1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copied from Linux Monitor (LiMon) - Networking.
4 *
5 * Copyright 1994 - 2000 Neil Russell.
6 * (See License)
7 * Copyright 2000 Roland Borde
8 * Copyright 2000 Paolo Scaffardi
9 * Copyright 2000-2002 Wolfgang Denk, wd@denx.de
10 */
11
12 /*
13 * General Desription:
14 *
15 * The user interface supports commands for BOOTP, RARP, and TFTP.
16 * Also, we support ARP internally. Depending on available data,
17 * these interact as follows:
18 *
19 * BOOTP:
20 *
21 * Prerequisites: - own ethernet address
22 * We want: - own IP address
23 * - TFTP server IP address
24 * - name of bootfile
25 * Next step: ARP
26 *
27 * LINK_LOCAL:
28 *
29 * Prerequisites: - own ethernet address
30 * We want: - own IP address
31 * Next step: ARP
32 *
33 * RARP:
34 *
35 * Prerequisites: - own ethernet address
36 * We want: - own IP address
37 * - TFTP server IP address
38 * Next step: ARP
39 *
40 * ARP:
41 *
42 * Prerequisites: - own ethernet address
43 * - own IP address
44 * - TFTP server IP address
45 * We want: - TFTP server ethernet address
46 * Next step: TFTP
47 *
48 * DHCP:
49 *
50 * Prerequisites: - own ethernet address
51 * We want: - IP, Netmask, ServerIP, Gateway IP
52 * - bootfilename, lease time
53 * Next step: - TFTP
54 *
55 * TFTP:
56 *
57 * Prerequisites: - own ethernet address
58 * - own IP address
59 * - TFTP server IP address
60 * - TFTP server ethernet address
61 * - name of bootfile (if unknown, we use a default name
62 * derived from our own IP address)
63 * We want: - load the boot file
64 * Next step: none
65 *
66 * NFS:
67 *
68 * Prerequisites: - own ethernet address
69 * - own IP address
70 * - name of bootfile (if unknown, we use a default name
71 * derived from our own IP address)
72 * We want: - load the boot file
73 * Next step: none
74 *
75 * SNTP:
76 *
77 * Prerequisites: - own ethernet address
78 * - own IP address
79 * We want: - network time
80 * Next step: none
81 *
82 * WOL:
83 *
84 * Prerequisites: - own ethernet address
85 * We want: - magic packet or timeout
86 * Next step: none
87 */
88
89
90 #include <common.h>
91 #include <command.h>
92 #include <console.h>
93 #include <env.h>
94 #include <env_internal.h>
95 #include <errno.h>
96 #include <net.h>
97 #include <net/fastboot.h>
98 #include <net/tftp.h>
99 #if defined(CONFIG_CMD_PCAP)
100 #include <net/pcap.h>
101 #endif
102 #if defined(CONFIG_LED_STATUS)
103 #include <miiphy.h>
104 #include <status_led.h>
105 #endif
106 #include <watchdog.h>
107 #include <linux/compiler.h>
108 #include "arp.h"
109 #include "bootp.h"
110 #include "cdp.h"
111 #if defined(CONFIG_CMD_DNS)
112 #include "dns.h"
113 #endif
114 #include "link_local.h"
115 #include "nfs.h"
116 #include "ping.h"
117 #include "rarp.h"
118 #if defined(CONFIG_CMD_SNTP)
119 #include "sntp.h"
120 #endif
121 #if defined(CONFIG_CMD_WOL)
122 #include "wol.h"
123 #endif
124
125 /** BOOTP EXTENTIONS **/
126
127 /* Our subnet mask (0=unknown) */
128 struct in_addr net_netmask;
129 /* Our gateways IP address */
130 struct in_addr net_gateway;
131 /* Our DNS IP address */
132 struct in_addr net_dns_server;
133 #if defined(CONFIG_BOOTP_DNS2)
134 /* Our 2nd DNS IP address */
135 struct in_addr net_dns_server2;
136 #endif
137
138 /** END OF BOOTP EXTENTIONS **/
139
140 /* Our ethernet address */
141 u8 net_ethaddr[6];
142 /* Boot server enet address */
143 u8 net_server_ethaddr[6];
144 /* Our IP addr (0 = unknown) */
145 struct in_addr net_ip;
146 /* Server IP addr (0 = unknown) */
147 struct in_addr net_server_ip;
148 /* Current receive packet */
149 uchar *net_rx_packet;
150 /* Current rx packet length */
151 int net_rx_packet_len;
152 /* IP packet ID */
153 static unsigned net_ip_id;
154 /* Ethernet bcast address */
155 const u8 net_bcast_ethaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
156 const u8 net_null_ethaddr[6];
157 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER)
158 void (*push_packet)(void *, int len) = 0;
159 #endif
160 /* Network loop state */
161 enum net_loop_state net_state;
162 /* Tried all network devices */
163 int net_restart_wrap;
164 /* Network loop restarted */
165 static int net_restarted;
166 /* At least one device configured */
167 static int net_dev_exists;
168
169 /* XXX in both little & big endian machines 0xFFFF == ntohs(-1) */
170 /* default is without VLAN */
171 ushort net_our_vlan = 0xFFFF;
172 /* ditto */
173 ushort net_native_vlan = 0xFFFF;
174
175 /* Boot File name */
176 char net_boot_file_name[1024];
177 /* Indicates whether the file name was specified on the command line */
178 bool net_boot_file_name_explicit;
179 /* The actual transferred size of the bootfile (in bytes) */
180 u32 net_boot_file_size;
181 /* Boot file size in blocks as reported by the DHCP server */
182 u32 net_boot_file_expected_size_in_blocks;
183
184 #if defined(CONFIG_CMD_SNTP)
185 /* NTP server IP address */
186 struct in_addr net_ntp_server;
187 /* offset time from UTC */
188 int net_ntp_time_offset;
189 #endif
190
191 static uchar net_pkt_buf[(PKTBUFSRX+1) * PKTSIZE_ALIGN + PKTALIGN];
192 /* Receive packets */
193 uchar *net_rx_packets[PKTBUFSRX];
194 /* Current UDP RX packet handler */
195 static rxhand_f *udp_packet_handler;
196 /* Current ARP RX packet handler */
197 static rxhand_f *arp_packet_handler;
198 #ifdef CONFIG_CMD_TFTPPUT
199 /* Current ICMP rx handler */
200 static rxhand_icmp_f *packet_icmp_handler;
201 #endif
202 /* Current timeout handler */
203 static thand_f *time_handler;
204 /* Time base value */
205 static ulong time_start;
206 /* Current timeout value */
207 static ulong time_delta;
208 /* THE transmit packet */
209 uchar *net_tx_packet;
210
211 static int net_check_prereq(enum proto_t protocol);
212
213 static int net_try_count;
214
