1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (c) International Business Machines Corp., 2006
4 *
5 * Author: Artem Bityutskiy (Битюцкий Артём)
6 */
7
8 /*
9 * The UBI Eraseblock Association (EBA) sub-system.
10 *
11 * This sub-system is responsible for I/O to/from logical eraseblock.
12 *
13 * Although in this implementation the EBA table is fully kept and managed in
14 * RAM, which assumes poor scalability, it might be (partially) maintained on
15 * flash in future implementations.
16 *
17 * The EBA sub-system implements per-logical eraseblock locking. Before
18 * accessing a logical eraseblock it is locked for reading or writing. The
19 * per-logical eraseblock locking is implemented by means of the lock tree. The
20 * lock tree is an RB-tree which refers all the currently locked logical
21 * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
22 * They are indexed by (@vol_id, @lnum) pairs.
23 *
24 * EBA also maintains the global sequence counter which is incremented each
25 * time a logical eraseblock is mapped to a physical eraseblock and it is
26 * stored in the volume identifier header. This means that each VID header has
27 * a unique sequence number. The sequence number is only increased an we assume
28 * 64 bits is enough to never overflow.
29 */
30
31 #ifndef __UBOOT__
32 #include <linux/slab.h>
33 #include <linux/crc32.h>
34 #include <u-boot/crc.h>
35 #else
36 #include <ubi_uboot.h>
37 #endif
38
39 #include <linux/err.h>
40 #include "ubi.h"
41
42 /* Number of physical eraseblocks reserved for atomic LEB change operation */
43 #define EBA_RESERVED_PEBS 1
44
45 /**
46 * next_sqnum - get next sequence number.
47 * @ubi: UBI device description object
48 *
49 * This function returns next sequence number to use, which is just the current
50 * global sequence counter value. It also increases the global sequence
51 * counter.
52 */
ubi_next_sqnum(struct ubi_device * ubi)53 unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
54 {
55 unsigned long long sqnum;
56
57 spin_lock(&ubi->ltree_lock);
58 sqnum = ubi->global_sqnum++;
59 spin_unlock(&ubi->ltree_lock);
60
61 return sqnum;
62 }
63
64 /**
65 * ubi_get_compat - get compatibility flags of a volume.
66 * @ubi: UBI device description object
67 * @vol_id: volume ID
68 *
69 * This function returns compatibility flags for an internal volume. User
70 * volumes have no compatibility flags, so %0 is returned.
71 */
ubi_get_compat(const struct ubi_device * ubi,int vol_id)72 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
73 {
74 if (vol_id == UBI_LAYOUT_VOLUME_ID)
75 return UBI_LAYOUT_VOLUME_COMPAT;
76 return 0;
77 }
78
79 /**
80 * ltree_lookup - look up the lock tree.
81 * @ubi: UBI device description object
82 * @vol_id: volume ID
83 * @lnum: logical eraseblock number
84 *
85 * This function returns a pointer to the corresponding &struct ubi_ltree_entry
86 * object if the logical eraseblock is locked and %NULL if it is not.
87 * @ubi->ltree_lock has to be locked.
88 */
ltree_lookup(struct ubi_device * ubi,int vol_id,int lnum)89 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
90 int lnum)
91 {
92 struct rb_node *p;
93
94 p = ubi->ltree.rb_node;
95 while (p) {
96 struct ubi_ltree_entry *le;
97
98 le = rb_entry(p, struct ubi_ltree_entry, rb);
99
100 if (vol_id < le->vol_id)
101 p = p->rb_left;
102 else if (vol_id > le->vol_id)
103 p = p->rb_right;
104 else {
105 if (lnum < le->lnum)
106 p = p->rb_left;
107 else if (lnum > le->lnum)
108 p = p->rb_right;
109 else
110 return le;
111 }
112 }
113
114 return NULL;
115 }
116
117 /**
118 * ltree_add_entry - add new entry to the lock tree.
119 * @ubi: UBI device description object
120 * @vol_id: volume ID
121 * @lnum: logical eraseblock number
122 *
123 * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
124 * lock tree. If such entry is already there, its usage counter is increased.
125 * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
126 * failed.
127 */
ltree_add_entry(struct ubi_device * ubi,int vol_id,int lnum)128 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
129 int vol_id, int lnum)
130 {
131 struct ubi_ltree_entry *le, *le1, *le_free;
132
133 le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
134 if (!le)
135 return ERR_PTR(-ENOMEM);
136
137 le->users = 0;
138 init_rwsem(&le->mutex);
139 le->vol_id = vol_id;
140 le->lnum = lnum;
141
142 spin_lock(&ubi->ltree_lock);
143 le1 = ltree_lookup(ubi, vol_id, lnum);
144
145 if (le1) {
146 /*
147 * This logical eraseblock is already locked. The newly
148 * allocated lock entry is not needed.
149 */
150 le_free = le;
151 le = le1;
152 } else {
153 struct rb_node **p, *parent = NULL;
154
155 /*
156 * No lock entry, add the newly allocated one to the
157 * @ubi->ltree RB-tree.
158 */
159 le_free = NULL;
160
161 p = &ubi->ltree.rb_node;
162 while (*p) {
163 parent = *p;
164 le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
165
166 if (vol_id < le1->vol_id)
167 p = &(*p)->rb_left;
168 else if (vol_id > le1->vol_id)
169 p = &(*p)->rb_right;
170 else {
171 ubi_assert(lnum != le1->lnum);
172 if (lnum < le1->lnum)
173 p = &(*p)->rb_left;
174 else
175 p = &(*p)->rb_right;
176 }
177 }
178
179 rb_link_node(&le->rb, parent, p);
180 rb_insert_color(&le->rb, &ubi->ltree);
181 }
182 le->users += 1;
183 spin_unlock(&ubi->ltree_lock);
184
185 kfree(le_free);
186 return le;
187 }
188
189 /**
190 * leb_read_lock - lock logical eraseblock for reading.
191 * @ubi: UBI device description object
192 * @vol_id: volume ID
193 * @lnum: logical eraseblock number
194 *
195 * This function locks a logical eraseblock for reading. Returns zero in case
196 * of success and a negative error code in case of failure.
