• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (c) 2018 The Chromium OS Authors. All rights reserved.
2  * Use of this source code is governed by a BSD-style license that can be
3  * found in the LICENSE file.
4  */
5 
6 /* Host communication command constants for Chrome EC */
7 
8 #ifndef __CROS_EC_COMMANDS_H
9 #define __CROS_EC_COMMANDS_H
10 
11 /*
12  * Protocol overview
13  *
14  * request:  CMD [ P0 P1 P2 ... Pn S ]
15  * response: ERR [ P0 P1 P2 ... Pn S ]
16  *
17  * where the bytes are defined as follow :
18  *      - CMD is the command code. (defined by EC_CMD_ constants)
19  *      - ERR is the error code. (defined by EC_RES_ constants)
20  *      - Px is the optional payload.
21  *        it is not sent if the error code is not success.
22  *        (defined by ec_params_ and ec_response_ structures)
23  *      - S is the checksum which is the sum of all payload bytes.
24  *
25  * On LPC, CMD and ERR are sent/received at EC_LPC_ADDR_KERNEL|USER_CMD
26  * and the payloads are sent/received at EC_LPC_ADDR_KERNEL|USER_PARAM.
27  * On I2C, all bytes are sent serially in the same message.
28  */
29 
30 /*
31  * Current version of this protocol
32  *
33  * TODO(crosbug.com/p/11223): This is effectively useless; protocol is
34  * determined in other ways.  Remove this once the kernel code no longer
35  * depends on it.
36  */
37 #define EC_PROTO_VERSION          0x00000002
38 
39 /* Command version mask */
40 #define EC_VER_MASK(version) (1UL << (version))
41 
42 /* I/O addresses for ACPI commands */
43 #define EC_LPC_ADDR_ACPI_DATA  0x62
44 #define EC_LPC_ADDR_ACPI_CMD   0x66
45 
46 /* I/O addresses for host command */
47 #define EC_LPC_ADDR_HOST_DATA  0x200
48 #define EC_LPC_ADDR_HOST_CMD   0x204
49 
50 /* I/O addresses for host command args and params */
51 /* Protocol version 2 */
52 #define EC_LPC_ADDR_HOST_ARGS    0x800  /* And 0x801, 0x802, 0x803 */
53 #define EC_LPC_ADDR_HOST_PARAM   0x804  /* For version 2 params; size is
54 					 * EC_PROTO2_MAX_PARAM_SIZE */
55 /* Protocol version 3 */
56 #define EC_LPC_ADDR_HOST_PACKET  0x800  /* Offset of version 3 packet */
57 #define EC_LPC_HOST_PACKET_SIZE  0x100  /* Max size of version 3 packet */
58 
59 /* The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff
60  * and they tell the kernel that so we have to think of it as two parts. */
61 #define EC_HOST_CMD_REGION0    0x800
62 #define EC_HOST_CMD_REGION1    0x880
63 #define EC_HOST_CMD_REGION_SIZE 0x80
64 
65 /* EC command register bit functions */
66 #define EC_LPC_CMDR_DATA	(1 << 0)  /* Data ready for host to read */
67 #define EC_LPC_CMDR_PENDING	(1 << 1)  /* Write pending to EC */
68 #define EC_LPC_CMDR_BUSY	(1 << 2)  /* EC is busy processing a command */
69 #define EC_LPC_CMDR_CMD		(1 << 3)  /* Last host write was a command */
70 #define EC_LPC_CMDR_ACPI_BRST	(1 << 4)  /* Burst mode (not used) */
71 #define EC_LPC_CMDR_SCI		(1 << 5)  /* SCI event is pending */
72 #define EC_LPC_CMDR_SMI		(1 << 6)  /* SMI event is pending */
73 
74 /* MEC uses 0x800/0x804 as register/index pair, thus an 8-byte resource */
75 #define MEC_EMI_BASE		0x800
76 #define MEC_EMI_SIZE		8
77 
78 #define EC_LPC_ADDR_MEMMAP       0x900
79 #define EC_MEMMAP_SIZE         255 /* ACPI IO buffer max is 255 bytes */
80 #define EC_MEMMAP_TEXT_MAX     8   /* Size of a string in the memory map */
81 
82 /* The offset address of each type of data in mapped memory. */
83 #define EC_MEMMAP_TEMP_SENSOR      0x00 /* Temp sensors 0x00 - 0x0f */
84 #define EC_MEMMAP_FAN              0x10 /* Fan speeds 0x10 - 0x17 */
85 #define EC_MEMMAP_TEMP_SENSOR_B    0x18 /* More temp sensors 0x18 - 0x1f */
86 #define EC_MEMMAP_ID               0x20 /* 0x20 == 'E', 0x21 == 'C' */
87 #define EC_MEMMAP_ID_VERSION       0x22 /* Version of data in 0x20 - 0x2f */
88 #define EC_MEMMAP_THERMAL_VERSION  0x23 /* Version of data in 0x00 - 0x1f */
89 #define EC_MEMMAP_BATTERY_VERSION  0x24 /* Version of data in 0x40 - 0x7f */
90 #define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */
91 #define EC_MEMMAP_EVENTS_VERSION   0x26 /* Version of data in 0x34 - 0x3f */
92 #define EC_MEMMAP_HOST_CMD_FLAGS   0x27 /* Host cmd interface flags (8 bits) */
93 /* Unused 0x28 - 0x2f */
94 #define EC_MEMMAP_SWITCHES         0x30	/* 8 bits */
95 /* Unused 0x31 - 0x33 */
96 #define EC_MEMMAP_HOST_EVENTS      0x34 /* 32 bits */
97 /* Reserve 0x38 - 0x3f for additional host event-related stuff */
98 /* Battery values are all 32 bits */
99 #define EC_MEMMAP_BATT_VOLT        0x40 /* Battery Present Voltage */
100 #define EC_MEMMAP_BATT_RATE        0x44 /* Battery Present Rate */
101 #define EC_MEMMAP_BATT_CAP         0x48 /* Battery Remaining Capacity */
102 #define EC_MEMMAP_BATT_FLAG        0x4c /* Battery State, defined below */
103 #define EC_MEMMAP_BATT_DCAP        0x50 /* Battery Design Capacity */
104 #define EC_MEMMAP_BATT_DVLT        0x54 /* Battery Design Voltage */
105 #define EC_MEMMAP_BATT_LFCC        0x58 /* Battery Last Full Charge Capacity */
106 #define EC_MEMMAP_BATT_CCNT        0x5c /* Battery Cycle Count */
107 /* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */
108 #define EC_MEMMAP_BATT_MFGR        0x60 /* Battery Manufacturer String */
109 #define EC_MEMMAP_BATT_MODEL       0x68 /* Battery Model Number String */
110 #define EC_MEMMAP_BATT_SERIAL      0x70 /* Battery Serial Number String */
111 #define EC_MEMMAP_BATT_TYPE        0x78 /* Battery Type String */
112 #define EC_MEMMAP_ALS              0x80 /* ALS readings in lux (2 X 16 bits) */
113 /* Unused 0x84 - 0x8f */
114 #define EC_MEMMAP_ACC_STATUS       0x90 /* Accelerometer status (8 bits )*/
115 /* Unused 0x91 */
116 #define EC_MEMMAP_ACC_DATA         0x92 /* Accelerometers data 0x92 - 0x9f */
117 /* 0x92: Lid Angle if available, LID_ANGLE_UNRELIABLE otherwise */
118 /* 0x94 - 0x99: 1st Accelerometer */
119 /* 0x9a - 0x9f: 2nd Accelerometer */
120 #define EC_MEMMAP_GYRO_DATA        0xa0 /* Gyroscope data 0xa0 - 0xa5 */
121 /* Unused 0xa6 - 0xdf */
122 
123 /*
124  * ACPI is unable to access memory mapped data at or above this offset due to
125  * limitations of the ACPI protocol. Do not place data in the range 0xe0 - 0xfe
126  * which might be needed by ACPI.
127  */
128 #define EC_MEMMAP_NO_ACPI 0xe0
129 
130 /* Define the format of the accelerometer mapped memory status byte. */
131 #define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK  0x0f
132 #define EC_MEMMAP_ACC_STATUS_BUSY_BIT        (1 << 4)
133 #define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT    (1 << 7)
134 
135 /* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */
136 #define EC_TEMP_SENSOR_ENTRIES     16
137 /*
138  * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B.
139  *
140  * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2.
141  */
142 #define EC_TEMP_SENSOR_B_ENTRIES      8
143 
144 /* Special values for mapped temperature sensors */
145 #define EC_TEMP_SENSOR_NOT_PRESENT    0xff
146 #define EC_TEMP_SENSOR_ERROR          0xfe
147 #define EC_TEMP_SENSOR_NOT_POWERED    0xfd
148 #define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc
149 /*
150  * The offset of temperature value stored in mapped memory.  This allows
151  * reporting a temperature range of 200K to 454K = -73C to 181C.
152  */
153 #define EC_TEMP_SENSOR_OFFSET      200
154 
155 /*
156  * Number of ALS readings at EC_MEMMAP_ALS
157  */
158 #define EC_ALS_ENTRIES             2
159 
160 /*
161  * The default value a temperature sensor will return when it is present but
162  * has not been read this boot.  This is a reasonable number to avoid
163  * triggering alarms on the host.
164  */
165 #define EC_TEMP_SENSOR_DEFAULT     (296 - EC_TEMP_SENSOR_OFFSET)
166 
167 #define EC_FAN_SPEED_ENTRIES       4       /* Number of fans at EC_MEMMAP_FAN */
168 #define EC_FAN_SPEED_NOT_PRESENT   0xffff  /* Entry not present */
169 #define EC_FAN_SPEED_STALLED       0xfffe  /* Fan stalled */
170 
171 /* Battery bit flags at EC_MEMMAP_BATT_FLAG. */
172 #define EC_BATT_FLAG_AC_PRESENT   0x01
173 #define EC_BATT_FLAG_BATT_PRESENT 0x02
174 #define EC_BATT_FLAG_DISCHARGING  0x04
175 #define EC_BATT_FLAG_CHARGING     0x08
176 #define EC_BATT_FLAG_LEVEL_CRITICAL 0x10
177 
178 /* Switch flags at EC_MEMMAP_SWITCHES */
179 #define EC_SWITCH_LID_OPEN               0x01
180 #define EC_SWITCH_POWER_BUTTON_PRESSED   0x02
181 #define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04
182 /* Was recovery requested via keyboard; now unused. */
183 #define EC_SWITCH_IGNORE1		 0x08
184 /* Recovery requested via dedicated signal (from servo board) */
185 #define EC_SWITCH_DEDICATED_RECOVERY     0x10
186 /* Was fake developer mode switch; now unused.  Remove in next refactor. */
187 #define EC_SWITCH_IGNORE0                0x20
188 
189 /* Host command interface flags */
190 /* Host command interface supports LPC args (LPC interface only) */
191 #define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED  0x01
192 /* Host command interface supports version 3 protocol */
193 #define EC_HOST_CMD_FLAG_VERSION_3   0x02
194 
195 /* Wireless switch flags */
196 #define EC_WIRELESS_SWITCH_ALL       ~0x00  /* All flags */
197 #define EC_WIRELESS_SWITCH_WLAN       0x01  /* WLAN radio */
198 #define EC_WIRELESS_SWITCH_BLUETOOTH  0x02  /* Bluetooth radio */
199 #define EC_WIRELESS_SWITCH_WWAN       0x04  /* WWAN power */
200 #define EC_WIRELESS_SWITCH_WLAN_POWER 0x08  /* WLAN power */
201 
202 /*****************************************************************************/
203 /*
204  * ACPI commands
205  *
206  * These are valid ONLY on the ACPI command/data port.
207  */
208 
209 /*
210  * ACPI Read Embedded Controller
211  *
212  * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
213  *
214  * Use the following sequence:
215  *
216  *    - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD
217  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
218  *    - Write address to EC_LPC_ADDR_ACPI_DATA
219  *    - Wait for EC_LPC_CMDR_DATA bit to set
220  *    - Read value from EC_LPC_ADDR_ACPI_DATA
221  */
222 #define EC_CMD_ACPI_READ 0x0080
223 
224 /*
225  * ACPI Write Embedded Controller
226  *
227  * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
228  *
229  * Use the following sequence:
230  *
231  *    - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD
232  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
233  *    - Write address to EC_LPC_ADDR_ACPI_DATA
234  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
235  *    - Write value to EC_LPC_ADDR_ACPI_DATA
236  */
237 #define EC_CMD_ACPI_WRITE 0x0081
238 
239 /*
240  * ACPI Burst Enable Embedded Controller
241  *
242  * This enables burst mode on the EC to allow the host to issue several
243  * commands back-to-back. While in this mode, writes to mapped multi-byte
244  * data are locked out to ensure data consistency.
245  */
246 #define EC_CMD_ACPI_BURST_ENABLE 0x0082
247 
248 /*
249  * ACPI Burst Disable Embedded Controller
250  *
251  * This disables burst mode on the EC and stops preventing EC writes to mapped
252  * multi-byte data.
253  */
254 #define EC_CMD_ACPI_BURST_DISABLE 0x0083
255 
256 /*
257  * ACPI Query Embedded Controller
258  *
259  * This clears the lowest-order bit in the currently pending host events, and
260  * sets the result code to the 1-based index of the bit (event 0x00000001 = 1,
261  * event 0x80000000 = 32), or 0 if no event was pending.
262  */
263 #define EC_CMD_ACPI_QUERY_EVENT 0x0084
264 
265 /* Valid addresses in ACPI memory space, for read/write commands */
266 
267 /* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */
268 #define EC_ACPI_MEM_VERSION            0x00
269 /*
270  * Test location; writing value here updates test compliment byte to (0xff -
271  * value).
272  */
273 #define EC_ACPI_MEM_TEST               0x01
274 /* Test compliment; writes here are ignored. */
275 #define EC_ACPI_MEM_TEST_COMPLIMENT    0x02
276 
277 /* Keyboard backlight brightness percent (0 - 100) */
278 #define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03
279 /* DPTF Target Fan Duty (0-100, 0xff for auto/none) */
280 #define EC_ACPI_MEM_FAN_DUTY           0x04
281 
282 /*
283  * DPTF temp thresholds. Any of the EC's temp sensors can have up to two
284  * independent thresholds attached to them. The current value of the ID
285  * register determines which sensor is affected by the THRESHOLD and COMMIT
286  * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme
287  * as the memory-mapped sensors. The COMMIT register applies those settings.
288  *
289  * The spec does not mandate any way to read back the threshold settings
290  * themselves, but when a threshold is crossed the AP needs a way to determine
291  * which sensor(s) are responsible. Each reading of the ID register clears and
292  * returns one sensor ID that has crossed one of its threshold (in either
293  * direction) since the last read. A value of 0xFF means "no new thresholds
294  * have tripped". Setting or enabling the thresholds for a sensor will clear
295  * the unread event count for that sensor.
296  */
297 #define EC_ACPI_MEM_TEMP_ID            0x05
298 #define EC_ACPI_MEM_TEMP_THRESHOLD     0x06
299 #define EC_ACPI_MEM_TEMP_COMMIT        0x07
300 /*
301  * Here are the bits for the COMMIT register:
302  *   bit 0 selects the threshold index for the chosen sensor (0/1)
303  *   bit 1 enables/disables the selected threshold (0 = off, 1 = on)
304  * Each write to the commit register affects one threshold.
305  */
306 #define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK (1 << 0)
307 #define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK (1 << 1)
308 /*
309  * Example:
310  *
311  * Set the thresholds for sensor 2 to 50 C and 60 C:
312  *   write 2 to [0x05]      --  select temp sensor 2
313  *   write 0x7b to [0x06]   --  C_TO_K(50) - EC_TEMP_SENSOR_OFFSET
314  *   write 0x2 to [0x07]    --  enable threshold 0 with this value
315  *   write 0x85 to [0x06]   --  C_TO_K(60) - EC_TEMP_SENSOR_OFFSET
316  *   write 0x3 to [0x07]    --  enable threshold 1 with this value
317  *
318  * Disable the 60 C threshold, leaving the 50 C threshold unchanged:
319  *   write 2 to [0x05]      --  select temp sensor 2
320  *   write 0x1 to [0x07]    --  disable threshold 1
321  */
322 
323 /* DPTF battery charging current limit */
324 #define EC_ACPI_MEM_CHARGING_LIMIT     0x08
325 
326 /* Charging limit is specified in 64 mA steps */
327 #define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA   64
328 /* Value to disable DPTF battery charging limit */
329 #define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED  0xff
330 
331 /*
332  * Report device orientation
333  *   bit 0 device is tablet mode
334  */
335 #define EC_ACPI_MEM_DEVICE_ORIENTATION 0x09
336 #define EC_ACPI_MEM_DEVICE_TABLET_MODE 0x01
337 
338 /*
339  * ACPI addresses 0x20 - 0xff map to EC_MEMMAP offset 0x00 - 0xdf.  This data
340  * is read-only from the AP.  Added in EC_ACPI_MEM_VERSION 2.
341  */
342 #define EC_ACPI_MEM_MAPPED_BEGIN   0x20
343 #define EC_ACPI_MEM_MAPPED_SIZE    0xe0
344 
345 /* Current version of ACPI memory address space */
346 #define EC_ACPI_MEM_VERSION_CURRENT 2
347 
348 
349 /*
350  * This header file is used in coreboot both in C and ACPI code.  The ACPI code
351  * is pre-processed to handle constants but the ASL compiler is unable to
352  * handle actual C code so keep it separate.
353  */
354 #ifndef __ACPI__
355 
356 /*
357  * Define __packed if someone hasn't beat us to it.  Linux kernel style
358  * checking prefers __packed over __attribute__((packed)).
359  */
360 #ifndef __packed
361 #define __packed __attribute__((packed))
362 #endif
363 
364 #ifndef __aligned
365 #define __aligned(x) __attribute__((aligned(x)))
366 #endif
367 
368 /*
369  * Attributes for EC request and response packets.  Just defining __packed
370  * results in inefficient assembly code on ARM, if the structure is actually
371  * 32-bit aligned, as it should be for all buffers.
372  *
373  * Be very careful when adding these to existing structures.  They will round
374  * up the structure size to the specified boundary.
375  *
376  * Also be very careful to make that if a structure is included in some other
377  * parent structure that the alignment will still be true given the packing of
378  * the parent structure.  This is particularly important if the sub-structure
379  * will be passed as a pointer to another function, since that function will
380  * not know about the misaligment caused by the parent structure's packing.
381  *
382  * Also be very careful using __packed - particularly when nesting non-packed
383  * structures inside packed ones.  In fact, DO NOT use __packed directly;
384  * always use one of these attributes.
385  *
386  * Once everything is annotated properly, the following search strings should
387  * not return ANY matches in this file other than right here:
388  *
389  * "__packed" - generates inefficient code; all sub-structs must also be packed
390  *
391  * "struct [^_]" - all structs should be annotated, except for structs that are
392  * members of other structs/unions (and their original declarations should be
393  * annotated).
394  */
395 #ifdef CONFIG_HOSTCMD_ALIGNED
396 
397 /*
398  * Packed structures where offset and size are always aligned to 1, 2, or 4
399  * byte boundary.
400  */
401 #define __ec_align1 __packed
402 #define __ec_align2 __packed __aligned(2)
403 #define __ec_align4 __packed __aligned(4)
404 
405 /*
406  * Packed structure which must be under-aligned, because its size is not a
407  * 4-byte multiple.  This is sub-optimal because it forces byte-wise access
408  * of all multi-byte fields in it, even though they are themselves aligned.
409  *
410  * In theory, we could duplicate the structure with __aligned(4) for accessing
411  * its members, but use the __packed version for sizeof().
412  */
413 #define __ec_align_size1 __packed
414 
415 /*
416  * Packed structure which must be under-aligned, because its offset inside a
417  * parent structure is not a 4-byte multiple.
418  */
419 #define __ec_align_offset1 __packed
420 #define __ec_align_offset2 __packed __aligned(2)
421 
422 /*
423  * Structures which are complicated enough that I'm skipping them on the first
424  * pass.  They are effectively unchanged from their previous definitions.
425  *
426  * TODO(rspangler): Figure out what to do with these.  It's likely necessary
427  * to work out the size and offset of each member and add explicit padding to
428  * maintain those.
429  */
430 #define __ec_todo_packed __packed
431 #define __ec_todo_unpacked
432 
433 #else  /* !CONFIG_HOSTCMD_ALIGNED */
434 
435 /*
436  * Packed structures make no assumption about alignment, so they do inefficient
437  * byte-wise reads.