215 int __maybe_unused net_busy_flag;
216
217 /**********************************************************************/
218
on_ipaddr(const char * name,const char * value,enum env_op op,int flags)219 static int on_ipaddr(const char *name, const char *value, enum env_op op,
220 int flags)
221 {
222 if (flags & H_PROGRAMMATIC)
223 return 0;
224
225 net_ip = string_to_ip(value);
226
227 return 0;
228 }
229 U_BOOT_ENV_CALLBACK(ipaddr, on_ipaddr);
230
on_gatewayip(const char * name,const char * value,enum env_op op,int flags)231 static int on_gatewayip(const char *name, const char *value, enum env_op op,
232 int flags)
233 {
234 if (flags & H_PROGRAMMATIC)
235 return 0;
236
237 net_gateway = string_to_ip(value);
238
239 return 0;
240 }
241 U_BOOT_ENV_CALLBACK(gatewayip, on_gatewayip);
242
on_netmask(const char * name,const char * value,enum env_op op,int flags)243 static int on_netmask(const char *name, const char *value, enum env_op op,
244 int flags)
245 {
246 if (flags & H_PROGRAMMATIC)
247 return 0;
248
249 net_netmask = string_to_ip(value);
250
251 return 0;
252 }
253 U_BOOT_ENV_CALLBACK(netmask, on_netmask);
254
on_serverip(const char * name,const char * value,enum env_op op,int flags)255 static int on_serverip(const char *name, const char *value, enum env_op op,
256 int flags)
257 {
258 if (flags & H_PROGRAMMATIC)
259 return 0;
260
261 net_server_ip = string_to_ip(value);
262
263 return 0;
264 }
265 U_BOOT_ENV_CALLBACK(serverip, on_serverip);
266
on_nvlan(const char * name,const char * value,enum env_op op,int flags)267 static int on_nvlan(const char *name, const char *value, enum env_op op,
268 int flags)
269 {
270 if (flags & H_PROGRAMMATIC)
271 return 0;
272
273 net_native_vlan = string_to_vlan(value);
274
275 return 0;
276 }
277 U_BOOT_ENV_CALLBACK(nvlan, on_nvlan);
278
on_vlan(const char * name,const char * value,enum env_op op,int flags)279 static int on_vlan(const char *name, const char *value, enum env_op op,
280 int flags)
281 {
282 if (flags & H_PROGRAMMATIC)
283 return 0;
284
285 net_our_vlan = string_to_vlan(value);
286
287 return 0;
288 }
289 U_BOOT_ENV_CALLBACK(vlan, on_vlan);
290
291 #if defined(CONFIG_CMD_DNS)
on_dnsip(const char * name,const char * value,enum env_op op,int flags)292 static int on_dnsip(const char *name, const char *value, enum env_op op,
293 int flags)
294 {
295 if (flags & H_PROGRAMMATIC)
296 return 0;
297
298 net_dns_server = string_to_ip(value);
299
300 return 0;
301 }
302 U_BOOT_ENV_CALLBACK(dnsip, on_dnsip);
303 #endif
304
305 /*
306 * Check if autoload is enabled. If so, use either NFS or TFTP to download
307 * the boot file.
308 */
net_auto_load(void)309 void net_auto_load(void)
310 {
311 #if defined(CONFIG_CMD_NFS) && !defined(CONFIG_SPL_BUILD)
312 const char *s = env_get("autoload");
313
314 if (s != NULL && strcmp(s, "NFS") == 0) {
315 if (net_check_prereq(NFS)) {
316 /* We aren't expecting to get a serverip, so just accept the assigned IP */
317 #ifdef CONFIG_BOOTP_SERVERIP
318 net_set_state(NETLOOP_SUCCESS);
319 #else
320 printf("Cannot autoload with NFS\n");
321 net_set_state(NETLOOP_FAIL);
322 #endif
323 return;
324 }
325 /*
326 * Use NFS to load the bootfile.
327 */
328 nfs_start();
329 return;
330 }
331 #endif
332 if (env_get_yesno("autoload") == 0) {
333 /*
334 * Just use BOOTP/RARP to configure system;
335 * Do not use TFTP to load the bootfile.
336 */
337 net_set_state(NETLOOP_SUCCESS);
338 return;
339 }
340 if (net_check_prereq(TFTPGET)) {
341 /* We aren't expecting to get a serverip, so just accept the assigned IP */
342 #ifdef CONFIG_BOOTP_SERVERIP
343 net_set_state(NETLOOP_SUCCESS);
344 #else
345 printf("Cannot autoload with TFTPGET\n");
346 net_set_state(NETLOOP_FAIL);
347 #endif
348 return;
349 }
350 tftp_start(TFTPGET);
351 }
352
net_init_loop(void)353 static void net_init_loop(void)
354 {
355 if (eth_get_dev())
356 memcpy(net_ethaddr, eth_get_ethaddr(), 6);
357
358 return;
359 }
360
net_clear_handlers(void)361 static void net_clear_handlers(void)
362 {
363 net_set_udp_handler(NULL);
364 net_set_arp_handler(NULL);
365 net_set_timeout_handler(0, NULL);
366 }
367
net_cleanup_loop(void)368 static void net_cleanup_loop(void)
369 {
370 net_clear_handlers();
371 }
372
net_init(void)373 void net_init(void)
374 {
375 static int first_call = 1;
376
377 if (first_call) {
378 /*
379 * Setup packet buffers, aligned correctly.
380 */
381 int i;
382
383 net_tx_packet = &net_pkt_buf[0] + (PKTALIGN - 1);
384 net_tx_packet -= (ulong)net_tx_packet % PKTALIGN;
385 for (i = 0; i < PKTBUFSRX; i++) {
386 net_rx_packets[i] = net_tx_packet +
387 (i + 1) * PKTSIZE_ALIGN;
388 }
389 arp_init();
390 net_clear_handlers();
391
392 /* Only need to setup buffer pointers once. */
393 first_call = 0;
394 }
395
396 net_init_loop();
397 }
398
399 /**********************************************************************/
400 /*
401 * Main network processing loop.
402 */
403
net_loop(enum proto_t protocol)404 int net_loop(enum proto_t protocol)
405 {
406 int ret = -EINVAL;
407 enum net_loop_state prev_net_state = net_state;
408
409 net_restarted = 0;
410 net_dev_exists = 0;
411 net_try_count = 1;
412 debug_cond(DEBUG_INT_STATE, "--- net_loop Entry\n");
413
414 bootstage_mark_name(BOOTSTAGE_ID_ETH_START, "eth_start");
415 net_init();
416 if (eth_is_on_demand_init() || protocol != NETCONS) {
417 eth_halt();
418 eth_set_current();
419 ret = eth_init();
420 if (ret < 0) {
421 eth_halt();
422 return ret;
423 }
424 } else {
425 eth_init_state_only();
426 }
427 restart:
428 #ifdef CONFIG_USB_KEYBOARD
429 net_busy_flag = 0;
430 #endif
431 net_set_state(NETLOOP_CONTINUE);
432
433 /*
434 * Start the ball rolling with the given start function. From
435 * here on, this code is a state machine driven by received
436 * packets and timer events.
