• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  *
5  * Author: Artem Bityutskiy (Битюцкий Артём)
6  */
7 
8 /*
9  * The UBI Eraseblock Association (EBA) sub-system.
10  *
11  * This sub-system is responsible for I/O to/from logical eraseblock.
12  *
13  * Although in this implementation the EBA table is fully kept and managed in
14  * RAM, which assumes poor scalability, it might be (partially) maintained on
15  * flash in future implementations.
16  *
17  * The EBA sub-system implements per-logical eraseblock locking. Before
18  * accessing a logical eraseblock it is locked for reading or writing. The
19  * per-logical eraseblock locking is implemented by means of the lock tree. The
20  * lock tree is an RB-tree which refers all the currently locked logical
21  * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects.
22  * They are indexed by (@vol_id, @lnum) pairs.
23  *
24  * EBA also maintains the global sequence counter which is incremented each
25  * time a logical eraseblock is mapped to a physical eraseblock and it is
26  * stored in the volume identifier header. This means that each VID header has
27  * a unique sequence number. The sequence number is only increased an we assume
28  * 64 bits is enough to never overflow.
29  */
30 
31 #ifndef __UBOOT__
32 #include <linux/slab.h>
33 #include <linux/crc32.h>
34 #include <u-boot/crc.h>
35 #else
36 #include <ubi_uboot.h>
37 #endif
38 
39 #include <linux/err.h>
40 #include "ubi.h"
41 
42 /* Number of physical eraseblocks reserved for atomic LEB change operation */
43 #define EBA_RESERVED_PEBS 1
44 
45 /**
46  * next_sqnum - get next sequence number.
47  * @ubi: UBI device description object
48  *
49  * This function returns next sequence number to use, which is just the current
50  * global sequence counter value. It also increases the global sequence
51  * counter.
52  */
ubi_next_sqnum(struct ubi_device * ubi)53 unsigned long long ubi_next_sqnum(struct ubi_device *ubi)
54 {
55 	unsigned long long sqnum;
56 
57 	spin_lock(&ubi->ltree_lock);
58 	sqnum = ubi->global_sqnum++;
59 	spin_unlock(&ubi->ltree_lock);
60 
61 	return sqnum;
62 }
63 
64 /**
65  * ubi_get_compat - get compatibility flags of a volume.
66  * @ubi: UBI device description object
67  * @vol_id: volume ID
68  *
69  * This function returns compatibility flags for an internal volume. User
70  * volumes have no compatibility flags, so %0 is returned.
71  */
ubi_get_compat(const struct ubi_device * ubi,int vol_id)72 static int ubi_get_compat(const struct ubi_device *ubi, int vol_id)
73 {
74 	if (vol_id == UBI_LAYOUT_VOLUME_ID)
75 		return UBI_LAYOUT_VOLUME_COMPAT;
76 	return 0;
77 }
78 
79 /**
80  * ltree_lookup - look up the lock tree.
81  * @ubi: UBI device description object
82  * @vol_id: volume ID
83  * @lnum: logical eraseblock number
84  *
85  * This function returns a pointer to the corresponding &struct ubi_ltree_entry
86  * object if the logical eraseblock is locked and %NULL if it is not.
87  * @ubi->ltree_lock has to be locked.
88  */
ltree_lookup(struct ubi_device * ubi,int vol_id,int lnum)89 static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id,
90 					    int lnum)
91 {
92 	struct rb_node *p;
93 
94 	p = ubi->ltree.rb_node;
95 	while (p) {
96 		struct ubi_ltree_entry *le;
97 
98 		le = rb_entry(p, struct ubi_ltree_entry, rb);
99 
100 		if (vol_id < le->vol_id)
101 			p = p->rb_left;
102 		else if (vol_id > le->vol_id)
103 			p = p->rb_right;
104 		else {
105 			if (lnum < le->lnum)
106 				p = p->rb_left;
107 			else if (lnum > le->lnum)
108 				p = p->rb_right;
109 			else
110 				return le;
111 		}
112 	}
113 
114 	return NULL;
115 }
116 
117 /**
118  * ltree_add_entry - add new entry to the lock tree.
119  * @ubi: UBI device description object
120  * @vol_id: volume ID
121  * @lnum: logical eraseblock number
122  *
123  * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the
124  * lock tree. If such entry is already there, its usage counter is increased.
125  * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation
126  * failed.
127  */
ltree_add_entry(struct ubi_device * ubi,int vol_id,int lnum)128 static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi,
129 					       int vol_id, int lnum)
130 {
131 	struct ubi_ltree_entry *le, *le1, *le_free;
132 
133 	le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS);
134 	if (!le)
135 		return ERR_PTR(-ENOMEM);
136 
137 	le->users = 0;
138 	init_rwsem(&le->mutex);
139 	le->vol_id = vol_id;
140 	le->lnum = lnum;
141 
142 	spin_lock(&ubi->ltree_lock);
143 	le1 = ltree_lookup(ubi, vol_id, lnum);
144 
145 	if (le1) {
146 		/*
147 		 * This logical eraseblock is already locked. The newly
148 		 * allocated lock entry is not needed.
149 		 */
150 		le_free = le;
151 		le = le1;
152 	} else {
153 		struct rb_node **p, *parent = NULL;
154 
155 		/*
156 		 * No lock entry, add the newly allocated one to the
157 		 * @ubi->ltree RB-tree.
158 		 */
159 		le_free = NULL;
160 
161 		p = &ubi->ltree.rb_node;
162 		while (*p) {
163 			parent = *p;
164 			le1 = rb_entry(parent, struct ubi_ltree_entry, rb);
165 
166 			if (vol_id < le1->vol_id)
167 				p = &(*p)->rb_left;
168 			else if (vol_id > le1->vol_id)
169 				p = &(*p)->rb_right;
170 			else {
171 				ubi_assert(lnum != le1->lnum);
172 				if (lnum < le1->lnum)
173 					p = &(*p)->rb_left;
174 				else
175 					p = &(*p)->rb_right;
176 			}
177 		}
178 
179 		rb_link_node(&le->rb, parent, p);
180 		rb_insert_color(&le->rb, &ubi->ltree);
181 	}
182 	le->users += 1;
183 	spin_unlock(&ubi->ltree_lock);
184 
185 	kfree(le_free);
186 	return le;
187 }
188 
189 /**
190  * leb_read_lock - lock logical eraseblock for reading.
191  * @ubi: UBI device description object
192  * @vol_id: volume ID
193  * @lnum: logical eraseblock number
194  *
195  * This function locks a logical eraseblock for reading. Returns zero in case
196  * of success and a negative error code in case of failure.
197  */
leb_read_lock(struct ubi_device * ubi,int vol_id,int lnum)198 static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum)
199 {
200 	struct ubi_ltree_entry *le;
201 
202 	le = ltree_add_entry(ubi, vol_id, lnum);
203 	if (IS_ERR(le))
204 		return PTR_ERR(le);
205 	down_read(&le->mutex);
206 	return 0;
207 }
208 
209 /**
210  * leb_read_unlock - unlock logical eraseblock.