197 */
leb_read_lock(struct ubi_device * ubi,int vol_id,int lnum)198 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
199 {
200 struct ubi_ltree_entry *le;
201
202 le = ltree_add_entry(ubi, vol_id, lnum);
203 if (IS_ERR(le))
204 return PTR_ERR(le);
205 down_read(&le->mutex);
206 return 0;
207 }
208
209 /**
210 * leb_read_unlock - unlock logical eraseblock.
211 * @ubi: UBI device description object
212 * @vol_id: volume ID
213 * @lnum: logical eraseblock number
214 */
leb_read_unlock(struct ubi_device * ubi,int vol_id,int lnum)215 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
216 {
217 struct ubi_ltree_entry *le;
218
219 spin_lock(&ubi->ltree_lock);
220 le = ltree_lookup(ubi, vol_id, lnum);
221 le->users -= 1;
222 ubi_assert(le->users >= 0);
223 up_read(&le->mutex);
224 if (le->users == 0) {
225 rb_erase(&le->rb, &ubi->ltree);
226 kfree(le);
227 }
228 spin_unlock(&ubi->ltree_lock);
229 }
230
231 /**
232 * leb_write_lock - lock logical eraseblock for writing.
233 * @ubi: UBI device description object
234 * @vol_id: volume ID
235 * @lnum: logical eraseblock number
236 *
237 * This function locks a logical eraseblock for writing. Returns zero in case
238 * of success and a negative error code in case of failure.
239 */
leb_write_lock(struct ubi_device * ubi,int vol_id,int lnum)240 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
241 {
242 struct ubi_ltree_entry *le;
243
244 le = ltree_add_entry(ubi, vol_id, lnum);
245 if (IS_ERR(le))
246 return PTR_ERR(le);
247 down_write(&le->mutex);
248 return 0;
249 }
250
251 /**
252 * leb_write_lock - lock logical eraseblock for writing.
253 * @ubi: UBI device description object
254 * @vol_id: volume ID
255 * @lnum: logical eraseblock number
256 *
257 * This function locks a logical eraseblock for writing if there is no
258 * contention and does nothing if there is contention. Returns %0 in case of
259 * success, %1 in case of contention, and and a negative error code in case of
260 * failure.
261 */
leb_write_trylock(struct ubi_device * ubi,int vol_id,int lnum)262 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
263 {
264 struct ubi_ltree_entry *le;
265
266 le = ltree_add_entry(ubi, vol_id, lnum);
267 if (IS_ERR(le))
268 return PTR_ERR(le);
269 if (down_write_trylock(&le->mutex))
270 return 0;
271
272 /* Contention, cancel */
273 spin_lock(&ubi->ltree_lock);
274 le->users -= 1;
275 ubi_assert(le->users >= 0);
276 if (le->users == 0) {
277 rb_erase(&le->rb, &ubi->ltree);
278 kfree(le);
279 }
280 spin_unlock(&ubi->ltree_lock);
281
282 return 1;
283 }
284
285 /**
286 * leb_write_unlock - unlock logical eraseblock.
287 * @ubi: UBI device description object
288 * @vol_id: volume ID
289 * @lnum: logical eraseblock number
290 */
leb_write_unlock(struct ubi_device * ubi,int vol_id,int lnum)291 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
292 {
293 struct ubi_ltree_entry *le;
294
295 spin_lock(&ubi->ltree_lock);
296 le = ltree_lookup(ubi, vol_id, lnum);
297 le->users -= 1;
298 ubi_assert(le->users >= 0);
299 up_write(&le->mutex);
300 if (le->users == 0) {
301 rb_erase(&le->rb, &ubi->ltree);
302 kfree(le);
303 }
304 spin_unlock(&ubi->ltree_lock);
305 }
306
307 /**
308 * ubi_eba_unmap_leb - un-map logical eraseblock.
309 * @ubi: UBI device description object
310 * @vol: volume description object
311 * @lnum: logical eraseblock number
312 *
313 * This function un-maps logical eraseblock @lnum and schedules corresponding
314 * physical eraseblock for erasure. Returns zero in case of success and a
315 * negative error code in case of failure.
316 */
ubi_eba_unmap_leb(struct ubi_device * ubi,struct ubi_volume * vol,int lnum)317 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
318 int lnum)
319 {
320 int err, pnum, vol_id = vol->vol_id;
321
322 if (ubi->ro_mode)
323 return -EROFS;
324
325 err = leb_write_lock(ubi, vol_id, lnum);
326 if (err)
327 return err;
328
329 pnum = vol->eba_tbl[lnum];
330 if (pnum < 0)
331 /* This logical eraseblock is already unmapped */
332 goto out_unlock;
333
334 dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
335
336 down_read(&ubi->fm_eba_sem);
337 vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
338 up_read(&ubi->fm_eba_sem);
339 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
340
341 out_unlock:
342 leb_write_unlock(ubi, vol_id, lnum);
343 return err;
344 }
345
346 /**
347 * ubi_eba_read_leb - read data.
348 * @ubi: UBI device description object
349 * @vol: volume description object
350 * @lnum: logical eraseblock number
351 * @buf: buffer to store the read data
352 * @offset: offset from where to read
353 * @len: how many bytes to read
354 * @check: data CRC check flag
355 *
356 * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
357 * bytes. The @check flag only makes sense for static volumes and forces
358 * eraseblock data CRC checking.
359 *
360 * In case of success this function returns zero. In case of a static volume,
361 * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
362 * returned for any volume type if an ECC error was detected by the MTD device
363 * driver. Other negative error cored may be returned in case of other errors.
364 */
ubi_eba_read_leb(struct ubi_device * ubi,struct ubi_volume * vol,int lnum,void * buf,int offset,int len,int check)365 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
366 void *buf, int offset, int len, int check)
367 {
368 int err, pnum, scrub = 0, vol_id = vol->vol_id;
369 struct ubi_vid_hdr *vid_hdr;
370 uint32_t uninitialized_var(crc);
371
372 err = leb_read_lock(ubi, vol_id, lnum);
373 if (err)
374 return err;
375
376 pnum = vol->eba_tbl[lnum];
377 if (pnum < 0) {
378 /*
379 * The logical eraseblock is not mapped, fill the whole buffer
380 * with 0xFF bytes. The exception is static volumes for which
381 * it is an error to read unmapped logical eraseblocks.