438  */
439 #define __ec_align1 __packed
440 #define __ec_align2 __packed
441 #define __ec_align4 __packed
442 #define __ec_align_size1 __packed
443 #define __ec_align_offset1 __packed
444 #define __ec_align_offset2 __packed
445 #define __ec_todo_packed __packed
446 #define __ec_todo_unpacked
447 
448 #endif  /* !CONFIG_HOSTCMD_ALIGNED */
449 
450 /* LPC command status byte masks */
451 /* EC has written a byte in the data register and host hasn't read it yet */
452 #define EC_LPC_STATUS_TO_HOST     0x01
453 /* Host has written a command/data byte and the EC hasn't read it yet */
454 #define EC_LPC_STATUS_FROM_HOST   0x02
455 /* EC is processing a command */
456 #define EC_LPC_STATUS_PROCESSING  0x04
457 /* Last write to EC was a command, not data */
458 #define EC_LPC_STATUS_LAST_CMD    0x08
459 /* EC is in burst mode */
460 #define EC_LPC_STATUS_BURST_MODE  0x10
461 /* SCI event is pending (requesting SCI query) */
462 #define EC_LPC_STATUS_SCI_PENDING 0x20
463 /* SMI event is pending (requesting SMI query) */
464 #define EC_LPC_STATUS_SMI_PENDING 0x40
465 /* (reserved) */
466 #define EC_LPC_STATUS_RESERVED    0x80
467 
468 /*
469  * EC is busy.  This covers both the EC processing a command, and the host has
470  * written a new command but the EC hasn't picked it up yet.
471  */
472 #define EC_LPC_STATUS_BUSY_MASK \
473 	(EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING)
474 
475 /* Host command response codes (16-bit).  Note that response codes should be
476  * stored in a uint16_t rather than directly in a value of this type.
477  */
478 enum ec_status {
479 	EC_RES_SUCCESS = 0,
480 	EC_RES_INVALID_COMMAND = 1,
481 	EC_RES_ERROR = 2,
482 	EC_RES_INVALID_PARAM = 3,
483 	EC_RES_ACCESS_DENIED = 4,
484 	EC_RES_INVALID_RESPONSE = 5,
485 	EC_RES_INVALID_VERSION = 6,
486 	EC_RES_INVALID_CHECKSUM = 7,
487 	EC_RES_IN_PROGRESS = 8,		/* Accepted, command in progress */
488 	EC_RES_UNAVAILABLE = 9,		/* No response available */
489 	EC_RES_TIMEOUT = 10,		/* We got a timeout */
490 	EC_RES_OVERFLOW = 11,		/* Table / data overflow */
491 	EC_RES_INVALID_HEADER = 12,     /* Header contains invalid data */
492 	EC_RES_REQUEST_TRUNCATED = 13,  /* Didn't get the entire request */
493 	EC_RES_RESPONSE_TOO_BIG = 14,   /* Response was too big to handle */
494 	EC_RES_BUS_ERROR = 15,		/* Communications bus error */
495 	EC_RES_BUSY = 16		/* Up but too busy.  Should retry */
496 };
497 
498 /*
499  * Host event codes.  Note these are 1-based, not 0-based, because ACPI query
500  * EC command uses code 0 to mean "no event pending".  We explicitly specify
501  * each value in the enum listing so they won't change if we delete/insert an
502  * item or rearrange the list (it needs to be stable across platforms, not
503  * just within a single compiled instance).
504  */
505 enum host_event_code {
506 	EC_HOST_EVENT_LID_CLOSED = 1,
507 	EC_HOST_EVENT_LID_OPEN = 2,
508 	EC_HOST_EVENT_POWER_BUTTON = 3,
509 	EC_HOST_EVENT_AC_CONNECTED = 4,
510 	EC_HOST_EVENT_AC_DISCONNECTED = 5,
511 	EC_HOST_EVENT_BATTERY_LOW = 6,
512 	EC_HOST_EVENT_BATTERY_CRITICAL = 7,
513 	EC_HOST_EVENT_BATTERY = 8,
514 	EC_HOST_EVENT_THERMAL_THRESHOLD = 9,
515 	/* Event generated by a device attached to the EC */
516 	EC_HOST_EVENT_DEVICE = 10,
517 	EC_HOST_EVENT_THERMAL = 11,
518 	EC_HOST_EVENT_USB_CHARGER = 12,
519 	EC_HOST_EVENT_KEY_PRESSED = 13,
520 	/*
521 	 * EC has finished initializing the host interface.  The host can check
522 	 * for this event following sending a EC_CMD_REBOOT_EC command to
523 	 * determine when the EC is ready to accept subsequent commands.
524 	 */
525 	EC_HOST_EVENT_INTERFACE_READY = 14,
526 	/* Keyboard recovery combo has been pressed */
527 	EC_HOST_EVENT_KEYBOARD_RECOVERY = 15,
528 
529 	/* Shutdown due to thermal overload */
530 	EC_HOST_EVENT_THERMAL_SHUTDOWN = 16,
531 	/* Shutdown due to battery level too low */
532 	EC_HOST_EVENT_BATTERY_SHUTDOWN = 17,
533 
534 	/* Suggest that the AP throttle itself */
535 	EC_HOST_EVENT_THROTTLE_START = 18,
536 	/* Suggest that the AP resume normal speed */
537 	EC_HOST_EVENT_THROTTLE_STOP = 19,
538 
539 	/* Hang detect logic detected a hang and host event timeout expired */
540 	EC_HOST_EVENT_HANG_DETECT = 20,
541 	/* Hang detect logic detected a hang and warm rebooted the AP */
542 	EC_HOST_EVENT_HANG_REBOOT = 21,
543 
544 	/* PD MCU triggering host event */
545 	EC_HOST_EVENT_PD_MCU = 22,
546 
547 	/* Battery Status flags have changed */
548 	EC_HOST_EVENT_BATTERY_STATUS = 23,
549 
550 	/* EC encountered a panic, triggering a reset */
551 	EC_HOST_EVENT_PANIC = 24,
552 
553 	/* Keyboard fastboot combo has been pressed */
554 	EC_HOST_EVENT_KEYBOARD_FASTBOOT = 25,
555 
556 	/* EC RTC event occurred */
557 	EC_HOST_EVENT_RTC = 26,
558 
559 	/* Emulate MKBP event */
560 	EC_HOST_EVENT_MKBP = 27,
561 
562 	/* EC desires to change state of host-controlled USB mux */
563 	EC_HOST_EVENT_USB_MUX = 28,
564 
565 	/* TABLET/LAPTOP mode event*/
566 	EC_HOST_EVENT_MODE_CHANGE = 29,
567 
568 	/* Keyboard recovery combo with hardware reinitialization */
569 	EC_HOST_EVENT_KEYBOARD_RECOVERY_HW_REINIT = 30,
570 
571 	/*
572 	 * Reserve this last bit to indicate that at least one bit in a
573 	 * secondary host event word is set.  See crbug.com/633646.
574 	 */
575 	EC_HOST_EVENT_EXTENDED = 31,
576 
577 	/*
578 	 * The high bit of the event mask is not used as a host event code.  If
579 	 * it reads back as set, then the entire event mask should be
580 	 * considered invalid by the host.  This can happen when reading the
581 	 * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is
582 	 * not initialized on the EC, or improperly configured on the host.
583 	 */
584 	EC_HOST_EVENT_INVALID = 32
585 };
586 /* Host event mask */
587 #define EC_HOST_EVENT_MASK(event_code) (1ULL << ((event_code) - 1))
588 
589 /* Arguments at EC_LPC_ADDR_HOST_ARGS */
590 struct __ec_align4 ec_lpc_host_args {
591 	uint8_t flags;
592 	uint8_t command_version;
593 	uint8_t data_size;
594 	/*
595 	 * Checksum; sum of command + flags + command_version + data_size +
596 	 * all params/response data bytes.
597 	 */
598 	uint8_t checksum;
599 };
600 
601 /* Flags for ec_lpc_host_args.flags */
602 /*
603  * Args are from host.  Data area at EC_LPC_ADDR_HOST_PARAM contains command
604  * params.
605  *
606  * If EC gets a command and this flag is not set, this is an old-style command.
607  * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with
608  * unknown length.  EC must respond with an old-style response (that is,
609  * without setting EC_HOST_ARGS_FLAG_TO_HOST).
610  */
611 #define EC_HOST_ARGS_FLAG_FROM_HOST 0x01
612 /*
613  * Args are from EC.  Data area at EC_LPC_ADDR_HOST_PARAM contains response.
614  *
615  * If EC responds to a command and this flag is not set, this is an old-style
616  * response.  Command version is 0 and response data from EC is at
617  * EC_LPC_ADDR_OLD_PARAM with unknown length.
618  */
619 #define EC_HOST_ARGS_FLAG_TO_HOST   0x02
620 
621 /*****************************************************************************/
622 /*
623  * Byte codes returned by EC over SPI interface.
624  *
625  * These can be used by the AP to debug the EC interface, and to determine
626  * when the EC is not in a state where it will ever get around to responding
627  * to the AP.
628  *
629  * Example of sequence of bytes read from EC for a current good transfer:
630  *   1. -                  - AP asserts chip select (CS#)
631  *   2. EC_SPI_OLD_READY   - AP sends first byte(s) of request
632  *   3. -                  - EC starts handling CS# interrupt
633  *   4. EC_SPI_RECEIVING   - AP sends remaining byte(s) of request
634  *   5. EC_SPI_PROCESSING  - EC starts processing request; AP is clocking in
635  *                           bytes looking for EC_SPI_FRAME_START
636  *   6. -                  - EC finishes processing and sets up response
637  *   7. EC_SPI_FRAME_START - AP reads frame byte
638  *   8. (response packet)  - AP reads response packet
639  *   9. EC_SPI_PAST_END    - Any additional bytes read by AP
640  *   10 -                  - AP deasserts chip select
641  *   11 -                  - EC processes CS# interrupt and sets up DMA for
642  *                           next request
643  *
644  * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than
645  * the following byte values:
646  *   EC_SPI_OLD_READY
647  *   EC_SPI_RX_READY
648  *   EC_SPI_RECEIVING
649  *   EC_SPI_PROCESSING
650  *
651  * Then the EC found an error in the request, or was not ready for the request
652  * and lost data.  The AP should give up waiting for EC_SPI_FRAME_START,
653  * because the EC is unable to tell when the AP is done sending its request.
654  */
655 
656 /*
657  * Framing byte which precedes a response packet from the EC.  After sending a
658  * request, the AP will clock in bytes until it sees the framing byte, then
659  * clock in the response packet.
660  */
661 #define EC_SPI_FRAME_START    0xec
662 
663 /*
664  * Padding bytes which are clocked out after the end of a response packet.
665  */
666 #define EC_SPI_PAST_END       0xed
667 
668 /*
669  * EC is ready to receive, and has ignored the byte sent by the AP.  EC expects
670  * that the AP will send a valid packet header (starting with
671  * EC_COMMAND_PROTOCOL_3) in the next 32 bytes.
672  */
673 #define EC_SPI_RX_READY       0xf8
674 
675 /*
676  * EC has started receiving the request from the AP, but hasn't started
677  * processing it yet.
678  */
679 #define EC_SPI_RECEIVING      0xf9
680 
681 /* EC has received the entire request from the AP and is processing it. */
682 #define EC_SPI_PROCESSING     0xfa
683 
684 /*
685  * EC received bad data from the AP, such as a packet header with an invalid
686  * length.  EC will ignore all data until chip select deasserts.
687  */
688 #define EC_SPI_RX_BAD_DATA    0xfb
689 
690 /*
691  * EC received data from the AP before it was ready.  That is, the AP asserted
692  * chip select and started clocking data before the EC was ready to receive it.
693  * EC will ignore all data until chip select deasserts.
694  */
695 #define EC_SPI_NOT_READY      0xfc
696 
697 /*
698  * EC was ready to receive a request from the AP.  EC has treated the byte sent
699  * by the AP as part of a request packet, or (for old-style ECs) is processing
700  * a fully received packet but is not ready to respond yet.
701  */
702 #define EC_SPI_OLD_READY      0xfd
703 
704 /*****************************************************************************/
705 
706 /*
707  * Protocol version 2 for I2C and SPI send a request this way:
708  *
709  *	0	EC_CMD_VERSION0 + (command version)
710  *	1	Command number
711  *	2	Length of params = N
712  *	3..N+2	Params, if any
713  *	N+3	8-bit checksum of bytes 0..N+2
714  *
715  * The corresponding response is:
716  *
717  *	0	Result code (EC_RES_*)
718  *	1	Length of params = M
719  *	2..M+1	Params, if any
720  *	M+2	8-bit checksum of bytes 0..M+1
721  */
722 #define EC_PROTO2_REQUEST_HEADER_BYTES 3
723 #define EC_PROTO2_REQUEST_TRAILER_BYTES 1
724 #define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES +	\
725 				    EC_PROTO2_REQUEST_TRAILER_BYTES)
726 
727 #define EC_PROTO2_RESPONSE_HEADER_BYTES 2
728 #define EC_PROTO2_RESPONSE_TRAILER_BYTES 1
729 #define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES +	\
730 				     EC_PROTO2_RESPONSE_TRAILER_BYTES)
731 
732 /* Parameter length was limited by the LPC interface */
733 #define EC_PROTO2_MAX_PARAM_SIZE 0xfc
734 
735 /* Maximum request and response packet sizes for protocol version 2 */
736 #define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD +	\
737 				    EC_PROTO2_MAX_PARAM_SIZE)
738 #define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD +	\
739 				     EC_PROTO2_MAX_PARAM_SIZE)
740 
741 /*****************************************************************************/
742 
743 /*
744  * Value written to legacy command port / prefix byte to indicate protocol
745  * 3+ structs are being used.  Usage is bus-dependent.
746  */
747 #define EC_COMMAND_PROTOCOL_3 0xda
748 
749 #define EC_HOST_REQUEST_VERSION 3
750 
751 /* Version 3 request from host */
752 struct __ec_align4 ec_host_request {
753 	/* Structure version (=3)
754 	 *
755 	 * EC will return EC_RES_INVALID_HEADER if it receives a header with a
756 	 * version it doesn't know how to parse.
757 	 */
758 	uint8_t struct_version;
759 
760 	/*
761 	 * Checksum of request and data; sum of all bytes including checksum
762 	 * should total to 0.
763 	 */
764 	uint8_t checksum;
765 
766 	/* Command code */
767 	uint16_t command;
768 
769 	/* Command version */
770 	uint8_t command_version;
771 
772 	/* Unused byte in current protocol version; set to 0 */
773 	uint8_t reserved;
774 
775 	/* Length of data which follows this header */
776 	uint16_t data_len;
777 };
778 
779 #define EC_HOST_RESPONSE_VERSION 3
780 
781 /* Version 3 response from EC */
782 struct __ec_align4 ec_host_response {
783 	/* Structure version (=3) */
784 	uint8_t struct_version;
785 
786 	/*
787 	 * Checksum of response and data; sum of all bytes including checksum
788 	 * should total to 0.
789 	 */
790 	uint8_t checksum;
791 
792 	/* Result code (EC_RES_*) */
793 	uint16_t result;
794 
795 	/* Length of data which follows this header */
796 	uint16_t data_len;
797 
798 	/* Unused bytes in current protocol version; set to 0 */
799 	uint16_t reserved;
800 };
801 
802 /*****************************************************************************/
803 /*
804  * Notes on commands:
805  *
806  * Each command is an 16-bit command value.  Commands which take params or
807  * return response data specify structures for that data.  If no structure is
808  * specified, the command does not input or output data, respectively.
809  * Parameter/response length is implicit in the structs.  Some underlying
810  * communication protocols (I2C, SPI) may add length or checksum headers, but
811  * those are implementation-dependent and not defined here.
812  *
813  * All commands MUST be #defined to be 4-digit UPPER CASE hex values
814  * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
815  */
816 
817 /*****************************************************************************/
818 /* General / test commands */
819 
820 /*
821  * Get protocol version, used to deal with non-backward compatible protocol
822  * changes.
823  */
824 #define EC_CMD_PROTO_VERSION 0x0000
825 
826 struct __ec_align4 ec_response_proto_version {
827 	uint32_t version;
828 };
829 
830 /*
831  * Hello.  This is a simple command to test the EC is responsive to
832  * commands.
833  */
834 #define EC_CMD_HELLO 0x0001
835 
836 struct __ec_align4 ec_params_hello {
837 	uint32_t in_data;  /* Pass anything here */
838 };
839 
840 struct __ec_align4 ec_response_hello {
841 	uint32_t out_data;  /* Output will be in_data + 0x01020304 */
842 };
843 
844 /* Get version number */
845 #define EC_CMD_GET_VERSION 0x0002
846 
847 enum ec_current_image {
848 	EC_IMAGE_UNKNOWN = 0,
849 	EC_IMAGE_RO,
850 	EC_IMAGE_RW
851 };
852 
853 struct __ec_align4 ec_response_get_version {
854 	/* Null-terminated version strings for RO, RW */
855 	char version_string_ro[32];
856 	char version_string_rw[32];
857 	char reserved[32];       /* Was previously RW-B string */
858 	uint32_t current_image;  /* One of ec_current_image */
859 };
860 
861 /* Read test */
862 #define EC_CMD_READ_TEST 0x0003
863 
864 struct __ec_align4 ec_params_read_test {
865 	uint32_t offset;   /* Starting value for read buffer */
866 	uint32_t size;     /* Size to read in bytes */
867 };
868 
869 struct __ec_align4 ec_response_read_test {
870 	uint32_t data[32];
871 };
872 
873 /*
874  * Get build information
875  *
876  * Response is null-terminated string.
877  */
878 #define EC_CMD_GET_BUILD_INFO 0x0004
879 
880 /* Get chip info */
881 #define EC_CMD_GET_CHIP_INFO 0x0005
882 
883 struct __ec_align4 ec_response_get_chip_info {
884 	/* Null-terminated strings */
885 	char vendor[32];
886 	char name[32];
887 	char revision[32];  /* Mask version */
888 };
889 
890 /* Get board HW version */
891 #define EC_CMD_GET_BOARD_VERSION 0x0006
892 
893 struct __ec_align2 ec_response_board_version {
894 	uint16_t board_version;  /* A monotonously incrementing number. */
895 };
896 
897 /*
898  * Read memory-mapped data.
899  *
900  * This is an alternate interface to memory-mapped data for bus protocols
901  * which don't support direct-mapped memory - I2C, SPI, etc.
902  *
903  * Response is params.size bytes of data.
904  */
905 #define EC_CMD_READ_MEMMAP 0x0007
906 
907 struct __ec_align1 ec_params_read_memmap {
908 	uint8_t offset;   /* Offset in memmap (EC_MEMMAP_*) */
909 	uint8_t size;     /* Size to read in bytes */
910 };
911 
912 /* Read versions supported for a command */
913 #define EC_CMD_GET_CMD_VERSIONS 0x0008
914 
915 struct __ec_align1 ec_params_get_cmd_versions {
916 	uint8_t cmd;      /* Command to check */
917 };
918 
919 struct __ec_align2 ec_params_get_cmd_versions_v1 {
920 	uint16_t cmd;     /* Command to check */
921 };
922 
923 struct __ec_align4 ec_response_get_cmd_versions {
924 	/*
925 	 * Mask of supported versions; use EC_VER_MASK() to compare with a
926 	 * desired version.
927 	 */
928 	uint32_t version_mask;
929 };
930 
931 /*
932  * Check EC communications status (busy). This is needed on i2c/spi but not
933  * on lpc since it has its own out-of-band busy indicator.
934  *
935  * lpc must read the status from the command register. Attempting this on
936  * lpc will overwrite the args/parameter space and corrupt its data.
