• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *	Copied from Linux Monitor (LiMon) - Networking.
4  *
5  *	Copyright 1994 - 2000 Neil Russell.
6  *	(See License)
7  *	Copyright 2000 Roland Borde
8  *	Copyright 2000 Paolo Scaffardi
9  *	Copyright 2000-2002 Wolfgang Denk, wd@denx.de
10  */
11 
12 /*
13  * General Desription:
14  *
15  * The user interface supports commands for BOOTP, RARP, and TFTP.
16  * Also, we support ARP internally. Depending on available data,
17  * these interact as follows:
18  *
19  * BOOTP:
20  *
21  *	Prerequisites:	- own ethernet address
22  *	We want:	- own IP address
23  *			- TFTP server IP address
24  *			- name of bootfile
25  *	Next step:	ARP
26  *
27  * LINK_LOCAL:
28  *
29  *	Prerequisites:	- own ethernet address
30  *	We want:	- own IP address
31  *	Next step:	ARP
32  *
33  * RARP:
34  *
35  *	Prerequisites:	- own ethernet address
36  *	We want:	- own IP address
37  *			- TFTP server IP address
38  *	Next step:	ARP
39  *
40  * ARP:
41  *
42  *	Prerequisites:	- own ethernet address
43  *			- own IP address
44  *			- TFTP server IP address
45  *	We want:	- TFTP server ethernet address
46  *	Next step:	TFTP
47  *
48  * DHCP:
49  *
50  *     Prerequisites:	- own ethernet address
51  *     We want:		- IP, Netmask, ServerIP, Gateway IP
52  *			- bootfilename, lease time
53  *     Next step:	- TFTP
54  *
55  * TFTP:
56  *
57  *	Prerequisites:	- own ethernet address
58  *			- own IP address
59  *			- TFTP server IP address
60  *			- TFTP server ethernet address
61  *			- name of bootfile (if unknown, we use a default name
62  *			  derived from our own IP address)
63  *	We want:	- load the boot file
64  *	Next step:	none
65  *
66  * NFS:
67  *
68  *	Prerequisites:	- own ethernet address
69  *			- own IP address
70  *			- name of bootfile (if unknown, we use a default name
71  *			  derived from our own IP address)
72  *	We want:	- load the boot file
73  *	Next step:	none
74  *
75  * SNTP:
76  *
77  *	Prerequisites:	- own ethernet address
78  *			- own IP address
79  *	We want:	- network time
80  *	Next step:	none
81  *
82  * WOL:
83  *
84  *	Prerequisites:	- own ethernet address
85  *	We want:	- magic packet or timeout
86  *	Next step:	none
87  */
88 
89 
90 #include <common.h>
91 #include <command.h>
92 #include <console.h>
93 #include <env.h>
94 #include <env_internal.h>
95 #include <errno.h>
96 #include <net.h>
97 #include <net/fastboot.h>
98 #include <net/tftp.h>
99 #if defined(CONFIG_CMD_PCAP)
100 #include <net/pcap.h>
101 #endif
102 #if defined(CONFIG_LED_STATUS)
103 #include <miiphy.h>
104 #include <status_led.h>
105 #endif
106 #include <watchdog.h>
107 #include <linux/compiler.h>
108 #include "arp.h"
109 #include "bootp.h"
110 #include "cdp.h"
111 #if defined(CONFIG_CMD_DNS)
112 #include "dns.h"
113 #endif
114 #include "link_local.h"
115 #include "nfs.h"
116 #include "ping.h"
117 #include "rarp.h"
118 #if defined(CONFIG_CMD_SNTP)
119 #include "sntp.h"
120 #endif
121 #if defined(CONFIG_CMD_WOL)
122 #include "wol.h"
123 #endif
124 
125 /** BOOTP EXTENTIONS **/
126 
127 /* Our subnet mask (0=unknown) */
128 struct in_addr net_netmask;
129 /* Our gateways IP address */
130 struct in_addr net_gateway;
131 /* Our DNS IP address */
132 struct in_addr net_dns_server;
133 #if defined(CONFIG_BOOTP_DNS2)
134 /* Our 2nd DNS IP address */
135 struct in_addr net_dns_server2;
136 #endif
137 
138 /** END OF BOOTP EXTENTIONS **/
139 
140 /* Our ethernet address */
141 u8 net_ethaddr[6];
142 /* Boot server enet address */
143 u8 net_server_ethaddr[6];
144 /* Our IP addr (0 = unknown) */
145 struct in_addr	net_ip;
146 /* Server IP addr (0 = unknown) */
147 struct in_addr	net_server_ip;
148 /* Current receive packet */
149 uchar *net_rx_packet;
150 /* Current rx packet length */
151 int		net_rx_packet_len;
152 /* IP packet ID */
153 static unsigned	net_ip_id;
154 /* Ethernet bcast address */
155 const u8 net_bcast_ethaddr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
156 const u8 net_null_ethaddr[6];
157 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER)
158 void (*push_packet)(void *, int len) = 0;
159 #endif
160 /* Network loop state */
161 enum net_loop_state net_state;
162 /* Tried all network devices */
163 int		net_restart_wrap;
164 /* Network loop restarted */
165 static int	net_restarted;
166 /* At least one device configured */
167 static int	net_dev_exists;
168 
169 /* XXX in both little & big endian machines 0xFFFF == ntohs(-1) */
170 /* default is without VLAN */
171 ushort		net_our_vlan = 0xFFFF;
172 /* ditto */
173 ushort		net_native_vlan = 0xFFFF;
174 
175 /* Boot File name */
176 char net_boot_file_name[1024];
177 /* Indicates whether the file name was specified on the command line */
178 bool net_boot_file_name_explicit;
179 /* The actual transferred size of the bootfile (in bytes) */
180 u32 net_boot_file_size;
181 /* Boot file size in blocks as reported by the DHCP server */
182 u32 net_boot_file_expected_size_in_blocks;
183 
184 #if defined(CONFIG_CMD_SNTP)
185 /* NTP server IP address */
186 struct in_addr	net_ntp_server;
187 /* offset time from UTC */
188 int		net_ntp_time_offset;
189 #endif
190 
191 static uchar net_pkt_buf[(PKTBUFSRX+1) * PKTSIZE_ALIGN + PKTALIGN];
192 /* Receive packets */
193 uchar *net_rx_packets[PKTBUFSRX];
194 /* Current UDP RX packet handler */
195 static rxhand_f *udp_packet_handler;
196 /* Current ARP RX packet handler */
197 static rxhand_f *arp_packet_handler;
198 #ifdef CONFIG_CMD_TFTPPUT
199 /* Current ICMP rx handler */
200 static rxhand_icmp_f *packet_icmp_handler;
201 #endif
202 /* Current timeout handler */
203 static thand_f *time_handler;
204 /* Time base value */
205 static ulong	time_start;
206 /* Current timeout value */
207 static ulong	time_delta;
208 /* THE transmit packet */
209 uchar *net_tx_packet;
210 
211 static int net_check_prereq(enum proto_t protocol);
212 
213 static int net_try_count;
214 
215 int __maybe_unused net_busy_flag;