382 */
383 dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
384 len, offset, vol_id, lnum);
385 leb_read_unlock(ubi, vol_id, lnum);
386 ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
387 memset(buf, 0xFF, len);
388 return 0;
389 }
390
391 dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
392 len, offset, vol_id, lnum, pnum);
393
394 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
395 check = 0;
396
397 retry:
398 if (check) {
399 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
400 if (!vid_hdr) {
401 err = -ENOMEM;
402 goto out_unlock;
403 }
404
405 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
406 if (err && err != UBI_IO_BITFLIPS) {
407 if (err > 0) {
408 /*
409 * The header is either absent or corrupted.
410 * The former case means there is a bug -
411 * switch to read-only mode just in case.
412 * The latter case means a real corruption - we
413 * may try to recover data. FIXME: but this is
414 * not implemented.
415 */
416 if (err == UBI_IO_BAD_HDR_EBADMSG ||
417 err == UBI_IO_BAD_HDR) {
418 ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d",
419 pnum, vol_id, lnum);
420 err = -EBADMSG;
421 } else {
422 err = -EINVAL;
423 ubi_ro_mode(ubi);
424 }
425 }
426 goto out_free;
427 } else if (err == UBI_IO_BITFLIPS)
428 scrub = 1;
429
430 ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
431 ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
432
433 crc = be32_to_cpu(vid_hdr->data_crc);
434 ubi_free_vid_hdr(ubi, vid_hdr);
435 }
436
437 err = ubi_io_read_data(ubi, buf, pnum, offset, len);
438 if (err) {
439 if (err == UBI_IO_BITFLIPS)
440 scrub = 1;
441 else if (mtd_is_eccerr(err)) {
442 if (vol->vol_type == UBI_DYNAMIC_VOLUME)
443 goto out_unlock;
444 scrub = 1;
445 if (!check) {
446 ubi_msg(ubi, "force data checking");
447 check = 1;
448 goto retry;
449 }
450 } else
451 goto out_unlock;
452 }
453
454 if (check) {
455 uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
456 if (crc1 != crc) {
457 ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x",
458 crc1, crc);
459 err = -EBADMSG;
460 goto out_unlock;
461 }
462 }
463
464 if (scrub)
465 err = ubi_wl_scrub_peb(ubi, pnum);
466
467 leb_read_unlock(ubi, vol_id, lnum);
468 return err;
469
470 out_free:
471 ubi_free_vid_hdr(ubi, vid_hdr);
472 out_unlock:
473 leb_read_unlock(ubi, vol_id, lnum);
474 return err;
475 }
476
477 #ifndef __UBOOT__
478 /**
479 * ubi_eba_read_leb_sg - read data into a scatter gather list.
480 * @ubi: UBI device description object
481 * @vol: volume description object
482 * @lnum: logical eraseblock number
483 * @sgl: UBI scatter gather list to store the read data
484 * @offset: offset from where to read
485 * @len: how many bytes to read
486 * @check: data CRC check flag
487 *
488 * This function works exactly like ubi_eba_read_leb(). But instead of
489 * storing the read data into a buffer it writes to an UBI scatter gather
490 * list.
491 */
ubi_eba_read_leb_sg(struct ubi_device * ubi,struct ubi_volume * vol,struct ubi_sgl * sgl,int lnum,int offset,int len,int check)492 int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol,
493 struct ubi_sgl *sgl, int lnum, int offset, int len,
494 int check)
495 {
496 int to_read;
497 int ret;
498 struct scatterlist *sg;
499
500 for (;;) {
501 ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT);
502 sg = &sgl->sg[sgl->list_pos];
503 if (len < sg->length - sgl->page_pos)
504 to_read = len;
505 else
506 to_read = sg->length - sgl->page_pos;
507
508 ret = ubi_eba_read_leb(ubi, vol, lnum,
509 sg_virt(sg) + sgl->page_pos, offset,
510 to_read, check);
511 if (ret < 0)
512 return ret;
513
514 offset += to_read;
515 len -= to_read;
516 if (!len) {
517 sgl->page_pos += to_read;
518 if (sgl->page_pos == sg->length) {
519 sgl->list_pos++;
520 sgl->page_pos = 0;
521 }
522
523 break;
524 }
525
526 sgl->list_pos++;
527 sgl->page_pos = 0;
528 }
529
530 return ret;
531 }
532 #endif
533
534 /**
535 * recover_peb - recover from write failure.
536 * @ubi: UBI device description object
537 * @pnum: the physical eraseblock to recover
538 * @vol_id: volume ID
539 * @lnum: logical eraseblock number
540 * @buf: data which was not written because of the write failure
541 * @offset: offset of the failed write
542 * @len: how many bytes should have been written
543 *
544 * This function is called in case of a write failure and moves all good data
545 * from the potentially bad physical eraseblock to a good physical eraseblock.
546 * This function also writes the data which was not written due to the failure.
547 * Returns new physical eraseblock number in case of success, and a negative
548 * error code in case of failure.