937  */
938 #define EC_CMD_GET_COMMS_STATUS		0x0009
939 
940 /* Avoid using ec_status which is for return values */
941 enum ec_comms_status {
942 	EC_COMMS_STATUS_PROCESSING	= 1 << 0,	/* Processing cmd */
943 };
944 
945 struct __ec_align4 ec_response_get_comms_status {
946 	uint32_t flags;		/* Mask of enum ec_comms_status */
947 };
948 
949 /* Fake a variety of responses, purely for testing purposes. */
950 #define EC_CMD_TEST_PROTOCOL		0x000A
951 
952 /* Tell the EC what to send back to us. */
953 struct __ec_align4 ec_params_test_protocol {
954 	uint32_t ec_result;
955 	uint32_t ret_len;
956 	uint8_t buf[32];
957 };
958 
959 /* Here it comes... */
960 struct __ec_align4 ec_response_test_protocol {
961 	uint8_t buf[32];
962 };
963 
964 /* Get protocol information */
965 #define EC_CMD_GET_PROTOCOL_INFO	0x000B
966 
967 /* Flags for ec_response_get_protocol_info.flags */
968 /* EC_RES_IN_PROGRESS may be returned if a command is slow */
969 #define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED (1 << 0)
970 
971 struct __ec_align4 ec_response_get_protocol_info {
972 	/* Fields which exist if at least protocol version 3 supported */
973 
974 	/* Bitmask of protocol versions supported (1 << n means version n)*/
975 	uint32_t protocol_versions;
976 
977 	/* Maximum request packet size, in bytes */
978 	uint16_t max_request_packet_size;
979 
980 	/* Maximum response packet size, in bytes */
981 	uint16_t max_response_packet_size;
982 
983 	/* Flags; see EC_PROTOCOL_INFO_* */
984 	uint32_t flags;
985 };
986 
987 
988 /*****************************************************************************/
989 /* Get/Set miscellaneous values */
990 
991 /* The upper byte of .flags tells what to do (nothing means "get") */
992 #define EC_GSV_SET        0x80000000
993 
994 /* The lower three bytes of .flags identifies the parameter, if that has
995    meaning for an individual command. */
996 #define EC_GSV_PARAM_MASK 0x00ffffff
997 
998 struct __ec_align4 ec_params_get_set_value {
999 	uint32_t flags;
1000 	uint32_t value;
1001 };
1002 
1003 struct __ec_align4 ec_response_get_set_value {
1004 	uint32_t flags;
1005 	uint32_t value;
1006 };
1007 
1008 /* More than one command can use these structs to get/set parameters. */
1009 #define EC_CMD_GSV_PAUSE_IN_S5	0x000C
1010 
1011 /*****************************************************************************/
1012 /* List the features supported by the firmware */
1013 #define EC_CMD_GET_FEATURES  0x000D
1014 
1015 /* Supported features */
1016 enum ec_feature_code {
1017 	/*
1018 	 * This image contains a limited set of features. Another image
1019 	 * in RW partition may support more features.
1020 	 */
1021 	EC_FEATURE_LIMITED = 0,
1022 	/*
1023 	 * Commands for probing/reading/writing/erasing the flash in the
1024 	 * EC are present.
1025 	 */
1026 	EC_FEATURE_FLASH = 1,
1027 	/*
1028 	 * Can control the fan speed directly.
1029 	 */
1030 	EC_FEATURE_PWM_FAN = 2,
1031 	/*
1032 	 * Can control the intensity of the keyboard backlight.
1033 	 */
1034 	EC_FEATURE_PWM_KEYB = 3,
1035 	/*
1036 	 * Support Google lightbar, introduced on Pixel.
1037 	 */
1038 	EC_FEATURE_LIGHTBAR = 4,
1039 	/* Control of LEDs  */
1040 	EC_FEATURE_LED = 5,
1041 	/* Exposes an interface to control gyro and sensors.
1042 	 * The host goes through the EC to access these sensors.
1043 	 * In addition, the EC may provide composite sensors, like lid angle.
1044 	 */
1045 	EC_FEATURE_MOTION_SENSE = 6,
1046 	/* The keyboard is controlled by the EC */
1047 	EC_FEATURE_KEYB = 7,
1048 	/* The AP can use part of the EC flash as persistent storage. */
1049 	EC_FEATURE_PSTORE = 8,
1050 	/* The EC monitors BIOS port 80h, and can return POST codes. */
1051 	EC_FEATURE_PORT80 = 9,
1052 	/*
1053 	 * Thermal management: include TMP specific commands.
1054 	 * Higher level than direct fan control.
1055 	 */
1056 	EC_FEATURE_THERMAL = 10,
1057 	/* Can switch the screen backlight on/off */
1058 	EC_FEATURE_BKLIGHT_SWITCH = 11,
1059 	/* Can switch the wifi module on/off */
1060 	EC_FEATURE_WIFI_SWITCH = 12,
1061 	/* Monitor host events, through for example SMI or SCI */
1062 	EC_FEATURE_HOST_EVENTS = 13,
1063 	/* The EC exposes GPIO commands to control/monitor connected devices. */
1064 	EC_FEATURE_GPIO = 14,
1065 	/* The EC can send i2c messages to downstream devices. */
1066 	EC_FEATURE_I2C = 15,
1067 	/* Command to control charger are included */
1068 	EC_FEATURE_CHARGER = 16,
1069 	/* Simple battery support. */
1070 	EC_FEATURE_BATTERY = 17,
1071 	/*
1072 	 * Support Smart battery protocol
1073 	 * (Common Smart Battery System Interface Specification)
1074 	 */
1075 	EC_FEATURE_SMART_BATTERY = 18,
1076 	/* EC can detect when the host hangs. */
1077 	EC_FEATURE_HANG_DETECT = 19,
1078 	/* Report power information, for pit only */
1079 	EC_FEATURE_PMU = 20,
1080 	/* Another Cros EC device is present downstream of this one */
1081 	EC_FEATURE_SUB_MCU = 21,
1082 	/* Support USB Power delivery (PD) commands */
1083 	EC_FEATURE_USB_PD = 22,
1084 	/* Control USB multiplexer, for audio through USB port for instance. */
1085 	EC_FEATURE_USB_MUX = 23,
1086 	/* Motion Sensor code has an internal software FIFO */
1087 	EC_FEATURE_MOTION_SENSE_FIFO = 24,
1088 	/* Support temporary secure vstore */
1089 	EC_FEATURE_VSTORE = 25,
1090 	/* EC decides on USB-C SS mux state, muxes configured by host */
1091 	EC_FEATURE_USBC_SS_MUX_VIRTUAL = 26,
1092 	/* EC has RTC feature that can be controlled by host commands */
1093 	EC_FEATURE_RTC = 27,
1094 	/* The MCU exposes a Fingerprint sensor */
1095 	EC_FEATURE_FINGERPRINT = 28,
1096 	/* The MCU exposes a Touchpad */
1097 	EC_FEATURE_TOUCHPAD = 29,
1098 	/* The MCU has RWSIG task enabled */
1099 	EC_FEATURE_RWSIG = 30,
1100 	/* EC has device events support */
1101 	EC_FEATURE_DEVICE_EVENT = 31,
1102 	/* EC supports the unified wake masks for LPC/eSPI systems */
1103 	EC_FEATURE_UNIFIED_WAKE_MASKS = 32,
1104 };
1105 
1106 #define EC_FEATURE_MASK_0(event_code) (1UL << (event_code % 32))
1107 #define EC_FEATURE_MASK_1(event_code) (1UL << (event_code - 32))
1108 struct __ec_align4 ec_response_get_features {
1109 	uint32_t flags[2];
1110 };
1111 
1112 /*****************************************************************************/
1113 /* Get the board's SKU ID from EC */
1114 #define EC_CMD_GET_SKU_ID 0x000E
1115 
1116 /* Set SKU ID from AP */
1117 #define EC_CMD_SET_SKU_ID 0x000F
1118 
1119 struct __ec_align4 ec_sku_id_info {
1120 	uint32_t sku_id;
1121 };
1122 
1123 /*****************************************************************************/
1124 /* Flash commands */
1125 
1126 /* Get flash info */
1127 #define EC_CMD_FLASH_INFO 0x0010
1128 #define EC_VER_FLASH_INFO 2
1129 
1130 /* Version 0 returns these fields */
1131 struct __ec_align4 ec_response_flash_info {
1132 	/* Usable flash size, in bytes */
1133 	uint32_t flash_size;
1134 	/*
1135 	 * Write block size.  Write offset and size must be a multiple
1136 	 * of this.
1137 	 */
1138 	uint32_t write_block_size;
1139 	/*
1140 	 * Erase block size.  Erase offset and size must be a multiple
1141 	 * of this.
1142 	 */
1143 	uint32_t erase_block_size;
1144 	/*
1145 	 * Protection block size.  Protection offset and size must be a
1146 	 * multiple of this.
1147 	 */
1148 	uint32_t protect_block_size;
1149 };
1150 
1151 /* Flags for version 1+ flash info command */
1152 /* EC flash erases bits to 0 instead of 1 */
1153 #define EC_FLASH_INFO_ERASE_TO_0 (1 << 0)
1154 
1155 /* Flash must be selected for read/write/erase operations to succeed.  This may
1156  * be necessary on a chip where write/erase can be corrupted by other board
1157  * activity, or where the chip needs to enable some sort of programming voltage,
1158  * or where the read/write/erase operations require cleanly suspending other
1159  * chip functionality. */
1160 #define EC_FLASH_INFO_SELECT_REQUIRED (1 << 1)
1161 
1162 /*
1163  * Version 1 returns the same initial fields as version 0, with additional
1164  * fields following.
1165  *
1166  * gcc anonymous structs don't seem to get along with the __packed directive;
1167  * if they did we'd define the version 0 structure as a sub-structure of this
1168  * one.
1169  *
1170  * Version 2 supports flash banks of different sizes:
1171  * The caller specified the number of banks it has preallocated
1172  * (num_banks_desc)
1173  * The EC returns the number of banks describing the flash memory.
1174  * It adds banks descriptions up to num_banks_desc.
1175  */
1176 struct __ec_align4 ec_response_flash_info_1 {
1177 	/* Version 0 fields; see above for description */
1178 	uint32_t flash_size;
1179 	uint32_t write_block_size;
1180 	uint32_t erase_block_size;
1181 	uint32_t protect_block_size;
1182 
1183 	/* Version 1 adds these fields: */
1184 	/*
1185 	 * Ideal write size in bytes.  Writes will be fastest if size is
1186 	 * exactly this and offset is a multiple of this.  For example, an EC
1187 	 * may have a write buffer which can do half-page operations if data is
1188 	 * aligned, and a slower word-at-a-time write mode.
1189 	 */
1190 	uint32_t write_ideal_size;
1191 
1192 	/* Flags; see EC_FLASH_INFO_* */
1193 	uint32_t flags;
1194 };
1195 
1196 struct __ec_align4 ec_params_flash_info_2 {
1197 	/* Number of banks to describe */
1198 	uint16_t num_banks_desc;
1199 	/* Reserved; set 0; ignore on read */
1200 	uint8_t reserved[2];
1201 };
1202 
1203 struct ec_flash_bank {
1204 	/* Number of sector is in this bank. */
1205 	uint16_t count;
1206 	/* Size in power of 2 of each sector (8 --> 256 bytes) */
1207 	uint8_t size_exp;
1208 	/* Minimal write size for the sectors in this bank */
1209 	uint8_t write_size_exp;
1210 	/* Erase size for the sectors in this bank */
1211 	uint8_t erase_size_exp;
1212 	/* Size for write protection, usually identical to erase size. */
1213 	uint8_t protect_size_exp;
1214 	/* Reserved; set 0; ignore on read */
1215 	uint8_t reserved[2];
1216 };
1217 
1218 struct __ec_align4 ec_response_flash_info_2 {
1219 	/* Total flash in the EC. */
1220 	uint32_t flash_size;
1221 	/* Flags; see EC_FLASH_INFO_* */
1222 	uint32_t flags;
1223 	/* Maximum size to use to send data to write to the EC. */
1224 	uint32_t write_ideal_size;
1225 	/* Number of banks present in the EC. */
1226 	uint16_t num_banks_total;
1227 	/* Number of banks described in banks array. */
1228 	uint16_t num_banks_desc;
1229 	struct ec_flash_bank banks[0];
1230 };
1231 
1232 /*
1233  * Read flash
1234  *
1235  * Response is params.size bytes of data.
1236  */
1237 #define EC_CMD_FLASH_READ 0x0011
1238 
1239 struct __ec_align4 ec_params_flash_read {
1240 	uint32_t offset;   /* Byte offset to read */
1241 	uint32_t size;     /* Size to read in bytes */
1242 };
1243 
1244 /* Write flash */
1245 #define EC_CMD_FLASH_WRITE 0x0012
1246 #define EC_VER_FLASH_WRITE 1
1247 
1248 /* Version 0 of the flash command supported only 64 bytes of data */
1249 #define EC_FLASH_WRITE_VER0_SIZE 64
1250 
1251 struct __ec_align4 ec_params_flash_write {
1252 	uint32_t offset;   /* Byte offset to write */
1253 	uint32_t size;     /* Size to write in bytes */
1254 	/* Followed by data to write */
1255 };
1256 
1257 /* Erase flash */
1258 #define EC_CMD_FLASH_ERASE 0x0013
1259 
1260 /* v0 */
1261 struct __ec_align4 ec_params_flash_erase {
1262 	uint32_t offset;   /* Byte offset to erase */
1263 	uint32_t size;     /* Size to erase in bytes */
1264 };
1265 
1266 
1267 #define EC_VER_FLASH_WRITE 1
1268 /* v1 add async erase:
1269  * subcommands can returns:
1270  * EC_RES_SUCCESS : erased (see ERASE_SECTOR_ASYNC case below).
1271  * EC_RES_INVALID_PARAM : offset/size are not aligned on a erase boundary.
1272  * EC_RES_ERROR : other errors.
1273  * EC_RES_BUSY : an existing erase operation is in progress.
1274  * EC_RES_ACCESS_DENIED: Trying to erase running image.
1275  *
1276  * When ERASE_SECTOR_ASYNC returns EC_RES_SUCCESS, the operation is just
1277  * properly queued. The user must call ERASE_GET_RESULT subcommand to get
1278  * the proper result.
1279  * When ERASE_GET_RESULT returns EC_RES_BUSY, the caller must wait and send
1280  * ERASE_GET_RESULT again to get the result of ERASE_SECTOR_ASYNC.
1281  * ERASE_GET_RESULT command may timeout on EC where flash access is not
1282  * permitted while erasing. (For instance, STM32F4).
1283  */
1284 enum ec_flash_erase_cmd {
1285 	FLASH_ERASE_SECTOR,     /* Erase and wait for result */
1286 	FLASH_ERASE_SECTOR_ASYNC,  /* Erase and return immediately. */
1287 	FLASH_ERASE_GET_RESULT,  /* Ask for last erase result */
1288 };
1289 
1290 struct __ec_align4 ec_params_flash_erase_v1 {
1291 	/* One of ec_flash_erase_cmd. */
1292 	uint8_t  cmd;
1293 	/* Pad byte; currently always contains 0 */
1294 	uint8_t  reserved;
1295 	/* No flags defined yet; set to 0 */
1296 	uint16_t flag;
1297 	/* Same as v0 parameters. */
1298 	struct ec_params_flash_erase params;
1299 };
1300 
1301 /*
1302  * Get/set flash protection.
1303  *
1304  * If mask!=0, sets/clear the requested bits of flags.  Depending on the
1305  * firmware write protect GPIO, not all flags will take effect immediately;
1306  * some flags require a subsequent hard reset to take effect.  Check the
1307  * returned flags bits to see what actually happened.
1308  *
1309  * If mask=0, simply returns the current flags state.
1310  */
1311 #define EC_CMD_FLASH_PROTECT 0x0015
1312 #define EC_VER_FLASH_PROTECT 1  /* Command version 1 */
1313 
1314 /* Flags for flash protection */
1315 /* RO flash code protected when the EC boots */
1316 #define EC_FLASH_PROTECT_RO_AT_BOOT         (1 << 0)
1317 /*
1318  * RO flash code protected now.  If this bit is set, at-boot status cannot
1319  * be changed.
1320  */
1321 #define EC_FLASH_PROTECT_RO_NOW             (1 << 1)
1322 /* Entire flash code protected now, until reboot. */
1323 #define EC_FLASH_PROTECT_ALL_NOW            (1 << 2)
1324 /* Flash write protect GPIO is asserted now */
1325 #define EC_FLASH_PROTECT_GPIO_ASSERTED      (1 << 3)
1326 /* Error - at least one bank of flash is stuck locked, and cannot be unlocked */
1327 #define EC_FLASH_PROTECT_ERROR_STUCK        (1 << 4)
1328 /*
1329  * Error - flash protection is in inconsistent state.  At least one bank of
1330  * flash which should be protected is not protected.  Usually fixed by
1331  * re-requesting the desired flags, or by a hard reset if that fails.
1332  */
1333 #define EC_FLASH_PROTECT_ERROR_INCONSISTENT (1 << 5)
1334 /* Entire flash code protected when the EC boots */
1335 #define EC_FLASH_PROTECT_ALL_AT_BOOT        (1 << 6)
1336 /* RW flash code protected when the EC boots */
1337 #define EC_FLASH_PROTECT_RW_AT_BOOT         (1 << 7)
1338 /* RW flash code protected now. */
1339 #define EC_FLASH_PROTECT_RW_NOW             (1 << 8)
1340 /* Rollback information flash region protected when the EC boots */
1341 #define EC_FLASH_PROTECT_ROLLBACK_AT_BOOT   (1 << 9)
1342 /* Rollback information flash region protected now */
1343 #define EC_FLASH_PROTECT_ROLLBACK_NOW       (1 << 10)
1344 
1345 struct __ec_align4 ec_params_flash_protect {
1346 	uint32_t mask;   /* Bits in flags to apply */
1347 	uint32_t flags;  /* New flags to apply */
1348 };
1349 
1350 struct __ec_align4 ec_response_flash_protect {
1351 	/* Current value of flash protect flags */
1352 	uint32_t flags;
1353 	/*
1354 	 * Flags which are valid on this platform.  This allows the caller
1355 	 * to distinguish between flags which aren't set vs. flags which can't
1356 	 * be set on this platform.
1357 	 */
1358 	uint32_t valid_flags;
1359 	/* Flags which can be changed given the current protection state */
1360 	uint32_t writable_flags;
1361 };
1362 
1363 /*
1364  * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash
1365  * write protect.  These commands may be reused with version > 0.
1366  */
1367 
1368 /* Get the region offset/size */
1369 #define EC_CMD_FLASH_REGION_INFO 0x0016
1370 #define EC_VER_FLASH_REGION_INFO 1
1371 
1372 enum ec_flash_region {
1373 	/* Region which holds read-only EC image */
1374 	EC_FLASH_REGION_RO = 0,
1375 	/* Region which holds active rewritable EC image */
1376 	EC_FLASH_REGION_ACTIVE,
1377 	/*
1378 	 * Region which should be write-protected in the factory (a superset of
1379 	 * EC_FLASH_REGION_RO)
1380 	 */
1381 	EC_FLASH_REGION_WP_RO,
1382 	/* Region which holds updatable image */
1383 	EC_FLASH_REGION_UPDATE,
1384 	/* Number of regions */
1385 	EC_FLASH_REGION_COUNT,
1386 };
1387 
1388 struct __ec_align4 ec_params_flash_region_info {
1389 	uint32_t region;  /* enum ec_flash_region */
1390 };
1391 
1392 struct __ec_align4 ec_response_flash_region_info {
1393 	uint32_t offset;
1394 	uint32_t size;
1395 };
1396 
1397 /* Read/write VbNvContext */
1398 #define EC_CMD_VBNV_CONTEXT 0x0017
1399 #define EC_VER_VBNV_CONTEXT 1
1400 #define EC_VBNV_BLOCK_SIZE 16
1401 #define EC_VBNV_BLOCK_SIZE_V2 64
1402 
1403 enum ec_vbnvcontext_op {
1404 	EC_VBNV_CONTEXT_OP_READ,
1405 	EC_VBNV_CONTEXT_OP_WRITE,
1406 };
1407 
1408 struct __ec_align4 ec_params_vbnvcontext {
1409 	uint32_t op;
1410 	uint8_t block[EC_VBNV_BLOCK_SIZE_V2];
1411 };
1412 
1413 struct __ec_align4 ec_response_vbnvcontext {
1414 	uint8_t block[EC_VBNV_BLOCK_SIZE_V2];
1415 };
1416 
1417 
1418 /* Get SPI flash information */
1419 #define EC_CMD_FLASH_SPI_INFO 0x0018
1420 
1421 struct __ec_align1 ec_response_flash_spi_info {
1422 	/* JEDEC info from command 0x9F (manufacturer, memory type, size) */
1423 	uint8_t jedec[3];
1424 
1425 	/* Pad byte; currently always contains 0 */
1426 	uint8_t reserved0;
1427 
1428 	/* Manufacturer / device ID from command 0x90 */
1429 	uint8_t mfr_dev_id[2];
1430 
1431 	/* Status registers from command 0x05 and 0x35 */
1432 	uint8_t sr1, sr2;
1433 };
1434 
1435 
1436 /* Select flash during flash operations */
1437 #define EC_CMD_FLASH_SELECT 0x0019
1438 
1439 struct __ec_align4 ec_params_flash_select {
1440 	/* 1 to select flash, 0 to deselect flash */
1441 	uint8_t select;
1442 };
1443 
1444 /*****************************************************************************/
1445 /* PWM commands */
1446 
1447 /* Get fan target RPM */
1448 #define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x0020
1449 
1450 struct __ec_align4 ec_response_pwm_get_fan_rpm {
1451 	uint32_t rpm;
1452 };
1453 
1454 /* Set target fan RPM */
1455 #define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x0021
1456 
1457 /* Version 0 of input params */
1458 struct __ec_align4 ec_params_pwm_set_fan_target_rpm_v0 {
1459 	uint32_t rpm;
1460 };
1461 
1462 /* Version 1 of input params */
1463 struct __ec_align_size1 ec_params_pwm_set_fan_target_rpm_v1 {
1464 	uint32_t rpm;
1465 	uint8_t fan_idx;
1466 };
1467 
1468 /* Get keyboard backlight */
1469 /* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
1470 #define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x0022
1471 
1472 struct __ec_align1 ec_response_pwm_get_keyboard_backlight {
1473 	uint8_t percent;
1474 	uint8_t enabled;
1475 };
1476 
1477 /* Set keyboard backlight */
1478 /* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
1479 #define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x0023
1480 
1481 struct __ec_align1 ec_params_pwm_set_keyboard_backlight {
1482 	uint8_t percent;
1483 };
1484 
1485 /* Set target fan PWM duty cycle */
1486 #define EC_CMD_PWM_SET_FAN_DUTY 0x0024
1487 
1488 /* Version 0 of input params */
1489 struct __ec_align4 ec_params_pwm_set_fan_duty_v0 {
1490 	uint32_t percent;
1491 };
1492 
1493 /* Version 1 of input params */
1494 struct __ec_align_size1 ec_params_pwm_set_fan_duty_v1 {
1495 	uint32_t percent;
1496 	uint8_t fan_idx;
1497 };
1498 
1499 #define EC_CMD_PWM_SET_DUTY 0x0025
1500 /* 16 bit duty cycle, 0xffff = 100% */
1501 #define EC_PWM_MAX_DUTY 0xffff
1502 
1503 enum ec_pwm_type {
1504 	/* All types, indexed by board-specific enum pwm_channel */
1505 	EC_PWM_TYPE_GENERIC = 0,
1506 	/* Keyboard backlight */
1507 	EC_PWM_TYPE_KB_LIGHT,
1508 	/* Display backlight */
1509 	EC_PWM_TYPE_DISPLAY_LIGHT,
1510 	EC_PWM_TYPE_COUNT,
1511 };
1512 
1513 struct __ec_align4 ec_params_pwm_set_duty {
1514 	uint16_t duty;     /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1515 	uint8_t pwm_type;  /* ec_pwm_type */
1516 	uint8_t index;     /* Type-specific index, or 0 if unique */
1517 };
1518 
1519 #define EC_CMD_PWM_GET_DUTY 0x0026
1520 
1521 struct __ec_align1 ec_params_pwm_get_duty {
1522 	uint8_t pwm_type;  /* ec_pwm_type */
1523 	uint8_t index;     /* Type-specific index, or 0 if unique */
1524 };
1525 
1526 struct __ec_align2 ec_response_pwm_get_duty {
1527 	uint16_t duty;     /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1528 };
1529 
1530 /*****************************************************************************/
1531 /*
1532  * Lightbar commands. This looks worse than it is. Since we only use one HOST
1533  * command to say "talk to the lightbar", we put the "and tell it to do X" part
1534  * into a subcommand. We'll make separate structs for subcommands with
1535  * different input args, so that we know how much to expect.