216 
217 /**********************************************************************/
218 
on_ipaddr(const char * name,const char * value,enum env_op op,int flags)219 static int on_ipaddr(const char *name, const char *value, enum env_op op,
220 	int flags)
221 {
222 	if (flags & H_PROGRAMMATIC)
223 		return 0;
224 
225 	net_ip = string_to_ip(value);
226 
227 	return 0;
228 }
229 U_BOOT_ENV_CALLBACK(ipaddr, on_ipaddr);
230 
on_gatewayip(const char * name,const char * value,enum env_op op,int flags)231 static int on_gatewayip(const char *name, const char *value, enum env_op op,
232 	int flags)
233 {
234 	if (flags & H_PROGRAMMATIC)
235 		return 0;
236 
237 	net_gateway = string_to_ip(value);
238 
239 	return 0;
240 }
241 U_BOOT_ENV_CALLBACK(gatewayip, on_gatewayip);
242 
on_netmask(const char * name,const char * value,enum env_op op,int flags)243 static int on_netmask(const char *name, const char *value, enum env_op op,
244 	int flags)
245 {
246 	if (flags & H_PROGRAMMATIC)
247 		return 0;
248 
249 	net_netmask = string_to_ip(value);
250 
251 	return 0;
252 }
253 U_BOOT_ENV_CALLBACK(netmask, on_netmask);
254 
on_serverip(const char * name,const char * value,enum env_op op,int flags)255 static int on_serverip(const char *name, const char *value, enum env_op op,
256 	int flags)
257 {
258 	if (flags & H_PROGRAMMATIC)
259 		return 0;
260 
261 	net_server_ip = string_to_ip(value);
262 
263 	return 0;
264 }
265 U_BOOT_ENV_CALLBACK(serverip, on_serverip);
266 
on_nvlan(const char * name,const char * value,enum env_op op,int flags)267 static int on_nvlan(const char *name, const char *value, enum env_op op,
268 	int flags)
269 {
270 	if (flags & H_PROGRAMMATIC)
271 		return 0;
272 
273 	net_native_vlan = string_to_vlan(value);
274 
275 	return 0;
276 }
277 U_BOOT_ENV_CALLBACK(nvlan, on_nvlan);
278 
on_vlan(const char * name,const char * value,enum env_op op,int flags)279 static int on_vlan(const char *name, const char *value, enum env_op op,
280 	int flags)
281 {
282 	if (flags & H_PROGRAMMATIC)
283 		return 0;
284 
285 	net_our_vlan = string_to_vlan(value);
286 
287 	return 0;
288 }
289 U_BOOT_ENV_CALLBACK(vlan, on_vlan);
290 
291 #if defined(CONFIG_CMD_DNS)
on_dnsip(const char * name,const char * value,enum env_op op,int flags)292 static int on_dnsip(const char *name, const char *value, enum env_op op,
293 	int flags)
294 {
295 	if (flags & H_PROGRAMMATIC)
296 		return 0;
297 
298 	net_dns_server = string_to_ip(value);
299 
300 	return 0;
301 }
302 U_BOOT_ENV_CALLBACK(dnsip, on_dnsip);
303 #endif
304 
305 /*
306  * Check if autoload is enabled. If so, use either NFS or TFTP to download
307  * the boot file.
308  */
net_auto_load(void)309 void net_auto_load(void)
310 {
311 #if defined(CONFIG_CMD_NFS) && !defined(CONFIG_SPL_BUILD)
312 	const char *s = env_get("autoload");
313 
314 	if (s != NULL && strcmp(s, "NFS") == 0) {
315 		if (net_check_prereq(NFS)) {
316 /* We aren't expecting to get a serverip, so just accept the assigned IP */
317 #ifdef CONFIG_BOOTP_SERVERIP
318 			net_set_state(NETLOOP_SUCCESS);
319 #else
320 			printf("Cannot autoload with NFS\n");
321 			net_set_state(NETLOOP_FAIL);
322 #endif
323 			return;
324 		}
325 		/*
326 		 * Use NFS to load the bootfile.
327 		 */
328 		nfs_start();
329 		return;
330 	}
331 #endif
332 	if (env_get_yesno("autoload") == 0) {
333 		/*
334 		 * Just use BOOTP/RARP to configure system;
335 		 * Do not use TFTP to load the bootfile.
336 		 */
337 		net_set_state(NETLOOP_SUCCESS);
338 		return;
339 	}
340 	if (net_check_prereq(TFTPGET)) {
341 /* We aren't expecting to get a serverip, so just accept the assigned IP */
342 #ifdef CONFIG_BOOTP_SERVERIP
343 		net_set_state(NETLOOP_SUCCESS);
344 #else
345 		printf("Cannot autoload with TFTPGET\n");
346 		net_set_state(NETLOOP_FAIL);
347 #endif
348 		return;
349 	}
350 	tftp_start(TFTPGET);
351 }
352 
net_init_loop(void)353 static void net_init_loop(void)
354 {
355 	if (eth_get_dev())
356 		memcpy(net_ethaddr, eth_get_ethaddr(), 6);
357 
358 	return;
359 }
360 
net_clear_handlers(void)361 static void net_clear_handlers(void)
362 {
363 	net_set_udp_handler(NULL);
364 	net_set_arp_handler(NULL);
365 	net_set_timeout_handler(0, NULL);
366 }
367 
net_cleanup_loop(void)368 static void net_cleanup_loop(void)
369 {
370 	net_clear_handlers();
371 }
372 
net_init(void)373 void net_init(void)
374 {
375 	static int first_call = 1;
376 
377 	if (first_call) {
378 		/*
379 		 *	Setup packet buffers, aligned correctly.
380 		 */
381 		int i;
382 
383 		net_tx_packet = &net_pkt_buf[0] + (PKTALIGN - 1);
384 		net_tx_packet -= (ulong)net_tx_packet % PKTALIGN;
385 		for (i = 0; i < PKTBUFSRX; i++) {
386 			net_rx_packets[i] = net_tx_packet +
387 				(i + 1) * PKTSIZE_ALIGN;
388 		}
389 		arp_init();
390 		net_clear_handlers();
391 
392 		/* Only need to setup buffer pointers once. */
393 		first_call = 0;
394 	}
395 
396 	net_init_loop();
397 }
398 
399 /**********************************************************************/
400 /*
401  *	Main network processing loop.
402  */
403 
net_loop(enum proto_t protocol)404 int net_loop(enum proto_t protocol)
405 {
406 	int ret = -EINVAL;
407 	enum net_loop_state prev_net_state = net_state;
408 
409 	net_restarted = 0;
410 	net_dev_exists = 0;
411 	net_try_count = 1;
412 	debug_cond(DEBUG_INT_STATE, "--- net_loop Entry\n");
413 
414 	bootstage_mark_name(BOOTSTAGE_ID_ETH_START, "eth_start");
415 	net_init();
416 	if (eth_is_on_demand_init() || protocol != NETCONS) {
417 		eth_halt();
418 		eth_set_current();
419 		ret = eth_init();
420 		if (ret < 0) {
421 			eth_halt();
422 			return ret;
423 		}
424 	} else {
425 		eth_init_state_only();
426 	}
427 restart:
428 #ifdef CONFIG_USB_KEYBOARD
429 	net_busy_flag = 0;
430 #endif
431 	net_set_state(NETLOOP_CONTINUE);
432 
433 	/*
434 	 *	Start the ball rolling with the given start function.  From
435 	 *	here on, this code is a state machine driven by received
436 	 *	packets and timer events.