549 */
recover_peb(struct ubi_device * ubi,int pnum,int vol_id,int lnum,const void * buf,int offset,int len)550 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
551 const void *buf, int offset, int len)
552 {
553 int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
554 struct ubi_volume *vol = ubi->volumes[idx];
555 struct ubi_vid_hdr *vid_hdr;
556
557 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
558 if (!vid_hdr)
559 return -ENOMEM;
560
561 retry:
562 new_pnum = ubi_wl_get_peb(ubi);
563 if (new_pnum < 0) {
564 ubi_free_vid_hdr(ubi, vid_hdr);
565 up_read(&ubi->fm_eba_sem);
566 return new_pnum;
567 }
568
569 ubi_msg(ubi, "recover PEB %d, move data to PEB %d",
570 pnum, new_pnum);
571
572 err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
573 if (err && err != UBI_IO_BITFLIPS) {
574 if (err > 0)
575 err = -EIO;
576 up_read(&ubi->fm_eba_sem);
577 goto out_put;
578 }
579
580 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
581 err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
582 if (err) {
583 up_read(&ubi->fm_eba_sem);
584 goto write_error;
585 }
586
587 data_size = offset + len;
588 mutex_lock(&ubi->buf_mutex);
589 memset(ubi->peb_buf + offset, 0xFF, len);
590
591 /* Read everything before the area where the write failure happened */
592 if (offset > 0) {
593 err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
594 if (err && err != UBI_IO_BITFLIPS) {
595 up_read(&ubi->fm_eba_sem);
596 goto out_unlock;
597 }
598 }
599
600 memcpy(ubi->peb_buf + offset, buf, len);
601
602 err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
603 if (err) {
604 mutex_unlock(&ubi->buf_mutex);
605 up_read(&ubi->fm_eba_sem);
606 goto write_error;
607 }
608
609 mutex_unlock(&ubi->buf_mutex);
610 ubi_free_vid_hdr(ubi, vid_hdr);
611
612 vol->eba_tbl[lnum] = new_pnum;
613 up_read(&ubi->fm_eba_sem);
614 ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
615
616 ubi_msg(ubi, "data was successfully recovered");
617 return 0;
618
619 out_unlock:
620 mutex_unlock(&ubi->buf_mutex);
621 out_put:
622 ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
623 ubi_free_vid_hdr(ubi, vid_hdr);
624 return err;
625
626 write_error:
627 /*
628 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
629 * get another one.
630 */
631 ubi_warn(ubi, "failed to write to PEB %d", new_pnum);
632 ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
633 if (++tries > UBI_IO_RETRIES) {
634 ubi_free_vid_hdr(ubi, vid_hdr);
635 return err;
636 }
637 ubi_msg(ubi, "try again");
638 goto retry;
639 }
640
641 /**
642 * ubi_eba_write_leb - write data to dynamic volume.
643 * @ubi: UBI device description object
644 * @vol: volume description object
645 * @lnum: logical eraseblock number
646 * @buf: the data to write
647 * @offset: offset within the logical eraseblock where to write
648 * @len: how many bytes to write
649 *
650 * This function writes data to logical eraseblock @lnum of a dynamic volume
651 * @vol. Returns zero in case of success and a negative error code in case
652 * of failure. In case of error, it is possible that something was still
653 * written to the flash media, but may be some garbage.
654 */
ubi_eba_write_leb(struct ubi_device * ubi,struct ubi_volume * vol,int lnum,const void * buf,int offset,int len)655 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
656 const void *buf, int offset, int len)
657 {
658 int err, pnum, tries = 0, vol_id = vol->vol_id;
659 struct ubi_vid_hdr *vid_hdr;
660
661 if (ubi->ro_mode)
662 return -EROFS;
663
664 err = leb_write_lock(ubi, vol_id, lnum);
665 if (err)
666 return err;
667
668 pnum = vol->eba_tbl[lnum];
669 if (pnum >= 0) {
670 dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
671 len, offset, vol_id, lnum, pnum);
672
673 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
674 if (err) {
675 ubi_warn(ubi, "failed to write data to PEB %d", pnum);
676 if (err == -EIO && ubi->bad_allowed)
677 err = recover_peb(ubi, pnum, vol_id, lnum, buf,
678 offset, len);
679 if (err)
680 ubi_ro_mode(ubi);
681 }
682 leb_write_unlock(ubi, vol_id, lnum);
683 return err;
684 }
685
686 /*
687 * The logical eraseblock is not mapped. We have to get a free physical
688 * eraseblock and write the volume identifier header there first.
689 */
690 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
691 if (!vid_hdr) {
692 leb_write_unlock(ubi, vol_id, lnum);
693 return -ENOMEM;
694 }
695
696 vid_hdr->vol_type = UBI_VID_DYNAMIC;
697 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
698 vid_hdr->vol_id = cpu_to_be32(vol_id);
699 vid_hdr->lnum = cpu_to_be32(lnum);
700 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
701 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
702
703 retry:
704 pnum = ubi_wl_get_peb(ubi);
705 if (pnum < 0) {
706 ubi_free_vid_hdr(ubi, vid_hdr);
707 leb_write_unlock(ubi, vol_id, lnum);
708 up_read(&ubi->fm_eba_sem);
709 return pnum;
710 }
711
712 dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
713 len, offset, vol_id, lnum, pnum);
714
715 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
716 if (err) {
717 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
718 vol_id, lnum, pnum);
719 up_read(&ubi->fm_eba_sem);
720 goto write_error;
721 }
722
723 if (len) {
724 err = ubi_io_write_data(ubi, buf, pnum, offset, len);
725 if (err) {
726 ubi_warn(ubi, "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
727 len, offset, vol_id, lnum, pnum);
728 up_read(&ubi->fm_eba_sem);
729 goto write_error;
730 }
731 }
732
733 vol->eba_tbl[lnum] = pnum;
734 up_read(&ubi->fm_eba_sem);
735
736 leb_write_unlock(ubi, vol_id, lnum);
737 ubi_free_vid_hdr(ubi, vid_hdr);
738 return 0;
739
740 write_error:
741 if (err != -EIO || !ubi->bad_allowed) {
742 ubi_ro_mode(ubi);
743 leb_write_unlock(ubi, vol_id, lnum);
744 ubi_free_vid_hdr(ubi, vid_hdr);
745 return err;
746 }
747
748 /*
749 * Fortunately, this is the first write operation to this physical
750 * eraseblock, so just put it and request a new one. We assume that if
751 * this physical eraseblock went bad, the erase code will handle that.
752 */
753 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
754 if (err || ++tries > UBI_IO_RETRIES) {
755 ubi_ro_mode(ubi);
756 leb_write_unlock(ubi, vol_id, lnum);
757 ubi_free_vid_hdr(ubi, vid_hdr);
758 return err;
759 }
760
761 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
762 ubi_msg(ubi, "try another PEB");
763 goto retry;
764 }
765
766 /**
767 * ubi_eba_write_leb_st - write data to static volume.