211  * @ubi: UBI device description object
212  * @vol_id: volume ID
213  * @lnum: logical eraseblock number
214  */
leb_read_unlock(struct ubi_device * ubi,int vol_id,int lnum)215 static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum)
216 {
217 	struct ubi_ltree_entry *le;
218 
219 	spin_lock(&ubi->ltree_lock);
220 	le = ltree_lookup(ubi, vol_id, lnum);
221 	le->users -= 1;
222 	ubi_assert(le->users >= 0);
223 	up_read(&le->mutex);
224 	if (le->users == 0) {
225 		rb_erase(&le->rb, &ubi->ltree);
226 		kfree(le);
227 	}
228 	spin_unlock(&ubi->ltree_lock);
229 }
230 
231 /**
232  * leb_write_lock - lock logical eraseblock for writing.
233  * @ubi: UBI device description object
234  * @vol_id: volume ID
235  * @lnum: logical eraseblock number
236  *
237  * This function locks a logical eraseblock for writing. Returns zero in case
238  * of success and a negative error code in case of failure.
239  */
leb_write_lock(struct ubi_device * ubi,int vol_id,int lnum)240 static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum)
241 {
242 	struct ubi_ltree_entry *le;
243 
244 	le = ltree_add_entry(ubi, vol_id, lnum);
245 	if (IS_ERR(le))
246 		return PTR_ERR(le);
247 	down_write(&le->mutex);
248 	return 0;
249 }
250 
251 /**
252  * leb_write_lock - lock logical eraseblock for writing.
253  * @ubi: UBI device description object
254  * @vol_id: volume ID
255  * @lnum: logical eraseblock number
256  *
257  * This function locks a logical eraseblock for writing if there is no
258  * contention and does nothing if there is contention. Returns %0 in case of
259  * success, %1 in case of contention, and and a negative error code in case of
260  * failure.
261  */
leb_write_trylock(struct ubi_device * ubi,int vol_id,int lnum)262 static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum)
263 {
264 	struct ubi_ltree_entry *le;
265 
266 	le = ltree_add_entry(ubi, vol_id, lnum);
267 	if (IS_ERR(le))
268 		return PTR_ERR(le);
269 	if (down_write_trylock(&le->mutex))
270 		return 0;
271 
272 	/* Contention, cancel */
273 	spin_lock(&ubi->ltree_lock);
274 	le->users -= 1;
275 	ubi_assert(le->users >= 0);
276 	if (le->users == 0) {
277 		rb_erase(&le->rb, &ubi->ltree);
278 		kfree(le);
279 	}
280 	spin_unlock(&ubi->ltree_lock);
281 
282 	return 1;
283 }
284 
285 /**
286  * leb_write_unlock - unlock logical eraseblock.
287  * @ubi: UBI device description object
288  * @vol_id: volume ID
289  * @lnum: logical eraseblock number
290  */
leb_write_unlock(struct ubi_device * ubi,int vol_id,int lnum)291 static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum)
292 {
293 	struct ubi_ltree_entry *le;
294 
295 	spin_lock(&ubi->ltree_lock);
296 	le = ltree_lookup(ubi, vol_id, lnum);
297 	le->users -= 1;
298 	ubi_assert(le->users >= 0);
299 	up_write(&le->mutex);
300 	if (le->users == 0) {
301 		rb_erase(&le->rb, &ubi->ltree);
302 		kfree(le);
303 	}
304 	spin_unlock(&ubi->ltree_lock);
305 }
306 
307 /**
308  * ubi_eba_unmap_leb - un-map logical eraseblock.
309  * @ubi: UBI device description object
310  * @vol: volume description object
311  * @lnum: logical eraseblock number
312  *
313  * This function un-maps logical eraseblock @lnum and schedules corresponding
314  * physical eraseblock for erasure. Returns zero in case of success and a
315  * negative error code in case of failure.
316  */
ubi_eba_unmap_leb(struct ubi_device * ubi,struct ubi_volume * vol,int lnum)317 int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol,
318 		      int lnum)
319 {
320 	int err, pnum, vol_id = vol->vol_id;
321 
322 	if (ubi->ro_mode)
323 		return -EROFS;
324 
325 	err = leb_write_lock(ubi, vol_id, lnum);
326 	if (err)
327 		return err;
328 
329 	pnum = vol->eba_tbl[lnum];
330 	if (pnum < 0)
331 		/* This logical eraseblock is already unmapped */
332 		goto out_unlock;
333 
334 	dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum);
335 
336 	down_read(&ubi->fm_eba_sem);
337 	vol->eba_tbl[lnum] = UBI_LEB_UNMAPPED;
338 	up_read(&ubi->fm_eba_sem);
339 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0);
340 
341 out_unlock:
342 	leb_write_unlock(ubi, vol_id, lnum);
343 	return err;
344 }
345 
346 /**
347  * ubi_eba_read_leb - read data.
348  * @ubi: UBI device description object
349  * @vol: volume description object
350  * @lnum: logical eraseblock number
351  * @buf: buffer to store the read data
352  * @offset: offset from where to read
353  * @len: how many bytes to read
354  * @check: data CRC check flag
355  *
356  * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF
357  * bytes. The @check flag only makes sense for static volumes and forces
358  * eraseblock data CRC checking.
359  *
360  * In case of success this function returns zero. In case of a static volume,
361  * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be
362  * returned for any volume type if an ECC error was detected by the MTD device
363  * driver. Other negative error cored may be returned in case of other errors.
364  */
ubi_eba_read_leb(struct ubi_device * ubi,struct ubi_volume * vol,int lnum,void * buf,int offset,int len,int check)365 int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
366 		     void *buf, int offset, int len, int check)
367 {
368 	int err, pnum, scrub = 0, vol_id = vol->vol_id;
369 	struct ubi_vid_hdr *vid_hdr;
370 	uint32_t uninitialized_var(crc);
371 
372 	err = leb_read_lock(ubi, vol_id, lnum);
373 	if (err)
374 		return err;
375 
376 	pnum = vol->eba_tbl[lnum];
377 	if (pnum < 0) {
378 		/*
379 		 * The logical eraseblock is not mapped, fill the whole buffer
380 		 * with 0xFF bytes. The exception is static volumes for which
381 		 * it is an error to read unmapped logical eraseblocks.