1536  */
1537 #define EC_CMD_LIGHTBAR_CMD 0x0028
1538 
1539 struct __ec_todo_unpacked rgb_s {
1540 	uint8_t r, g, b;
1541 };
1542 
1543 #define LB_BATTERY_LEVELS 4
1544 /* List of tweakable parameters. NOTE: It's __packed so it can be sent in a
1545  * host command, but the alignment is the same regardless. Keep it that way.
1546  */
1547 struct __ec_todo_packed lightbar_params_v0 {
1548 	/* Timing */
1549 	int32_t google_ramp_up;
1550 	int32_t google_ramp_down;
1551 	int32_t s3s0_ramp_up;
1552 	int32_t s0_tick_delay[2];		/* AC=0/1 */
1553 	int32_t s0a_tick_delay[2];		/* AC=0/1 */
1554 	int32_t s0s3_ramp_down;
1555 	int32_t s3_sleep_for;
1556 	int32_t s3_ramp_up;
1557 	int32_t s3_ramp_down;
1558 
1559 	/* Oscillation */
1560 	uint8_t new_s0;
1561 	uint8_t osc_min[2];			/* AC=0/1 */
1562 	uint8_t osc_max[2];			/* AC=0/1 */
1563 	uint8_t w_ofs[2];			/* AC=0/1 */
1564 
1565 	/* Brightness limits based on the backlight and AC. */
1566 	uint8_t bright_bl_off_fixed[2];		/* AC=0/1 */
1567 	uint8_t bright_bl_on_min[2];		/* AC=0/1 */
1568 	uint8_t bright_bl_on_max[2];		/* AC=0/1 */
1569 
1570 	/* Battery level thresholds */
1571 	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1572 
1573 	/* Map [AC][battery_level] to color index */
1574 	uint8_t s0_idx[2][LB_BATTERY_LEVELS];	/* AP is running */
1575 	uint8_t s3_idx[2][LB_BATTERY_LEVELS];	/* AP is sleeping */
1576 
1577 	/* Color palette */
1578 	struct rgb_s color[8];			/* 0-3 are Google colors */
1579 };
1580 
1581 struct __ec_todo_packed lightbar_params_v1 {
1582 	/* Timing */
1583 	int32_t google_ramp_up;
1584 	int32_t google_ramp_down;
1585 	int32_t s3s0_ramp_up;
1586 	int32_t s0_tick_delay[2];		/* AC=0/1 */
1587 	int32_t s0a_tick_delay[2];		/* AC=0/1 */
1588 	int32_t s0s3_ramp_down;
1589 	int32_t s3_sleep_for;
1590 	int32_t s3_ramp_up;
1591 	int32_t s3_ramp_down;
1592 	int32_t s5_ramp_up;
1593 	int32_t s5_ramp_down;
1594 	int32_t tap_tick_delay;
1595 	int32_t tap_gate_delay;
1596 	int32_t tap_display_time;
1597 
1598 	/* Tap-for-battery params */
1599 	uint8_t tap_pct_red;
1600 	uint8_t tap_pct_green;
1601 	uint8_t tap_seg_min_on;
1602 	uint8_t tap_seg_max_on;
1603 	uint8_t tap_seg_osc;
1604 	uint8_t tap_idx[3];
1605 
1606 	/* Oscillation */
1607 	uint8_t osc_min[2];			/* AC=0/1 */
1608 	uint8_t osc_max[2];			/* AC=0/1 */
1609 	uint8_t w_ofs[2];			/* AC=0/1 */
1610 
1611 	/* Brightness limits based on the backlight and AC. */
1612 	uint8_t bright_bl_off_fixed[2];		/* AC=0/1 */
1613 	uint8_t bright_bl_on_min[2];		/* AC=0/1 */
1614 	uint8_t bright_bl_on_max[2];		/* AC=0/1 */
1615 
1616 	/* Battery level thresholds */
1617 	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1618 
1619 	/* Map [AC][battery_level] to color index */
1620 	uint8_t s0_idx[2][LB_BATTERY_LEVELS];	/* AP is running */
1621 	uint8_t s3_idx[2][LB_BATTERY_LEVELS];	/* AP is sleeping */
1622 
1623 	/* s5: single color pulse on inhibited power-up */
1624 	uint8_t s5_idx;
1625 
1626 	/* Color palette */
1627 	struct rgb_s color[8];			/* 0-3 are Google colors */
1628 };
1629 
1630 /* Lightbar command params v2
1631  * crbug.com/467716
1632  *
1633  * lightbar_parms_v1 was too big for i2c, therefore in v2, we split them up by
1634  * logical groups to make it more manageable ( < 120 bytes).
1635  *
1636  * NOTE: Each of these groups must be less than 120 bytes.
1637  */
1638 
1639 struct __ec_todo_packed lightbar_params_v2_timing {
1640 	/* Timing */
1641 	int32_t google_ramp_up;
1642 	int32_t google_ramp_down;
1643 	int32_t s3s0_ramp_up;
1644 	int32_t s0_tick_delay[2];		/* AC=0/1 */
1645 	int32_t s0a_tick_delay[2];		/* AC=0/1 */
1646 	int32_t s0s3_ramp_down;
1647 	int32_t s3_sleep_for;
1648 	int32_t s3_ramp_up;
1649 	int32_t s3_ramp_down;
1650 	int32_t s5_ramp_up;
1651 	int32_t s5_ramp_down;
1652 	int32_t tap_tick_delay;
1653 	int32_t tap_gate_delay;
1654 	int32_t tap_display_time;
1655 };
1656 
1657 struct __ec_todo_packed lightbar_params_v2_tap {
1658 	/* Tap-for-battery params */
1659 	uint8_t tap_pct_red;
1660 	uint8_t tap_pct_green;
1661 	uint8_t tap_seg_min_on;
1662 	uint8_t tap_seg_max_on;
1663 	uint8_t tap_seg_osc;
1664 	uint8_t tap_idx[3];
1665 };
1666 
1667 struct __ec_todo_packed lightbar_params_v2_oscillation {
1668 	/* Oscillation */
1669 	uint8_t osc_min[2];			/* AC=0/1 */
1670 	uint8_t osc_max[2];			/* AC=0/1 */
1671 	uint8_t w_ofs[2];			/* AC=0/1 */
1672 };
1673 
1674 struct __ec_todo_packed lightbar_params_v2_brightness {
1675 	/* Brightness limits based on the backlight and AC. */
1676 	uint8_t bright_bl_off_fixed[2];		/* AC=0/1 */
1677 	uint8_t bright_bl_on_min[2];		/* AC=0/1 */
1678 	uint8_t bright_bl_on_max[2];		/* AC=0/1 */
1679 };
1680 
1681 struct __ec_todo_packed lightbar_params_v2_thresholds {
1682 	/* Battery level thresholds */
1683 	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1684 };
1685 
1686 struct __ec_todo_packed lightbar_params_v2_colors {
1687 	/* Map [AC][battery_level] to color index */
1688 	uint8_t s0_idx[2][LB_BATTERY_LEVELS];	/* AP is running */
1689 	uint8_t s3_idx[2][LB_BATTERY_LEVELS];	/* AP is sleeping */
1690 
1691 	/* s5: single color pulse on inhibited power-up */
1692 	uint8_t s5_idx;
1693 
1694 	/* Color palette */
1695 	struct rgb_s color[8];			/* 0-3 are Google colors */
1696 };
1697 
1698 /* Lightbyte program. */
1699 #define EC_LB_PROG_LEN 192
1700 struct __ec_todo_unpacked lightbar_program {
1701 	uint8_t size;
1702 	uint8_t data[EC_LB_PROG_LEN];
1703 };
1704 
1705 struct __ec_todo_packed ec_params_lightbar {
1706 	uint8_t cmd;		      /* Command (see enum lightbar_command) */
1707 	union {
1708 		struct __ec_todo_unpacked {
1709 			/* no args */
1710 		} dump, off, on, init, get_seq, get_params_v0, get_params_v1,
1711 			version, get_brightness, get_demo, suspend, resume,
1712 			get_params_v2_timing, get_params_v2_tap,
1713 			get_params_v2_osc, get_params_v2_bright,
1714 			get_params_v2_thlds, get_params_v2_colors;
1715 
1716 		struct __ec_todo_unpacked {
1717 			uint8_t num;
1718 		} set_brightness, seq, demo;
1719 
1720 		struct __ec_todo_unpacked {
1721 			uint8_t ctrl, reg, value;
1722 		} reg;
1723 
1724 		struct __ec_todo_unpacked {
1725 			uint8_t led, red, green, blue;
1726 		} set_rgb;
1727 
1728 		struct __ec_todo_unpacked {
1729 			uint8_t led;
1730 		} get_rgb;
1731 
1732 		struct __ec_todo_unpacked {
1733 			uint8_t enable;
1734 		} manual_suspend_ctrl;
1735 
1736 		struct lightbar_params_v0 set_params_v0;
1737 		struct lightbar_params_v1 set_params_v1;
1738 
1739 		struct lightbar_params_v2_timing set_v2par_timing;
1740 		struct lightbar_params_v2_tap set_v2par_tap;
1741 		struct lightbar_params_v2_oscillation set_v2par_osc;
1742 		struct lightbar_params_v2_brightness set_v2par_bright;
1743 		struct lightbar_params_v2_thresholds set_v2par_thlds;
1744 		struct lightbar_params_v2_colors set_v2par_colors;
1745 
1746 		struct lightbar_program set_program;
1747 	};
1748 };
1749 
1750 struct __ec_todo_packed ec_response_lightbar {
1751 	union {
1752 		struct __ec_todo_unpacked {
1753 			struct __ec_todo_unpacked {
1754 				uint8_t reg;
1755 				uint8_t ic0;
1756 				uint8_t ic1;
1757 			} vals[23];
1758 		} dump;
1759 
1760 		struct __ec_todo_unpacked {
1761 			uint8_t num;
1762 		} get_seq, get_brightness, get_demo;
1763 
1764 		struct lightbar_params_v0 get_params_v0;
1765 		struct lightbar_params_v1 get_params_v1;
1766 
1767 
1768 		struct lightbar_params_v2_timing get_params_v2_timing;
1769 		struct lightbar_params_v2_tap get_params_v2_tap;
1770 		struct lightbar_params_v2_oscillation get_params_v2_osc;
1771 		struct lightbar_params_v2_brightness get_params_v2_bright;
1772 		struct lightbar_params_v2_thresholds get_params_v2_thlds;
1773 		struct lightbar_params_v2_colors get_params_v2_colors;
1774 
1775 		struct __ec_todo_unpacked {
1776 			uint32_t num;
1777 			uint32_t flags;
1778 		} version;
1779 
1780 		struct __ec_todo_unpacked {
1781 			uint8_t red, green, blue;
1782 		} get_rgb;
1783 
1784 		struct __ec_todo_unpacked {
1785 			/* no return params */
1786 		} off, on, init, set_brightness, seq, reg, set_rgb,
1787 			demo, set_params_v0, set_params_v1,
1788 			set_program, manual_suspend_ctrl, suspend, resume,
1789 			set_v2par_timing, set_v2par_tap,
1790 			set_v2par_osc, set_v2par_bright, set_v2par_thlds,
1791 			set_v2par_colors;
1792 	};
1793 };
1794 
1795 /* Lightbar commands */
1796 enum lightbar_command {
1797 	LIGHTBAR_CMD_DUMP = 0,
1798 	LIGHTBAR_CMD_OFF = 1,
1799 	LIGHTBAR_CMD_ON = 2,
1800 	LIGHTBAR_CMD_INIT = 3,
1801 	LIGHTBAR_CMD_SET_BRIGHTNESS = 4,
1802 	LIGHTBAR_CMD_SEQ = 5,
1803 	LIGHTBAR_CMD_REG = 6,
1804 	LIGHTBAR_CMD_SET_RGB = 7,
1805 	LIGHTBAR_CMD_GET_SEQ = 8,
1806 	LIGHTBAR_CMD_DEMO = 9,
1807 	LIGHTBAR_CMD_GET_PARAMS_V0 = 10,
1808 	LIGHTBAR_CMD_SET_PARAMS_V0 = 11,
1809 	LIGHTBAR_CMD_VERSION = 12,
1810 	LIGHTBAR_CMD_GET_BRIGHTNESS = 13,
1811 	LIGHTBAR_CMD_GET_RGB = 14,
1812 	LIGHTBAR_CMD_GET_DEMO = 15,
1813 	LIGHTBAR_CMD_GET_PARAMS_V1 = 16,
1814 	LIGHTBAR_CMD_SET_PARAMS_V1 = 17,
1815 	LIGHTBAR_CMD_SET_PROGRAM = 18,
1816 	LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL = 19,
1817 	LIGHTBAR_CMD_SUSPEND = 20,
1818 	LIGHTBAR_CMD_RESUME = 21,
1819 	LIGHTBAR_CMD_GET_PARAMS_V2_TIMING = 22,
1820 	LIGHTBAR_CMD_SET_PARAMS_V2_TIMING = 23,
1821 	LIGHTBAR_CMD_GET_PARAMS_V2_TAP = 24,
1822 	LIGHTBAR_CMD_SET_PARAMS_V2_TAP = 25,
1823 	LIGHTBAR_CMD_GET_PARAMS_V2_OSCILLATION = 26,
1824 	LIGHTBAR_CMD_SET_PARAMS_V2_OSCILLATION = 27,
1825 	LIGHTBAR_CMD_GET_PARAMS_V2_BRIGHTNESS = 28,
1826 	LIGHTBAR_CMD_SET_PARAMS_V2_BRIGHTNESS = 29,
1827 	LIGHTBAR_CMD_GET_PARAMS_V2_THRESHOLDS = 30,
1828 	LIGHTBAR_CMD_SET_PARAMS_V2_THRESHOLDS = 31,
1829 	LIGHTBAR_CMD_GET_PARAMS_V2_COLORS = 32,
1830 	LIGHTBAR_CMD_SET_PARAMS_V2_COLORS = 33,
1831 	LIGHTBAR_NUM_CMDS
1832 };
1833 
1834 /*****************************************************************************/
1835 /* LED control commands */
1836 
1837 #define EC_CMD_LED_CONTROL 0x0029
1838 
1839 enum ec_led_id {
1840 	/* LED to indicate battery state of charge */
1841 	EC_LED_ID_BATTERY_LED = 0,
1842 	/*
1843 	 * LED to indicate system power state (on or in suspend).
1844 	 * May be on power button or on C-panel.
1845 	 */
1846 	EC_LED_ID_POWER_LED,
1847 	/* LED on power adapter or its plug */
1848 	EC_LED_ID_ADAPTER_LED,
1849 	/* LED to indicate left side */
1850 	EC_LED_ID_LEFT_LED,
1851 	/* LED to indicate right side */
1852 	EC_LED_ID_RIGHT_LED,
1853 	/* LED to indicate recovery mode with HW_REINIT */
1854 	EC_LED_ID_RECOVERY_HW_REINIT_LED,
1855 	/* LED to indicate sysrq debug mode. */
1856 	EC_LED_ID_SYSRQ_DEBUG_LED,
1857 
1858 	EC_LED_ID_COUNT
1859 };
1860 
1861 /* LED control flags */
1862 #define EC_LED_FLAGS_QUERY (1 << 0) /* Query LED capability only */
1863 #define EC_LED_FLAGS_AUTO  (1 << 1) /* Switch LED back to automatic control */
1864 
1865 enum ec_led_colors {
1866 	EC_LED_COLOR_RED = 0,
1867 	EC_LED_COLOR_GREEN,
1868 	EC_LED_COLOR_BLUE,
1869 	EC_LED_COLOR_YELLOW,
1870 	EC_LED_COLOR_WHITE,
1871 	EC_LED_COLOR_AMBER,
1872 
1873 	EC_LED_COLOR_COUNT
1874 };
1875 
1876 struct __ec_align1 ec_params_led_control {
1877 	uint8_t led_id;     /* Which LED to control */
1878 	uint8_t flags;      /* Control flags */
1879 
1880 	uint8_t brightness[EC_LED_COLOR_COUNT];
1881 };
1882 
1883 struct __ec_align1 ec_response_led_control {
1884 	/*
1885 	 * Available brightness value range.
1886 	 *
1887 	 * Range 0 means color channel not present.
1888 	 * Range 1 means on/off control.
1889 	 * Other values means the LED is control by PWM.
1890 	 */
1891 	uint8_t brightness_range[EC_LED_COLOR_COUNT];
1892 };
1893 
1894 /*****************************************************************************/
1895 /* Verified boot commands */
1896 
1897 /*
1898  * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be
1899  * reused for other purposes with version > 0.