437 	 */
438 	debug_cond(DEBUG_INT_STATE, "--- net_loop Init\n");
439 	net_init_loop();
440 
441 	switch (net_check_prereq(protocol)) {
442 	case 1:
443 		/* network not configured */
444 		eth_halt();
445 		net_set_state(prev_net_state);
446 		return -ENODEV;
447 
448 	case 2:
449 		/* network device not configured */
450 		break;
451 
452 	case 0:
453 		net_dev_exists = 1;
454 		net_boot_file_size = 0;
455 		switch (protocol) {
456 		case TFTPGET:
457 #ifdef CONFIG_CMD_TFTPPUT
458 		case TFTPPUT:
459 #endif
460 			/* always use ARP to get server ethernet address */
461 			tftp_start(protocol);
462 			break;
463 #ifdef CONFIG_CMD_TFTPSRV
464 		case TFTPSRV:
465 			tftp_start_server();
466 			break;
467 #endif
468 #ifdef CONFIG_UDP_FUNCTION_FASTBOOT
469 		case FASTBOOT:
470 			fastboot_start_server();
471 			break;
472 #endif
473 #if defined(CONFIG_CMD_DHCP)
474 		case DHCP:
475 			bootp_reset();
476 			net_ip.s_addr = 0;
477 			dhcp_request();		/* Basically same as BOOTP */
478 			break;
479 #endif
480 
481 		case BOOTP:
482 			bootp_reset();
483 			net_ip.s_addr = 0;
484 			bootp_request();
485 			break;
486 
487 #if defined(CONFIG_CMD_RARP)
488 		case RARP:
489 			rarp_try = 0;
490 			net_ip.s_addr = 0;
491 			rarp_request();
492 			break;
493 #endif
494 #if defined(CONFIG_CMD_PING)
495 		case PING:
496 			ping_start();
497 			break;
498 #endif
499 #if defined(CONFIG_CMD_NFS) && !defined(CONFIG_SPL_BUILD)
500 		case NFS:
501 			nfs_start();
502 			break;
503 #endif
504 #if defined(CONFIG_CMD_CDP)
505 		case CDP:
506 			cdp_start();
507 			break;
508 #endif
509 #if defined(CONFIG_NETCONSOLE) && !defined(CONFIG_SPL_BUILD)
510 		case NETCONS:
511 			nc_start();
512 			break;
513 #endif
514 #if defined(CONFIG_CMD_SNTP)
515 		case SNTP:
516 			sntp_start();
517 			break;
518 #endif
519 #if defined(CONFIG_CMD_DNS)
520 		case DNS:
521 			dns_start();
522 			break;
523 #endif
524 #if defined(CONFIG_CMD_LINK_LOCAL)
525 		case LINKLOCAL:
526 			link_local_start();
527 			break;
528 #endif
529 #if defined(CONFIG_CMD_WOL)
530 		case WOL:
531 			wol_start();
532 			break;
533 #endif
534 		default:
535 			break;
536 		}
537 
538 		break;
539 	}
540 
541 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
542 #if	defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN)	&& \
543 	defined(CONFIG_LED_STATUS)			&& \
544 	defined(CONFIG_LED_STATUS_RED)
545 	/*
546 	 * Echo the inverted link state to the fault LED.
547 	 */
548 	if (miiphy_link(eth_get_dev()->name, CONFIG_SYS_FAULT_MII_ADDR))
549 		status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_OFF);
550 	else
551 		status_led_set(CONFIG_LED_STATUS_RED, CONFIG_LED_STATUS_ON);
552 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
553 #endif /* CONFIG_MII, ... */
554 #ifdef CONFIG_USB_KEYBOARD
555 	net_busy_flag = 1;
556 #endif
557 
558 	/*
559 	 *	Main packet reception loop.  Loop receiving packets until
560 	 *	someone sets `net_state' to a state that terminates.
561 	 */
562 	for (;;) {
563 		WATCHDOG_RESET();
564 		if (arp_timeout_check() > 0)
565 			time_start = get_timer(0);
566 
567 		/*
568 		 *	Check the ethernet for a new packet.  The ethernet
569 		 *	receive routine will process it.
570 		 *	Most drivers return the most recent packet size, but not
571 		 *	errors that may have happened.
572 		 */
573 		eth_rx();
574 
575 		/*
576 		 *	Abort if ctrl-c was pressed.
577 		 */
578 		if (ctrlc()) {
579 			/* cancel any ARP that may not have completed */
580 			net_arp_wait_packet_ip.s_addr = 0;
581 
582 			net_cleanup_loop();
583 			eth_halt();
584 			/* Invalidate the last protocol */
585 			eth_set_last_protocol(BOOTP);
586 
587 			puts("\nAbort\n");
588 			/* include a debug print as well incase the debug
589 			   messages are directed to stderr */
590 			debug_cond(DEBUG_INT_STATE, "--- net_loop Abort!\n");
591 			ret = -EINTR;
592 			goto done;
593 		}
594 
595 		/*
596 		 *	Check for a timeout, and run the timeout handler
597 		 *	if we have one.
598 		 */
599 		if (time_handler &&
600 		    ((get_timer(0) - time_start) > time_delta)) {
601 			thand_f *x;
602 
603 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
604 #if	defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN)	&& \
605 	defined(CONFIG_LED_STATUS)			&& \
606 	defined(CONFIG_LED_STATUS_RED)
607 			/*
608 			 * Echo the inverted link state to the fault LED.
609 			 */
610 			if (miiphy_link(eth_get_dev()->name,
611 					CONFIG_SYS_FAULT_MII_ADDR))
612 				status_led_set(CONFIG_LED_STATUS_RED,
613 					       CONFIG_LED_STATUS_OFF);
614 			else
615 				status_led_set(CONFIG_LED_STATUS_RED,
616 					       CONFIG_LED_STATUS_ON);
617 #endif /* CONFIG_SYS_FAULT_ECHO_LINK_DOWN, ... */
618 #endif /* CONFIG_MII, ... */
619 			debug_cond(DEBUG_INT_STATE, "--- net_loop timeout\n");
620 			x = time_handler;
621 			time_handler = (thand_f *)0;
622 			(*x)();
623 		}
624 
625 		if (net_state == NETLOOP_FAIL)
626 			ret = net_start_again();
627 
628 		switch (net_state) {
629 		case NETLOOP_RESTART:
630 			net_restarted = 1;
631 			goto restart;
632 
633 		case NETLOOP_SUCCESS:
634 			net_cleanup_loop();
635 			if (net_boot_file_size > 0) {
636 				printf("Bytes transferred = %d (%x hex)\n",
637 				       net_boot_file_size, net_boot_file_size);
638 				env_set_hex("filesize", net_boot_file_size);
639 				env_set_hex("fileaddr", load_addr);
640 			}
641 			if (protocol != NETCONS)
642 				eth_halt();
643 			else
644 				eth_halt_state_only();
645 
646 			eth_set_last_protocol(protocol);
647 
648 			ret = net_boot_file_size;
649 			debug_cond(DEBUG_INT_STATE, "--- net_loop Success!\n");
650 			goto done;
651 
652 		case NETLOOP_FAIL:
653 			net_cleanup_loop();
654 			/* Invalidate the last protocol */
655 			eth_set_last_protocol(BOOTP);
656 			debug_cond(DEBUG_INT_STATE, "--- net_loop Fail!\n");
657 			ret = -ENONET;
658 			goto done;
659 
660 		case NETLOOP_CONTINUE:
661 			continue;
662 		}
663 	}
664 
665 done:
666 #ifdef CONFIG_USB_KEYBOARD
667 	net_busy_flag = 0;
668 #endif
669 #ifdef CONFIG_CMD_TFTPPUT
670 	/* Clear out the handlers */
671 	net_set_udp_handler(NULL);
672 	net_set_icmp_handler(NULL);
673 #endif
674 	net_set_state(prev_net_state);
675 
676 #if defined(CONFIG_CMD_PCAP)
677 	if (pcap_active())
678 		pcap_print_status();
679 #endif
680 	return ret;
681 }
682 
683 /**********************************************************************/
684 
start_again_timeout_handler(void)685 static void start_again_timeout_handler(void)
686 {
687 	net_set_state(NETLOOP_RESTART);
688 }
689 
net_start_again(void)690 int net_start_again(void)
691 {
692 	char *nretry;
693 	int retry_forever = 0;
694 	unsigned long retrycnt = 0;
695 	int ret;
696 
697 	nretry = env_get("netretry");
698 	if (nretry) {
699 		if (!strcmp(nretry, "yes"))
700 			retry_forever = 1;
701 		else if (!strcmp(nretry, "no"))
702 			retrycnt = 0;
703 		else if (!strcmp(nretry, "once"))
704 			retrycnt = 1;
705 		else
706 			retrycnt = simple_strtoul(nretry, NULL, 0);
707 	} else {
708 		retrycnt = 0;
709 		retry_forever = 0;
710 	}
711 
712 	if ((!retry_forever) && (net_try_count > retrycnt)) {
713 		eth_halt();
714 		net_set_state(NETLOOP_FAIL);
715 		/*
716 		 * We don't provide a way for the protocol to return an error,
717 		 * but this is almost always the reason.