382 		 */
383 		dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)",
384 			len, offset, vol_id, lnum);
385 		leb_read_unlock(ubi, vol_id, lnum);
386 		ubi_assert(vol->vol_type != UBI_STATIC_VOLUME);
387 		memset(buf, 0xFF, len);
388 		return 0;
389 	}
390 
391 	dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d",
392 		len, offset, vol_id, lnum, pnum);
393 
394 	if (vol->vol_type == UBI_DYNAMIC_VOLUME)
395 		check = 0;
396 
397 retry:
398 	if (check) {
399 		vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
400 		if (!vid_hdr) {
401 			err = -ENOMEM;
402 			goto out_unlock;
403 		}
404 
405 		err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
406 		if (err && err != UBI_IO_BITFLIPS) {
407 			if (err > 0) {
408 				/*
409 				 * The header is either absent or corrupted.
410 				 * The former case means there is a bug -
411 				 * switch to read-only mode just in case.
412 				 * The latter case means a real corruption - we
413 				 * may try to recover data. FIXME: but this is
414 				 * not implemented.
415 				 */
416 				if (err == UBI_IO_BAD_HDR_EBADMSG ||
417 				    err == UBI_IO_BAD_HDR) {
418 					ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d",
419 						 pnum, vol_id, lnum);
420 					err = -EBADMSG;
421 				} else {
422 					err = -EINVAL;
423 					ubi_ro_mode(ubi);
424 				}
425 			}
426 			goto out_free;
427 		} else if (err == UBI_IO_BITFLIPS)
428 			scrub = 1;
429 
430 		ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs));
431 		ubi_assert(len == be32_to_cpu(vid_hdr->data_size));
432 
433 		crc = be32_to_cpu(vid_hdr->data_crc);
434 		ubi_free_vid_hdr(ubi, vid_hdr);
435 	}
436 
437 	err = ubi_io_read_data(ubi, buf, pnum, offset, len);
438 	if (err) {
439 		if (err == UBI_IO_BITFLIPS)
440 			scrub = 1;
441 		else if (mtd_is_eccerr(err)) {
442 			if (vol->vol_type == UBI_DYNAMIC_VOLUME)
443 				goto out_unlock;
444 			scrub = 1;
445 			if (!check) {
446 				ubi_msg(ubi, "force data checking");
447 				check = 1;
448 				goto retry;
449 			}
450 		} else
451 			goto out_unlock;
452 	}
453 
454 	if (check) {
455 		uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len);
456 		if (crc1 != crc) {
457 			ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x",
458 				 crc1, crc);
459 			err = -EBADMSG;
460 			goto out_unlock;
461 		}
462 	}
463 
464 	if (scrub)
465 		err = ubi_wl_scrub_peb(ubi, pnum);
466 
467 	leb_read_unlock(ubi, vol_id, lnum);
468 	return err;
469 
470 out_free:
471 	ubi_free_vid_hdr(ubi, vid_hdr);
472 out_unlock:
473 	leb_read_unlock(ubi, vol_id, lnum);
474 	return err;
475 }
476 
477 #ifndef __UBOOT__
478 /**
479  * ubi_eba_read_leb_sg - read data into a scatter gather list.
480  * @ubi: UBI device description object
481  * @vol: volume description object
482  * @lnum: logical eraseblock number
483  * @sgl: UBI scatter gather list to store the read data
484  * @offset: offset from where to read
485  * @len: how many bytes to read
486  * @check: data CRC check flag
487  *
488  * This function works exactly like ubi_eba_read_leb(). But instead of
489  * storing the read data into a buffer it writes to an UBI scatter gather
490  * list.
491  */
ubi_eba_read_leb_sg(struct ubi_device * ubi,struct ubi_volume * vol,struct ubi_sgl * sgl,int lnum,int offset,int len,int check)492 int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol,
493 			struct ubi_sgl *sgl, int lnum, int offset, int len,
494 			int check)
495 {
496 	int to_read;
497 	int ret;
498 	struct scatterlist *sg;
499 
500 	for (;;) {
501 		ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT);
502 		sg = &sgl->sg[sgl->list_pos];
503 		if (len < sg->length - sgl->page_pos)
504 			to_read = len;
505 		else
506 			to_read = sg->length - sgl->page_pos;
507 
508 		ret = ubi_eba_read_leb(ubi, vol, lnum,
509 				       sg_virt(sg) + sgl->page_pos, offset,
510 				       to_read, check);
511 		if (ret < 0)
512 			return ret;
513 
514 		offset += to_read;
515 		len -= to_read;
516 		if (!len) {
517 			sgl->page_pos += to_read;
518 			if (sgl->page_pos == sg->length) {
519 				sgl->list_pos++;
520 				sgl->page_pos = 0;
521 			}
522 
523 			break;
524 		}
525 
526 		sgl->list_pos++;
527 		sgl->page_pos = 0;
528 	}
529 
530 	return ret;
531 }
532 #endif
533 
534 /**
535  * recover_peb - recover from write failure.
536  * @ubi: UBI device description object
537  * @pnum: the physical eraseblock to recover
538  * @vol_id: volume ID
539  * @lnum: logical eraseblock number
540  * @buf: data which was not written because of the write failure
541  * @offset: offset of the failed write
542  * @len: how many bytes should have been written
543  *
544  * This function is called in case of a write failure and moves all good data
545  * from the potentially bad physical eraseblock to a good physical eraseblock.
546  * This function also writes the data which was not written due to the failure.
547  * Returns new physical eraseblock number in case of success, and a negative
548  * error code in case of failure.
549  */
recover_peb(struct ubi_device * ubi,int pnum,int vol_id,int lnum,const void * buf,int offset,int len)550 static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum,
551 		       const void *buf, int offset, int len)
552 {
553 	int err, idx = vol_id2idx(ubi, vol_id), new_pnum, data_size, tries = 0;
554 	struct ubi_volume *vol = ubi->volumes[idx];
555 	struct ubi_vid_hdr *vid_hdr;
556 
557 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
558 	if (!vid_hdr)
559 		return -ENOMEM;
560 
561 retry:
562 	new_pnum = ubi_wl_get_peb(ubi);
563 	if (new_pnum < 0) {
564 		ubi_free_vid_hdr(ubi, vid_hdr);
565 		up_read(&ubi->fm_eba_sem);
566 		return new_pnum;
567 	}
568 
569 	ubi_msg(ubi, "recover PEB %d, move data to PEB %d",
570 		pnum, new_pnum);
571 
572 	err = ubi_io_read_vid_hdr(ubi, pnum, vid_hdr, 1);
573 	if (err && err != UBI_IO_BITFLIPS) {
574 		if (err > 0)
575 			err = -EIO;
576 		up_read(&ubi->fm_eba_sem);
577 		goto out_put;
578 	}
579 
580 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
581 	err = ubi_io_write_vid_hdr(ubi, new_pnum, vid_hdr);
582 	if (err) {
583 		up_read(&ubi->fm_eba_sem);
584 		goto write_error;
585 	}
586 
587 	data_size = offset + len;
588 	mutex_lock(&ubi->buf_mutex);
589 	memset(ubi->peb_buf + offset, 0xFF, len);
590 
591 	/* Read everything before the area where the write failure happened */
592 	if (offset > 0) {
593 		err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset);
594 		if (err && err != UBI_IO_BITFLIPS) {
595 			up_read(&ubi->fm_eba_sem);
596 			goto out_unlock;
597 		}
598 	}
599 
600 	memcpy(ubi->peb_buf + offset, buf, len);
601 
602 	err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size);
603 	if (err) {
604 		mutex_unlock(&ubi->buf_mutex);
605 		up_read(&ubi->fm_eba_sem);
606 		goto write_error;
607 	}
608 
609 	mutex_unlock(&ubi->buf_mutex);
610 	ubi_free_vid_hdr(ubi, vid_hdr);
611 
612 	vol->eba_tbl[lnum] = new_pnum;
613 	up_read(&ubi->fm_eba_sem);
614 	ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
615 
616 	ubi_msg(ubi, "data was successfully recovered");
617 	return 0;
618 
619 out_unlock:
620 	mutex_unlock(&ubi->buf_mutex);
621 out_put:
622 	ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
623 	ubi_free_vid_hdr(ubi, vid_hdr);
624 	return err;
625 
626 write_error:
627 	/*
628 	 * Bad luck? This physical eraseblock is bad too? Crud. Let's try to
629 	 * get another one.