437 */
438 debug_cond(DEBUG_INT_STATE, "--- net_loop Init\n");
439 net_init_loop();
440
441 switch (net_check_prereq(protocol)) {
442 case 1:
443 /* network not configured */
444 eth_halt();
445 net_set_state(prev_net_state);
446 return -ENODEV;
447
448 case 2:
449 /* network device not configured */
450 break;
451
452 case 0:
453 net_dev_exists = 1;
454 net_boot_file_size = 0;
455 switch (protocol) {
456 case TFTPGET:
457 #ifdef CONFIG_CMD_TFTPPUT
458 case TFTPPUT:
459 #endif
460 /* always use ARP to get server ethernet address */
461 tftp_start(protocol);
462 break;
463 #ifdef CONFIG_CMD_TFTPSRV
464 case TFTPSRV:
465 tftp_start_server();
466 break;
467 #endif
468 #ifdef CONFIG_UDP_FUNCTION_FASTBOOT
469 case FASTBOOT:
470 fastboot_start_server();
471 break;
472 #endif
473 #if defined(CONFIG_CMD_DHCP)
474 case DHCP:
475 bootp_reset();
476 net_ip.s_addr = 0;
477 dhcp_request(); /* Basically same as BOOTP */
478 break;
479 #endif
480
481 case BOOTP:
482 bootp_reset();
483 net_ip.s_addr = 0;
484 bootp_request();
485 break;
486
487 #if defined(CONFIG_CMD_RARP)
488 case RARP:
489 rarp_try = 0;
490 net_ip.s_addr = 0;
491 rarp_request();
492 break;
493 #endif
494 #if defined(CONFIG_CMD_PING)
495 case PING:
496 ping_start();
497 break;
498 #endif
499 #if defined(CONFIG_CMD_NFS) && !defined(CONFIG_SPL_BUILD)
500 case NFS:
501 nfs_start();
502 break;
503 #endif
504 #if defined(CONFIG_CMD_CDP)
505 case CDP:
506 cdp_start();
507 break;
508 #endif
509 #if defined(CONFIG_NETCONSOLE) && !defined(CONFIG_SPL_BUILD)
510 case NETCONS:
511 nc_start();
512 break;
513 #endif
514 #if defined(CONFIG_CMD_SNTP)
515 case SNTP:
516 sntp_start();
517 break;
518 #endif
519 #if defined(CONFIG_CMD_DNS)
520 case DNS:
521 dns_start();
522 break;
523 #endif
524 #if defined(CONFIG_CMD_LINK_LOCAL)
525 case LINKLOCAL:
526 link_local_start();
527 break;
528 #endif
529 #if defined(CONFIG_CMD_WOL)
530 case WOL:
531 wol_start();
532 break;
533 #endif
534 default:
535 break;
536 }
537
538 break;
539 }
540
541 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
542 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \
543 defined(CONFIG_LED_STATUS) && \
544 defined(CONFIG_LED_STATUS_RED)
545 /*
546 * Echo the inverted link state to the fault LED.
547 */
548 if (miiphy_link(eth_get_dev()->name, CONFIG_SYS_FAULT_MII_ADDR))
549 status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_OFF);
550 else
551 status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_ON);
552 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
553 #endif /* CONFIG_MII, ... */
554 #ifdef CONFIG_USB_KEYBOARD
555 net_busy_flag = 1;
556 #endif
557
558 /*
559 * Main packet reception loop. Loop receiving packets until
560 * someone sets `net_state' to a state that terminates.
561 */
562 for (;;) {
563 WATCHDOG_RESET();
564 if (arp_timeout_check() > 0)
565 time_start = get_timer(0);
566
567 /*
568 * Check the ethernet for a new packet. The ethernet
569 * receive routine will process it.
570 * Most drivers return the most recent packet size, but not
571 * errors that may have happened.
572 */
573 eth_rx();
574
575 /*
576 * Abort if ctrl-c was pressed.
577 */
578 if (ctrlc()) {
579 /* cancel any ARP that may not have completed */
580 net_arp_wait_packet_ip.s_addr = 0;
581
582 net_cleanup_loop();
583 eth_halt();
584 /* Invalidate the last protocol */
585 eth_set_last_protocol(BOOTP);
586
587 puts("\nAbort\n");
588 /* include a debug print as well incase the debug
589 messages are directed to stderr */
590 debug_cond(DEBUG_INT_STATE, "--- net_loop Abort!\n");
591 ret = -EINTR;
592 goto done;
593 }
594
595 /*
596 * Check for a timeout, and run the timeout handler
597 * if we have one.
598 */
599 if (time_handler &&
600 ((get_timer(0) - time_start) > time_delta)) {
601 thand_f *x;
602
603 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
604 #if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN) && \
605 defined(CONFIG_LED_STATUS) && \
606 defined(CONFIG_LED_STATUS_RED)
607 /*
608 * Echo the inverted link state to the fault LED.
609 */
610 if (miiphy_link(eth_get_dev()->name,
611 CONFIG_SYS_FAULT_MII_ADDR))
612 status_led_set(CONFIG_LED_STATUS_RED,
613 CONFIG_LED_STATUS_OFF);
614 else
615 status_led_set(CONFIG_LED_STATUS_RED,
616 CONFIG_LED_STATUS_ON);
617 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
618 #endif /* CONFIG_MII, ... */
619 debug_cond(DEBUG_INT_STATE, "--- net_loop timeout\n");
620 x = time_handler;
621 time_handler = (thand_f *)0;
622 (*x)();
623 }
624
625 if (net_state == NETLOOP_FAIL)
626 ret = net_start_again();
627
628 switch (net_state) {
629 case NETLOOP_RESTART:
630 net_restarted = 1;
631 goto restart;
632
633 case NETLOOP_SUCCESS:
634 net_cleanup_loop();
635 if (net_boot_file_size > 0) {
636 printf("Bytes transferred = %d (%x hex)\n",
637 net_boot_file_size, net_boot_file_size);
638 env_set_hex("filesize", net_boot_file_size);
639 env_set_hex("fileaddr", load_addr);
640 }
641 if (protocol != NETCONS)
642 eth_halt();
643 else
644 eth_halt_state_only();
645
646 eth_set_last_protocol(protocol);
647
648 ret = net_boot_file_size;
649 debug_cond(DEBUG_INT_STATE, "--- net_loop Success!\n");
650 goto done;
651
652 case NETLOOP_FAIL:
653 net_cleanup_loop();
654 /* Invalidate the last protocol */
655 eth_set_last_protocol(BOOTP);
656 debug_cond(DEBUG_INT_STATE, "--- net_loop Fail!\n");
657 ret = -ENONET;
658 goto done;
659
660 case NETLOOP_CONTINUE:
661 continue;
662 }
663 }
664
665 done:
666 #ifdef CONFIG_USB_KEYBOARD
667 net_busy_flag = 0;
668 #endif
669 #ifdef CONFIG_CMD_TFTPPUT
670 /* Clear out the handlers */
671 net_set_udp_handler(NULL);
672 net_set_icmp_handler(NULL);
673 #endif
674 net_set_state(prev_net_state);
675
676 #if defined(CONFIG_CMD_PCAP)
677 if (pcap_active())
678 pcap_print_status();
679 #endif
680 return ret;
681 }
682
683 /**********************************************************************/
684
start_again_timeout_handler(void)685 static void start_again_timeout_handler(void)
686 {
687 net_set_state(NETLOOP_RESTART);
688 }
689
net_start_again(void)690 int net_start_again(void)
691 {
692 char *nretry;
693 int retry_forever = 0;
694 unsigned long retrycnt = 0;
695 int ret;
696
697 nretry = env_get("netretry");
698 if (nretry) {
699 if (!strcmp(nretry, "yes"))
700 retry_forever = 1;
701 else if (!strcmp(nretry, "no"))
702 retrycnt = 0;
703 else if (!strcmp(nretry, "once"))
704 retrycnt = 1;
705 else
706 retrycnt = simple_strtoul(nretry, NULL, 0);
707 } else {
708 retrycnt = 0;
709 retry_forever = 0;
710 }
711
712 if ((!retry_forever) && (net_try_count > retrycnt)) {
713 eth_halt();
714 net_set_state(NETLOOP_FAIL);
715 /*
716 * We don't provide a way for the protocol to return an error,
717 * but this is almost always the reason.