1900  */
1901 
1902 /* Verified boot hash command */
1903 #define EC_CMD_VBOOT_HASH 0x002A
1904 
1905 struct __ec_align4 ec_params_vboot_hash {
1906 	uint8_t cmd;             /* enum ec_vboot_hash_cmd */
1907 	uint8_t hash_type;       /* enum ec_vboot_hash_type */
1908 	uint8_t nonce_size;      /* Nonce size; may be 0 */
1909 	uint8_t reserved0;       /* Reserved; set 0 */
1910 	uint32_t offset;         /* Offset in flash to hash */
1911 	uint32_t size;           /* Number of bytes to hash */
1912 	uint8_t nonce_data[64];  /* Nonce data; ignored if nonce_size=0 */
1913 };
1914 
1915 struct __ec_align4 ec_response_vboot_hash {
1916 	uint8_t status;          /* enum ec_vboot_hash_status */
1917 	uint8_t hash_type;       /* enum ec_vboot_hash_type */
1918 	uint8_t digest_size;     /* Size of hash digest in bytes */
1919 	uint8_t reserved0;       /* Ignore; will be 0 */
1920 	uint32_t offset;         /* Offset in flash which was hashed */
1921 	uint32_t size;           /* Number of bytes hashed */
1922 	uint8_t hash_digest[64]; /* Hash digest data */
1923 };
1924 
1925 enum ec_vboot_hash_cmd {
1926 	EC_VBOOT_HASH_GET = 0,       /* Get current hash status */
1927 	EC_VBOOT_HASH_ABORT = 1,     /* Abort calculating current hash */
1928 	EC_VBOOT_HASH_START = 2,     /* Start computing a new hash */
1929 	EC_VBOOT_HASH_RECALC = 3,    /* Synchronously compute a new hash */
1930 };
1931 
1932 enum ec_vboot_hash_type {
1933 	EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */
1934 };
1935 
1936 enum ec_vboot_hash_status {
1937 	EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */
1938 	EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */
1939 	EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */
1940 };
1941 
1942 /*
1943  * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC.
1944  * If one of these is specified, the EC will automatically update offset and
1945  * size to the correct values for the specified image (RO or RW).
1946  */
1947 #define EC_VBOOT_HASH_OFFSET_RO		0xfffffffe
1948 #define EC_VBOOT_HASH_OFFSET_ACTIVE	0xfffffffd
1949 #define EC_VBOOT_HASH_OFFSET_UPDATE	0xfffffffc
1950 
1951 /*****************************************************************************/
1952 /*
1953  * Motion sense commands. We'll make separate structs for sub-commands with
1954  * different input args, so that we know how much to expect.
1955  */
1956 #define EC_CMD_MOTION_SENSE_CMD 0x002B
1957 
1958 /* Motion sense commands */
1959 enum motionsense_command {
1960 	/*
1961 	 * Dump command returns all motion sensor data including motion sense
1962 	 * module flags and individual sensor flags.
1963 	 */
1964 	MOTIONSENSE_CMD_DUMP = 0,
1965 
1966 	/*
1967 	 * Info command returns data describing the details of a given sensor,
1968 	 * including enum motionsensor_type, enum motionsensor_location, and
1969 	 * enum motionsensor_chip.
1970 	 */
1971 	MOTIONSENSE_CMD_INFO = 1,
1972 
1973 	/*
1974 	 * EC Rate command is a setter/getter command for the EC sampling rate
1975 	 * in milliseconds.
1976 	 * It is per sensor, the EC run sample task  at the minimum of all
1977 	 * sensors EC_RATE.
1978 	 * For sensors without hardware FIFO, EC_RATE should be equals to 1/ODR
1979 	 * to collect all the sensor samples.
1980 	 * For sensor with hardware FIFO, EC_RATE is used as the maximal delay
1981 	 * to process of all motion sensors in milliseconds.
1982 	 */
1983 	MOTIONSENSE_CMD_EC_RATE = 2,
1984 
1985 	/*
1986 	 * Sensor ODR command is a setter/getter command for the output data
1987 	 * rate of a specific motion sensor in millihertz.
1988 	 */
1989 	MOTIONSENSE_CMD_SENSOR_ODR = 3,
1990 
1991 	/*
1992 	 * Sensor range command is a setter/getter command for the range of
1993 	 * a specified motion sensor in +/-G's or +/- deg/s.
1994 	 */
1995 	MOTIONSENSE_CMD_SENSOR_RANGE = 4,
1996 
1997 	/*
1998 	 * Setter/getter command for the keyboard wake angle. When the lid
1999 	 * angle is greater than this value, keyboard wake is disabled in S3,
2000 	 * and when the lid angle goes less than this value, keyboard wake is
2001 	 * enabled. Note, the lid angle measurement is an approximate,
2002 	 * un-calibrated value, hence the wake angle isn't exact.
2003 	 */
2004 	MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5,
2005 
2006 	/*
2007 	 * Returns a single sensor data.
2008 	 */
2009 	MOTIONSENSE_CMD_DATA = 6,
2010 
2011 	/*
2012 	 * Return sensor fifo info.
2013 	 */
2014 	MOTIONSENSE_CMD_FIFO_INFO = 7,
2015 
2016 	/*
2017 	 * Insert a flush element in the fifo and return sensor fifo info.
2018 	 * The host can use that element to synchronize its operation.
2019 	 */
2020 	MOTIONSENSE_CMD_FIFO_FLUSH = 8,
2021 
2022 	/*
2023 	 * Return a portion of the fifo.
2024 	 */
2025 	MOTIONSENSE_CMD_FIFO_READ = 9,
2026 
2027 	/*
2028 	 * Perform low level calibration.
2029 	 * On sensors that support it, ask to do offset calibration.
2030 	 */
2031 	MOTIONSENSE_CMD_PERFORM_CALIB = 10,
2032 
2033 	/*
2034 	 * Sensor Offset command is a setter/getter command for the offset
2035 	 * used for calibration.
2036 	 * The offsets can be calculated by the host, or via
2037 	 * PERFORM_CALIB command.
2038 	 */
2039 	MOTIONSENSE_CMD_SENSOR_OFFSET = 11,
2040 
2041 	/*
2042 	 * List available activities for a MOTION sensor.
2043 	 * Indicates if they are enabled or disabled.
2044 	 */
2045 	MOTIONSENSE_CMD_LIST_ACTIVITIES = 12,
2046 
2047 	/*
2048 	 * Activity management
2049 	 * Enable/Disable activity recognition.
2050 	 */
2051 	MOTIONSENSE_CMD_SET_ACTIVITY = 13,
2052 
2053 	/*
2054 	 * Lid Angle
2055 	 */
2056 	MOTIONSENSE_CMD_LID_ANGLE = 14,
2057 
2058 	/*
2059 	 * Allow the FIFO to trigger interrupt via MKBP events.
2060 	 * By default the FIFO does not send interrupt to process the FIFO
2061 	 * until the AP is ready or it is coming from a wakeup sensor.
2062 	 */
2063 	MOTIONSENSE_CMD_FIFO_INT_ENABLE = 15,
2064 
2065 	/*
2066 	 * Spoof the readings of the sensors.  The spoofed readings can be set
2067 	 * to arbitrary values, or will lock to the last read actual values.
2068 	 */
2069 	MOTIONSENSE_CMD_SPOOF = 16,
2070 
2071 	/* Number of motionsense sub-commands. */
2072 	MOTIONSENSE_NUM_CMDS
2073 };
2074 
2075 /* List of motion sensor types. */
2076 enum motionsensor_type {
2077 	MOTIONSENSE_TYPE_ACCEL = 0,
2078 	MOTIONSENSE_TYPE_GYRO = 1,
2079 	MOTIONSENSE_TYPE_MAG = 2,
2080 	MOTIONSENSE_TYPE_PROX = 3,
2081 	MOTIONSENSE_TYPE_LIGHT = 4,
2082 	MOTIONSENSE_TYPE_ACTIVITY = 5,
2083 	MOTIONSENSE_TYPE_BARO = 6,
2084 	MOTIONSENSE_TYPE_MAX,
2085 };
2086 
2087 /* List of motion sensor locations. */
2088 enum motionsensor_location {
2089 	MOTIONSENSE_LOC_BASE = 0,
2090 	MOTIONSENSE_LOC_LID = 1,
2091 	MOTIONSENSE_LOC_MAX,
2092 };
2093 
2094 /* List of motion sensor chips. */
2095 enum motionsensor_chip {
2096 	MOTIONSENSE_CHIP_KXCJ9 = 0,
2097 	MOTIONSENSE_CHIP_LSM6DS0 = 1,
2098 	MOTIONSENSE_CHIP_BMI160 = 2,
2099 	MOTIONSENSE_CHIP_SI1141 = 3,
2100 	MOTIONSENSE_CHIP_SI1142 = 4,
2101 	MOTIONSENSE_CHIP_SI1143 = 5,
2102 	MOTIONSENSE_CHIP_KX022 = 6,
2103 	MOTIONSENSE_CHIP_L3GD20H = 7,
2104 	MOTIONSENSE_CHIP_BMA255 = 8,
2105 	MOTIONSENSE_CHIP_BMP280 = 9,
2106 	MOTIONSENSE_CHIP_OPT3001 = 10,
2107 };
2108 
2109 struct __ec_todo_packed ec_response_motion_sensor_data {
2110 	/* Flags for each sensor. */
2111 	uint8_t flags;
2112 	/* sensor number the data comes from */
2113 	uint8_t sensor_num;
2114 	/* Each sensor is up to 3-axis. */
2115 	union {
2116 		int16_t             data[3];
2117 		struct __ec_todo_packed {
2118 			uint16_t    reserved;
2119 			uint32_t    timestamp;
2120 		};
2121 		struct __ec_todo_unpacked {
2122 			uint8_t     activity; /* motionsensor_activity */
2123 			uint8_t     state;
2124 			int16_t     add_info[2];
2125 		};
2126 	};
2127 };
2128 
2129 /* Note: used in ec_response_get_next_data */
2130 struct __ec_todo_packed ec_response_motion_sense_fifo_info {
2131 	/* Size of the fifo */
2132 	uint16_t size;
2133 	/* Amount of space used in the fifo */
2134 	uint16_t count;
2135 	/* Timestamp recorded in us */
2136 	uint32_t timestamp;
2137 	/* Total amount of vector lost */
2138 	uint16_t total_lost;
2139 	/* Lost events since the last fifo_info, per sensors */
2140 	uint16_t lost[0];
2141 };
2142 
2143 struct __ec_todo_packed ec_response_motion_sense_fifo_data {
2144 	uint32_t number_data;
2145 	struct ec_response_motion_sensor_data data[0];
2146 };
2147 
2148 /* List supported activity recognition */
2149 enum motionsensor_activity {
2150 	MOTIONSENSE_ACTIVITY_RESERVED = 0,
2151 	MOTIONSENSE_ACTIVITY_SIG_MOTION = 1,
2152 	MOTIONSENSE_ACTIVITY_DOUBLE_TAP = 2,
2153 };
2154 
2155 struct __ec_todo_unpacked ec_motion_sense_activity {
2156 	uint8_t sensor_num;
2157 	uint8_t activity; /* one of enum motionsensor_activity */
2158 	uint8_t enable;   /* 1: enable, 0: disable */
2159 	uint8_t reserved;
2160 	uint16_t parameters[3]; /* activity dependent parameters */
2161 };
2162 
2163 /* Module flag masks used for the dump sub-command. */
2164 #define MOTIONSENSE_MODULE_FLAG_ACTIVE (1<<0)
2165 
2166 /* Sensor flag masks used for the dump sub-command. */
2167 #define MOTIONSENSE_SENSOR_FLAG_PRESENT (1<<0)
2168 
2169 /*
2170  * Flush entry for synchronization.
2171  * data contains time stamp
2172  */
2173 #define MOTIONSENSE_SENSOR_FLAG_FLUSH (1<<0)
2174 #define MOTIONSENSE_SENSOR_FLAG_TIMESTAMP (1<<1)
2175 #define MOTIONSENSE_SENSOR_FLAG_WAKEUP (1<<2)
2176 #define MOTIONSENSE_SENSOR_FLAG_TABLET_MODE (1<<3)
2177 
2178 /*
2179  * Send this value for the data element to only perform a read. If you
2180  * send any other value, the EC will interpret it as data to set and will
2181  * return the actual value set.
2182  */
2183 #define EC_MOTION_SENSE_NO_VALUE -1
2184 
2185 #define EC_MOTION_SENSE_INVALID_CALIB_TEMP 0x8000
2186 
2187 /* MOTIONSENSE_CMD_SENSOR_OFFSET subcommand flag */
2188 /* Set Calibration information */
2189 #define MOTION_SENSE_SET_OFFSET 1
2190 
2191 #define LID_ANGLE_UNRELIABLE 500
2192 
2193 enum motionsense_spoof_mode {
2194 	/* Disable spoof mode. */
2195 	MOTIONSENSE_SPOOF_MODE_DISABLE = 0,
2196 
2197 	/* Enable spoof mode, but use provided component values. */
2198 	MOTIONSENSE_SPOOF_MODE_CUSTOM,
2199 
2200 	/* Enable spoof mode, but use the current sensor values. */
2201 	MOTIONSENSE_SPOOF_MODE_LOCK_CURRENT,
2202 
2203 	/* Query the current spoof mode status for the sensor. */
2204 	MOTIONSENSE_SPOOF_MODE_QUERY,
2205 };
2206 
2207 struct __ec_todo_packed ec_params_motion_sense {
2208 	uint8_t cmd;
2209 	union {
2210 		/* Used for MOTIONSENSE_CMD_DUMP */
2211 		struct __ec_todo_unpacked {
2212 			/*
2213 			 * Maximal number of sensor the host is expecting.
2214 			 * 0 means the host is only interested in the number
2215 			 * of sensors controlled by the EC.
2216 			 */
2217 			uint8_t max_sensor_count;
2218 		} dump;
2219 
2220 		/*
2221 		 * Used for MOTIONSENSE_CMD_KB_WAKE_ANGLE.
2222 		 */
2223 		struct __ec_todo_unpacked {
2224 			/* Data to set or EC_MOTION_SENSE_NO_VALUE to read.
2225 			 * kb_wake_angle: angle to wakup AP.
2226 			 */
2227 			int16_t data;
2228 		} kb_wake_angle;
2229 
2230 		/* Used for MOTIONSENSE_CMD_INFO, MOTIONSENSE_CMD_DATA
2231 		 * and MOTIONSENSE_CMD_PERFORM_CALIB. */
2232 		struct __ec_todo_unpacked {
2233 			uint8_t sensor_num;
2234 		} info, info_3, data, fifo_flush, perform_calib,
2235 				list_activities;
2236 
2237 		/*
2238 		 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR
2239 		 * and MOTIONSENSE_CMD_SENSOR_RANGE.
2240 		 */
2241 		struct __ec_todo_unpacked {
2242 			uint8_t sensor_num;
2243 
2244 			/* Rounding flag, true for round-up, false for down. */
2245 			uint8_t roundup;
2246 
2247 			uint16_t reserved;
2248 
2249 			/* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
2250 			int32_t data;
2251 		} ec_rate, sensor_odr, sensor_range;
2252 
2253 		/* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
2254 		struct __ec_todo_packed {
2255 			uint8_t sensor_num;
2256 
2257 			/*
2258 			 * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
2259 			 * the calibration information in the EC.
2260 			 * If unset, just retrieve calibration information.
2261 			 */
2262 			uint16_t flags;
2263 
2264 			/*
2265 			 * Temperature at calibration, in units of 0.01 C
2266 			 * 0x8000: invalid / unknown.
2267 			 * 0x0: 0C
2268 			 * 0x7fff: +327.67C
2269 			 */
2270 			int16_t temp;
2271 
2272 			/*
2273 			 * Offset for calibration.
2274 			 * Unit:
2275 			 * Accelerometer: 1/1024 g
2276 			 * Gyro:          1/1024 deg/s
2277 			 * Compass:       1/16 uT
2278 			 */
2279 			int16_t offset[3];
2280 		} sensor_offset;
2281 
2282 		/* Used for MOTIONSENSE_CMD_FIFO_INFO */
2283 		struct __ec_todo_unpacked {
2284 		} fifo_info;
2285 
2286 		/* Used for MOTIONSENSE_CMD_FIFO_READ */
2287 		struct __ec_todo_unpacked {
2288 			/*
2289 			 * Number of expected vector to return.
2290 			 * EC may return less or 0 if none available.
2291 			 */
2292 			uint32_t max_data_vector;
2293 		} fifo_read;
2294 
2295 		struct ec_motion_sense_activity set_activity;
2296 
2297 		/* Used for MOTIONSENSE_CMD_LID_ANGLE */
2298 		struct __ec_todo_unpacked {
2299 		} lid_angle;
2300 
2301 		/* Used for MOTIONSENSE_CMD_FIFO_INT_ENABLE */
2302 		struct __ec_todo_unpacked {
2303 			/*
2304 			 * 1: enable, 0 disable fifo,
2305 			 * EC_MOTION_SENSE_NO_VALUE return value.
2306 			 */
2307 			int8_t enable;
2308 		} fifo_int_enable;
2309 
2310 		/* Used for MOTIONSENSE_CMD_SPOOF */
2311 		struct __ec_todo_packed {
2312 			uint8_t sensor_id;
2313 
2314 			/* See enum motionsense_spoof_mode. */
2315 			uint8_t spoof_enable;
2316 
2317 			/* Ignored, used for alignment. */
2318 			uint8_t reserved;
2319 
2320 			/* Individual component values to spoof. */
2321 			int16_t components[3];
2322 		} spoof;
2323 	};
2324 };
2325 
2326 struct __ec_todo_packed ec_response_motion_sense {
2327 	union {
2328 		/* Used for MOTIONSENSE_CMD_DUMP */
2329 		struct __ec_todo_unpacked {
2330 			/* Flags representing the motion sensor module. */
2331 			uint8_t module_flags;
2332 
2333 			/* Number of sensors managed directly by the EC */
2334 			uint8_t sensor_count;
2335 
2336 			/*
2337 			 * sensor data is truncated if response_max is too small
2338 			 * for holding all the data.
2339 			 */
2340 			struct ec_response_motion_sensor_data sensor[0];
2341 		} dump;
2342 
2343 		/* Used for MOTIONSENSE_CMD_INFO. */
2344 		struct __ec_todo_unpacked {
2345 			/* Should be element of enum motionsensor_type. */
2346 			uint8_t type;
2347 
2348 			/* Should be element of enum motionsensor_location. */
2349 			uint8_t location;
2350 
2351 			/* Should be element of enum motionsensor_chip. */
2352 			uint8_t chip;
2353 		} info;
2354 
2355 		/* Used for MOTIONSENSE_CMD_INFO version 3 */
2356 		struct __ec_todo_unpacked {
2357 			/* Should be element of enum motionsensor_type. */
2358 			uint8_t type;
2359 
2360 			/* Should be element of enum motionsensor_location. */
2361 			uint8_t location;
2362 
2363 			/* Should be element of enum motionsensor_chip. */
2364 			uint8_t chip;
2365 
2366 			/* Minimum sensor sampling frequency */
2367 			uint32_t min_frequency;
2368 
2369 			/* Maximum sensor sampling frequency */
2370 			uint32_t max_frequency;
2371 
2372 			/* Max number of sensor events that could be in fifo */
2373 			uint32_t fifo_max_event_count;
2374 		} info_3;
2375 
2376 		/* Used for MOTIONSENSE_CMD_DATA */
2377 		struct ec_response_motion_sensor_data data;
2378 
2379 		/*
2380 		 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR,
2381 		 * MOTIONSENSE_CMD_SENSOR_RANGE,
2382 		 * MOTIONSENSE_CMD_KB_WAKE_ANGLE,
2383 		 * MOTIONSENSE_CMD_FIFO_INT_ENABLE and
2384 		 * MOTIONSENSE_CMD_SPOOF.
2385 		 */
2386 		struct __ec_todo_unpacked {
2387 			/* Current value of the parameter queried. */
2388 			int32_t ret;
2389 		} ec_rate, sensor_odr, sensor_range, kb_wake_angle,
2390 		  fifo_int_enable, spoof;
2391 
2392 		/* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
2393 		struct __ec_todo_unpacked  {
2394 			int16_t temp;
2395 			int16_t offset[3];
2396 		} sensor_offset, perform_calib;
2397 
2398 		struct ec_response_motion_sense_fifo_info fifo_info, fifo_flush;
2399 
2400 		struct ec_response_motion_sense_fifo_data fifo_read;
2401 
2402 		struct __ec_todo_packed {
2403 			uint16_t reserved;
2404 			uint32_t enabled;
2405 			uint32_t disabled;
2406 		} list_activities;
2407 
2408 		struct __ec_todo_unpacked {
2409 		} set_activity;
2410 
2411 		/* Used for MOTIONSENSE_CMD_LID_ANGLE */
2412 		struct __ec_todo_unpacked {
2413 			/*
2414 			 * Angle between 0 and 360 degree if available,
2415 			 * LID_ANGLE_UNRELIABLE otherwise.