630 	 */
631 	ubi_warn(ubi, "failed to write to PEB %d", new_pnum);
632 	ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1);
633 	if (++tries > UBI_IO_RETRIES) {
634 		ubi_free_vid_hdr(ubi, vid_hdr);
635 		return err;
636 	}
637 	ubi_msg(ubi, "try again");
638 	goto retry;
639 }
640 
641 /**
642  * ubi_eba_write_leb - write data to dynamic volume.
643  * @ubi: UBI device description object
644  * @vol: volume description object
645  * @lnum: logical eraseblock number
646  * @buf: the data to write
647  * @offset: offset within the logical eraseblock where to write
648  * @len: how many bytes to write
649  *
650  * This function writes data to logical eraseblock @lnum of a dynamic volume
651  * @vol. Returns zero in case of success and a negative error code in case
652  * of failure. In case of error, it is possible that something was still
653  * written to the flash media, but may be some garbage.
654  */
ubi_eba_write_leb(struct ubi_device * ubi,struct ubi_volume * vol,int lnum,const void * buf,int offset,int len)655 int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum,
656 		      const void *buf, int offset, int len)
657 {
658 	int err, pnum, tries = 0, vol_id = vol->vol_id;
659 	struct ubi_vid_hdr *vid_hdr;
660 
661 	if (ubi->ro_mode)
662 		return -EROFS;
663 
664 	err = leb_write_lock(ubi, vol_id, lnum);
665 	if (err)
666 		return err;
667 
668 	pnum = vol->eba_tbl[lnum];
669 	if (pnum >= 0) {
670 		dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d",
671 			len, offset, vol_id, lnum, pnum);
672 
673 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
674 		if (err) {
675 			ubi_warn(ubi, "failed to write data to PEB %d", pnum);
676 			if (err == -EIO && ubi->bad_allowed)
677 				err = recover_peb(ubi, pnum, vol_id, lnum, buf,
678 						  offset, len);
679 			if (err)
680 				ubi_ro_mode(ubi);
681 		}
682 		leb_write_unlock(ubi, vol_id, lnum);
683 		return err;
684 	}
685 
686 	/*
687 	 * The logical eraseblock is not mapped. We have to get a free physical
688 	 * eraseblock and write the volume identifier header there first.
689 	 */
690 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
691 	if (!vid_hdr) {
692 		leb_write_unlock(ubi, vol_id, lnum);
693 		return -ENOMEM;
694 	}
695 
696 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
697 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
698 	vid_hdr->vol_id = cpu_to_be32(vol_id);
699 	vid_hdr->lnum = cpu_to_be32(lnum);
700 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
701 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
702 
703 retry:
704 	pnum = ubi_wl_get_peb(ubi);
705 	if (pnum < 0) {
706 		ubi_free_vid_hdr(ubi, vid_hdr);
707 		leb_write_unlock(ubi, vol_id, lnum);
708 		up_read(&ubi->fm_eba_sem);
709 		return pnum;
710 	}
711 
712 	dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d",
713 		len, offset, vol_id, lnum, pnum);
714 
715 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
716 	if (err) {
717 		ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
718 			 vol_id, lnum, pnum);
719 		up_read(&ubi->fm_eba_sem);
720 		goto write_error;
721 	}
722 
723 	if (len) {
724 		err = ubi_io_write_data(ubi, buf, pnum, offset, len);
725 		if (err) {
726 			ubi_warn(ubi, "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d",
727 				 len, offset, vol_id, lnum, pnum);
728 			up_read(&ubi->fm_eba_sem);
729 			goto write_error;
730 		}
731 	}
732 
733 	vol->eba_tbl[lnum] = pnum;
734 	up_read(&ubi->fm_eba_sem);
735 
736 	leb_write_unlock(ubi, vol_id, lnum);
737 	ubi_free_vid_hdr(ubi, vid_hdr);
738 	return 0;
739 
740 write_error:
741 	if (err != -EIO || !ubi->bad_allowed) {
742 		ubi_ro_mode(ubi);
743 		leb_write_unlock(ubi, vol_id, lnum);
744 		ubi_free_vid_hdr(ubi, vid_hdr);
745 		return err;
746 	}
747 
748 	/*
749 	 * Fortunately, this is the first write operation to this physical
750 	 * eraseblock, so just put it and request a new one. We assume that if
751 	 * this physical eraseblock went bad, the erase code will handle that.
752 	 */
753 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
754 	if (err || ++tries > UBI_IO_RETRIES) {
755 		ubi_ro_mode(ubi);
756 		leb_write_unlock(ubi, vol_id, lnum);
757 		ubi_free_vid_hdr(ubi, vid_hdr);
758 		return err;
759 	}
760 
761 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
762 	ubi_msg(ubi, "try another PEB");
763 	goto retry;
764 }
765 
766 /**
767  * ubi_eba_write_leb_st - write data to static volume.
768  * @ubi: UBI device description object
769  * @vol: volume description object
770  * @lnum: logical eraseblock number
771  * @buf: data to write
772  * @len: how many bytes to write
773  * @used_ebs: how many logical eraseblocks will this volume contain
774  *
775  * This function writes data to logical eraseblock @lnum of static volume
776  * @vol. The @used_ebs argument should contain total number of logical
777  * eraseblock in this static volume.
778  *
779  * When writing to the last logical eraseblock, the @len argument doesn't have
780  * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent
781  * to the real data size, although the @buf buffer has to contain the
782  * alignment. In all other cases, @len has to be aligned.
783  *
784  * It is prohibited to write more than once to logical eraseblocks of static
785  * volumes. This function returns zero in case of success and a negative error
786  * code in case of failure.