768 * @ubi: UBI device description object
769 * @vol: volume description object
770 * @lnum: logical eraseblock number
771 * @buf: data to write
772 * @len: how many bytes to write
773 * @used_ebs: how many logical eraseblocks will this volume contain
774 *
775 * This function writes data to logical eraseblock @lnum of static volume
776 * @vol. The @used_ebs argument should contain total number of logical
777 * eraseblock in this static volume.
778 *
779 * When writing to the last logical eraseblock, the @len argument doesn't have
780 * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
781 * to the real data size, although the @buf buffer has to contain the
782 * alignment. In all other cases, @len has to be aligned.
783 *
784 * It is prohibited to write more than once to logical eraseblocks of static
785 * volumes. This function returns zero in case of success and a negative error
786 * code in case of failure.
787 */
ubi_eba_write_leb_st(struct ubi_device * ubi,struct ubi_volume * vol,int lnum,const void * buf,int len,int used_ebs)788 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
789 int lnum, const void *buf, int len, int used_ebs)
790 {
791 int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
792 struct ubi_vid_hdr *vid_hdr;
793 uint32_t crc;
794
795 if (ubi->ro_mode)
796 return -EROFS;
797
798 if (lnum == used_ebs - 1)
799 /* If this is the last LEB @len may be unaligned */
800 len = ALIGN(data_size, ubi->min_io_size);
801 else
802 ubi_assert(!(len & (ubi->min_io_size - 1)));
803
804 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
805 if (!vid_hdr)
806 return -ENOMEM;
807
808 err = leb_write_lock(ubi, vol_id, lnum);
809 if (err) {
810 ubi_free_vid_hdr(ubi, vid_hdr);
811 return err;
812 }
813
814 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
815 vid_hdr->vol_id = cpu_to_be32(vol_id);
816 vid_hdr->lnum = cpu_to_be32(lnum);
817 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
818 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
819
820 crc = crc32(UBI_CRC32_INIT, buf, data_size);
821 vid_hdr->vol_type = UBI_VID_STATIC;
822 vid_hdr->data_size = cpu_to_be32(data_size);
823 vid_hdr->used_ebs = cpu_to_be32(used_ebs);
824 vid_hdr->data_crc = cpu_to_be32(crc);
825
826 retry:
827 pnum = ubi_wl_get_peb(ubi);
828 if (pnum < 0) {
829 ubi_free_vid_hdr(ubi, vid_hdr);
830 leb_write_unlock(ubi, vol_id, lnum);
831 up_read(&ubi->fm_eba_sem);
832 return pnum;
833 }
834
835 dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
836 len, vol_id, lnum, pnum, used_ebs);
837
838 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
839 if (err) {
840 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
841 vol_id, lnum, pnum);
842 up_read(&ubi->fm_eba_sem);
843 goto write_error;
844 }
845
846 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
847 if (err) {
848 ubi_warn(ubi, "failed to write %d bytes of data to PEB %d",
849 len, pnum);
850 up_read(&ubi->fm_eba_sem);
851 goto write_error;
852 }
853
854 ubi_assert(vol->eba_tbl[lnum] < 0);
855 vol->eba_tbl[lnum] = pnum;
856 up_read(&ubi->fm_eba_sem);
857
858 leb_write_unlock(ubi, vol_id, lnum);
859 ubi_free_vid_hdr(ubi, vid_hdr);
860 return 0;
861
862 write_error:
863 if (err != -EIO || !ubi->bad_allowed) {
864 /*
865 * This flash device does not admit of bad eraseblocks or
866 * something nasty and unexpected happened. Switch to read-only
867 * mode just in case.
868 */
869 ubi_ro_mode(ubi);
870 leb_write_unlock(ubi, vol_id, lnum);
871 ubi_free_vid_hdr(ubi, vid_hdr);
872 return err;
873 }
874
875 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
876 if (err || ++tries > UBI_IO_RETRIES) {
877 ubi_ro_mode(ubi);
878 leb_write_unlock(ubi, vol_id, lnum);
879 ubi_free_vid_hdr(ubi, vid_hdr);
880 return err;
881 }
882
883 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
884 ubi_msg(ubi, "try another PEB");
885 goto retry;
886 }
887
888 /*
889 * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
890 * @ubi: UBI device description object
891 * @vol: volume description object
892 * @lnum: logical eraseblock number
893 * @buf: data to write
894 * @len: how many bytes to write
895 *
896 * This function changes the contents of a logical eraseblock atomically. @buf
897 * has to contain new logical eraseblock data, and @len - the length of the
898 * data, which has to be aligned. This function guarantees that in case of an
899 * unclean reboot the old contents is preserved. Returns zero in case of
900 * success and a negative error code in case of failure.
901 *
902 * UBI reserves one LEB for the "atomic LEB change" operation, so only one
903 * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
904 */
ubi_eba_atomic_leb_change(struct ubi_device * ubi,struct ubi_volume * vol,int lnum,const void * buf,int len)905 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
906 int lnum, const void *buf, int len)
907 {
908 int err, pnum, old_pnum, tries = 0, vol_id = vol->vol_id;
909 struct ubi_vid_hdr *vid_hdr;
910 uint32_t crc;
911
912 if (ubi->ro_mode)
913 return -EROFS;
914
915 if (len == 0) {
916 /*
917 * Special case when data length is zero. In this case the LEB
918 * has to be unmapped and mapped somewhere else.