718 		 */
719 		return -ETIMEDOUT;
720 	}
721 
722 	net_try_count++;
723 
724 	eth_halt();
725 #if !defined(CONFIG_NET_DO_NOT_TRY_ANOTHER)
726 	eth_try_another(!net_restarted);
727 #endif
728 	ret = eth_init();
729 	if (net_restart_wrap) {
730 		net_restart_wrap = 0;
731 		if (net_dev_exists) {
732 			net_set_timeout_handler(10000UL,
733 						start_again_timeout_handler);
734 			net_set_udp_handler(NULL);
735 		} else {
736 			net_set_state(NETLOOP_FAIL);
737 		}
738 	} else {
739 		net_set_state(NETLOOP_RESTART);
740 	}
741 	return ret;
742 }
743 
744 /**********************************************************************/
745 /*
746  *	Miscelaneous bits.
747  */
748 
dummy_handler(uchar * pkt,unsigned dport,struct in_addr sip,unsigned sport,unsigned len)749 static void dummy_handler(uchar *pkt, unsigned dport,
750 			struct in_addr sip, unsigned sport,
751 			unsigned len)
752 {
753 }
754 
net_get_udp_handler(void)755 rxhand_f *net_get_udp_handler(void)
756 {
757 	return udp_packet_handler;
758 }
759 
net_set_udp_handler(rxhand_f * f)760 void net_set_udp_handler(rxhand_f *f)
761 {
762 	debug_cond(DEBUG_INT_STATE, "--- net_loop UDP handler set (%p)\n", f);
763 	if (f == NULL)
764 		udp_packet_handler = dummy_handler;
765 	else
766 		udp_packet_handler = f;
767 }
768 
net_get_arp_handler(void)769 rxhand_f *net_get_arp_handler(void)
770 {
771 	return arp_packet_handler;
772 }
773 
net_set_arp_handler(rxhand_f * f)774 void net_set_arp_handler(rxhand_f *f)
775 {
776 	debug_cond(DEBUG_INT_STATE, "--- net_loop ARP handler set (%p)\n", f);
777 	if (f == NULL)
778 		arp_packet_handler = dummy_handler;
779 	else
780 		arp_packet_handler = f;
781 }
782 
783 #ifdef CONFIG_CMD_TFTPPUT
net_set_icmp_handler(rxhand_icmp_f * f)784 void net_set_icmp_handler(rxhand_icmp_f *f)
785 {
786 	packet_icmp_handler = f;
787 }
788 #endif
789 
net_set_timeout_handler(ulong iv,thand_f * f)790 void net_set_timeout_handler(ulong iv, thand_f *f)
791 {
792 	if (iv == 0) {
793 		debug_cond(DEBUG_INT_STATE,
794 			   "--- net_loop timeout handler cancelled\n");
795 		time_handler = (thand_f *)0;
796 	} else {
797 		debug_cond(DEBUG_INT_STATE,
798 			   "--- net_loop timeout handler set (%p)\n", f);
799 		time_handler = f;
800 		time_start = get_timer(0);
801 		time_delta = iv * CONFIG_SYS_HZ / 1000;
802 	}
803 }
804 
net_get_async_tx_pkt_buf(void)805 uchar *net_get_async_tx_pkt_buf(void)
806 {
807 	if (arp_is_waiting())
808 		return arp_tx_packet; /* If we are waiting, we already sent */
809 	else
810 		return net_tx_packet;
811 }
812 
net_send_udp_packet(uchar * ether,struct in_addr dest,int dport,int sport,int payload_len)813 int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport, int sport,
814 		int payload_len)
815 {
816 	return net_send_ip_packet(ether, dest, dport, sport, payload_len,
817 				  IPPROTO_UDP, 0, 0, 0);
818 }
819 
net_send_ip_packet(uchar * ether,struct in_addr dest,int dport,int sport,int payload_len,int proto,u8 action,u32 tcp_seq_num,u32 tcp_ack_num)820 int net_send_ip_packet(uchar *ether, struct in_addr dest, int dport, int sport,
821 		       int payload_len, int proto, u8 action, u32 tcp_seq_num,
822 		       u32 tcp_ack_num)
823 {
824 	uchar *pkt;
825 	int eth_hdr_size;
826 	int pkt_hdr_size;
827 
828 	/* make sure the net_tx_packet is initialized (net_init() was called) */
829 	assert(net_tx_packet != NULL);
830 	if (net_tx_packet == NULL)
831 		return -1;
832 
833 	/* convert to new style broadcast */
834 	if (dest.s_addr == 0)
835 		dest.s_addr = 0xFFFFFFFF;
836 
837 	/* if broadcast, make the ether address a broadcast and don't do ARP */
838 	if (dest.s_addr == 0xFFFFFFFF)
839 		ether = (uchar *)net_bcast_ethaddr;
840 
841 	pkt = (uchar *)net_tx_packet;
842 
843 	eth_hdr_size = net_set_ether(pkt, ether, PROT_IP);
844 
845 	switch (proto) {
846 	case IPPROTO_UDP:
847 		net_set_udp_header(pkt + eth_hdr_size, dest, dport, sport,
848 				   payload_len);
849 		pkt_hdr_size = eth_hdr_size + IP_UDP_HDR_SIZE;
850 		break;
851 	default:
852 		return -EINVAL;
853 	}
854 
855 	/* if MAC address was not discovered yet, do an ARP request */
856 	if (memcmp(ether, net_null_ethaddr, 6) == 0) {
857 		debug_cond(DEBUG_DEV_PKT, "sending ARP for %pI4\n", &dest);
858 
859 		/* save the ip and eth addr for the packet to send after arp */
860 		net_arp_wait_packet_ip = dest;
861 		arp_wait_packet_ethaddr = ether;
862 
863 		/* size of the waiting packet */
864 		arp_wait_tx_packet_size = pkt_hdr_size + payload_len;
865 
866 		/* and do the ARP request */
867 		arp_wait_try = 1;
868 		arp_wait_timer_start = get_timer(0);
869 		arp_request();
870 		return 1;	/* waiting */
871 	} else {
872 		debug_cond(DEBUG_DEV_PKT, "sending UDP to %pI4/%pM\n",
873 			   &dest, ether);
874 		net_send_packet(net_tx_packet, pkt_hdr_size + payload_len);
875 		return 0;	/* transmitted */
876 	}
877 }
878 
879 #ifdef CONFIG_IP_DEFRAG
880 /*
881  * This function collects fragments in a single packet, according
882  * to the algorithm in RFC815. It returns NULL or the pointer to
883  * a complete packet, in static storage
884  */
885 #ifndef CONFIG_NET_MAXDEFRAG
886 #define CONFIG_NET_MAXDEFRAG 16384
887 #endif
888 #define IP_PKTSIZE (CONFIG_NET_MAXDEFRAG)
889 
890 #define IP_MAXUDP (IP_PKTSIZE - IP_HDR_SIZE)
891 
892 /*
893  * this is the packet being assembled, either data or frag control.