787  */
ubi_eba_write_leb_st(struct ubi_device * ubi,struct ubi_volume * vol,int lnum,const void * buf,int len,int used_ebs)788 int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol,
789 			 int lnum, const void *buf, int len, int used_ebs)
790 {
791 	int err, pnum, tries = 0, data_size = len, vol_id = vol->vol_id;
792 	struct ubi_vid_hdr *vid_hdr;
793 	uint32_t crc;
794 
795 	if (ubi->ro_mode)
796 		return -EROFS;
797 
798 	if (lnum == used_ebs - 1)
799 		/* If this is the last LEB @len may be unaligned */
800 		len = ALIGN(data_size, ubi->min_io_size);
801 	else
802 		ubi_assert(!(len & (ubi->min_io_size - 1)));
803 
804 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
805 	if (!vid_hdr)
806 		return -ENOMEM;
807 
808 	err = leb_write_lock(ubi, vol_id, lnum);
809 	if (err) {
810 		ubi_free_vid_hdr(ubi, vid_hdr);
811 		return err;
812 	}
813 
814 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
815 	vid_hdr->vol_id = cpu_to_be32(vol_id);
816 	vid_hdr->lnum = cpu_to_be32(lnum);
817 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
818 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
819 
820 	crc = crc32(UBI_CRC32_INIT, buf, data_size);
821 	vid_hdr->vol_type = UBI_VID_STATIC;
822 	vid_hdr->data_size = cpu_to_be32(data_size);
823 	vid_hdr->used_ebs = cpu_to_be32(used_ebs);
824 	vid_hdr->data_crc = cpu_to_be32(crc);
825 
826 retry:
827 	pnum = ubi_wl_get_peb(ubi);
828 	if (pnum < 0) {
829 		ubi_free_vid_hdr(ubi, vid_hdr);
830 		leb_write_unlock(ubi, vol_id, lnum);
831 		up_read(&ubi->fm_eba_sem);
832 		return pnum;
833 	}
834 
835 	dbg_eba("write VID hdr and %d bytes at LEB %d:%d, PEB %d, used_ebs %d",
836 		len, vol_id, lnum, pnum, used_ebs);
837 
838 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
839 	if (err) {
840 		ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
841 			 vol_id, lnum, pnum);
842 		up_read(&ubi->fm_eba_sem);
843 		goto write_error;
844 	}
845 
846 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
847 	if (err) {
848 		ubi_warn(ubi, "failed to write %d bytes of data to PEB %d",
849 			 len, pnum);
850 		up_read(&ubi->fm_eba_sem);
851 		goto write_error;
852 	}
853 
854 	ubi_assert(vol->eba_tbl[lnum] < 0);
855 	vol->eba_tbl[lnum] = pnum;
856 	up_read(&ubi->fm_eba_sem);
857 
858 	leb_write_unlock(ubi, vol_id, lnum);
859 	ubi_free_vid_hdr(ubi, vid_hdr);
860 	return 0;
861 
862 write_error:
863 	if (err != -EIO || !ubi->bad_allowed) {
864 		/*
865 		 * This flash device does not admit of bad eraseblocks or
866 		 * something nasty and unexpected happened. Switch to read-only
867 		 * mode just in case.
868 		 */
869 		ubi_ro_mode(ubi);
870 		leb_write_unlock(ubi, vol_id, lnum);
871 		ubi_free_vid_hdr(ubi, vid_hdr);
872 		return err;
873 	}
874 
875 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
876 	if (err || ++tries > UBI_IO_RETRIES) {
877 		ubi_ro_mode(ubi);
878 		leb_write_unlock(ubi, vol_id, lnum);
879 		ubi_free_vid_hdr(ubi, vid_hdr);
880 		return err;
881 	}
882 
883 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
884 	ubi_msg(ubi, "try another PEB");
885 	goto retry;
886 }
887 
888 /*
889  * ubi_eba_atomic_leb_change - change logical eraseblock atomically.
890  * @ubi: UBI device description object
891  * @vol: volume description object
892  * @lnum: logical eraseblock number
893  * @buf: data to write
894  * @len: how many bytes to write
895  *
896  * This function changes the contents of a logical eraseblock atomically. @buf
897  * has to contain new logical eraseblock data, and @len - the length of the
898  * data, which has to be aligned. This function guarantees that in case of an
899  * unclean reboot the old contents is preserved. Returns zero in case of
900  * success and a negative error code in case of failure.
901  *
902  * UBI reserves one LEB for the "atomic LEB change" operation, so only one
903  * LEB change may be done at a time. This is ensured by @ubi->alc_mutex.
904  */
ubi_eba_atomic_leb_change(struct ubi_device * ubi,struct ubi_volume * vol,int lnum,const void * buf,int len)905 int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol,
906 			      int lnum, const void *buf, int len)
907 {
908 	int err, pnum, old_pnum, tries = 0, vol_id = vol->vol_id;
909 	struct ubi_vid_hdr *vid_hdr;
910 	uint32_t crc;
911 
912 	if (ubi->ro_mode)
913 		return -EROFS;
914 
915 	if (len == 0) {
916 		/*
917 		 * Special case when data length is zero. In this case the LEB
918 		 * has to be unmapped and mapped somewhere else.
919 		 */
920 		err = ubi_eba_unmap_leb(ubi, vol, lnum);
921 		if (err)
922 			return err;
923 		return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
924 	}
925 
926 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
927 	if (!vid_hdr)
928 		return -ENOMEM;
929 
930 	mutex_lock(&ubi->alc_mutex);
931 	err = leb_write_lock(ubi, vol_id, lnum);
932 	if (err)
933 		goto out_mutex;
934 
935 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
936 	vid_hdr->vol_id = cpu_to_be32(vol_id);
937 	vid_hdr->lnum = cpu_to_be32(lnum);
938 	vid_hdr->compat = ubi_get_compat(ubi, vol_id);
939 	vid_hdr->data_pad = cpu_to_be32(vol->data_pad);
940 
941 	crc = crc32(UBI_CRC32_INIT, buf, len);
942 	vid_hdr->vol_type = UBI_VID_DYNAMIC;
943 	vid_hdr->data_size = cpu_to_be32(len);
944 	vid_hdr->copy_flag = 1;
945 	vid_hdr->data_crc = cpu_to_be32(crc);
946 
947 retry:
948 	pnum = ubi_wl_get_peb(ubi);
949 	if (pnum < 0) {
950 		err = pnum;
951 		up_read(&ubi->fm_eba_sem);
952 		goto out_leb_unlock;
953 	}
954 
955 	dbg_eba("change LEB %d:%d, PEB %d, write VID hdr to PEB %d",
956 		vol_id, lnum, vol->eba_tbl[lnum], pnum);
957 
958 	err = ubi_io_write_vid_hdr(ubi, pnum, vid_hdr);
959 	if (err) {
960 		ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d",
961 			 vol_id, lnum, pnum);
962 		up_read(&ubi->fm_eba_sem);
963 		goto write_error;
964 	}
965 
966 	err = ubi_io_write_data(ubi, buf, pnum, 0, len);
967 	if (err) {
968 		ubi_warn(ubi, "failed to write %d bytes of data to PEB %d",
969 			 len, pnum);
970 		up_read(&ubi->fm_eba_sem);
971 		goto write_error;
972 	}
973 
974 	old_pnum = vol->eba_tbl[lnum];
975 	vol->eba_tbl[lnum] = pnum;
976 	up_read(&ubi->fm_eba_sem);
977 
978 	if (old_pnum >= 0) {
979 		err = ubi_wl_put_peb(ubi, vol_id, lnum, old_pnum, 0);
980 		if (err)
981 			goto out_leb_unlock;
982 	}
983 
984 out_leb_unlock:
985 	leb_write_unlock(ubi, vol_id, lnum);
986 out_mutex:
987 	mutex_unlock(&ubi->alc_mutex);
988 	ubi_free_vid_hdr(ubi, vid_hdr);
989 	return err;
990 
991 write_error:
992 	if (err != -EIO || !ubi->bad_allowed) {
993 		/*
994 		 * This flash device does not admit of bad eraseblocks or
995 		 * something nasty and unexpected happened. Switch to read-only
996 		 * mode just in case.