919 */
920 err = ubi_eba_unmap_leb(ubi, vol, lnum);
921 if (err)
922 return err;
923 return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
924 }
925
926 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
927 if (!vid_hdr)
928 return -ENOMEM;
929
930 mutex_lock(&ubi->alc_mutex);
931 err = leb_write_lock(ubi, vol_id, lnum);
932 if (err)
933 goto out_mutex;
934
935 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
936 vid_hdr->vol_id = cpu_to_be32(vol_id);
937 vid_hdr->lnum = cpu_to_be32(lnum);
938 vid_hdr->compat = ubi_get_compat(ubi, vol_id);
939 vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
940
941 crc = crc32(UBI_CRC32_INIT, buf, len);
942 vid_hdr->vol_type = UBI_VID_DYNAMIC;
943 vid_hdr->data_size = cpu_to_be32(len);
944 vid_hdr->copy_flag = 1;
945 vid_hdr->data_crc = cpu_to_be32(crc);
946
947 retry:
948 pnum = ubi_wl_get_peb(ubi);
949 if (pnum < 0) {
950 err = pnum;
951 up_read(&ubi->fm_eba_sem);
952 goto out_leb_unlock;
953 }
954
955 dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
956 vol_id, lnum, vol->eba_tbl[lnum], pnum);
957
958 err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
959 if (err) {
960 ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
961 vol_id, lnum, pnum);
962 up_read(&ubi->fm_eba_sem);
963 goto write_error;
964 }
965
966 err = ubi_io_write_data(ubi, buf, pnum, 0, len);
967 if (err) {
968 ubi_warn(ubi, "failed to write %d bytes of data to PEB %d",
969 len, pnum);
970 up_read(&ubi->fm_eba_sem);
971 goto write_error;
972 }
973
974 old_pnum = vol->eba_tbl[lnum];
975 vol->eba_tbl[lnum] = pnum;
976 up_read(&ubi->fm_eba_sem);
977
978 if (old_pnum >= 0) {
979 err = ubi_wl_put_peb(ubi, vol_id, lnum, old_pnum, 0);
980 if (err)
981 goto out_leb_unlock;
982 }
983
984 out_leb_unlock:
985 leb_write_unlock(ubi, vol_id, lnum);
986 out_mutex:
987 mutex_unlock(&ubi->alc_mutex);
988 ubi_free_vid_hdr(ubi, vid_hdr);
989 return err;
990
991 write_error:
992 if (err != -EIO || !ubi->bad_allowed) {
993 /*
994 * This flash device does not admit of bad eraseblocks or
995 * something nasty and unexpected happened. Switch to read-only
996 * mode just in case.
997 */
998 ubi_ro_mode(ubi);
999 goto out_leb_unlock;
1000 }
1001
1002 err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
1003 if (err || ++tries > UBI_IO_RETRIES) {
1004 ubi_ro_mode(ubi);
1005 goto out_leb_unlock;
1006 }
1007
1008 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1009 ubi_msg(ubi, "try another PEB");
1010 goto retry;
1011 }
1012
1013 /**
1014 * is_error_sane - check whether a read error is sane.
1015 * @err: code of the error happened during reading
1016 *
1017 * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
1018 * cannot read data from the target PEB (an error @err happened). If the error
1019 * code is sane, then we treat this error as non-fatal. Otherwise the error is
1020 * fatal and UBI will be switched to R/O mode later.
1021 *
1022 * The idea is that we try not to switch to R/O mode if the read error is
1023 * something which suggests there was a real read problem. E.g., %-EIO. Or a
1024 * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
1025 * mode, simply because we do not know what happened at the MTD level, and we
1026 * cannot handle this. E.g., the underlying driver may have become crazy, and
1027 * it is safer to switch to R/O mode to preserve the data.
1028 *
1029 * And bear in mind, this is about reading from the target PEB, i.e. the PEB
1030 * which we have just written.
1031 */
is_error_sane(int err)1032 static int is_error_sane(int err)
1033 {
1034 if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
1035 err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
1036 return 0;
1037 return 1;
1038 }
1039
1040 /**
1041 * ubi_eba_copy_leb - copy logical eraseblock.
1042 * @ubi: UBI device description object
1043 * @from: physical eraseblock number from where to copy
1044 * @to: physical eraseblock number where to copy
1045 * @vid_hdr: VID header of the @from physical eraseblock
1046 *
1047 * This function copies logical eraseblock from physical eraseblock @from to
1048 * physical eraseblock @to. The @vid_hdr buffer may be changed by this
1049 * function. Returns:
1050 * o %0 in case of success;
1051 * o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
1052 * o a negative error code in case of failure.
1053 */
ubi_eba_copy_leb(struct ubi_device * ubi,int from,int to,struct ubi_vid_hdr * vid_hdr)1054 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
1055 struct ubi_vid_hdr *vid_hdr)
1056 {
1057 int err, vol_id, lnum, data_size, aldata_size, idx;
1058 struct ubi_volume *vol;
1059 uint32_t crc;
1060
1061 vol_id = be32_to_cpu(vid_hdr->vol_id);
1062 lnum = be32_to_cpu(vid_hdr->lnum);
1063
1064 dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
1065
1066 if (vid_hdr->vol_type == UBI_VID_STATIC) {
1067 data_size = be32_to_cpu(vid_hdr->data_size);
1068 aldata_size = ALIGN(data_size, ubi->min_io_size);
1069 } else
1070 data_size = aldata_size =
1071 ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1072
1073 idx = vol_id2idx(ubi, vol_id);
1074 spin_lock(&ubi->volumes_lock);
1075 /*
1076 * Note, we may race with volume deletion, which means that the volume
1077 * this logical eraseblock belongs to might be being deleted. Since the
1078 * volume deletion un-maps all the volume's logical eraseblocks, it will
1079 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1080 */
1081 vol = ubi->volumes[idx];
1082 spin_unlock(&ubi->volumes_lock);
1083 if (!vol) {
1084 /* No need to do further work, cancel */
1085 dbg_wl("volume %d is being removed, cancel", vol_id);
1086 return MOVE_CANCEL_RACE;
1087 }
1088
1089 /*
1090 * We do not want anybody to write to this logical eraseblock while we
1091 * are moving it, so lock it.
1092 *
1093 * Note, we are using non-waiting locking here, because we cannot sleep
1094 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1095 * unmapping the LEB which is mapped to the PEB we are going to move
1096 * (@from). This task locks the LEB and goes sleep in the
1097 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1098 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1099 * LEB is already locked, we just do not move it and return
1100 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1101 * we do not know the reasons of the contention - it may be just a
1102 * normal I/O on this LEB, so we want to re-try.