2416 			 */
2417 			uint16_t value;
2418 		} lid_angle;
2419 	};
2420 };
2421 
2422 /*****************************************************************************/
2423 /* Force lid open command */
2424 
2425 /* Make lid event always open */
2426 #define EC_CMD_FORCE_LID_OPEN 0x002C
2427 
2428 struct __ec_align1 ec_params_force_lid_open {
2429 	uint8_t enabled;
2430 };
2431 
2432 /*****************************************************************************/
2433 /* Configure the behavior of the power button */
2434 #define EC_CMD_CONFIG_POWER_BUTTON 0x002D
2435 
2436 enum ec_config_power_button_flags {
2437 	/* Enable/Disable power button pulses for x86 devices */
2438 	EC_POWER_BUTTON_ENABLE_PULSE = (1 << 0),
2439 };
2440 
2441 struct __ec_align1 ec_params_config_power_button {
2442 	/* See enum ec_config_power_button_flags */
2443 	uint8_t flags;
2444 };
2445 
2446 /*****************************************************************************/
2447 /* USB charging control commands */
2448 
2449 /* Set USB port charging mode */
2450 #define EC_CMD_USB_CHARGE_SET_MODE 0x0030
2451 
2452 struct __ec_align1 ec_params_usb_charge_set_mode {
2453 	uint8_t usb_port_id;
2454 	uint8_t mode;
2455 };
2456 
2457 /*****************************************************************************/
2458 /* Persistent storage for host */
2459 
2460 /* Maximum bytes that can be read/written in a single command */
2461 #define EC_PSTORE_SIZE_MAX 64
2462 
2463 /* Get persistent storage info */
2464 #define EC_CMD_PSTORE_INFO 0x0040
2465 
2466 struct __ec_align4 ec_response_pstore_info {
2467 	/* Persistent storage size, in bytes */
2468 	uint32_t pstore_size;
2469 	/* Access size; read/write offset and size must be a multiple of this */
2470 	uint32_t access_size;
2471 };
2472 
2473 /*
2474  * Read persistent storage
2475  *
2476  * Response is params.size bytes of data.
2477  */
2478 #define EC_CMD_PSTORE_READ 0x0041
2479 
2480 struct __ec_align4 ec_params_pstore_read {
2481 	uint32_t offset;   /* Byte offset to read */
2482 	uint32_t size;     /* Size to read in bytes */
2483 };
2484 
2485 /* Write persistent storage */
2486 #define EC_CMD_PSTORE_WRITE 0x0042
2487 
2488 struct __ec_align4 ec_params_pstore_write {
2489 	uint32_t offset;   /* Byte offset to write */
2490 	uint32_t size;     /* Size to write in bytes */
2491 	uint8_t data[EC_PSTORE_SIZE_MAX];
2492 };
2493 
2494 /*****************************************************************************/
2495 /* Real-time clock */
2496 
2497 /* RTC params and response structures */
2498 struct __ec_align4 ec_params_rtc {
2499 	uint32_t time;
2500 };
2501 
2502 struct __ec_align4 ec_response_rtc {
2503 	uint32_t time;
2504 };
2505 
2506 /* These use ec_response_rtc */
2507 #define EC_CMD_RTC_GET_VALUE 0x0044
2508 #define EC_CMD_RTC_GET_ALARM 0x0045
2509 
2510 /* These all use ec_params_rtc */
2511 #define EC_CMD_RTC_SET_VALUE 0x0046
2512 #define EC_CMD_RTC_SET_ALARM 0x0047
2513 
2514 /* Pass as time param to SET_ALARM to clear the current alarm */
2515 #define EC_RTC_ALARM_CLEAR 0
2516 
2517 /*****************************************************************************/
2518 /* Port80 log access */
2519 
2520 /* Maximum entries that can be read/written in a single command */
2521 #define EC_PORT80_SIZE_MAX 32
2522 
2523 /* Get last port80 code from previous boot */
2524 #define EC_CMD_PORT80_LAST_BOOT 0x0048
2525 #define EC_CMD_PORT80_READ 0x0048
2526 
2527 enum ec_port80_subcmd {
2528 	EC_PORT80_GET_INFO = 0,
2529 	EC_PORT80_READ_BUFFER,
2530 };
2531 
2532 struct __ec_todo_packed ec_params_port80_read {
2533 	uint16_t subcmd;
2534 	union {
2535 		struct __ec_todo_unpacked {
2536 			uint32_t offset;
2537 			uint32_t num_entries;
2538 		} read_buffer;
2539 	};
2540 };
2541 
2542 struct __ec_todo_packed ec_response_port80_read {
2543 	union {
2544 		struct __ec_todo_unpacked {
2545 			uint32_t writes;
2546 			uint32_t history_size;
2547 			uint32_t last_boot;
2548 		} get_info;
2549 		struct __ec_todo_unpacked {
2550 			uint16_t codes[EC_PORT80_SIZE_MAX];
2551 		} data;
2552 	};
2553 };
2554 
2555 struct __ec_align2 ec_response_port80_last_boot {
2556 	uint16_t code;
2557 };
2558 
2559 /*****************************************************************************/
2560 /* Temporary secure storage for host verified boot use */
2561 
2562 /* Number of bytes in a vstore slot */
2563 #define EC_VSTORE_SLOT_SIZE 64
2564 
2565 /* Maximum number of vstore slots */
2566 #define EC_VSTORE_SLOT_MAX 32
2567 
2568 /* Get persistent storage info */
2569 #define EC_CMD_VSTORE_INFO 0x0049
2570 struct __ec_align_size1 ec_response_vstore_info {
2571 	/* Indicates which slots are locked */
2572 	uint32_t slot_locked;
2573 	/* Total number of slots available */
2574 	uint8_t slot_count;
2575 };
2576 
2577 /*
2578  * Read temporary secure storage
2579  *
2580  * Response is EC_VSTORE_SLOT_SIZE bytes of data.
2581  */
2582 #define EC_CMD_VSTORE_READ 0x004A
2583 
2584 struct __ec_align1 ec_params_vstore_read {
2585 	uint8_t slot; /* Slot to read from */
2586 };
2587 
2588 struct __ec_align1 ec_response_vstore_read {
2589 	uint8_t data[EC_VSTORE_SLOT_SIZE];
2590 };
2591 
2592 /*
2593  * Write temporary secure storage and lock it.
2594  */
2595 #define EC_CMD_VSTORE_WRITE 0x004B
2596 
2597 struct __ec_align1 ec_params_vstore_write {
2598 	uint8_t slot; /* Slot to write to */
2599 	uint8_t data[EC_VSTORE_SLOT_SIZE];
2600 };
2601 
2602 /*****************************************************************************/
2603 /* Thermal engine commands. Note that there are two implementations. We'll
2604  * reuse the command number, but the data and behavior is incompatible.
2605  * Version 0 is what originally shipped on Link.
2606  * Version 1 separates the CPU thermal limits from the fan control.
2607  */
2608 
2609 #define EC_CMD_THERMAL_SET_THRESHOLD 0x0050
2610 #define EC_CMD_THERMAL_GET_THRESHOLD 0x0051
2611 
2612 /* The version 0 structs are opaque. You have to know what they are for
2613  * the get/set commands to make any sense.
2614  */
2615 
2616 /* Version 0 - set */
2617 struct __ec_align2 ec_params_thermal_set_threshold {
2618 	uint8_t sensor_type;
2619 	uint8_t threshold_id;
2620 	uint16_t value;
2621 };
2622 
2623 /* Version 0 - get */
2624 struct __ec_align1 ec_params_thermal_get_threshold {
2625 	uint8_t sensor_type;
2626 	uint8_t threshold_id;
2627 };
2628 
2629 struct __ec_align2 ec_response_thermal_get_threshold {
2630 	uint16_t value;
2631 };
2632 
2633 
2634 /* The version 1 structs are visible. */
2635 enum ec_temp_thresholds {
2636 	EC_TEMP_THRESH_WARN = 0,
2637 	EC_TEMP_THRESH_HIGH,
2638 	EC_TEMP_THRESH_HALT,
2639 
2640 	EC_TEMP_THRESH_COUNT
2641 };
2642 
2643 /*
2644  * Thermal configuration for one temperature sensor. Temps are in degrees K.
2645  * Zero values will be silently ignored by the thermal task.
2646  *
2647  * Note that this structure is a sub-structure of
2648  * ec_params_thermal_set_threshold_v1, but maintains its alignment there.
2649  */
2650 struct __ec_align4 ec_thermal_config {
2651 	uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */
2652 	uint32_t temp_fan_off;		/* no active cooling needed */
2653 	uint32_t temp_fan_max;		/* max active cooling needed */
2654 };
2655 
2656 /* Version 1 - get config for one sensor. */
2657 struct __ec_align4 ec_params_thermal_get_threshold_v1 {
2658 	uint32_t sensor_num;
2659 };
2660 /* This returns a struct ec_thermal_config */
2661 
2662 /* Version 1 - set config for one sensor.
2663  * Use read-modify-write for best results! */
2664 struct __ec_align4 ec_params_thermal_set_threshold_v1 {
2665 	uint32_t sensor_num;
2666 	struct ec_thermal_config cfg;
2667 };
2668 /* This returns no data */
2669 
2670 /****************************************************************************/
2671 
2672 /* Toggle automatic fan control */
2673 #define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x0052
2674 
2675 /* Version 1 of input params */
2676 struct __ec_align1 ec_params_auto_fan_ctrl_v1 {
2677 	uint8_t fan_idx;
2678 };
2679 
2680 /* Get/Set TMP006 calibration data */
2681 #define EC_CMD_TMP006_GET_CALIBRATION 0x0053
2682 #define EC_CMD_TMP006_SET_CALIBRATION 0x0054
2683 
2684 /*
2685  * The original TMP006 calibration only needed four params, but now we need
2686  * more. Since the algorithm is nothing but magic numbers anyway, we'll leave
2687  * the params opaque. The v1 "get" response will include the algorithm number
2688  * and how many params it requires. That way we can change the EC code without
2689  * needing to update this file. We can also use a different algorithm on each
2690  * sensor.
2691  */
2692 
2693 /* This is the same struct for both v0 and v1. */
2694 struct __ec_align1 ec_params_tmp006_get_calibration {
2695 	uint8_t index;
2696 };
2697 
2698 /* Version 0 */
2699 struct __ec_align4 ec_response_tmp006_get_calibration_v0 {
2700 	float s0;
2701 	float b0;
2702 	float b1;
2703 	float b2;
2704 };
2705 
2706 struct __ec_align4 ec_params_tmp006_set_calibration_v0 {
2707 	uint8_t index;
2708 	uint8_t reserved[3];
2709 	float s0;
2710 	float b0;
2711 	float b1;
2712 	float b2;
2713 };
2714 
2715 /* Version 1 */
2716 struct __ec_align4 ec_response_tmp006_get_calibration_v1 {
2717 	uint8_t algorithm;
2718 	uint8_t num_params;
2719 	uint8_t reserved[2];
2720 	float val[0];
2721 };
2722 
2723 struct __ec_align4 ec_params_tmp006_set_calibration_v1 {
2724 	uint8_t index;
2725 	uint8_t algorithm;
2726 	uint8_t num_params;
2727 	uint8_t reserved;
2728 	float val[0];
2729 };
2730 
2731 
2732 /* Read raw TMP006 data */
2733 #define EC_CMD_TMP006_GET_RAW 0x0055
2734 
2735 struct __ec_align1 ec_params_tmp006_get_raw {
2736 	uint8_t index;
2737 };
2738 
2739 struct __ec_align4 ec_response_tmp006_get_raw {
2740 	int32_t t;  /* In 1/100 K */
2741 	int32_t v;  /* In nV */
2742 };
2743 
2744 /*****************************************************************************/
2745 /* MKBP - Matrix KeyBoard Protocol */
2746 
2747 /*
2748  * Read key state
2749  *
2750  * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for
2751  * expected response size.
2752  *
2753  * NOTE: This has been superseded by EC_CMD_MKBP_GET_NEXT_EVENT.  If you wish
2754  * to obtain the instantaneous state, use EC_CMD_MKBP_INFO with the type
2755  * EC_MKBP_INFO_CURRENT and event EC_MKBP_EVENT_KEY_MATRIX.
2756  */
2757 #define EC_CMD_MKBP_STATE 0x0060
2758 
2759 /*
2760  * Provide information about various MKBP things.  See enum ec_mkbp_info_type.
2761  */
2762 #define EC_CMD_MKBP_INFO 0x0061
2763 
2764 struct __ec_align_size1 ec_response_mkbp_info {
2765 	uint32_t rows;
2766 	uint32_t cols;
2767 	/* Formerly "switches", which was 0. */
2768 	uint8_t reserved;
2769 };
2770 
2771 struct __ec_align1 ec_params_mkbp_info {
2772 	uint8_t info_type;
2773 	uint8_t event_type;
2774 };
2775 
2776 enum ec_mkbp_info_type {
2777 	/*
2778 	 * Info about the keyboard matrix: number of rows and columns.
2779 	 *
2780 	 * Returns struct ec_response_mkbp_info.
2781 	 */
2782 	EC_MKBP_INFO_KBD = 0,
2783 
2784 	/*
2785 	 * For buttons and switches, info about which specifically are
2786 	 * supported.  event_type must be set to one of the values in enum
2787 	 * ec_mkbp_event.
2788 	 *
2789 	 * For EC_MKBP_EVENT_BUTTON and EC_MKBP_EVENT_SWITCH, returns a 4 byte
2790 	 * bitmask indicating which buttons or switches are present.  See the
2791 	 * bit inidices below.
2792 	 */
2793 	EC_MKBP_INFO_SUPPORTED = 1,
2794 
2795 	/*
2796 	 * Instantaneous state of buttons and switches.
2797 	 *
2798 	 * event_type must be set to one of the values in enum ec_mkbp_event.
2799 	 *
2800 	 * For EC_MKBP_EVENT_KEY_MATRIX, returns uint8_t key_matrix[13]
2801 	 * indicating the current state of the keyboard matrix.
2802 	 *
2803 	 * For EC_MKBP_EVENT_HOST_EVENT, return uint32_t host_event, the raw
2804 	 * event state.
2805 	 *
2806 	 * For EC_MKBP_EVENT_BUTTON, returns uint32_t buttons, indicating the
2807 	 * state of supported buttons.
2808 	 *
2809 	 * For EC_MKBP_EVENT_SWITCH, returns uint32_t switches, indicating the
2810 	 * state of supported switches.
2811 	 */
2812 	EC_MKBP_INFO_CURRENT = 2,
2813 };
2814 
2815 /* Simulate key press */
2816 #define EC_CMD_MKBP_SIMULATE_KEY 0x0062
2817 
2818 struct __ec_align1 ec_params_mkbp_simulate_key {
2819 	uint8_t col;
2820 	uint8_t row;
2821 	uint8_t pressed;
2822 };
2823 
2824 /* Configure keyboard scanning */
2825 #define EC_CMD_MKBP_SET_CONFIG 0x0064
2826 #define EC_CMD_MKBP_GET_CONFIG 0x0065
2827 
2828 /* flags */
2829 enum mkbp_config_flags {
2830 	EC_MKBP_FLAGS_ENABLE = 1,	/* Enable keyboard scanning */
2831 };
2832 
2833 enum mkbp_config_valid {
2834 	EC_MKBP_VALID_SCAN_PERIOD		= 1 << 0,
2835 	EC_MKBP_VALID_POLL_TIMEOUT		= 1 << 1,
2836 	EC_MKBP_VALID_MIN_POST_SCAN_DELAY	= 1 << 3,
2837 	EC_MKBP_VALID_OUTPUT_SETTLE		= 1 << 4,
2838 	EC_MKBP_VALID_DEBOUNCE_DOWN		= 1 << 5,
2839 	EC_MKBP_VALID_DEBOUNCE_UP		= 1 << 6,
2840 	EC_MKBP_VALID_FIFO_MAX_DEPTH		= 1 << 7,
2841 };
2842 
2843 /*
2844  * Configuration for our key scanning algorithm.
2845  *
2846  * Note that this is used as a sub-structure of
2847  * ec_{params/response}_mkbp_get_config.
2848  */
2849 struct __ec_align_size1 ec_mkbp_config {
2850 	uint32_t valid_mask;		/* valid fields */
2851 	uint8_t flags;		/* some flags (enum mkbp_config_flags) */
2852 	uint8_t valid_flags;		/* which flags are valid */
2853 	uint16_t scan_period_us;	/* period between start of scans */
2854 	/* revert to interrupt mode after no activity for this long */
2855 	uint32_t poll_timeout_us;
2856 	/*
2857 	 * minimum post-scan relax time. Once we finish a scan we check
2858 	 * the time until we are due to start the next one. If this time is
2859 	 * shorter this field, we use this instead.
2860 	 */
2861 	uint16_t min_post_scan_delay_us;
2862 	/* delay between setting up output and waiting for it to settle */
2863 	uint16_t output_settle_us;
2864 	uint16_t debounce_down_us;	/* time for debounce on key down */
2865 	uint16_t debounce_up_us;	/* time for debounce on key up */
2866 	/* maximum depth to allow for fifo (0 = no keyscan output) */
2867 	uint8_t fifo_max_depth;
2868 };
2869 
2870 struct __ec_align_size1 ec_params_mkbp_set_config {
2871 	struct ec_mkbp_config config;
2872 };
2873 
2874 struct __ec_align_size1 ec_response_mkbp_get_config {
2875 	struct ec_mkbp_config config;
2876 };
2877 
2878 /* Run the key scan emulation */
2879 #define EC_CMD_KEYSCAN_SEQ_CTRL 0x0066
2880 
2881 enum ec_keyscan_seq_cmd {
2882 	EC_KEYSCAN_SEQ_STATUS = 0,	/* Get status information */
2883 	EC_KEYSCAN_SEQ_CLEAR = 1,	/* Clear sequence */
2884 	EC_KEYSCAN_SEQ_ADD = 2,		/* Add item to sequence */
2885 	EC_KEYSCAN_SEQ_START = 3,	/* Start running sequence */
2886 	EC_KEYSCAN_SEQ_COLLECT = 4,	/* Collect sequence summary data */
2887 };
2888 
2889 enum ec_collect_flags {
2890 	/*
2891 	 * Indicates this scan was processed by the EC. Due to timing, some
2892 	 * scans may be skipped.
2893 	 */
2894 	EC_KEYSCAN_SEQ_FLAG_DONE	= 1 << 0,
2895 };
2896 
2897 struct __ec_align1 ec_collect_item {
2898 	uint8_t flags;		/* some flags (enum ec_collect_flags) */
2899 };
2900 
2901 struct __ec_todo_packed ec_params_keyscan_seq_ctrl {
2902 	uint8_t cmd;	/* Command to send (enum ec_keyscan_seq_cmd) */
2903 	union {
2904 		struct __ec_align1 {
2905 			uint8_t active;		/* still active */
2906 			uint8_t num_items;	/* number of items */
2907 			/* Current item being presented */
2908 			uint8_t cur_item;
2909 		} status;
2910 		struct __ec_todo_unpacked {
2911 			/*
2912 			 * Absolute time for this scan, measured from the
2913 			 * start of the sequence.
2914 			 */
2915 			uint32_t time_us;
2916 			uint8_t scan[0];	/* keyscan data */
2917 		} add;
2918 		struct __ec_align1 {
2919 			uint8_t start_item;	/* First item to return */
2920 			uint8_t num_items;	/* Number of items to return */
2921 		} collect;
2922 	};
2923 };
2924 
2925 struct __ec_todo_packed ec_result_keyscan_seq_ctrl {
2926 	union {
2927 		struct __ec_todo_unpacked {
2928 			uint8_t num_items;	/* Number of items */
2929 			/* Data for each item */
2930 			struct ec_collect_item item[0];
2931 		} collect;
2932 	};
2933 };
2934 
2935 /*
2936  * Get the next pending MKBP event.
2937  *
2938  * Returns EC_RES_UNAVAILABLE if there is no event pending.
2939  */
2940 #define EC_CMD_GET_NEXT_EVENT 0x0067
2941 
2942 enum ec_mkbp_event {
2943 	/* Keyboard matrix changed. The event data is the new matrix state. */
2944 	EC_MKBP_EVENT_KEY_MATRIX = 0,
2945 
2946 	/* New host event. The event data is 4 bytes of host event flags. */
2947 	EC_MKBP_EVENT_HOST_EVENT = 1,
2948 
2949 	/* New Sensor FIFO data. The event data is fifo_info structure. */
2950 	EC_MKBP_EVENT_SENSOR_FIFO = 2,
2951 
2952 	/* The state of the non-matrixed buttons have changed. */
2953 	EC_MKBP_EVENT_BUTTON = 3,
2954 
2955 	/* The state of the switches have changed. */
2956 	EC_MKBP_EVENT_SWITCH = 4,
2957 
2958 	/* New Fingerprint sensor event, the event data is fp_events bitmap. */
2959 	EC_MKBP_EVENT_FINGERPRINT = 5,
2960 
2961 	/*
2962 	 * Sysrq event: send emulated sysrq. The event data is sysrq,
2963 	 * corresponding to the key to be pressed.