894  * Fragments go by 8 bytes, so this union must be 8 bytes long
895  */
896 struct hole {
897 	/* first_byte is address of this structure */
898 	u16 last_byte;	/* last byte in this hole + 1 (begin of next hole) */
899 	u16 next_hole;	/* index of next (in 8-b blocks), 0 == none */
900 	u16 prev_hole;	/* index of prev, 0 == none */
901 	u16 unused;
902 };
903 
__net_defragment(struct ip_udp_hdr * ip,int * lenp)904 static struct ip_udp_hdr *__net_defragment(struct ip_udp_hdr *ip, int *lenp)
905 {
906 	static uchar pkt_buff[IP_PKTSIZE] __aligned(PKTALIGN);
907 	static u16 first_hole, total_len;
908 	struct hole *payload, *thisfrag, *h, *newh;
909 	struct ip_udp_hdr *localip = (struct ip_udp_hdr *)pkt_buff;
910 	uchar *indata = (uchar *)ip;
911 	int offset8, start, len, done = 0;
912 	u16 ip_off = ntohs(ip->ip_off);
913 
914 	/* payload starts after IP header, this fragment is in there */
915 	payload = (struct hole *)(pkt_buff + IP_HDR_SIZE);
916 	offset8 =  (ip_off & IP_OFFS);
917 	thisfrag = payload + offset8;
918 	start = offset8 * 8;
919 	len = ntohs(ip->ip_len) - IP_HDR_SIZE;
920 
921 	if (start + len > IP_MAXUDP) /* fragment extends too far */
922 		return NULL;
923 
924 	if (!total_len || localip->ip_id != ip->ip_id) {
925 		/* new (or different) packet, reset structs */
926 		total_len = 0xffff;
927 		payload[0].last_byte = ~0;
928 		payload[0].next_hole = 0;
929 		payload[0].prev_hole = 0;
930 		first_hole = 0;
931 		/* any IP header will work, copy the first we received */
932 		memcpy(localip, ip, IP_HDR_SIZE);
933 	}
934 
935 	/*
936 	 * What follows is the reassembly algorithm. We use the payload
937 	 * array as a linked list of hole descriptors, as each hole starts
938 	 * at a multiple of 8 bytes. However, last byte can be whatever value,
939 	 * so it is represented as byte count, not as 8-byte blocks.
940 	 */
941 
942 	h = payload + first_hole;
943 	while (h->last_byte < start) {
944 		if (!h->next_hole) {
945 			/* no hole that far away */
946 			return NULL;
947 		}
948 		h = payload + h->next_hole;
949 	}
950 
951 	/* last fragment may be 1..7 bytes, the "+7" forces acceptance */
952 	if (offset8 + ((len + 7) / 8) <= h - payload) {
953 		/* no overlap with holes (dup fragment?) */
954 		return NULL;
955 	}
956 
957 	if (!(ip_off & IP_FLAGS_MFRAG)) {
958 		/* no more fragmentss: truncate this (last) hole */
959 		total_len = start + len;
960 		h->last_byte = start + len;
961 	}
962 
963 	/*
964 	 * There is some overlap: fix the hole list. This code doesn't
965 	 * deal with a fragment that overlaps with two different holes
966 	 * (thus being a superset of a previously-received fragment).
967 	 */
968 
969 	if ((h >= thisfrag) && (h->last_byte <= start + len)) {
970 		/* complete overlap with hole: remove hole */
971 		if (!h->prev_hole && !h->next_hole) {
972 			/* last remaining hole */
973 			done = 1;
974 		} else if (!h->prev_hole) {
975 			/* first hole */
976 			first_hole = h->next_hole;
977 			payload[h->next_hole].prev_hole = 0;
978 		} else if (!h->next_hole) {
979 			/* last hole */
980 			payload[h->prev_hole].next_hole = 0;
981 		} else {
982 			/* in the middle of the list */
983 			payload[h->next_hole].prev_hole = h->prev_hole;
984 			payload[h->prev_hole].next_hole = h->next_hole;
985 		}
986 
987 	} else if (h->last_byte <= start + len) {
988 		/* overlaps with final part of the hole: shorten this hole */
989 		h->last_byte = start;
990 
991 	} else if (h >= thisfrag) {
992 		/* overlaps with initial part of the hole: move this hole */
993 		newh = thisfrag + (len / 8);
994 		*newh = *h;
995 		h = newh;
996 		if (h->next_hole)
997 			payload[h->next_hole].prev_hole = (h - payload);
998 		if (h->prev_hole)
999 			payload[h->prev_hole].next_hole = (h - payload);
1000 		else
1001 			first_hole = (h - payload);
1002 
1003 	} else {
1004 		/* fragment sits in the middle: split the hole */
1005 		newh = thisfrag + (len / 8);
1006 		*newh = *h;
1007 		h->last_byte = start;
1008 		h->next_hole = (newh - payload);
1009 		newh->prev_hole = (h - payload);
1010 		if (newh->next_hole)
1011 			payload[newh->next_hole].prev_hole = (newh - payload);
1012 	}
1013 
1014 	/* finally copy this fragment and possibly return whole packet */
1015 	memcpy((uchar *)thisfrag, indata + IP_HDR_SIZE, len);
1016 	if (!done)
1017 		return NULL;
1018 
1019 	localip->ip_len = htons(total_len);
1020 	*lenp = total_len + IP_HDR_SIZE;
1021 	return localip;
1022 }
1023 
net_defragment(struct ip_udp_hdr * ip,int * lenp)1024 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
1025 	int *lenp)
1026 {
1027 	u16 ip_off = ntohs(ip->ip_off);
1028 	if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
1029 		return ip; /* not a fragment */
1030 	return __net_defragment(ip, lenp);
1031 }
1032 
1033 #else /* !CONFIG_IP_DEFRAG */
1034 
net_defragment(struct ip_udp_hdr * ip,int * lenp)1035 static inline struct ip_udp_hdr *net_defragment(struct ip_udp_hdr *ip,
1036 	int *lenp)
1037 {
1038 	u16 ip_off = ntohs(ip->ip_off);
1039 	if (!(ip_off & (IP_OFFS | IP_FLAGS_MFRAG)))
1040 		return ip; /* not a fragment */
1041 	return NULL;
1042 }
1043 #endif
1044 
1045 /**
1046  * Receive an ICMP packet. We deal with REDIRECT and PING here, and silently
1047  * drop others.