718 */
719 return -ETIMEDOUT;
720 }
721
722 net_try_count++;
723
724 eth_halt();
725 #if !defined(CONFIG_NET_DO_NOT_TRY_ANOTHER)
726 eth_try_another(!net_restarted);
727 #endif
728 ret = eth_init();
729 if (net_restart_wrap) {
730 net_restart_wrap = 0;
731 if (net_dev_exists) {
732 net_set_timeout_handler(10000UL,
733 start_again_timeout_handler);
734 net_set_udp_handler(NULL);
735 } else {
736 net_set_state(NETLOOP_FAIL);
737 }
738 } else {
739 net_set_state(NETLOOP_RESTART);
740 }
741 return ret;
742 }
743
744 /**********************************************************************/
745 /*
746 * Miscelaneous bits.
747 */
748
dummy_handler(uchar * pkt,unsigned dport,struct in_addr sip,unsigned sport,unsigned len)749 static void dummy_handler(uchar *pkt, unsigned dport,
750 struct in_addr sip, unsigned sport,
751 unsigned len)
752 {
753 }
754
net_get_udp_handler(void)755 rxhand_f *net_get_udp_handler(void)
756 {
757 return udp_packet_handler;
758 }
759
net_set_udp_handler(rxhand_f * f)760 void net_set_udp_handler(rxhand_f *f)
761 {
762 debug_cond(DEBUG_INT_STATE, "--- net_loop UDP handler set (%p)\n", f);
763 if (f == NULL)
764 udp_packet_handler = dummy_handler;
765 else
766 udp_packet_handler = f;
767 }
768
net_get_arp_handler(void)769 rxhand_f *net_get_arp_handler(void)
770 {
771 return arp_packet_handler;
772 }
773
net_set_arp_handler(rxhand_f * f)774 void net_set_arp_handler(rxhand_f *f)
775 {
776 debug_cond(DEBUG_INT_STATE, "--- net_loop ARP handler set (%p)\n", f);
777 if (f == NULL)
778 arp_packet_handler = dummy_handler;
779 else
780 arp_packet_handler = f;
781 }
782
783 #ifdef CONFIG_CMD_TFTPPUT
net_set_icmp_handler(rxhand_icmp_f * f)784 void net_set_icmp_handler(rxhand_icmp_f *f)
785 {
786 packet_icmp_handler = f;
787 }
788 #endif
789
net_set_timeout_handler(ulong iv,thand_f * f)790 void net_set_timeout_handler(ulong iv, thand_f *f)
791 {
792 if (iv == 0) {
793 debug_cond(DEBUG_INT_STATE,
794 "--- net_loop timeout handler cancelled\n");
795 time_handler = (thand_f *)0;
796 } else {
797 debug_cond(DEBUG_INT_STATE,
798 "--- net_loop timeout handler set (%p)\n", f);
799 time_handler = f;
800 time_start = get_timer(0);
801 time_delta = iv * CONFIG_SYS_HZ / 1000;
802 }
803 }
804
net_get_async_tx_pkt_buf(void)805 uchar *net_get_async_tx_pkt_buf(void)
806 {
807 if (arp_is_waiting())
808 return arp_tx_packet; /* If we are waiting, we already sent */
809 else
810 return net_tx_packet;
811 }
812
net_send_udp_packet(uchar * ether,struct in_addr dest,int dport,int sport,int payload_len)813 int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport, int sport,
814 int payload_len)
815 {
816 return net_send_ip_packet(ether, dest, dport, sport, payload_len,
817 IPPROTO_UDP, 0, 0, 0);
818 }
819
net_send_ip_packet(uchar * ether,struct in_addr dest,int dport,int sport,int payload_len,int proto,u8 action,u32 tcp_seq_num,u32 tcp_ack_num)820 int net_send_ip_packet(uchar *ether, struct in_addr dest, int dport, int sport,
821 int payload_len, int proto, u8 action, u32 tcp_seq_num,
822 u32 tcp_ack_num)
823 {
824 uchar *pkt;
825 int eth_hdr_size;
826 int pkt_hdr_size;
827
828 /* make sure the net_tx_packet is initialized (net_init() was called) */
829 assert(net_tx_packet != NULL);
830 if (net_tx_packet == NULL)
831 return -1;
832
833 /* convert to new style broadcast */
834 if (dest.s_addr == 0)
835 dest.s_addr = 0xFFFFFFFF;
836
837 /* if broadcast, make the ether address a broadcast and don't do ARP */
838 if (dest.s_addr == 0xFFFFFFFF)
839 ether = (uchar *)net_bcast_ethaddr;
840
841 pkt = (uchar *)net_tx_packet;
842
843 eth_hdr_size = net_set_ether(pkt, ether, PROT_IP);
844
845 switch (proto) {
846 case IPPROTO_UDP:
847 net_set_udp_header(pkt + eth_hdr_size, dest, dport, sport,
848 payload_len);
849 pkt_hdr_size = eth_hdr_size + IP_UDP_HDR_SIZE;
850 break;
851 default:
852 return -EINVAL;
853 }
854
855 /* if MAC address was not discovered yet, do an ARP request */
856 if (memcmp(ether, net_null_ethaddr, 6) == 0) {
857 debug_cond(DEBUG_DEV_PKT, "sending ARP for %pI4\n", &dest);
858
859 /* save the ip and eth addr for the packet to send after arp */
860 net_arp_wait_packet_ip = dest;
861 arp_wait_packet_ethaddr = ether;
862
863 /* size of the waiting packet */
864 arp_wait_tx_packet_size = pkt_hdr_size + payload_len;
865
866 /* and do the ARP request */
867 arp_wait_try = 1;
868 arp_wait_timer_start = get_timer(0);
869 arp_request();
870 return 1; /* waiting */
871 } else {
872 debug_cond(DEBUG_DEV_PKT, "sending UDP to %pI4/%pM\n",
873 &dest, ether);
874 net_send_packet(net_tx_packet, pkt_hdr_size + payload_len);
875 return 0; /* transmitted */
876 }
877 }
878
879 #ifdef CONFIG_IP_DEFRAG
880 /*
881 * This function collects fragments in a single packet, according
882 * to the algorithm in RFC815. It returns NULL or the pointer to
883 * a complete packet, in static storage
884 */
885 #ifndef CONFIG_NET_MAXDEFRAG
886 #define CONFIG_NET_MAXDEFRAG 16384
887 #endif
888 #define IP_PKTSIZE (CONFIG_NET_MAXDEFRAG)
889
890 #define IP_MAXUDP (IP_PKTSIZE - IP_HDR_SIZE)
891
892 /*
893 * this is the packet being assembled, either data or frag control.