2964 	 */
2965 	EC_MKBP_EVENT_SYSRQ = 6,
2966 
2967 	/* Number of MKBP events */
2968 	EC_MKBP_EVENT_COUNT,
2969 };
2970 
2971 union __ec_align_offset1 ec_response_get_next_data {
2972 	uint8_t key_matrix[13];
2973 
2974 	/* Unaligned */
2975 	uint32_t host_event;
2976 
2977 	struct __ec_todo_unpacked {
2978 		/* For aligning the fifo_info */
2979 		uint8_t reserved[3];
2980 		struct ec_response_motion_sense_fifo_info info;
2981 	} sensor_fifo;
2982 
2983 	uint32_t buttons;
2984 
2985 	uint32_t switches;
2986 
2987 	uint32_t fp_events;
2988 
2989 	uint32_t sysrq;
2990 };
2991 
2992 struct __ec_align1 ec_response_get_next_event {
2993 	uint8_t event_type;
2994 	/* Followed by event data if any */
2995 	union ec_response_get_next_data data;
2996 };
2997 
2998 /* Bit indices for buttons and switches.*/
2999 /* Buttons */
3000 #define EC_MKBP_POWER_BUTTON	0
3001 #define EC_MKBP_VOL_UP		1
3002 #define EC_MKBP_VOL_DOWN	2
3003 #define EC_MKBP_RECOVERY	3
3004 
3005 /* Switches */
3006 #define EC_MKBP_LID_OPEN	0
3007 #define EC_MKBP_TABLET_MODE	1
3008 
3009 /* Run keyboard factory test scanning */
3010 #define EC_CMD_KEYBOARD_FACTORY_TEST 0x0068
3011 
3012 struct __ec_align2 ec_response_keyboard_factory_test {
3013 	uint16_t shorted;	/* Keyboard pins are shorted */
3014 };
3015 
3016 /* Fingerprint events in 'fp_events' for EC_MKBP_EVENT_FINGERPRINT */
3017 #define EC_MKBP_FP_RAW_EVENT(fp_events) ((fp_events) & 0x00FFFFFF)
3018 #define EC_MKBP_FP_FINGER_DOWN          (1 << 29)
3019 #define EC_MKBP_FP_FINGER_UP            (1 << 30)
3020 #define EC_MKBP_FP_IMAGE_READY          (1 << 31)
3021 
3022 /*****************************************************************************/
3023 /* Temperature sensor commands */
3024 
3025 /* Read temperature sensor info */
3026 #define EC_CMD_TEMP_SENSOR_GET_INFO 0x0070
3027 
3028 struct __ec_align1 ec_params_temp_sensor_get_info {
3029 	uint8_t id;
3030 };
3031 
3032 struct __ec_align1 ec_response_temp_sensor_get_info {
3033 	char sensor_name[32];
3034 	uint8_t sensor_type;
3035 };
3036 
3037 /*****************************************************************************/
3038 
3039 /*
3040  * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI
3041  * commands accidentally sent to the wrong interface.  See the ACPI section
3042  * below.
3043  */
3044 
3045 /*****************************************************************************/
3046 /* Host event commands */
3047 
3048 
3049 /* Obsolete. New implementation should use EC_CMD_PROGRAM_HOST_EVENT instead */
3050 /*
3051  * Host event mask params and response structures, shared by all of the host
3052  * event commands below.
3053  */
3054 struct __ec_align4 ec_params_host_event_mask {
3055 	uint32_t mask;
3056 };
3057 
3058 struct __ec_align4 ec_response_host_event_mask {
3059 	uint32_t mask;
3060 };
3061 
3062 /* These all use ec_response_host_event_mask */
3063 #define EC_CMD_HOST_EVENT_GET_B         0x0087
3064 #define EC_CMD_HOST_EVENT_GET_SMI_MASK  0x0088
3065 #define EC_CMD_HOST_EVENT_GET_SCI_MASK  0x0089
3066 #define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x008D
3067 
3068 /* These all use ec_params_host_event_mask */
3069 #define EC_CMD_HOST_EVENT_SET_SMI_MASK  0x008A
3070 #define EC_CMD_HOST_EVENT_SET_SCI_MASK  0x008B
3071 #define EC_CMD_HOST_EVENT_CLEAR         0x008C
3072 #define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x008E
3073 #define EC_CMD_HOST_EVENT_CLEAR_B       0x008F
3074 
3075 /*
3076  * Unified host event programming interface - Should be used by newer versions
3077  * of BIOS/OS to program host events and masks
3078  */
3079 
3080 struct __ec_align4 ec_params_host_event {
3081 
3082 	/* Action requested by host - one of enum ec_host_event_action. */
3083 	uint8_t action;
3084 
3085 	/*
3086 	 * Mask type that the host requested the action on - one of
3087 	 * enum ec_host_event_mask_type.
3088 	 */
3089 	uint8_t mask_type;
3090 
3091 	/* Set to 0, ignore on read */
3092 	uint16_t reserved;
3093 
3094 	/* Value to be used in case of set operations. */
3095 	uint64_t value;
3096 };
3097 
3098 /*
3099  * Response structure returned by EC_CMD_HOST_EVENT.
3100  * Update the value on a GET request. Set to 0 on GET/CLEAR
3101  */
3102 
3103 struct __ec_align4 ec_response_host_event {
3104 
3105 	/* Mask value in case of get operation */
3106 	uint64_t value;
3107 };
3108 
3109 enum ec_host_event_action {
3110 	/*
3111 	 * params.value is ignored. Value of mask_type populated
3112 	 * in response.value
3113 	 */
3114 	EC_HOST_EVENT_GET,
3115 
3116 	/* Bits in params.value are set */
3117 	EC_HOST_EVENT_SET,
3118 
3119 	/* Bits in params.value are cleared */
3120 	EC_HOST_EVENT_CLEAR,
3121 };
3122 
3123 enum ec_host_event_mask_type {
3124 
3125 	/* Main host event copy */
3126 	EC_HOST_EVENT_MAIN,
3127 
3128 	/* Copy B of host events */
3129 	EC_HOST_EVENT_B,
3130 
3131 	/* SCI Mask */
3132 	EC_HOST_EVENT_SCI_MASK,
3133 
3134 	/* SMI Mask */
3135 	EC_HOST_EVENT_SMI_MASK,
3136 
3137 	/* Mask of events that should be always reported in hostevents */
3138 	EC_HOST_EVENT_ALWAYS_REPORT_MASK,
3139 
3140 	/* Active wake mask */
3141 	EC_HOST_EVENT_ACTIVE_WAKE_MASK,
3142 
3143 	/* Lazy wake mask for S0ix */
3144 	EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX,
3145 
3146 	/* Lazy wake mask for S3 */
3147 	EC_HOST_EVENT_LAZY_WAKE_MASK_S3,
3148 
3149 	/* Lazy wake mask for S5 */
3150 	EC_HOST_EVENT_LAZY_WAKE_MASK_S5,
3151 };
3152 
3153 #define EC_CMD_HOST_EVENT       0x00A4
3154 
3155 /*****************************************************************************/
3156 /* Switch commands */
3157 
3158 /* Enable/disable LCD backlight */
3159 #define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x0090
3160 
3161 struct __ec_align1 ec_params_switch_enable_backlight {
3162 	uint8_t enabled;
3163 };
3164 
3165 /* Enable/disable WLAN/Bluetooth */
3166 #define EC_CMD_SWITCH_ENABLE_WIRELESS 0x0091
3167 #define EC_VER_SWITCH_ENABLE_WIRELESS 1
3168 
3169 /* Version 0 params; no response */
3170 struct __ec_align1 ec_params_switch_enable_wireless_v0 {
3171 	uint8_t enabled;
3172 };
3173 
3174 /* Version 1 params */
3175 struct __ec_align1 ec_params_switch_enable_wireless_v1 {
3176 	/* Flags to enable now */
3177 	uint8_t now_flags;
3178 
3179 	/* Which flags to copy from now_flags */
3180 	uint8_t now_mask;
3181 
3182 	/*
3183 	 * Flags to leave enabled in S3, if they're on at the S0->S3
3184 	 * transition.  (Other flags will be disabled by the S0->S3
3185 	 * transition.)
3186 	 */
3187 	uint8_t suspend_flags;
3188 
3189 	/* Which flags to copy from suspend_flags */
3190 	uint8_t suspend_mask;
3191 };
3192 
3193 /* Version 1 response */
3194 struct __ec_align1 ec_response_switch_enable_wireless_v1 {
3195 	/* Flags to enable now */
3196 	uint8_t now_flags;
3197 
3198 	/* Flags to leave enabled in S3 */
3199 	uint8_t suspend_flags;
3200 };
3201 
3202 /*****************************************************************************/
3203 /* GPIO commands. Only available on EC if write protect has been disabled. */
3204 
3205 /* Set GPIO output value */
3206 #define EC_CMD_GPIO_SET 0x0092
3207 
3208 struct __ec_align1 ec_params_gpio_set {
3209 	char name[32];
3210 	uint8_t val;
3211 };
3212 
3213 /* Get GPIO value */
3214 #define EC_CMD_GPIO_GET 0x0093
3215 
3216 /* Version 0 of input params and response */
3217 struct __ec_align1 ec_params_gpio_get {
3218 	char name[32];
3219 };
3220 
3221 struct __ec_align1 ec_response_gpio_get {
3222 	uint8_t val;
3223 };
3224 
3225 /* Version 1 of input params and response */
3226 struct __ec_align1 ec_params_gpio_get_v1 {
3227 	uint8_t subcmd;
3228 	union {
3229 		struct __ec_align1 {
3230 			char name[32];
3231 		} get_value_by_name;
3232 		struct __ec_align1 {
3233 			uint8_t index;
3234 		} get_info;
3235 	};
3236 };
3237 
3238 struct __ec_todo_packed ec_response_gpio_get_v1 {
3239 	union {
3240 		struct __ec_align1 {
3241 			uint8_t val;
3242 		} get_value_by_name, get_count;
3243 		struct __ec_todo_unpacked {
3244 			uint8_t val;
3245 			char name[32];
3246 			uint32_t flags;
3247 		} get_info;
3248 	};
3249 };
3250 
3251 enum gpio_get_subcmd {
3252 	EC_GPIO_GET_BY_NAME = 0,
3253 	EC_GPIO_GET_COUNT = 1,
3254 	EC_GPIO_GET_INFO = 2,
3255 };
3256 
3257 /*****************************************************************************/
3258 /* I2C commands. Only available when flash write protect is unlocked. */
3259 
3260 /*
3261  * CAUTION: These commands are deprecated, and are not supported anymore in EC
3262  * builds >= 8398.0.0 (see crosbug.com/p/23570).
3263  *
3264  * Use EC_CMD_I2C_PASSTHRU instead.
3265  */
3266 
3267 /* Read I2C bus */
3268 #define EC_CMD_I2C_READ 0x0094
3269 
3270 struct __ec_align_size1 ec_params_i2c_read {
3271 	uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
3272 	uint8_t read_size; /* Either 8 or 16. */
3273 	uint8_t port;
3274 	uint8_t offset;
3275 };
3276 
3277 struct __ec_align2 ec_response_i2c_read {
3278 	uint16_t data;
3279 };
3280 
3281 /* Write I2C bus */
3282 #define EC_CMD_I2C_WRITE 0x0095
3283 
3284 struct __ec_align_size1 ec_params_i2c_write {
3285 	uint16_t data;
3286 	uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
3287 	uint8_t write_size; /* Either 8 or 16. */
3288 	uint8_t port;
3289 	uint8_t offset;
3290 };
3291 
3292 /*****************************************************************************/
3293 /* Charge state commands. Only available when flash write protect unlocked. */
3294 
3295 /* Force charge state machine to stop charging the battery or force it to
3296  * discharge the battery.
3297  */
3298 #define EC_CMD_CHARGE_CONTROL 0x0096
3299 #define EC_VER_CHARGE_CONTROL 1
3300 
3301 enum ec_charge_control_mode {
3302 	CHARGE_CONTROL_NORMAL = 0,
3303 	CHARGE_CONTROL_IDLE,
3304 	CHARGE_CONTROL_DISCHARGE,
3305 };
3306 
3307 struct __ec_align4 ec_params_charge_control {
3308 	uint32_t mode;  /* enum charge_control_mode */
3309 };
3310 
3311 /*****************************************************************************/
3312 /* Console commands. Only available when flash write protect is unlocked. */
3313 
3314 /* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */
3315 #define EC_CMD_CONSOLE_SNAPSHOT 0x0097
3316 
3317 /*
3318  * Read data from the saved snapshot. If the subcmd parameter is
3319  * CONSOLE_READ_NEXT, this will return data starting from the beginning of
3320  * the latest snapshot. If it is CONSOLE_READ_RECENT, it will start from the
3321  * end of the previous snapshot.
3322  *
3323  * The params are only looked at in version >= 1 of this command. Prior
3324  * versions will just default to CONSOLE_READ_NEXT behavior.
3325  *
3326  * Response is null-terminated string.  Empty string, if there is no more
3327  * remaining output.
3328  */
3329 #define EC_CMD_CONSOLE_READ 0x0098
3330 
3331 enum ec_console_read_subcmd {
3332 	CONSOLE_READ_NEXT = 0,
3333 	CONSOLE_READ_RECENT
3334 };
3335 
3336 struct __ec_align1 ec_params_console_read_v1 {
3337 	uint8_t subcmd; /* enum ec_console_read_subcmd */
3338 };
3339 
3340 /*****************************************************************************/
3341 
3342 /*
3343  * Cut off battery power immediately or after the host has shut down.
3344  *
3345  * return EC_RES_INVALID_COMMAND if unsupported by a board/battery.
3346  *	  EC_RES_SUCCESS if the command was successful.
3347  *	  EC_RES_ERROR if the cut off command failed.
3348  */
3349 #define EC_CMD_BATTERY_CUT_OFF 0x0099
3350 
3351 #define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN	(1 << 0)
3352 
3353 struct __ec_align1 ec_params_battery_cutoff {
3354 	uint8_t flags;
3355 };
3356 
3357 /*****************************************************************************/
3358 /* USB port mux control. */
3359 
3360 /*
3361  * Switch USB mux or return to automatic switching.
3362  */
3363 #define EC_CMD_USB_MUX 0x009A
3364 
3365 struct __ec_align1 ec_params_usb_mux {
3366 	uint8_t mux;
3367 };
3368 
3369 /*****************************************************************************/
3370 /* LDOs / FETs control. */
3371 
3372 enum ec_ldo_state {
3373 	EC_LDO_STATE_OFF = 0,	/* the LDO / FET is shut down */
3374 	EC_LDO_STATE_ON = 1,	/* the LDO / FET is ON / providing power */
3375 };
3376 
3377 /*
3378  * Switch on/off a LDO.
3379  */
3380 #define EC_CMD_LDO_SET 0x009B
3381 
3382 struct __ec_align1 ec_params_ldo_set {
3383 	uint8_t index;
3384 	uint8_t state;
3385 };
3386 
3387 /*
3388  * Get LDO state.
3389  */
3390 #define EC_CMD_LDO_GET 0x009C
3391 
3392 struct __ec_align1 ec_params_ldo_get {
3393 	uint8_t index;
3394 };
3395 
3396 struct __ec_align1 ec_response_ldo_get {
3397 	uint8_t state;
3398 };
3399 
3400 /*****************************************************************************/
3401 /* Power info. */
3402 
3403 /*
3404  * Get power info.
3405  */
3406 #define EC_CMD_POWER_INFO 0x009D
3407 
3408 struct __ec_align4 ec_response_power_info {
3409 	uint32_t usb_dev_type;
3410 	uint16_t voltage_ac;
3411 	uint16_t voltage_system;
3412 	uint16_t current_system;
3413 	uint16_t usb_current_limit;
3414 };
3415 
3416 /*****************************************************************************/
3417 /* I2C passthru command */
3418 
3419 #define EC_CMD_I2C_PASSTHRU 0x009E
3420 
3421 /* Read data; if not present, message is a write */
3422 #define EC_I2C_FLAG_READ	(1 << 15)
3423 
3424 /* Mask for address */
3425 #define EC_I2C_ADDR_MASK	0x3ff
3426 
3427 #define EC_I2C_STATUS_NAK	(1 << 0) /* Transfer was not acknowledged */
3428 #define EC_I2C_STATUS_TIMEOUT	(1 << 1) /* Timeout during transfer */
3429 
3430 /* Any error */
3431 #define EC_I2C_STATUS_ERROR	(EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT)
3432 
3433 struct __ec_align2 ec_params_i2c_passthru_msg {
3434 	uint16_t addr_flags;	/* I2C slave address (7 or 10 bits) and flags */
3435 	uint16_t len;		/* Number of bytes to read or write */
3436 };
3437 
3438 struct __ec_align2 ec_params_i2c_passthru {
3439 	uint8_t port;		/* I2C port number */
3440 	uint8_t num_msgs;	/* Number of messages */
3441 	struct ec_params_i2c_passthru_msg msg[];
3442 	/* Data to write for all messages is concatenated here */
3443 };
3444 
3445 struct __ec_align1 ec_response_i2c_passthru {
3446 	uint8_t i2c_status;	/* Status flags (EC_I2C_STATUS_...) */
3447 	uint8_t num_msgs;	/* Number of messages processed */
3448 	uint8_t data[];		/* Data read by messages concatenated here */
3449 };
3450 
3451 /*****************************************************************************/
3452 /* Power button hang detect */
3453 
3454 #define EC_CMD_HANG_DETECT 0x009F
3455 
3456 /* Reasons to start hang detection timer */
3457 /* Power button pressed */
3458 #define EC_HANG_START_ON_POWER_PRESS  (1 << 0)
3459 
3460 /* Lid closed */
3461 #define EC_HANG_START_ON_LID_CLOSE    (1 << 1)
3462 
3463  /* Lid opened */
3464 #define EC_HANG_START_ON_LID_OPEN     (1 << 2)
3465 
3466 /* Start of AP S3->S0 transition (booting or resuming from suspend) */
3467 #define EC_HANG_START_ON_RESUME       (1 << 3)
3468 
3469 /* Reasons to cancel hang detection */
3470 
3471 /* Power button released */
3472 #define EC_HANG_STOP_ON_POWER_RELEASE (1 << 8)
3473 
3474 /* Any host command from AP received */
3475 #define EC_HANG_STOP_ON_HOST_COMMAND  (1 << 9)
3476 
3477 /* Stop on end of AP S0->S3 transition (suspending or shutting down) */
3478 #define EC_HANG_STOP_ON_SUSPEND       (1 << 10)
3479 
3480 /*
3481  * If this flag is set, all the other fields are ignored, and the hang detect
3482  * timer is started.  This provides the AP a way to start the hang timer
3483  * without reconfiguring any of the other hang detect settings.  Note that
3484  * you must previously have configured the timeouts.
3485  */
3486 #define EC_HANG_START_NOW             (1 << 30)
3487 
3488 /*
3489  * If this flag is set, all the other fields are ignored (including
3490  * EC_HANG_START_NOW).  This provides the AP a way to stop the hang timer
3491  * without reconfiguring any of the other hang detect settings.
3492  */
3493 #define EC_HANG_STOP_NOW              (1 << 31)
3494 
3495 struct __ec_align4 ec_params_hang_detect {
3496 	/* Flags; see EC_HANG_* */
3497 	uint32_t flags;
3498 
3499 	/* Timeout in msec before generating host event, if enabled */
3500 	uint16_t host_event_timeout_msec;
3501 
3502 	/* Timeout in msec before generating warm reboot, if enabled */
3503 	uint16_t warm_reboot_timeout_msec;
3504 };
3505 
3506 /*****************************************************************************/
3507 /* Commands for battery charging */
3508 
3509 /*
3510  * This is the single catch-all host command to exchange data regarding the
3511  * charge state machine (v2 and up).
3512  */
3513 #define EC_CMD_CHARGE_STATE 0x00A0
3514 
3515 /* Subcommands for this host command */
3516 enum charge_state_command {
3517 	CHARGE_STATE_CMD_GET_STATE,
3518 	CHARGE_STATE_CMD_GET_PARAM,
3519 	CHARGE_STATE_CMD_SET_PARAM,
3520 	CHARGE_STATE_NUM_CMDS
3521 };
3522 
3523 /*
3524  * Known param numbers are defined here. Ranges are reserved for board-specific
3525  * params, which are handled by the particular implementations.
3526  */
3527 enum charge_state_params {
3528 	CS_PARAM_CHG_VOLTAGE,	      /* charger voltage limit */
3529 	CS_PARAM_CHG_CURRENT,	      /* charger current limit */
3530 	CS_PARAM_CHG_INPUT_CURRENT,   /* charger input current limit */
3531 	CS_PARAM_CHG_STATUS,	      /* charger-specific status */
3532 	CS_PARAM_CHG_OPTION,	      /* charger-specific options */
3533 	CS_PARAM_LIMIT_POWER,	      /*
3534 				       * Check if power is limited due to
3535 				       * low battery and / or a weak external
3536 				       * charger. READ ONLY.