1048  *
1049  * @parma ip	IP packet containing the ICMP
1050  */
receive_icmp(struct ip_udp_hdr * ip,int len,struct in_addr src_ip,struct ethernet_hdr * et)1051 static void receive_icmp(struct ip_udp_hdr *ip, int len,
1052 			struct in_addr src_ip, struct ethernet_hdr *et)
1053 {
1054 	struct icmp_hdr *icmph = (struct icmp_hdr *)&ip->udp_src;
1055 
1056 	switch (icmph->type) {
1057 	case ICMP_REDIRECT:
1058 		if (icmph->code != ICMP_REDIR_HOST)
1059 			return;
1060 		printf(" ICMP Host Redirect to %pI4 ",
1061 		       &icmph->un.gateway);
1062 		break;
1063 	default:
1064 #if defined(CONFIG_CMD_PING)
1065 		ping_receive(et, ip, len);
1066 #endif
1067 #ifdef CONFIG_CMD_TFTPPUT
1068 		if (packet_icmp_handler)
1069 			packet_icmp_handler(icmph->type, icmph->code,
1070 					    ntohs(ip->udp_dst), src_ip,
1071 					    ntohs(ip->udp_src), icmph->un.data,
1072 					    ntohs(ip->udp_len));
1073 #endif
1074 		break;
1075 	}
1076 }
1077 
net_process_received_packet(uchar * in_packet,int len)1078 void net_process_received_packet(uchar *in_packet, int len)
1079 {
1080 	struct ethernet_hdr *et;
1081 	struct ip_udp_hdr *ip;
1082 	struct in_addr dst_ip;
1083 	struct in_addr src_ip;
1084 	int eth_proto;
1085 #if defined(CONFIG_CMD_CDP)
1086 	int iscdp;
1087 #endif
1088 	ushort cti = 0, vlanid = VLAN_NONE, myvlanid, mynvlanid;
1089 
1090 	debug_cond(DEBUG_NET_PKT, "packet received\n");
1091 
1092 #if defined(CONFIG_CMD_PCAP)
1093 	pcap_post(in_packet, len, false);
1094 #endif
1095 	net_rx_packet = in_packet;
1096 	net_rx_packet_len = len;
1097 	et = (struct ethernet_hdr *)in_packet;
1098 
1099 	/* too small packet? */
1100 	if (len < ETHER_HDR_SIZE)
1101 		return;
1102 
1103 #if defined(CONFIG_API) || defined(CONFIG_EFI_LOADER)
1104 	if (push_packet) {
1105 		(*push_packet)(in_packet, len);
1106 		return;
1107 	}
1108 #endif
1109 
1110 #if defined(CONFIG_CMD_CDP)
1111 	/* keep track if packet is CDP */
1112 	iscdp = is_cdp_packet(et->et_dest);
1113 #endif
1114 
1115 	myvlanid = ntohs(net_our_vlan);
1116 	if (myvlanid == (ushort)-1)
1117 		myvlanid = VLAN_NONE;
1118 	mynvlanid = ntohs(net_native_vlan);
1119 	if (mynvlanid == (ushort)-1)
1120 		mynvlanid = VLAN_NONE;
1121 
1122 	eth_proto = ntohs(et->et_protlen);
1123 
1124 	if (eth_proto < 1514) {
1125 		struct e802_hdr *et802 = (struct e802_hdr *)et;
1126 		/*
1127 		 *	Got a 802.2 packet.  Check the other protocol field.
1128 		 *	XXX VLAN over 802.2+SNAP not implemented!
1129 		 */
1130 		eth_proto = ntohs(et802->et_prot);
1131 
1132 		ip = (struct ip_udp_hdr *)(in_packet + E802_HDR_SIZE);
1133 		len -= E802_HDR_SIZE;
1134 
1135 	} else if (eth_proto != PROT_VLAN) {	/* normal packet */
1136 		ip = (struct ip_udp_hdr *)(in_packet + ETHER_HDR_SIZE);
1137 		len -= ETHER_HDR_SIZE;
1138 
1139 	} else {			/* VLAN packet */
1140 		struct vlan_ethernet_hdr *vet =
1141 			(struct vlan_ethernet_hdr *)et;
1142 
1143 		debug_cond(DEBUG_NET_PKT, "VLAN packet received\n");
1144 
1145 		/* too small packet? */
1146 		if (len < VLAN_ETHER_HDR_SIZE)
1147 			return;
1148 
1149 		/* if no VLAN active */
1150 		if ((ntohs(net_our_vlan) & VLAN_IDMASK) == VLAN_NONE
1151 #if defined(CONFIG_CMD_CDP)
1152 				&& iscdp == 0
1153 #endif
1154 				)
1155 			return;
1156 
1157 		cti = ntohs(vet->vet_tag);
1158 		vlanid = cti & VLAN_IDMASK;
1159 		eth_proto = ntohs(vet->vet_type);
1160 
1161 		ip = (struct ip_udp_hdr *)(in_packet + VLAN_ETHER_HDR_SIZE);
1162 		len -= VLAN_ETHER_HDR_SIZE;
1163 	}
1164 
1165 	debug_cond(DEBUG_NET_PKT, "Receive from protocol 0x%x\n", eth_proto);
1166 
1167 #if defined(CONFIG_CMD_CDP)
1168 	if (iscdp) {
1169 		cdp_receive((uchar *)ip, len);
1170 		return;
1171 	}
1172 #endif
1173 
1174 	if ((myvlanid & VLAN_IDMASK) != VLAN_NONE) {
1175 		if (vlanid == VLAN_NONE)
1176 			vlanid = (mynvlanid & VLAN_IDMASK);
1177 		/* not matched? */
1178 		if (vlanid != (myvlanid & VLAN_IDMASK))
1179 			return;
1180 	}
1181 
1182 	switch (eth_proto) {
1183 	case PROT_ARP:
1184 		arp_receive(et, ip, len);
1185 		break;
1186 
1187 #ifdef CONFIG_CMD_RARP
1188 	case PROT_RARP:
1189 		rarp_receive(ip, len);
1190 		break;
1191 #endif
1192 	case PROT_IP:
1193 		debug_cond(DEBUG_NET_PKT, "Got IP\n");
1194 		/* Before we start poking the header, make sure it is there */
1195 		if (len < IP_UDP_HDR_SIZE) {
1196 			debug("len bad %d < %lu\n", len,
1197 			      (ulong)IP_UDP_HDR_SIZE);
1198 			return;
1199 		}
1200 		/* Check the packet length */
1201 		if (len < ntohs(ip->ip_len)) {
1202 			debug("len bad %d < %d\n", len, ntohs(ip->ip_len));
1203 			return;
1204 		}
1205 		len = ntohs(ip->ip_len);
1206 		debug_cond(DEBUG_NET_PKT, "len=%d, v=%02x\n",
1207 			   len, ip->ip_hl_v & 0xff);
1208 
1209 		/* Can't deal with anything except IPv4 */
1210 		if ((ip->ip_hl_v & 0xf0) != 0x40)
1211 			return;
1212 		/* Can't deal with IP options (headers != 20 bytes) */
1213 		if ((ip->ip_hl_v & 0x0f) > 0x05)
1214 			return;
1215 		/* Check the Checksum of the header */
1216 		if (!ip_checksum_ok((uchar *)ip, IP_HDR_SIZE)) {
1217 			debug("checksum bad\n");
1218 			return;
1219 		}
1220 		/* If it is not for us, ignore it */
1221 		dst_ip = net_read_ip(&ip->ip_dst);
1222 		if (net_ip.s_addr && dst_ip.s_addr != net_ip.s_addr &&
1223 		    dst_ip.s_addr != 0xFFFFFFFF) {
1224 				return;
1225 		}
1226 		/* Read source IP address for later use */
1227 		src_ip = net_read_ip(&ip->ip_src);
1228 		/*
1229 		 * The function returns the unchanged packet if it's not
1230 		 * a fragment, and either the complete packet or NULL if
1231 		 * it is a fragment (if !CONFIG_IP_DEFRAG, it returns NULL)
1232 		 */
1233 		ip = net_defragment(ip, &len);
1234 		if (!ip)
1235 			return;
1236 		/*
1237 		 * watch for ICMP host redirects
1238 		 *
1239 		 * There is no real handler code (yet). We just watch
1240 		 * for ICMP host redirect messages. In case anybody
1241 		 * sees these messages: please contact me
1242 		 * (wd@denx.de), or - even better - send me the
1243 		 * necessary fixes :-)
1244 		 *
1245 		 * Note: in all cases where I have seen this so far
1246 		 * it was a problem with the router configuration,
1247 		 * for instance when a router was configured in the
1248 		 * BOOTP reply, but the TFTP server was on the same
1249 		 * subnet. So this is probably a warning that your
1250 		 * configuration might be wrong. But I'm not really
1251 		 * sure if there aren't any other situations.