894 * Fragments go by 8 bytes, so this union must be 8 bytes long
895 */
896 struct hole {
897 /* first_byte is address of this structure */
898 u16 last_byte; /* last byte in this hole + 1 (begin of next hole) */
899 u16 next_hole; /* index of next (in 8-b blocks), 0 == none */
900 u16 prev_hole; /* index of prev, 0 == none */
901 u16 unused;
902 };
903
__net_defragment(struct ip_udp_hdr * ip,int * lenp)904 static struct ip_udp_hdr *__net_defragment(struct ip_udp_hdr *ip, int *lenp)
905 {
906 static uchar pkt_buff[IP_PKTSIZE] __aligned(PKTALIGN);
907 static u16 first_hole, total_len;
908 struct hole *payload, *thisfrag, *h, *newh;
909 struct ip_udp_hdr *localip = (struct ip_udp_hdr *)pkt_buff;
910 uchar *indata = (uchar *)ip;
911 int offset8, start, len, done = 0;
912 u16 ip_off = ntohs(ip->ip_off);
913
914 /* payload starts after IP header, this fragment is in there */
915 payload = (struct hole *)(pkt_buff + IP_HDR_SIZE);
916 offset8 = (ip_off & IP_OFFS);
917 thisfrag = payload + offset8;
918 start = offset8 * 8;
919 len = ntohs(ip->ip_len) - IP_HDR_SIZE;
920
921 if (start + len > IP_MAXUDP) /* fragment extends too far */
922 return NULL;
923
924 if (!total_len || localip->ip_id != ip->ip_id) {
925 /* new (or different) packet, reset structs */
926 total_len = 0xffff;
927 payload[0].last_byte = ~0;
928 payload[0].next_hole = 0;
929 payload[0].prev_hole = 0;
930 first_hole = 0;
931 /* any IP header will work, copy the first we received */
932 memcpy(localip, ip, IP_HDR_SIZE);
933 }
934
935 /*
936 * What follows is the reassembly algorithm. We use the payload
937 * array as a linked list of hole descriptors, as each hole starts
938 * at a multiple of 8 bytes. However, last byte can be whatever value,
939 * so it is represented as byte count, not as 8-byte blocks.
940 */
941
942 h = payload + first_hole;
943 while (h->last_byte < start) {
944 if (!h->next_hole) {
945 /* no hole that far away */
946 return NULL;
947 }
948 h = payload + h->next_hole;
949 }
950
951 /* last fragment may be 1..7 bytes, the "+7" forces acceptance */
952 if (offset8 + ((len + 7) / 8) <= h - payload) {
953 /* no overlap with holes (dup fragment?) */
954 return NULL;
955 }
956
957 if (!(ip_off & IP_FLAGS_MFRAG)) {
958 /* no more fragmentss: truncate this (last) hole */
959 total_len = start + len;
960 h->last_byte = start + len;
961 }
962
963 /*
964 * There is some overlap: fix the hole list. This code doesn't
965 * deal with a fragment that overlaps with two different holes
966 * (thus being a superset of a previously-received fragment).
967 */
968
969 if ((h >= thisfrag) && (h->last_byte <= start + len)) {
970 /* complete overlap with hole: remove hole */
971 if (!h->prev_hole && !h->next_hole) {
972 /* last remaining hole */
973 done = 1;
974 } else if (!h->prev_hole) {
975 /* first hole */
976 first_hole = h->next_hole;
977 payload[h->next_hole].prev_hole = 0;
978 } else if (!h->next_hole) {
979 /* last hole */
980 payload[h->prev_hole].next_hole = 0;
981 } else {
982 /* in the middle of the list */
983 payload[h->next_hole].prev_hole = h->prev_hole;
984 payload[h->prev_hole].next_hole = h->next_hole;
985 }
986
987 } else if (h->last_byte <= start + len) {
988 /* overlaps with final part of the hole: shorten this hole */
989 h->last_byte = start;
990
991 } else if (h >= thisfrag) {
992 /* overlaps with initial part of the hole: move this hole */
993 newh = thisfrag + (len / 8);
994 *newh = *h;
995 h = newh;
996 if (h->next_hole)
997 payload[h->next_hole].prev_hole = (h - payload);
998 if (h->prev_hole)
999 payload[h->prev_hole].next_hole = (h - payload);
1000 else
1001 first_hole = (h - payload);
1002
1003 } else {
1004 /* fragment sits in the middle: split the hole */
1005 newh = thisfrag + (len / 8);
1006 *newh = *h;
1007 h->last_byte = start;
1008 h->next_hole = (newh - payload);
1009 newh->prev_hole = (h - payload);
1010 if (newh->next_hole)
1011 payload[newh->next_hole].prev_hole = (newh - payload);
1012 }
1013
1014 /* finally copy this fragment and possibly return whole packet */
1015 memcpy((uchar *)thisfrag, indata + IP_HDR_SIZE, len);
1016 if (!done)
1017 return NULL;
1018
1019 localip->ip_len = htons(total_len);
1020 *lenp = total_len + IP_HDR_SIZE;
1021 return localip;
1022 }
1023
net_defragment(struct ip_udp_hdr * ip,int * lenp)1024 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
1025 int *lenp)
1026 {
1027 u16 ip_off = ntohs(ip->ip_off);
1028 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
1029 return ip; /* not a fragment */
1030 return __net_defragment(ip, lenp);
1031 }
1032
1033 #else /* !CONFIG_IP_DEFRAG */
1034
net_defragment(struct ip_udp_hdr * ip,int * lenp)1035 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
1036 int *lenp)
1037 {
1038 u16 ip_off = ntohs(ip->ip_off);
1039 if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
1040 return ip; /* not a fragment */
1041 return NULL;
1042 }
1043 #endif
1044
1045 /**
1046 * Receive an ICMP packet. We deal with REDIRECT and PING here, and silently
1047 * drop others.