997 		 */
998 		ubi_ro_mode(ubi);
999 		goto out_leb_unlock;
1000 	}
1001 
1002 	err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1);
1003 	if (err || ++tries > UBI_IO_RETRIES) {
1004 		ubi_ro_mode(ubi);
1005 		goto out_leb_unlock;
1006 	}
1007 
1008 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1009 	ubi_msg(ubi, "try another PEB");
1010 	goto retry;
1011 }
1012 
1013 /**
1014  * is_error_sane - check whether a read error is sane.
1015  * @err: code of the error happened during reading
1016  *
1017  * This is a helper function for 'ubi_eba_copy_leb()' which is called when we
1018  * cannot read data from the target PEB (an error @err happened). If the error
1019  * code is sane, then we treat this error as non-fatal. Otherwise the error is
1020  * fatal and UBI will be switched to R/O mode later.
1021  *
1022  * The idea is that we try not to switch to R/O mode if the read error is
1023  * something which suggests there was a real read problem. E.g., %-EIO. Or a
1024  * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O
1025  * mode, simply because we do not know what happened at the MTD level, and we
1026  * cannot handle this. E.g., the underlying driver may have become crazy, and
1027  * it is safer to switch to R/O mode to preserve the data.
1028  *
1029  * And bear in mind, this is about reading from the target PEB, i.e. the PEB
1030  * which we have just written.
1031  */
is_error_sane(int err)1032 static int is_error_sane(int err)
1033 {
1034 	if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR ||
1035 	    err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT)
1036 		return 0;
1037 	return 1;
1038 }
1039 
1040 /**
1041  * ubi_eba_copy_leb - copy logical eraseblock.
1042  * @ubi: UBI device description object
1043  * @from: physical eraseblock number from where to copy
1044  * @to: physical eraseblock number where to copy
1045  * @vid_hdr: VID header of the @from physical eraseblock
1046  *
1047  * This function copies logical eraseblock from physical eraseblock @from to
1048  * physical eraseblock @to. The @vid_hdr buffer may be changed by this
1049  * function. Returns:
1050  *   o %0 in case of success;
1051  *   o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc;
1052  *   o a negative error code in case of failure.
1053  */
ubi_eba_copy_leb(struct ubi_device * ubi,int from,int to,struct ubi_vid_hdr * vid_hdr)1054 int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to,
1055 		     struct ubi_vid_hdr *vid_hdr)
1056 {
1057 	int err, vol_id, lnum, data_size, aldata_size, idx;
1058 	struct ubi_volume *vol;
1059 	uint32_t crc;
1060 
1061 	vol_id = be32_to_cpu(vid_hdr->vol_id);
1062 	lnum = be32_to_cpu(vid_hdr->lnum);
1063 
1064 	dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to);
1065 
1066 	if (vid_hdr->vol_type == UBI_VID_STATIC) {
1067 		data_size = be32_to_cpu(vid_hdr->data_size);
1068 		aldata_size = ALIGN(data_size, ubi->min_io_size);
1069 	} else
1070 		data_size = aldata_size =
1071 			    ubi->leb_size - be32_to_cpu(vid_hdr->data_pad);
1072 
1073 	idx = vol_id2idx(ubi, vol_id);
1074 	spin_lock(&ubi->volumes_lock);
1075 	/*
1076 	 * Note, we may race with volume deletion, which means that the volume
1077 	 * this logical eraseblock belongs to might be being deleted. Since the
1078 	 * volume deletion un-maps all the volume's logical eraseblocks, it will
1079 	 * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish.
1080 	 */
1081 	vol = ubi->volumes[idx];
1082 	spin_unlock(&ubi->volumes_lock);
1083 	if (!vol) {
1084 		/* No need to do further work, cancel */
1085 		dbg_wl("volume %d is being removed, cancel", vol_id);
1086 		return MOVE_CANCEL_RACE;
1087 	}
1088 
1089 	/*
1090 	 * We do not want anybody to write to this logical eraseblock while we
1091 	 * are moving it, so lock it.
1092 	 *
1093 	 * Note, we are using non-waiting locking here, because we cannot sleep
1094 	 * on the LEB, since it may cause deadlocks. Indeed, imagine a task is
1095 	 * unmapping the LEB which is mapped to the PEB we are going to move
1096 	 * (@from). This task locks the LEB and goes sleep in the
1097 	 * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are
1098 	 * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the
1099 	 * LEB is already locked, we just do not move it and return
1100 	 * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because
1101 	 * we do not know the reasons of the contention - it may be just a
1102 	 * normal I/O on this LEB, so we want to re-try.
1103 	 */
1104 	err = leb_write_trylock(ubi, vol_id, lnum);
1105 	if (err) {
1106 		dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum);
1107 		return MOVE_RETRY;
1108 	}
1109 
1110 	/*
1111 	 * The LEB might have been put meanwhile, and the task which put it is
1112 	 * probably waiting on @ubi->move_mutex. No need to continue the work,
1113 	 * cancel it.
1114 	 */
1115 	if (vol->eba_tbl[lnum] != from) {
1116 		dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel",
1117 		       vol_id, lnum, from, vol->eba_tbl[lnum]);
1118 		err = MOVE_CANCEL_RACE;
1119 		goto out_unlock_leb;
1120 	}
1121 
1122 	/*
1123 	 * OK, now the LEB is locked and we can safely start moving it. Since
1124 	 * this function utilizes the @ubi->peb_buf buffer which is shared
1125 	 * with some other functions - we lock the buffer by taking the
1126 	 * @ubi->buf_mutex.