1103 */
1104 err = leb_write_trylock(ubi, vol_id, lnum);
1105 if (err) {
1106 dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1107 return MOVE_RETRY;
1108 }
1109
1110 /*
1111 * The LEB might have been put meanwhile, and the task which put it is
1112 * probably waiting on @ubi->move_mutex. No need to continue the work,
1113 * cancel it.
1114 */
1115 if (vol->eba_tbl[lnum] != from) {
1116 dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1117 vol_id, lnum, from, vol->eba_tbl[lnum]);
1118 err = MOVE_CANCEL_RACE;
1119 goto out_unlock_leb;
1120 }
1121
1122 /*
1123 * OK, now the LEB is locked and we can safely start moving it. Since
1124 * this function utilizes the @ubi->peb_buf buffer which is shared
1125 * with some other functions - we lock the buffer by taking the
1126 * @ubi->buf_mutex.
1127 */
1128 mutex_lock(&ubi->buf_mutex);
1129 dbg_wl("read %d bytes of data", aldata_size);
1130 err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1131 if (err && err != UBI_IO_BITFLIPS) {
1132 ubi_warn(ubi, "error %d while reading data from PEB %d",
1133 err, from);
1134 err = MOVE_SOURCE_RD_ERR;
1135 goto out_unlock_buf;
1136 }
1137
1138 /*
1139 * Now we have got to calculate how much data we have to copy. In
1140 * case of a static volume it is fairly easy - the VID header contains
1141 * the data size. In case of a dynamic volume it is more difficult - we
1142 * have to read the contents, cut 0xFF bytes from the end and copy only
1143 * the first part. We must do this to avoid writing 0xFF bytes as it
1144 * may have some side-effects. And not only this. It is important not
1145 * to include those 0xFFs to CRC because later the they may be filled
1146 * by data.
1147 */
1148 if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1149 aldata_size = data_size =
1150 ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1151
1152 cond_resched();
1153 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1154 cond_resched();
1155
1156 /*
1157 * It may turn out to be that the whole @from physical eraseblock
1158 * contains only 0xFF bytes. Then we have to only write the VID header
1159 * and do not write any data. This also means we should not set
1160 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1161 */
1162 if (data_size > 0) {
1163 vid_hdr->copy_flag = 1;
1164 vid_hdr->data_size = cpu_to_be32(data_size);
1165 vid_hdr->data_crc = cpu_to_be32(crc);
1166 }
1167 vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1168
1169 err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1170 if (err) {
1171 if (err == -EIO)
1172 err = MOVE_TARGET_WR_ERR;
1173 goto out_unlock_buf;
1174 }
1175
1176 cond_resched();
1177
1178 /* Read the VID header back and check if it was written correctly */
1179 err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1180 if (err) {
1181 if (err != UBI_IO_BITFLIPS) {
1182 ubi_warn(ubi, "error %d while reading VID header back from PEB %d",
1183 err, to);
1184 if (is_error_sane(err))
1185 err = MOVE_TARGET_RD_ERR;
1186 } else
1187 err = MOVE_TARGET_BITFLIPS;
1188 goto out_unlock_buf;
1189 }
1190
1191 if (data_size > 0) {
1192 err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1193 if (err) {
1194 if (err == -EIO)
1195 err = MOVE_TARGET_WR_ERR;
1196 goto out_unlock_buf;
1197 }
1198
1199 cond_resched();
1200
1201 /*
1202 * We've written the data and are going to read it back to make
1203 * sure it was written correctly.
1204 */
1205 memset(ubi->peb_buf, 0xFF, aldata_size);
1206 err = ubi_io_read_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1207 if (err) {
1208 if (err != UBI_IO_BITFLIPS) {
1209 ubi_warn(ubi, "error %d while reading data back from PEB %d",
1210 err, to);
1211 if (is_error_sane(err))
1212 err = MOVE_TARGET_RD_ERR;
1213 } else
1214 err = MOVE_TARGET_BITFLIPS;
1215 goto out_unlock_buf;
1216 }
1217
1218 cond_resched();
1219
1220 if (crc != crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size)) {
1221 ubi_warn(ubi, "read data back from PEB %d and it is different",
1222 to);
1223 err = -EINVAL;
1224 goto out_unlock_buf;
1225 }
1226 }
1227
1228 ubi_assert(vol->eba_tbl[lnum] == from);
1229 down_read(&ubi->fm_eba_sem);
1230 vol->eba_tbl[lnum] = to;
1231 up_read(&ubi->fm_eba_sem);
1232
1233 out_unlock_buf:
1234 mutex_unlock(&ubi->buf_mutex);
1235 out_unlock_leb:
1236 leb_write_unlock(ubi, vol_id, lnum);
1237 return err;
1238 }
1239
1240 /**
1241 * print_rsvd_warning - warn about not having enough reserved PEBs.
1242 * @ubi: UBI device description object
1243 *
1244 * This is a helper function for 'ubi_eba_init()' which is called when UBI
1245 * cannot reserve enough PEBs for bad block handling. This function makes a
1246 * decision whether we have to print a warning or not. The algorithm is as
1247 * follows:
1248 * o if this is a new UBI image, then just print the warning
1249 * o if this is an UBI image which has already been used for some time, print
1250 * a warning only if we can reserve less than 10% of the expected amount of
1251 * the reserved PEB.
1252 *
1253 * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1254 * of PEBs becomes smaller, which is normal and we do not want to scare users
1255 * with a warning every time they attach the MTD device. This was an issue
1256 * reported by real users.
1257 */
print_rsvd_warning(struct ubi_device * ubi,struct ubi_attach_info * ai)1258 static void print_rsvd_warning(struct ubi_device *ubi,
1259 struct ubi_attach_info *ai)
1260 {
1261 /*
1262 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1263 * large number to distinguish between newly flashed and used images.
1264 */
1265 if (ai->max_sqnum > (1 << 18)) {
1266 int min = ubi->beb_rsvd_level / 10;
1267
1268 if (!min)
1269 min = 1;
1270 if (ubi->beb_rsvd_pebs > min)
1271 return;
1272 }
1273
1274 ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1275 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1276 if (ubi->corr_peb_count)
1277 ubi_warn(ubi, "%d PEBs are corrupted and not used",
1278 ubi->corr_peb_count);
1279 }
1280
1281 /**
1282 * self_check_eba - run a self check on the EBA table constructed by fastmap.