1048 *
1049 * @parma ip IP packet containing the ICMP
1050 */
receive_icmp(struct ip_udp_hdr * ip,int len,struct in_addr src_ip,struct ethernet_hdr * et)1051 static void receive_icmp(struct ip_udp_hdr *ip, int len,
1052 struct in_addr src_ip, struct ethernet_hdr *et)
1053 {
1054 struct icmp_hdr *icmph = (struct icmp_hdr *)&ip->udp_src;
1055
1056 switch (icmph->type) {
1057 case ICMP_REDIRECT:
1058 if (icmph->code != ICMP_REDIR_HOST)
1059 return;
1060 printf(" ICMP Host Redirect to %pI4 ",
1061 &icmph->un.gateway);
1062 break;
1063 default:
1064 #if defined(CONFIG_CMD_PING)
1065 ping_receive(et, ip, len);
1066 #endif
1067 #ifdef CONFIG_CMD_TFTPPUT
1068 if (packet_icmp_handler)
1069 packet_icmp_handler(icmph->type, icmph->code,
1070 ntohs(ip->udp_dst), src_ip,
1071 ntohs(ip->udp_src), icmph->un.data,
1072 ntohs(ip->udp_len));
1073 #endif
1074 break;
1075 }
1076 }
1077
net_process_received_packet(uchar * in_packet,int len)1078 void net_process_received_packet(uchar *in_packet, int len)
1079 {
1080 struct ethernet_hdr *et;
1081 struct ip_udp_hdr *ip;
1082 struct in_addr dst_ip;
1083 struct in_addr src_ip;
1084 int eth_proto;
1085 #if defined(CONFIG_CMD_CDP)
1086 int iscdp;
1087 #endif
1088 ushort cti = 0, vlanid = VLAN_NONE, myvlanid, mynvlanid;
1089
1090 debug_cond(DEBUG_NET_PKT, "packet received\n");
1091
1092 #if defined(CONFIG_CMD_PCAP)
1093 pcap_post(in_packet, len, false);
1094 #endif
1095 net_rx_packet = in_packet;
1096 net_rx_packet_len = len;
1097 et = (struct ethernet_hdr *)in_packet;
1098
1099 /* too small packet? */
1100 if (len < ETHER_HDR_SIZE)
1101 return;
1102
1103 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER)
1104 if (push_packet) {
1105 (*push_packet)(in_packet, len);
1106 return;
1107 }
1108 #endif
1109
1110 #if defined(CONFIG_CMD_CDP)
1111 /* keep track if packet is CDP */
1112 iscdp = is_cdp_packet(et->et_dest);
1113 #endif
1114
1115 myvlanid = ntohs(net_our_vlan);
1116 if (myvlanid == (ushort)-1)
1117 myvlanid = VLAN_NONE;
1118 mynvlanid = ntohs(net_native_vlan);
1119 if (mynvlanid == (ushort)-1)
1120 mynvlanid = VLAN_NONE;
1121
1122 eth_proto = ntohs(et->et_protlen);
1123
1124 if (eth_proto < 1514) {
1125 struct e802_hdr *et802 = (struct e802_hdr *)et;
1126 /*
1127 * Got a 802.2 packet. Check the other protocol field.
1128 * XXX VLAN over 802.2+SNAP not implemented!
1129 */
1130 eth_proto = ntohs(et802->et_prot);
1131
1132 ip = (struct ip_udp_hdr *)(in_packet + E802_HDR_SIZE);
1133 len -= E802_HDR_SIZE;
1134
1135 } else if (eth_proto != PROT_VLAN) { /* normal packet */
1136 ip = (struct ip_udp_hdr *)(in_packet + ETHER_HDR_SIZE);
1137 len -= ETHER_HDR_SIZE;
1138
1139 } else { /* VLAN packet */
1140 struct vlan_ethernet_hdr *vet =
1141 (struct vlan_ethernet_hdr *)et;
1142
1143 debug_cond(DEBUG_NET_PKT, "VLAN packet received\n");
1144
1145 /* too small packet? */
1146 if (len < VLAN_ETHER_HDR_SIZE)
1147 return;
1148
1149 /* if no VLAN active */
1150 if ((ntohs(net_our_vlan) & VLAN_IDMASK) == VLAN_NONE
1151 #if defined(CONFIG_CMD_CDP)
1152 && iscdp == 0
1153 #endif
1154 )
1155 return;
1156
1157 cti = ntohs(vet->vet_tag);
1158 vlanid = cti & VLAN_IDMASK;
1159 eth_proto = ntohs(vet->vet_type);
1160
1161 ip = (struct ip_udp_hdr *)(in_packet + VLAN_ETHER_HDR_SIZE);
1162 len -= VLAN_ETHER_HDR_SIZE;
1163 }
1164
1165 debug_cond(DEBUG_NET_PKT, "Receive from protocol 0x%x\n", eth_proto);
1166
1167 #if defined(CONFIG_CMD_CDP)
1168 if (iscdp) {
1169 cdp_receive((uchar *)ip, len);
1170 return;
1171 }
1172 #endif
1173
1174 if ((myvlanid & VLAN_IDMASK) != VLAN_NONE) {
1175 if (vlanid == VLAN_NONE)
1176 vlanid = (mynvlanid & VLAN_IDMASK);
1177 /* not matched? */
1178 if (vlanid != (myvlanid & VLAN_IDMASK))
1179 return;
1180 }
1181
1182 switch (eth_proto) {
1183 case PROT_ARP:
1184 arp_receive(et, ip, len);
1185 break;
1186
1187 #ifdef CONFIG_CMD_RARP
1188 case PROT_RARP:
1189 rarp_receive(ip, len);
1190 break;
1191 #endif
1192 case PROT_IP:
1193 debug_cond(DEBUG_NET_PKT, "Got IP\n");
1194 /* Before we start poking the header, make sure it is there */
1195 if (len < IP_UDP_HDR_SIZE) {
1196 debug("len bad %d < %lu\n", len,
1197 (ulong)IP_UDP_HDR_SIZE);
1198 return;
1199 }
1200 /* Check the packet length */
1201 if (len < ntohs(ip->ip_len)) {
1202 debug("len bad %d < %d\n", len, ntohs(ip->ip_len));
1203 return;
1204 }
1205 len = ntohs(ip->ip_len);
1206 debug_cond(DEBUG_NET_PKT, "len=%d, v=%02x\n",
1207 len, ip->ip_hl_v & 0xff);
1208
1209 /* Can't deal with anything except IPv4 */
1210 if ((ip->ip_hl_v & 0xf0) != 0x40)
1211 return;
1212 /* Can't deal with IP options (headers != 20 bytes) */
1213 if ((ip->ip_hl_v & 0x0f) > 0x05)
1214 return;
1215 /* Check the Checksum of the header */
1216 if (!ip_checksum_ok((uchar *)ip, IP_HDR_SIZE)) {
1217 debug("checksum bad\n");
1218 return;
1219 }
1220 /* If it is not for us, ignore it */
1221 dst_ip = net_read_ip(&ip->ip_dst);
1222 if (net_ip.s_addr && dst_ip.s_addr != net_ip.s_addr &&
1223 dst_ip.s_addr != 0xFFFFFFFF) {
1224 return;
1225 }
1226 /* Read source IP address for later use */
1227 src_ip = net_read_ip(&ip->ip_src);
1228 /*
1229 * The function returns the unchanged packet if it's not
1230 * a fragment, and either the complete packet or NULL if
1231 * it is a fragment (if !CONFIG_IP_DEFRAG, it returns NULL)
1232 */
1233 ip = net_defragment(ip, &len);
1234 if (!ip)
1235 return;
1236 /*
1237 * watch for ICMP host redirects
1238 *
1239 * There is no real handler code (yet). We just watch
1240 * for ICMP host redirect messages. In case anybody
1241 * sees these messages: please contact me
1242 * (wd@denx.de), or - even better - send me the
1243 * necessary fixes :-)
1244 *
1245 * Note: in all cases where I have seen this so far
1246 * it was a problem with the router configuration,
1247 * for instance when a router was configured in the
1248 * BOOTP reply, but the TFTP server was on the same
1249 * subnet. So this is probably a warning that your
1250 * configuration might be wrong. But I'm not really
1251 * sure if there aren't any other situations.
