
1710 			kfree(buf);
1711 			return err;
1712 		} else if (err)
1713 			buf[pnum] = 1;
1714 	}
1715 
1716 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1717 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1718 			buf[aeb->pnum] = 1;
1719 
1720 	list_for_each_entry(aeb, &ai->free, u.list)
1721 		buf[aeb->pnum] = 1;
1722 
1723 	list_for_each_entry(aeb, &ai->corr, u.list)
1724 		buf[aeb->pnum] = 1;
1725 
1726 	list_for_each_entry(aeb, &ai->erase, u.list)
1727 		buf[aeb->pnum] = 1;
1728 
1729 	list_for_each_entry(aeb, &ai->alien, u.list)
1730 		buf[aeb->pnum] = 1;
1731 
1732 	err = 0;
1733 	for (pnum = 0; pnum < ubi->peb_count; pnum++)
1734 		if (!buf[pnum]) {
1735 			ubi_err(ubi, "PEB %d is not referred", pnum);
1736 			err = 1;
1737 		}
1738 
1739 	kfree(buf);
1740 	if (err)
1741 		goto out;
1742 	return 0;
1743 
1744 bad_aeb:
1745 	ubi_err(ubi, "bad attaching information about LEB %d", aeb->lnum);
1746 	ubi_dump_aeb(aeb, 0);
1747 	ubi_dump_av(av);
1748 	goto out;
1749 
1750 bad_av:
1751 	ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1752 	ubi_dump_av(av);
1753 	goto out;
1754 
1755 bad_vid_hdr:
1756 	ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1757 	ubi_dump_av(av);
1758 	ubi_dump_vid_hdr(vidh);
1759 
1760 out:
1761 	dump_stack();
1762 	return -EINVAL;
1763 }
1764