1283 * @ubi: UBI device description object
1284 * @ai_fastmap: UBI attach info object created by fastmap
1285 * @ai_scan: UBI attach info object created by scanning
1286 *
1287 * Returns < 0 in case of an internal error, 0 otherwise.
1288 * If a bad EBA table entry was found it will be printed out and
1289 * ubi_assert() triggers.
1290 */
self_check_eba(struct ubi_device * ubi,struct ubi_attach_info * ai_fastmap,struct ubi_attach_info * ai_scan)1291 int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1292 struct ubi_attach_info *ai_scan)
1293 {
1294 int i, j, num_volumes, ret = 0;
1295 int **scan_eba, **fm_eba;
1296 struct ubi_ainf_volume *av;
1297 struct ubi_volume *vol;
1298 struct ubi_ainf_peb *aeb;
1299 struct rb_node *rb;
1300
1301 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1302
1303 scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL);
1304 if (!scan_eba)
1305 return -ENOMEM;
1306
1307 fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL);
1308 if (!fm_eba) {
1309 kfree(scan_eba);
1310 return -ENOMEM;
1311 }
1312
1313 for (i = 0; i < num_volumes; i++) {
1314 vol = ubi->volumes[i];
1315 if (!vol)
1316 continue;
1317
1318 scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba),
1319 GFP_KERNEL);
1320 if (!scan_eba[i]) {
1321 ret = -ENOMEM;
1322 goto out_free;
1323 }
1324
1325 fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba),
1326 GFP_KERNEL);
1327 if (!fm_eba[i]) {
1328 ret = -ENOMEM;
1329 goto out_free;
1330 }
1331
1332 for (j = 0; j < vol->reserved_pebs; j++)
1333 scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1334
1335 av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1336 if (!av)
1337 continue;
1338
1339 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1340 scan_eba[i][aeb->lnum] = aeb->pnum;
1341
1342 av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1343 if (!av)
1344 continue;
1345
1346 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1347 fm_eba[i][aeb->lnum] = aeb->pnum;
1348
1349 for (j = 0; j < vol->reserved_pebs; j++) {
1350 if (scan_eba[i][j] != fm_eba[i][j]) {
1351 if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1352 fm_eba[i][j] == UBI_LEB_UNMAPPED)
1353 continue;
1354
1355 ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!",
1356 vol->vol_id, i, fm_eba[i][j],
1357 scan_eba[i][j]);
1358 ubi_assert(0);
1359 }
1360 }
1361 }
1362
1363 out_free:
1364 for (i = 0; i < num_volumes; i++) {
1365 if (!ubi->volumes[i])
1366 continue;
1367
1368 kfree(scan_eba[i]);
1369 kfree(fm_eba[i]);
1370 }
1371
1372 kfree(scan_eba);
1373 kfree(fm_eba);
1374 return ret;
1375 }
1376
1377 /**
1378 * ubi_eba_init - initialize the EBA sub-system using attaching information.
1379 * @ubi: UBI device description object
1380 * @ai: attaching information
1381 *
1382 * This function returns zero in case of success and a negative error code in
1383 * case of failure.
1384 */
ubi_eba_init(struct ubi_device * ubi,struct ubi_attach_info * ai)1385 int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1386 {
1387 int i, j, err, num_volumes;
1388 struct ubi_ainf_volume *av;
1389 struct ubi_volume *vol;
1390 struct ubi_ainf_peb *aeb;
1391 struct rb_node *rb;
1392
1393 dbg_eba("initialize EBA sub-system");
1394
1395 spin_lock_init(&ubi->ltree_lock);
1396 mutex_init(&ubi->alc_mutex);
1397 ubi->ltree = RB_ROOT;
1398
1399 ubi->global_sqnum = ai->max_sqnum + 1;
1400 num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1401
1402 for (i = 0; i < num_volumes; i++) {
1403 vol = ubi->volumes[i];
1404 if (!vol)
1405 continue;
1406
1407 cond_resched();
1408
1409 vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1410 GFP_KERNEL);
1411 if (!vol->eba_tbl) {
1412 err = -ENOMEM;
1413 goto out_free;
1414 }
1415
1416 for (j = 0; j < vol->reserved_pebs; j++)
1417 vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1418
1419 av = ubi_find_av(ai, idx2vol_id(ubi, i));
1420 if (!av)
1421 continue;
1422
1423 ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1424 if (aeb->lnum >= vol->reserved_pebs)
1425 /*
1426 * This may happen in case of an unclean reboot
1427 * during re-size.
1428 */
1429 ubi_move_aeb_to_list(av, aeb, &ai->erase);
1430 else
1431 vol->eba_tbl[aeb->lnum] = aeb->pnum;
1432 }
1433 }
1434
1435 if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1436 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1437 ubi->avail_pebs, EBA_RESERVED_PEBS);
1438 if (ubi->corr_peb_count)
1439 ubi_err(ubi, "%d PEBs are corrupted and not used",
1440 ubi->corr_peb_count);
1441 err = -ENOSPC;
1442 goto out_free;
1443 }
1444 ubi->avail_pebs -= EBA_RESERVED_PEBS;
1445 ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1446
1447 if (ubi->bad_allowed) {
1448 ubi_calculate_reserved(ubi);
1449
1450 if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1451 /* No enough free physical eraseblocks */
1452 ubi->beb_rsvd_pebs = ubi->avail_pebs;
1453 print_rsvd_warning(ubi, ai);
1454 } else
1455 ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1456
1457 ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1458 ubi->rsvd_pebs += ubi->beb_rsvd_pebs;
1459 }
1460
1461 dbg_eba("EBA sub-system is initialized");
1462 return 0;
1463
1464 out_free:
1465 for (i = 0; i < num_volumes; i++) {
1466 if (!ubi->volumes[i])
1467 continue;
1468 kfree(ubi->volumes[i]->eba_tbl);
1469 ubi->volumes[i]->eba_tbl = NULL;
1470 }
1471 return err;
1472 }
1473