1252 *
1253 * Simon Glass <sjg@chromium.org>: We get an ICMP when
1254 * we send a tftp packet to a dead connection, or when
1255 * there is no server at the other end.
1256 */
1257 if (ip->ip_p == IPPROTO_ICMP) {
1258 receive_icmp(ip, len, src_ip, et);
1259 return;
1260 } else if (ip->ip_p != IPPROTO_UDP) { /* Only UDP packets */
1261 return;
1262 }
1263
1264 if (ntohs(ip->udp_len) < UDP_HDR_SIZE || ntohs(ip->udp_len) > ntohs(ip->ip_len))
1265 return;
1266
1267 debug_cond(DEBUG_DEV_PKT,
1268 "received UDP (to=%pI4, from=%pI4, len=%d)\n",
1269 &dst_ip, &src_ip, len);
1270
1271 #ifdef CONFIG_UDP_CHECKSUM
1272 if (ip->udp_xsum != 0) {
1273 ulong xsum;
1274 u8 *sumptr;
1275 ushort sumlen;
1276
1277 xsum = ip->ip_p;
1278 xsum += (ntohs(ip->udp_len));
1279 xsum += (ntohl(ip->ip_src.s_addr) >> 16) & 0x0000ffff;
1280 xsum += (ntohl(ip->ip_src.s_addr) >> 0) & 0x0000ffff;
1281 xsum += (ntohl(ip->ip_dst.s_addr) >> 16) & 0x0000ffff;
1282 xsum += (ntohl(ip->ip_dst.s_addr) >> 0) & 0x0000ffff;
1283
1284 sumlen = ntohs(ip->udp_len);
1285 sumptr = (u8 *)&ip->udp_src;
1286
1287 while (sumlen > 1) {
1288 /* inlined ntohs() to avoid alignment errors */
1289 xsum += (sumptr[0] << 8) + sumptr[1];
1290 sumptr += 2;
1291 sumlen -= 2;
1292 }
1293 if (sumlen > 0)
1294 xsum += (sumptr[0] << 8) + sumptr[0];
1295 while ((xsum >> 16) != 0) {
1296 xsum = (xsum & 0x0000ffff) +
1297 ((xsum >> 16) & 0x0000ffff);
1298 }
1299 if ((xsum != 0x00000000) && (xsum != 0x0000ffff)) {
1300 printf(" UDP wrong checksum %08lx %08x\n",
1301 xsum, ntohs(ip->udp_xsum));
1302 return;
1303 }
1304 }
1305 #endif
1306
1307 #if defined(CONFIG_NETCONSOLE) && !defined(CONFIG_SPL_BUILD)
1308 nc_input_packet((uchar *)ip + IP_UDP_HDR_SIZE,
1309 src_ip,
1310 ntohs(ip->udp_dst),
1311 ntohs(ip->udp_src),
1312 ntohs(ip->udp_len) - UDP_HDR_SIZE);
1313 #endif
1314 /*
1315 * IP header OK. Pass the packet to the current handler.
1316 */
1317 (*udp_packet_handler)((uchar *)ip + IP_UDP_HDR_SIZE,
1318 ntohs(ip->udp_dst),
1319 src_ip,
1320 ntohs(ip->udp_src),
1321 ntohs(ip->udp_len) - UDP_HDR_SIZE);
1322 break;
1323 #ifdef CONFIG_CMD_WOL
1324 case PROT_WOL:
1325 wol_receive(ip, len);
1326 break;
1327 #endif
1328 }
1329 }
1330
1331 /**********************************************************************/
1332
net_check_prereq(enum proto_t protocol)1333 static int net_check_prereq(enum proto_t protocol)
1334 {
1335 switch (protocol) {
1336 /* Fall through */
1337 #if defined(CONFIG_CMD_PING)
1338 case PING:
1339 if (net_ping_ip.s_addr == 0) {
1340 puts("*** ERROR: ping address not given\n");
1341 return 1;
1342 }
1343 goto common;
1344 #endif
1345 #if defined(CONFIG_CMD_SNTP)
1346 case SNTP:
1347 if (net_ntp_server.s_addr == 0) {
1348 puts("*** ERROR: NTP server address not given\n");
1349 return 1;
1350 }
1351 goto common;
1352 #endif
1353 #if defined(CONFIG_CMD_DNS)
1354 case DNS:
1355 if (net_dns_server.s_addr == 0) {
1356 puts("*** ERROR: DNS server address not given\n");
1357 return 1;
1358 }
1359 goto common;
1360 #endif
1361 #if defined(CONFIG_CMD_NFS)
1362 case NFS:
1363 #endif
1364 /* Fall through */
1365 case TFTPGET:
1366 case TFTPPUT:
1367 if (net_server_ip.s_addr == 0 && !is_serverip_in_cmd()) {
1368 puts("*** ERROR: `serverip' not set\n");
1369 return 1;
1370 }
1371 #if defined(CONFIG_CMD_PING) || defined(CONFIG_CMD_SNTP) || \
1372 defined(CONFIG_CMD_DNS)
1373 common:
1374 #endif
1375 /* Fall through */
1376
1377 case NETCONS:
1378 case FASTBOOT:
1379 case TFTPSRV:
1380 if (net_ip.s_addr == 0) {
1381 puts("*** ERROR: `ipaddr' not set\n");
1382 return 1;
1383 }
1384 /* Fall through */
1385
1386 #ifdef CONFIG_CMD_RARP
1387 case RARP:
1388 #endif
1389 case BOOTP:
1390 case CDP:
1391 case DHCP:
1392 case LINKLOCAL:
1393 if (memcmp(net_ethaddr, "\0\0\0\0\0\0", 6) == 0) {
1394 int num = eth_get_dev_index();
1395
1396 switch (num) {
1397 case -1:
1398 puts("*** ERROR: No ethernet found.\n");
1399 return 1;
1400 case 0:
1401 puts("*** ERROR: `ethaddr' not set\n");
1402 break;
1403 default:
1404 printf("*** ERROR: `eth%daddr' not set\n",
1405 num);
1406 break;
1407 }
1408
1409 net_start_again();
1410 return 2;
1411 }
1412 /* Fall through */
1413 default:
1414 return 0;
1415 }
1416 return 0; /* OK */
1417 }
1418 /**********************************************************************/
1419
1420 int
net_eth_hdr_size(void)1421 net_eth_hdr_size(void)
1422 {
1423 ushort myvlanid;
1424
1425 myvlanid = ntohs(net_our_vlan);
1426 if (myvlanid == (ushort)-1)
1427 myvlanid = VLAN_NONE;
1428
1429 return ((myvlanid & VLAN_IDMASK) == VLAN_NONE) ? ETHER_HDR_SIZE :
1430 VLAN_ETHER_HDR_SIZE;
1431 }
1432
net_set_ether(uchar * xet,const uchar * dest_ethaddr,uint prot)1433 int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot)
1434 {
1435 struct ethernet_hdr *et = (struct ethernet_hdr *)xet;
1436 ushort myvlanid;
1437
1438 myvlanid = ntohs(net_our_vlan);
1439 if (myvlanid == (ushort)-1)
1440 myvlanid = VLAN_NONE;
1441
1442 memcpy(et->et_dest, dest_ethaddr, 6);
1443 memcpy(et->et_src, net_ethaddr, 6);
1444 if ((myvlanid & VLAN_IDMASK) == VLAN_NONE) {