1127 	 */
1128 	mutex_lock(&ubi->buf_mutex);
1129 	dbg_wl("read %d bytes of data", aldata_size);
1130 	err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size);
1131 	if (err && err != UBI_IO_BITFLIPS) {
1132 		ubi_warn(ubi, "error %d while reading data from PEB %d",
1133 			 err, from);
1134 		err = MOVE_SOURCE_RD_ERR;
1135 		goto out_unlock_buf;
1136 	}
1137 
1138 	/*
1139 	 * Now we have got to calculate how much data we have to copy. In
1140 	 * case of a static volume it is fairly easy - the VID header contains
1141 	 * the data size. In case of a dynamic volume it is more difficult - we
1142 	 * have to read the contents, cut 0xFF bytes from the end and copy only
1143 	 * the first part. We must do this to avoid writing 0xFF bytes as it
1144 	 * may have some side-effects. And not only this. It is important not
1145 	 * to include those 0xFFs to CRC because later the they may be filled
1146 	 * by data.
1147 	 */
1148 	if (vid_hdr->vol_type == UBI_VID_DYNAMIC)
1149 		aldata_size = data_size =
1150 			ubi_calc_data_len(ubi, ubi->peb_buf, data_size);
1151 
1152 	cond_resched();
1153 	crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size);
1154 	cond_resched();
1155 
1156 	/*
1157 	 * It may turn out to be that the whole @from physical eraseblock
1158 	 * contains only 0xFF bytes. Then we have to only write the VID header
1159 	 * and do not write any data. This also means we should not set
1160 	 * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc.
1161 	 */
1162 	if (data_size > 0) {
1163 		vid_hdr->copy_flag = 1;
1164 		vid_hdr->data_size = cpu_to_be32(data_size);
1165 		vid_hdr->data_crc = cpu_to_be32(crc);
1166 	}
1167 	vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi));
1168 
1169 	err = ubi_io_write_vid_hdr(ubi, to, vid_hdr);
1170 	if (err) {
1171 		if (err == -EIO)
1172 			err = MOVE_TARGET_WR_ERR;
1173 		goto out_unlock_buf;
1174 	}
1175 
1176 	cond_resched();
1177 
1178 	/* Read the VID header back and check if it was written correctly */
1179 	err = ubi_io_read_vid_hdr(ubi, to, vid_hdr, 1);
1180 	if (err) {
1181 		if (err != UBI_IO_BITFLIPS) {
1182 			ubi_warn(ubi, "error %d while reading VID header back from PEB %d",
1183 				 err, to);
1184 			if (is_error_sane(err))
1185 				err = MOVE_TARGET_RD_ERR;
1186 		} else
1187 			err = MOVE_TARGET_BITFLIPS;
1188 		goto out_unlock_buf;
1189 	}
1190 
1191 	if (data_size > 0) {
1192 		err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1193 		if (err) {
1194 			if (err == -EIO)
1195 				err = MOVE_TARGET_WR_ERR;
1196 			goto out_unlock_buf;
1197 		}
1198 
1199 		cond_resched();
1200 
1201 		/*
1202 		 * We've written the data and are going to read it back to make
1203 		 * sure it was written correctly.
1204 		 */
1205 		memset(ubi->peb_buf, 0xFF, aldata_size);
1206 		err = ubi_io_read_data(ubi, ubi->peb_buf, to, 0, aldata_size);
1207 		if (err) {
1208 			if (err != UBI_IO_BITFLIPS) {
1209 				ubi_warn(ubi, "error %d while reading data back from PEB %d",
1210 					 err, to);
1211 				if (is_error_sane(err))
1212 					err = MOVE_TARGET_RD_ERR;
1213 			} else
1214 				err = MOVE_TARGET_BITFLIPS;
1215 			goto out_unlock_buf;
1216 		}
1217 
1218 		cond_resched();
1219 
1220 		if (crc != crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size)) {
1221 			ubi_warn(ubi, "read data back from PEB %d and it is different",
1222 				 to);
1223 			err = -EINVAL;
1224 			goto out_unlock_buf;
1225 		}
1226 	}
1227 
1228 	ubi_assert(vol->eba_tbl[lnum] == from);
1229 	down_read(&ubi->fm_eba_sem);
1230 	vol->eba_tbl[lnum] = to;
1231 	up_read(&ubi->fm_eba_sem);
1232 
1233 out_unlock_buf:
1234 	mutex_unlock(&ubi->buf_mutex);
1235 out_unlock_leb:
1236 	leb_write_unlock(ubi, vol_id, lnum);
1237 	return err;
1238 }
1239 
1240 /**
1241  * print_rsvd_warning - warn about not having enough reserved PEBs.
1242  * @ubi: UBI device description object
1243  *
1244  * This is a helper function for 'ubi_eba_init()' which is called when UBI
1245  * cannot reserve enough PEBs for bad block handling. This function makes a
1246  * decision whether we have to print a warning or not. The algorithm is as
1247  * follows:
1248  *   o if this is a new UBI image, then just print the warning
1249  *   o if this is an UBI image which has already been used for some time, print
1250  *     a warning only if we can reserve less than 10% of the expected amount of
1251  *     the reserved PEB.
1252  *
1253  * The idea is that when UBI is used, PEBs become bad, and the reserved pool
1254  * of PEBs becomes smaller, which is normal and we do not want to scare users
1255  * with a warning every time they attach the MTD device. This was an issue
1256  * reported by real users.
1257  */
print_rsvd_warning(struct ubi_device * ubi,struct ubi_attach_info * ai)1258 static void print_rsvd_warning(struct ubi_device *ubi,
1259 			       struct ubi_attach_info *ai)
1260 {
1261 	/*
1262 	 * The 1 << 18 (256KiB) number is picked randomly, just a reasonably
1263 	 * large number to distinguish between newly flashed and used images.
1264 	 */
1265 	if (ai->max_sqnum > (1 << 18)) {
1266 		int min = ubi->beb_rsvd_level / 10;
1267 
1268 		if (!min)
1269 			min = 1;
1270 		if (ubi->beb_rsvd_pebs > min)
1271 			return;
1272 	}
1273 
1274 	ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d",
1275 		 ubi->beb_rsvd_pebs, ubi->beb_rsvd_level);
1276 	if (ubi->corr_peb_count)
1277 		ubi_warn(ubi, "%d PEBs are corrupted and not used",
1278 			 ubi->corr_peb_count);
1279 }
1280 
1281 /**
1282  * self_check_eba - run a self check on the EBA table constructed by fastmap.
1283  * @ubi: UBI device description object
1284  * @ai_fastmap: UBI attach info object created by fastmap
1285  * @ai_scan: UBI attach info object created by scanning
1286  *
1287  * Returns < 0 in case of an internal error, 0 otherwise.
1288  * If a bad EBA table entry was found it will be printed out and
1289  * ubi_assert() triggers.