1252 		 *
1253 		 * Simon Glass <sjg@chromium.org>: We get an ICMP when
1254 		 * we send a tftp packet to a dead connection, or when
1255 		 * there is no server at the other end.
1256 		 */
1257 		if (ip->ip_p == IPPROTO_ICMP) {
1258 			receive_icmp(ip, len, src_ip, et);
1259 			return;
1260 		} else if (ip->ip_p != IPPROTO_UDP) {	/* Only UDP packets */
1261 			return;
1262 		}
1263 
1264 		if (ntohs(ip->udp_len) < UDP_HDR_SIZE || ntohs(ip->udp_len) > ntohs(ip->ip_len))
1265 			return;
1266 
1267 		debug_cond(DEBUG_DEV_PKT,
1268 			   "received UDP (to=%pI4, from=%pI4, len=%d)\n",
1269 			   &dst_ip, &src_ip, len);
1270 
1271 #ifdef CONFIG_UDP_CHECKSUM
1272 		if (ip->udp_xsum != 0) {
1273 			ulong   xsum;
1274 			u8 *sumptr;
1275 			ushort  sumlen;
1276 
1277 			xsum  = ip->ip_p;
1278 			xsum += (ntohs(ip->udp_len));
1279 			xsum += (ntohl(ip->ip_src.s_addr) >> 16) & 0x0000ffff;
1280 			xsum += (ntohl(ip->ip_src.s_addr) >>  0) & 0x0000ffff;
1281 			xsum += (ntohl(ip->ip_dst.s_addr) >> 16) & 0x0000ffff;
1282 			xsum += (ntohl(ip->ip_dst.s_addr) >>  0) & 0x0000ffff;
1283 
1284 			sumlen = ntohs(ip->udp_len);
1285 			sumptr = (u8 *)&ip->udp_src;
1286 
1287 			while (sumlen > 1) {
1288 				/* inlined ntohs() to avoid alignment errors */
1289 				xsum += (sumptr[0] << 8) + sumptr[1];
1290 				sumptr += 2;
1291 				sumlen -= 2;
1292 			}
1293 			if (sumlen > 0)
1294 				xsum += (sumptr[0] << 8) + sumptr[0];
1295 			while ((xsum >> 16) != 0) {
1296 				xsum = (xsum & 0x0000ffff) +
1297 				       ((xsum >> 16) & 0x0000ffff);
1298 			}
1299 			if ((xsum != 0x00000000) && (xsum != 0x0000ffff)) {
1300 				printf(" UDP wrong checksum %08lx %08x\n",
1301 				       xsum, ntohs(ip->udp_xsum));
1302 				return;
1303 			}
1304 		}
1305 #endif
1306 
1307 #if defined(CONFIG_NETCONSOLE) && !defined(CONFIG_SPL_BUILD)
1308 		nc_input_packet((uchar *)ip + IP_UDP_HDR_SIZE,
1309 				src_ip,
1310 				ntohs(ip->udp_dst),
1311 				ntohs(ip->udp_src),
1312 				ntohs(ip->udp_len) - UDP_HDR_SIZE);
1313 #endif
1314 		/*
1315 		 * IP header OK.  Pass the packet to the current handler.
1316 		 */
1317 		(*udp_packet_handler)((uchar *)ip + IP_UDP_HDR_SIZE,
1318 				      ntohs(ip->udp_dst),
1319 				      src_ip,
1320 				      ntohs(ip->udp_src),
1321 				      ntohs(ip->udp_len) - UDP_HDR_SIZE);
1322 		break;
1323 #ifdef CONFIG_CMD_WOL
1324 	case PROT_WOL:
1325 		wol_receive(ip, len);
1326 		break;
1327 #endif
1328 	}
1329 }
1330 
1331 /**********************************************************************/
1332 
net_check_prereq(enum proto_t protocol)1333 static int net_check_prereq(enum proto_t protocol)
1334 {
1335 	switch (protocol) {
1336 		/* Fall through */
1337 #if defined(CONFIG_CMD_PING)
1338 	case PING:
1339 		if (net_ping_ip.s_addr == 0) {
1340 			puts("*** ERROR: ping address not given\n");
1341 			return 1;
1342 		}
1343 		goto common;
1344 #endif
1345 #if defined(CONFIG_CMD_SNTP)
1346 	case SNTP:
1347 		if (net_ntp_server.s_addr == 0) {
1348 			puts("*** ERROR: NTP server address not given\n");
1349 			return 1;
1350 		}
1351 		goto common;
1352 #endif
1353 #if defined(CONFIG_CMD_DNS)
1354 	case DNS:
1355 		if (net_dns_server.s_addr == 0) {
1356 			puts("*** ERROR: DNS server address not given\n");
1357 			return 1;
1358 		}
1359 		goto common;
1360 #endif
1361 #if defined(CONFIG_CMD_NFS)
1362 	case NFS:
1363 #endif
1364 		/* Fall through */
1365 	case TFTPGET:
1366 	case TFTPPUT:
1367 		if (net_server_ip.s_addr == 0 && !is_serverip_in_cmd()) {
1368 			puts("*** ERROR: `serverip' not set\n");
1369 			return 1;
1370 		}
1371 #if	defined(CONFIG_CMD_PING) || defined(CONFIG_CMD_SNTP) || \
1372 	defined(CONFIG_CMD_DNS)
1373 common:
1374 #endif
1375 		/* Fall through */
1376 
1377 	case NETCONS:
1378 	case FASTBOOT:
1379 	case TFTPSRV:
1380 		if (net_ip.s_addr == 0) {
1381 			puts("*** ERROR: `ipaddr' not set\n");
1382 			return 1;
1383 		}
1384 		/* Fall through */
1385 
1386 #ifdef CONFIG_CMD_RARP
1387 	case RARP:
1388 #endif
1389 	case BOOTP:
1390 	case CDP:
1391 	case DHCP:
1392 	case LINKLOCAL:
1393 		if (memcmp(net_ethaddr, "\0\0\0\0\0\0", 6) == 0) {
1394 			int num = eth_get_dev_index();
1395 
1396 			switch (num) {
1397 			case -1:
1398 				puts("*** ERROR: No ethernet found.\n");
1399 				return 1;
1400 			case 0:
1401 				puts("*** ERROR: `ethaddr' not set\n");
1402 				break;
1403 			default:
1404 				printf("*** ERROR: `eth%daddr' not set\n",
1405 				       num);
1406 				break;
1407 			}
1408 
1409 			net_start_again();
1410 			return 2;
1411 		}
1412 		/* Fall through */
1413 	default:
1414 		return 0;
1415 	}
1416 	return 0;		/* OK */
1417 }
1418 /**********************************************************************/
1419 
1420 int
net_eth_hdr_size(void)1421 net_eth_hdr_size(void)
1422 {
1423 	ushort myvlanid;
1424 
1425 	myvlanid = ntohs(net_our_vlan);
1426 	if (myvlanid == (ushort)-1)
1427 		myvlanid = VLAN_NONE;
1428 
1429 	return ((myvlanid & VLAN_IDMASK) == VLAN_NONE) ? ETHER_HDR_SIZE :
1430 		VLAN_ETHER_HDR_SIZE;
1431 }
1432 
net_set_ether(uchar * xet,const uchar * dest_ethaddr,uint prot)1433 int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot)
1434 {
1435 	struct ethernet_hdr *et = (struct ethernet_hdr *)xet;
1436 	ushort myvlanid;
1437 
1438 	myvlanid = ntohs(net_our_vlan);
1439 	if (myvlanid == (ushort)-1)
1440 		myvlanid = VLAN_NONE;
1441 