1445 et->et_protlen = htons(prot);
1446 return ETHER_HDR_SIZE;
1447 } else {
1448 struct vlan_ethernet_hdr *vet =
1449 (struct vlan_ethernet_hdr *)xet;
1450
1451 vet->vet_vlan_type = htons(PROT_VLAN);
1452 vet->vet_tag = htons((0 << 5) | (myvlanid & VLAN_IDMASK));
1453 vet->vet_type = htons(prot);
1454 return VLAN_ETHER_HDR_SIZE;
1455 }
1456 }
1457
net_update_ether(struct ethernet_hdr * et,uchar * addr,uint prot)1458 int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot)
1459 {
1460 ushort protlen;
1461
1462 memcpy(et->et_dest, addr, 6);
1463 memcpy(et->et_src, net_ethaddr, 6);
1464 protlen = ntohs(et->et_protlen);
1465 if (protlen == PROT_VLAN) {
1466 struct vlan_ethernet_hdr *vet =
1467 (struct vlan_ethernet_hdr *)et;
1468 vet->vet_type = htons(prot);
1469 return VLAN_ETHER_HDR_SIZE;
1470 } else if (protlen > 1514) {
1471 et->et_protlen = htons(prot);
1472 return ETHER_HDR_SIZE;
1473 } else {
1474 /* 802.2 + SNAP */
1475 struct e802_hdr *et802 = (struct e802_hdr *)et;
1476 et802->et_prot = htons(prot);
1477 return E802_HDR_SIZE;
1478 }
1479 }
1480
net_set_ip_header(uchar * pkt,struct in_addr dest,struct in_addr source,u16 pkt_len,u8 proto)1481 void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source,
1482 u16 pkt_len, u8 proto)
1483 {
1484 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
1485
1486 /*
1487 * Construct an IP header.
1488 */
1489 /* IP_HDR_SIZE / 4 (not including UDP) */
1490 ip->ip_hl_v = 0x45;
1491 ip->ip_tos = 0;
1492 ip->ip_len = htons(pkt_len);
1493 ip->ip_p = proto;
1494 ip->ip_id = htons(net_ip_id++);
1495 ip->ip_off = htons(IP_FLAGS_DFRAG); /* Don't fragment */
1496 ip->ip_ttl = 255;
1497 ip->ip_sum = 0;
1498 /* already in network byte order */
1499 net_copy_ip((void *)&ip->ip_src, &source);
1500 /* already in network byte order */
1501 net_copy_ip((void *)&ip->ip_dst, &dest);
1502
1503 ip->ip_sum = compute_ip_checksum(ip, IP_HDR_SIZE);
1504 }
1505
net_set_udp_header(uchar * pkt,struct in_addr dest,int dport,int sport,int len)1506 void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport, int sport,
1507 int len)
1508 {
1509 struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
1510
1511 /*
1512 * If the data is an odd number of bytes, zero the
1513 * byte after the last byte so that the checksum
1514 * will work.
1515 */
1516 if (len & 1)
1517 pkt[IP_UDP_HDR_SIZE + len] = 0;
1518
1519 net_set_ip_header(pkt, dest, net_ip, IP_UDP_HDR_SIZE + len,
1520 IPPROTO_UDP);
1521
1522 ip->udp_src = htons(sport);
1523 ip->udp_dst = htons(dport);
1524 ip->udp_len = htons(UDP_HDR_SIZE + len);
1525 ip->udp_xsum = 0;
1526 }
1527
copy_filename(char * dst,const char * src,int size)1528 void copy_filename(char *dst, const char *src, int size)
1529 {
1530 if (src && *src && (*src == '"')) {
1531 ++src;
1532 --size;
1533 }
1534
1535 while ((--size > 0) && src && *src && (*src != '"'))
1536 *dst++ = *src++;
1537 *dst = '\0';
1538 }
1539
is_serverip_in_cmd(void)1540 int is_serverip_in_cmd(void)
1541 {
1542 return !!strchr(net_boot_file_name, ':');
1543 }
1544
net_parse_bootfile(struct in_addr * ipaddr,char * filename,int max_len)1545 int net_parse_bootfile(struct in_addr *ipaddr, char *filename, int max_len)
1546 {
1547 char *colon;
1548
1549 if (net_boot_file_name[0] == '\0')
1550 return 0;
1551
1552 colon = strchr(net_boot_file_name, ':');
1553 if (colon) {
1554 if (ipaddr)
1555 *ipaddr = string_to_ip(net_boot_file_name);
1556 strncpy(filename, colon + 1, max_len);
1557 } else {
1558 strncpy(filename, net_boot_file_name, max_len);
1559 }
1560 filename[max_len - 1] = '\0';
1561
1562 return 1;
1563 }
1564
1565 #if defined(CONFIG_CMD_NFS) || \
1566 defined(CONFIG_CMD_SNTP) || \
1567 defined(CONFIG_CMD_DNS)
1568 /*
1569 * make port a little random (1024-17407)
1570 * This keeps the math somewhat trivial to compute, and seems to work with
1571 * all supported protocols/clients/servers
1572 */
random_port(void)1573 unsigned int random_port(void)
1574 {
1575 return 1024 + (get_timer(0) % 0x4000);
1576 }
1577 #endif
1578
ip_to_string(struct in_addr x,char * s)1579 void ip_to_string(struct in_addr x, char *s)
1580 {
1581 x.s_addr = ntohl(x.s_addr);
1582 sprintf(s, "%d.%d.%d.%d",
1583 (int) ((x.s_addr >> 24) & 0xff),
1584 (int) ((x.s_addr >> 16) & 0xff),
1585 (int) ((x.s_addr >> 8) & 0xff),
1586 (int) ((x.s_addr >> 0) & 0xff)
1587 );
1588 }
1589
vlan_to_string(ushort x,char * s)1590 void vlan_to_string(ushort x, char *s)
1591 {
1592 x = ntohs(x);
1593
1594 if (x == (ushort)-1)
1595 x = VLAN_NONE;
1596
1597 if (x == VLAN_NONE)
1598 strcpy(s, "none");
1599 else
1600 sprintf(s, "%d", x & VLAN_IDMASK);
1601 }
1602
string_to_vlan(const char * s)1603 ushort string_to_vlan(const char *s)
1604 {
1605 ushort id;
1606
1607 if (s == NULL)
1608 return htons(VLAN_NONE);
1609
1610 if (*s < '0' || *s > '9')
1611 id = VLAN_NONE;
1612 else
1613 id = (ushort)simple_strtoul(s, NULL, 10);
1614
1615 return htons(id);
1616 }
1617
env_get_vlan(char * var)1618 ushort env_get_vlan(char *var)
1619 {
1620 return string_to_vlan(env_get(var));
1621 }
1622