1290  */
self_check_eba(struct ubi_device * ubi,struct ubi_attach_info * ai_fastmap,struct ubi_attach_info * ai_scan)1291 int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap,
1292 		   struct ubi_attach_info *ai_scan)
1293 {
1294 	int i, j, num_volumes, ret = 0;
1295 	int **scan_eba, **fm_eba;
1296 	struct ubi_ainf_volume *av;
1297 	struct ubi_volume *vol;
1298 	struct ubi_ainf_peb *aeb;
1299 	struct rb_node *rb;
1300 
1301 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1302 
1303 	scan_eba = kmalloc(sizeof(*scan_eba) * num_volumes, GFP_KERNEL);
1304 	if (!scan_eba)
1305 		return -ENOMEM;
1306 
1307 	fm_eba = kmalloc(sizeof(*fm_eba) * num_volumes, GFP_KERNEL);
1308 	if (!fm_eba) {
1309 		kfree(scan_eba);
1310 		return -ENOMEM;
1311 	}
1312 
1313 	for (i = 0; i < num_volumes; i++) {
1314 		vol = ubi->volumes[i];
1315 		if (!vol)
1316 			continue;
1317 
1318 		scan_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**scan_eba),
1319 				      GFP_KERNEL);
1320 		if (!scan_eba[i]) {
1321 			ret = -ENOMEM;
1322 			goto out_free;
1323 		}
1324 
1325 		fm_eba[i] = kmalloc(vol->reserved_pebs * sizeof(**fm_eba),
1326 				    GFP_KERNEL);
1327 		if (!fm_eba[i]) {
1328 			ret = -ENOMEM;
1329 			goto out_free;
1330 		}
1331 
1332 		for (j = 0; j < vol->reserved_pebs; j++)
1333 			scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED;
1334 
1335 		av = ubi_find_av(ai_scan, idx2vol_id(ubi, i));
1336 		if (!av)
1337 			continue;
1338 
1339 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1340 			scan_eba[i][aeb->lnum] = aeb->pnum;
1341 
1342 		av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i));
1343 		if (!av)
1344 			continue;
1345 
1346 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb)
1347 			fm_eba[i][aeb->lnum] = aeb->pnum;
1348 
1349 		for (j = 0; j < vol->reserved_pebs; j++) {
1350 			if (scan_eba[i][j] != fm_eba[i][j]) {
1351 				if (scan_eba[i][j] == UBI_LEB_UNMAPPED ||
1352 					fm_eba[i][j] == UBI_LEB_UNMAPPED)
1353 					continue;
1354 
1355 				ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!",
1356 					vol->vol_id, i, fm_eba[i][j],
1357 					scan_eba[i][j]);
1358 				ubi_assert(0);
1359 			}
1360 		}
1361 	}
1362 
1363 out_free:
1364 	for (i = 0; i < num_volumes; i++) {
1365 		if (!ubi->volumes[i])
1366 			continue;
1367 
1368 		kfree(scan_eba[i]);
1369 		kfree(fm_eba[i]);
1370 	}
1371 
1372 	kfree(scan_eba);
1373 	kfree(fm_eba);
1374 	return ret;
1375 }
1376 
1377 /**
1378  * ubi_eba_init - initialize the EBA sub-system using attaching information.
1379  * @ubi: UBI device description object
1380  * @ai: attaching information
1381  *
1382  * This function returns zero in case of success and a negative error code in
1383  * case of failure.
1384  */
ubi_eba_init(struct ubi_device * ubi,struct ubi_attach_info * ai)1385 int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1386 {
1387 	int i, j, err, num_volumes;
1388 	struct ubi_ainf_volume *av;
1389 	struct ubi_volume *vol;
1390 	struct ubi_ainf_peb *aeb;
1391 	struct rb_node *rb;
1392 
1393 	dbg_eba("initialize EBA sub-system");
1394 
1395 	spin_lock_init(&ubi->ltree_lock);
1396 	mutex_init(&ubi->alc_mutex);
1397 	ubi->ltree = RB_ROOT;
1398 
1399 	ubi->global_sqnum = ai->max_sqnum + 1;
1400 	num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT;
1401 
1402 	for (i = 0; i < num_volumes; i++) {
1403 		vol = ubi->volumes[i];
1404 		if (!vol)
1405 			continue;
1406 
1407 		cond_resched();
1408 
1409 		vol->eba_tbl = kmalloc(vol->reserved_pebs * sizeof(int),
1410 				       GFP_KERNEL);
1411 		if (!vol->eba_tbl) {
1412 			err = -ENOMEM;
1413 			goto out_free;
1414 		}
1415 
1416 		for (j = 0; j < vol->reserved_pebs; j++)
1417 			vol->eba_tbl[j] = UBI_LEB_UNMAPPED;
1418 
1419 		av = ubi_find_av(ai, idx2vol_id(ubi, i));
1420 		if (!av)
1421 			continue;
1422 
1423 		ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) {
1424 			if (aeb->lnum >= vol->reserved_pebs)
1425 				/*
1426 				 * This may happen in case of an unclean reboot
1427 				 * during re-size.
1428 				 */
1429 				ubi_move_aeb_to_list(av, aeb, &ai->erase);
1430 			else
1431 				vol->eba_tbl[aeb->lnum] = aeb->pnum;
1432 		}
1433 	}
1434 
1435 	if (ubi->avail_pebs < EBA_RESERVED_PEBS) {
1436 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1437 			ubi->avail_pebs, EBA_RESERVED_PEBS);
1438 		if (ubi->corr_peb_count)
1439 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1440 				ubi->corr_peb_count);
1441 		err = -ENOSPC;
1442 		goto out_free;
1443 	}
1444 	ubi->avail_pebs -= EBA_RESERVED_PEBS;
1445 	ubi->rsvd_pebs += EBA_RESERVED_PEBS;
1446 
1447 	if (ubi->bad_allowed) {
1448 		ubi_calculate_reserved(ubi);
1449 
1450 		if (ubi->avail_pebs < ubi->beb_rsvd_level) {
1451 			/* No enough free physical eraseblocks */
1452 			ubi->beb_rsvd_pebs = ubi->avail_pebs;
1453 			print_rsvd_warning(ubi, ai);
1454 		} else
1455 			ubi->beb_rsvd_pebs = ubi->beb_rsvd_level;
1456 
1457 		ubi->avail_pebs -= ubi->beb_rsvd_pebs;
1458 		ubi->rsvd_pebs  += ubi->beb_rsvd_pebs;
1459 	}
1460 
1461 	dbg_eba("EBA sub-system is initialized");
1462 	return 0;
1463 
1464 out_free:
1465 	for (i = 0; i < num_volumes; i++) {
1466 		if (!ubi->volumes[i])
1467 			continue;
1468 		kfree(ubi->volumes[i]->eba_tbl);
1469 		ubi->volumes[i]->eba_tbl = NULL;
1470 	}
1471 	return err;
1472 }
1473