1442 	memcpy(et->et_dest, dest_ethaddr, 6);
1443 	memcpy(et->et_src, net_ethaddr, 6);
1444 	if ((myvlanid & VLAN_IDMASK) == VLAN_NONE) {
1445 		et->et_protlen = htons(prot);
1446 		return ETHER_HDR_SIZE;
1447 	} else {
1448 		struct vlan_ethernet_hdr *vet =
1449 			(struct vlan_ethernet_hdr *)xet;
1450 
1451 		vet->vet_vlan_type = htons(PROT_VLAN);
1452 		vet->vet_tag = htons((0 << 5) | (myvlanid & VLAN_IDMASK));
1453 		vet->vet_type = htons(prot);
1454 		return VLAN_ETHER_HDR_SIZE;
1455 	}
1456 }
1457 
net_update_ether(struct ethernet_hdr * et,uchar * addr,uint prot)1458 int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot)
1459 {
1460 	ushort protlen;
1461 
1462 	memcpy(et->et_dest, addr, 6);
1463 	memcpy(et->et_src, net_ethaddr, 6);
1464 	protlen = ntohs(et->et_protlen);
1465 	if (protlen == PROT_VLAN) {
1466 		struct vlan_ethernet_hdr *vet =
1467 			(struct vlan_ethernet_hdr *)et;
1468 		vet->vet_type = htons(prot);
1469 		return VLAN_ETHER_HDR_SIZE;
1470 	} else if (protlen > 1514) {
1471 		et->et_protlen = htons(prot);
1472 		return ETHER_HDR_SIZE;
1473 	} else {
1474 		/* 802.2 + SNAP */
1475 		struct e802_hdr *et802 = (struct e802_hdr *)et;
1476 		et802->et_prot = htons(prot);
1477 		return E802_HDR_SIZE;
1478 	}
1479 }
1480 
net_set_ip_header(uchar * pkt,struct in_addr dest,struct in_addr source,u16 pkt_len,u8 proto)1481 void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source,
1482 		       u16 pkt_len, u8 proto)
1483 {
1484 	struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
1485 
1486 	/*
1487 	 *	Construct an IP header.
1488 	 */
1489 	/* IP_HDR_SIZE / 4 (not including UDP) */
1490 	ip->ip_hl_v  = 0x45;
1491 	ip->ip_tos   = 0;
1492 	ip->ip_len   = htons(pkt_len);
1493 	ip->ip_p     = proto;
1494 	ip->ip_id    = htons(net_ip_id++);
1495 	ip->ip_off   = htons(IP_FLAGS_DFRAG);	/* Don't fragment */
1496 	ip->ip_ttl   = 255;
1497 	ip->ip_sum   = 0;
1498 	/* already in network byte order */
1499 	net_copy_ip((void *)&ip->ip_src, &source);
1500 	/* already in network byte order */
1501 	net_copy_ip((void *)&ip->ip_dst, &dest);
1502 
1503 	ip->ip_sum   = compute_ip_checksum(ip, IP_HDR_SIZE);
1504 }
1505 
net_set_udp_header(uchar * pkt,struct in_addr dest,int dport,int sport,int len)1506 void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport, int sport,
1507 			int len)
1508 {
1509 	struct ip_udp_hdr *ip = (struct ip_udp_hdr *)pkt;
1510 
1511 	/*
1512 	 *	If the data is an odd number of bytes, zero the
1513 	 *	byte after the last byte so that the checksum
1514 	 *	will work.
1515 	 */
1516 	if (len & 1)
1517 		pkt[IP_UDP_HDR_SIZE + len] = 0;
1518 
1519 	net_set_ip_header(pkt, dest, net_ip, IP_UDP_HDR_SIZE + len,
1520 			  IPPROTO_UDP);
1521 
1522 	ip->udp_src  = htons(sport);
1523 	ip->udp_dst  = htons(dport);
1524 	ip->udp_len  = htons(UDP_HDR_SIZE + len);
1525 	ip->udp_xsum = 0;
1526 }
1527 
copy_filename(char * dst,const char * src,int size)1528 void copy_filename(char *dst, const char *src, int size)
1529 {
1530 	if (src && *src && (*src == '"')) {
1531 		++src;
1532 		--size;
1533 	}
1534 
1535 	while ((--size > 0) && src && *src && (*src != '"'))
1536 		*dst++ = *src++;
1537 	*dst = '\0';
1538 }
1539 
is_serverip_in_cmd(void)1540 int is_serverip_in_cmd(void)
1541 {
1542 	return !!strchr(net_boot_file_name, ':');
1543 }
1544 
net_parse_bootfile(struct in_addr * ipaddr,char * filename,int max_len)1545 int net_parse_bootfile(struct in_addr *ipaddr, char *filename, int max_len)
1546 {
1547 	char *colon;
1548 
1549 	if (net_boot_file_name[0] == '\0')
1550 		return 0;
1551 
1552 	colon = strchr(net_boot_file_name, ':');
1553 	if (colon) {
1554 		if (ipaddr)
1555 			*ipaddr = string_to_ip(net_boot_file_name);
1556 		strncpy(filename, colon + 1, max_len);
1557 	} else {
1558 		strncpy(filename, net_boot_file_name, max_len);
1559 	}
1560 	filename[max_len - 1] = '\0';
1561 
1562 	return 1;
1563 }
1564 
1565 #if	defined(CONFIG_CMD_NFS)		|| \
1566 	defined(CONFIG_CMD_SNTP)	|| \
1567 	defined(CONFIG_CMD_DNS)
1568 /*
1569  * make port a little random (1024-17407)
1570  * This keeps the math somewhat trivial to compute, and seems to work with
1571  * all supported protocols/clients/servers
1572  */
random_port(void)1573 unsigned int random_port(void)
1574 {
1575 	return 1024 + (get_timer(0) % 0x4000);
1576 }
1577 #endif
1578 
ip_to_string(struct in_addr x,char * s)1579 void ip_to_string(struct in_addr x, char *s)
1580 {
1581 	x.s_addr = ntohl(x.s_addr);
1582 	sprintf(s, "%d.%d.%d.%d",
1583 		(int) ((x.s_addr >> 24) & 0xff),
1584 		(int) ((x.s_addr >> 16) & 0xff),
1585 		(int) ((x.s_addr >> 8) & 0xff),
1586 		(int) ((x.s_addr >> 0) & 0xff)
1587 	);
1588 }
1589 
vlan_to_string(ushort x,char * s)1590 void vlan_to_string(ushort x, char *s)
1591 {
1592 	x = ntohs(x);
1593 
1594 	if (x == (ushort)-1)
1595 		x = VLAN_NONE;
1596 
1597 	if (x == VLAN_NONE)
1598 		strcpy(s, "none");
1599 	else
1600 		sprintf(s, "%d", x & VLAN_IDMASK);
1601 }
1602 
string_to_vlan(const char * s)1603 ushort string_to_vlan(const char *s)
1604 {
1605 	ushort id;
1606 
1607 	if (s == NULL)
1608 		return htons(VLAN_NONE);
1609 
1610 	if (*s < '0' || *s > '9')
1611 		id = VLAN_NONE;
1612 	else
1613 		id = (ushort)simple_strtoul(s, NULL, 10);
1614 
1615 	return htons(id);
1616 }
1617 
env_get_vlan(char * var)1618 ushort env_get_vlan(char *var)
1619 {
1620 	return string_to_vlan(env_get(var));
1621 }
1622