3537 				       */
3538 	/* How many so far? */
3539 	CS_NUM_BASE_PARAMS,
3540 
3541 	/* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */
3542 	CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000,
3543 	CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff,
3544 
3545 	/* Other custom param ranges go here... */
3546 };
3547 
3548 struct __ec_todo_packed ec_params_charge_state {
3549 	uint8_t cmd;				/* enum charge_state_command */
3550 	union {
3551 		struct __ec_align1 {
3552 			/* no args */
3553 		} get_state;
3554 
3555 		struct __ec_todo_unpacked {
3556 			uint32_t param;		/* enum charge_state_param */
3557 		} get_param;
3558 
3559 		struct __ec_todo_unpacked {
3560 			uint32_t param;		/* param to set */
3561 			uint32_t value;		/* value to set */
3562 		} set_param;
3563 	};
3564 };
3565 
3566 struct __ec_align4 ec_response_charge_state {
3567 	union {
3568 		struct __ec_align4 {
3569 			int ac;
3570 			int chg_voltage;
3571 			int chg_current;
3572 			int chg_input_current;
3573 			int batt_state_of_charge;
3574 		} get_state;
3575 
3576 		struct __ec_align4 {
3577 			uint32_t value;
3578 		} get_param;
3579 		struct __ec_align4 {
3580 			/* no return values */
3581 		} set_param;
3582 	};
3583 };
3584 
3585 
3586 /*
3587  * Set maximum battery charging current.
3588  */
3589 #define EC_CMD_CHARGE_CURRENT_LIMIT 0x00A1
3590 
3591 struct __ec_align4 ec_params_current_limit {
3592 	uint32_t limit; /* in mA */
3593 };
3594 
3595 /*
3596  * Set maximum external voltage / current.
3597  */
3598 #define EC_CMD_EXTERNAL_POWER_LIMIT 0x00A2
3599 
3600 /* Command v0 is used only on Spring and is obsolete + unsupported */
3601 struct __ec_align2 ec_params_external_power_limit_v1 {
3602 	uint16_t current_lim; /* in mA, or EC_POWER_LIMIT_NONE to clear limit */
3603 	uint16_t voltage_lim; /* in mV, or EC_POWER_LIMIT_NONE to clear limit */
3604 };
3605 
3606 #define EC_POWER_LIMIT_NONE 0xffff
3607 
3608 /*
3609  * Set maximum voltage & current of a dedicated charge port
3610  */
3611 #define EC_CMD_OVERRIDE_DEDICATED_CHARGER_LIMIT 0x00A3
3612 
3613 struct __ec_align2 ec_params_dedicated_charger_limit {
3614 	uint16_t current_lim; /* in mA */
3615 	uint16_t voltage_lim; /* in mV */
3616 };
3617 
3618 /*****************************************************************************/
3619 /* Hibernate/Deep Sleep Commands */
3620 
3621 /* Set the delay before going into hibernation. */
3622 #define EC_CMD_HIBERNATION_DELAY 0x00A8
3623 
3624 struct __ec_align4 ec_params_hibernation_delay {
3625 	/*
3626 	 * Seconds to wait in G3 before hibernate.  Pass in 0 to read the
3627 	 * current settings without changing them.
3628 	 */
3629 	uint32_t seconds;
3630 };
3631 
3632 struct __ec_align4 ec_response_hibernation_delay {
3633 	/*
3634 	 * The current time in seconds in which the system has been in the G3
3635 	 * state.  This value is reset if the EC transitions out of G3.
3636 	 */
3637 	uint32_t time_g3;
3638 
3639 	/*
3640 	 * The current time remaining in seconds until the EC should hibernate.
3641 	 * This value is also reset if the EC transitions out of G3.
3642 	 */
3643 	uint32_t time_remaining;
3644 
3645 	/*
3646 	 * The current time in seconds that the EC should wait in G3 before
3647 	 * hibernating.
3648 	 */
3649 	uint32_t hibernate_delay;
3650 };
3651 
3652 /* Inform the EC when entering a sleep state */
3653 #define EC_CMD_HOST_SLEEP_EVENT 0x00A9
3654 
3655 enum host_sleep_event {
3656 	HOST_SLEEP_EVENT_S3_SUSPEND   = 1,
3657 	HOST_SLEEP_EVENT_S3_RESUME    = 2,
3658 	HOST_SLEEP_EVENT_S0IX_SUSPEND = 3,
3659 	HOST_SLEEP_EVENT_S0IX_RESUME  = 4
3660 };
3661 
3662 struct __ec_align1 ec_params_host_sleep_event {
3663 	uint8_t sleep_event;
3664 };
3665 
3666 /*****************************************************************************/
3667 /* Device events */
3668 #define EC_CMD_DEVICE_EVENT 0x00AA
3669 
3670 enum ec_device_event {
3671 	EC_DEVICE_EVENT_TRACKPAD,
3672 	EC_DEVICE_EVENT_DSP,
3673 	EC_DEVICE_EVENT_WIFI,
3674 };
3675 
3676 enum ec_device_event_param {
3677 	/* Get and clear pending device events */
3678 	EC_DEVICE_EVENT_PARAM_GET_CURRENT_EVENTS,
3679 	/* Get device event mask */
3680 	EC_DEVICE_EVENT_PARAM_GET_ENABLED_EVENTS,
3681 	/* Set device event mask */
3682 	EC_DEVICE_EVENT_PARAM_SET_ENABLED_EVENTS,
3683 };
3684 
3685 #define EC_DEVICE_EVENT_MASK(event_code) (1UL << (event_code % 32))
3686 
3687 struct __ec_align_size1 ec_params_device_event {
3688 	uint32_t event_mask;
3689 	uint8_t param;
3690 };
3691 
3692 struct __ec_align4 ec_response_device_event {
3693 	uint32_t event_mask;
3694 };
3695 
3696 /*****************************************************************************/
3697 /* Smart battery pass-through */
3698 
3699 /* Get / Set 16-bit smart battery registers */
3700 #define EC_CMD_SB_READ_WORD   0x00B0
3701 #define EC_CMD_SB_WRITE_WORD  0x00B1
3702 
3703 /* Get / Set string smart battery parameters
3704  * formatted as SMBUS "block".
3705  */
3706 #define EC_CMD_SB_READ_BLOCK  0x00B2
3707 #define EC_CMD_SB_WRITE_BLOCK 0x00B3
3708 
3709 struct __ec_align1 ec_params_sb_rd {
3710 	uint8_t reg;
3711 };
3712 
3713 struct __ec_align2 ec_response_sb_rd_word {
3714 	uint16_t value;
3715 };
3716 
3717 struct __ec_align1 ec_params_sb_wr_word {
3718 	uint8_t reg;
3719 	uint16_t value;
3720 };
3721 
3722 struct __ec_align1 ec_response_sb_rd_block {
3723 	uint8_t data[32];
3724 };
3725 
3726 struct __ec_align1 ec_params_sb_wr_block {
3727 	uint8_t reg;
3728 	uint16_t data[32];
3729 };
3730 
3731 /*****************************************************************************/
3732 /* Battery vendor parameters
3733  *
3734  * Get or set vendor-specific parameters in the battery. Implementations may
3735  * differ between boards or batteries. On a set operation, the response
3736  * contains the actual value set, which may be rounded or clipped from the
3737  * requested value.
3738  */
3739 
3740 #define EC_CMD_BATTERY_VENDOR_PARAM 0x00B4
3741 
3742 enum ec_battery_vendor_param_mode {
3743 	BATTERY_VENDOR_PARAM_MODE_GET = 0,
3744 	BATTERY_VENDOR_PARAM_MODE_SET,
3745 };
3746 
3747 struct __ec_align_size1 ec_params_battery_vendor_param {
3748 	uint32_t param;
3749 	uint32_t value;
3750 	uint8_t mode;
3751 };
3752 
3753 struct __ec_align4 ec_response_battery_vendor_param {
3754 	uint32_t value;
3755 };
3756 
3757 /*****************************************************************************/
3758 /*
3759  * Smart Battery Firmware Update Commands
3760  */
3761 #define EC_CMD_SB_FW_UPDATE 0x00B5
3762 
3763 enum ec_sb_fw_update_subcmd {
3764 	EC_SB_FW_UPDATE_PREPARE  = 0x0,
3765 	EC_SB_FW_UPDATE_INFO     = 0x1, /*query sb info */
3766 	EC_SB_FW_UPDATE_BEGIN    = 0x2, /*check if protected */
3767 	EC_SB_FW_UPDATE_WRITE    = 0x3, /*check if protected */
3768 	EC_SB_FW_UPDATE_END      = 0x4,
3769 	EC_SB_FW_UPDATE_STATUS   = 0x5,
3770 	EC_SB_FW_UPDATE_PROTECT  = 0x6,
3771 	EC_SB_FW_UPDATE_MAX      = 0x7,
3772 };
3773 
3774 #define SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE 32
3775 #define SB_FW_UPDATE_CMD_STATUS_SIZE 2
3776 #define SB_FW_UPDATE_CMD_INFO_SIZE 8
3777 
3778 struct __ec_align4 ec_sb_fw_update_header {
3779 	uint16_t subcmd;  /* enum ec_sb_fw_update_subcmd */
3780 	uint16_t fw_id;   /* firmware id */
3781 };
3782 
3783 struct __ec_align4 ec_params_sb_fw_update {
3784 	struct ec_sb_fw_update_header hdr;
3785 	union {
3786 		/* EC_SB_FW_UPDATE_PREPARE  = 0x0 */
3787 		/* EC_SB_FW_UPDATE_INFO     = 0x1 */
3788 		/* EC_SB_FW_UPDATE_BEGIN    = 0x2 */
3789 		/* EC_SB_FW_UPDATE_END      = 0x4 */
3790 		/* EC_SB_FW_UPDATE_STATUS   = 0x5 */
3791 		/* EC_SB_FW_UPDATE_PROTECT  = 0x6 */
3792 		struct __ec_align4 {
3793 			/* no args */
3794 		} dummy;
3795 
3796 		/* EC_SB_FW_UPDATE_WRITE    = 0x3 */
3797 		struct __ec_align4 {
3798 			uint8_t  data[SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE];
3799 		} write;
3800 	};
3801 };
3802 
3803 struct __ec_align1 ec_response_sb_fw_update {
3804 	union {
3805 		/* EC_SB_FW_UPDATE_INFO     = 0x1 */
3806 		struct __ec_align1 {
3807 			uint8_t data[SB_FW_UPDATE_CMD_INFO_SIZE];
3808 		} info;
3809 
3810 		/* EC_SB_FW_UPDATE_STATUS   = 0x5 */
3811 		struct __ec_align1 {
3812 			uint8_t data[SB_FW_UPDATE_CMD_STATUS_SIZE];
3813 		} status;
3814 	};
3815 };
3816 
3817 /*
3818  * Entering Verified Boot Mode Command
3819  * Default mode is VBOOT_MODE_NORMAL if EC did not receive this command.
3820  * Valid Modes are: normal, developer, and recovery.
3821  */
3822 #define EC_CMD_ENTERING_MODE 0x00B6
3823 
3824 struct __ec_align4 ec_params_entering_mode {
3825 	int vboot_mode;
3826 };
3827 
3828 #define VBOOT_MODE_NORMAL    0
3829 #define VBOOT_MODE_DEVELOPER 1
3830 #define VBOOT_MODE_RECOVERY  2
3831 
3832 /*****************************************************************************/
3833 /*
3834  * I2C passthru protection command: Protects I2C tunnels against access on
3835  * certain addresses (board-specific).
3836  */
3837 #define EC_CMD_I2C_PASSTHRU_PROTECT 0x00B7
3838 
3839 enum ec_i2c_passthru_protect_subcmd {
3840 	EC_CMD_I2C_PASSTHRU_PROTECT_STATUS = 0x0,
3841 	EC_CMD_I2C_PASSTHRU_PROTECT_ENABLE = 0x1,
3842 };
3843 
3844 struct __ec_align1 ec_params_i2c_passthru_protect {
3845 	uint8_t subcmd;
3846 	uint8_t port;		/* I2C port number */
3847 };
3848 
3849 struct __ec_align1 ec_response_i2c_passthru_protect {
3850 	uint8_t status;		/* Status flags (0: unlocked, 1: locked) */
3851 };
3852 
3853 /*****************************************************************************/
3854 /* System commands */
3855 
3856 /*
3857  * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't
3858  * necessarily reboot the EC.  Rename to "image" or something similar?
3859  */
3860 #define EC_CMD_REBOOT_EC 0x00D2
3861 
3862 /* Command */
3863 enum ec_reboot_cmd {
3864 	EC_REBOOT_CANCEL = 0,        /* Cancel a pending reboot */
3865 	EC_REBOOT_JUMP_RO = 1,       /* Jump to RO without rebooting */
3866 	EC_REBOOT_JUMP_RW = 2,       /* Jump to RW without rebooting */
3867 	/* (command 3 was jump to RW-B) */
3868 	EC_REBOOT_COLD = 4,          /* Cold-reboot */
3869 	EC_REBOOT_DISABLE_JUMP = 5,  /* Disable jump until next reboot */
3870 	EC_REBOOT_HIBERNATE = 6,     /* Hibernate EC */
3871 	EC_REBOOT_HIBERNATE_CLEAR_AP_OFF = 7, /* and clears AP_OFF flag */
3872 };
3873 
3874 /* Flags for ec_params_reboot_ec.reboot_flags */
3875 #define EC_REBOOT_FLAG_RESERVED0      (1 << 0)  /* Was recovery request */
3876 #define EC_REBOOT_FLAG_ON_AP_SHUTDOWN (1 << 1)  /* Reboot after AP shutdown */
3877 #define EC_REBOOT_FLAG_SWITCH_RW_SLOT (1 << 2)  /* Switch RW slot */
3878 
3879 struct __ec_align1 ec_params_reboot_ec {
3880 	uint8_t cmd;           /* enum ec_reboot_cmd */
3881 	uint8_t flags;         /* See EC_REBOOT_FLAG_* */
3882 };
3883 
3884 /*
3885  * Get information on last EC panic.
3886  *
3887  * Returns variable-length platform-dependent panic information.  See panic.h
3888  * for details.
3889  */
3890 #define EC_CMD_GET_PANIC_INFO 0x00D3
3891 
3892 /*****************************************************************************/
3893 /*
3894  * Special commands
3895  *
3896  * These do not follow the normal rules for commands.  See each command for
3897  * details.
3898  */
3899 
3900 /*
3901  * Reboot NOW
3902  *
3903  * This command will work even when the EC LPC interface is busy, because the
3904  * reboot command is processed at interrupt level.  Note that when the EC
3905  * reboots, the host will reboot too, so there is no response to this command.
3906  *
3907  * Use EC_CMD_REBOOT_EC to reboot the EC more politely.
3908  */
3909 #define EC_CMD_REBOOT 0x00D1  /* Think "die" */
3910 
3911 /*
3912  * Resend last response (not supported on LPC).
3913  *
3914  * Returns EC_RES_UNAVAILABLE if there is no response available - for example,
3915  * there was no previous command, or the previous command's response was too
3916  * big to save.
3917  */
3918 #define EC_CMD_RESEND_RESPONSE 0x00DB
3919 
3920 /*
3921  * This header byte on a command indicate version 0. Any header byte less
3922  * than this means that we are talking to an old EC which doesn't support
3923  * versioning. In that case, we assume version 0.
3924  *
3925  * Header bytes greater than this indicate a later version. For example,
3926  * EC_CMD_VERSION0 + 1 means we are using version 1.
3927  *
3928  * The old EC interface must not use commands 0xdc or higher.
3929  */
3930 #define EC_CMD_VERSION0 0x00DC
3931 
3932 /*****************************************************************************/
3933 /*
3934  * PD commands
3935  *
3936  * These commands are for PD MCU communication.
3937  */
3938 
3939 /* EC to PD MCU exchange status command */
3940 #define EC_CMD_PD_EXCHANGE_STATUS 0x0100
3941 #define EC_VER_PD_EXCHANGE_STATUS 2
3942 
3943 enum pd_charge_state {
3944 	PD_CHARGE_NO_CHANGE = 0, /* Don't change charge state */
3945 	PD_CHARGE_NONE,          /* No charging allowed */
3946 	PD_CHARGE_5V,            /* 5V charging only */
3947 	PD_CHARGE_MAX            /* Charge at max voltage */
3948 };
3949 
3950 /* Status of EC being sent to PD */
3951 #define EC_STATUS_HIBERNATING	(1 << 0)
3952 
3953 struct __ec_align1 ec_params_pd_status {
3954 	uint8_t status;       /* EC status */
3955 	int8_t batt_soc;      /* battery state of charge */
3956 	uint8_t charge_state; /* charging state (from enum pd_charge_state) */
3957 };
3958 
3959 /* Status of PD being sent back to EC */
3960 #define PD_STATUS_HOST_EVENT      (1 << 0) /* Forward host event to AP */
3961 #define PD_STATUS_IN_RW           (1 << 1) /* Running RW image */
3962 #define PD_STATUS_JUMPED_TO_IMAGE (1 << 2) /* Current image was jumped to */
3963 #define PD_STATUS_TCPC_ALERT_0    (1 << 3) /* Alert active in port 0 TCPC */
3964 #define PD_STATUS_TCPC_ALERT_1    (1 << 4) /* Alert active in port 1 TCPC */
3965 #define PD_STATUS_TCPC_ALERT_2    (1 << 5) /* Alert active in port 2 TCPC */
3966 #define PD_STATUS_TCPC_ALERT_3    (1 << 6) /* Alert active in port 3 TCPC */
3967 #define PD_STATUS_EC_INT_ACTIVE  (PD_STATUS_TCPC_ALERT_0 | \
3968 				      PD_STATUS_TCPC_ALERT_1 | \
3969 				      PD_STATUS_HOST_EVENT)
3970 struct __ec_align_size1 ec_response_pd_status {
3971 	uint32_t curr_lim_ma;       /* input current limit */
3972 	uint16_t status;            /* PD MCU status */
3973 	int8_t active_charge_port;  /* active charging port */
3974 };
3975 
3976 /* AP to PD MCU host event status command, cleared on read */
3977 #define EC_CMD_PD_HOST_EVENT_STATUS 0x0104
3978 
3979 /* PD MCU host event status bits */
3980 #define PD_EVENT_UPDATE_DEVICE     (1 << 0)
3981 #define PD_EVENT_POWER_CHANGE      (1 << 1)
3982 #define PD_EVENT_IDENTITY_RECEIVED (1 << 2)
3983 #define PD_EVENT_DATA_SWAP         (1 << 3)
3984 struct __ec_align4 ec_response_host_event_status {
3985 	uint32_t status;      /* PD MCU host event status */
3986 };
3987 
3988 /* Set USB type-C port role and muxes */
3989 #define EC_CMD_USB_PD_CONTROL 0x0101
3990 
3991 enum usb_pd_control_role {
3992 	USB_PD_CTRL_ROLE_NO_CHANGE = 0,
3993 	USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */
3994 	USB_PD_CTRL_ROLE_TOGGLE_OFF = 2,
3995 	USB_PD_CTRL_ROLE_FORCE_SINK = 3,
3996 	USB_PD_CTRL_ROLE_FORCE_SOURCE = 4,
3997 	USB_PD_CTRL_ROLE_COUNT
3998 };
3999 
4000 enum usb_pd_control_mux {
4001 	USB_PD_CTRL_MUX_NO_CHANGE = 0,
4002 	USB_PD_CTRL_MUX_NONE = 1,
4003 	USB_PD_CTRL_MUX_USB = 2,
4004 	USB_PD_CTRL_MUX_DP = 3,
4005 	USB_PD_CTRL_MUX_DOCK = 4,
4006 	USB_PD_CTRL_MUX_AUTO = 5,
4007 	USB_PD_CTRL_MUX_COUNT
4008 };
4009 
4010 enum usb_pd_control_swap {
4011 	USB_PD_CTRL_SWAP_NONE = 0,
4012 	USB_PD_CTRL_SWAP_DATA = 1,
4013 	USB_PD_CTRL_SWAP_POWER = 2,
4014 	USB_PD_CTRL_SWAP_VCONN = 3,
4015 	USB_PD_CTRL_SWAP_COUNT
4016 };
4017 
4018 struct __ec_align1 ec_params_usb_pd_control {
4019 	uint8_t port;
4020 	uint8_t role;
4021 	uint8_t mux;
4022 	uint8_t swap;
4023 };
4024 
4025 #define PD_CTRL_RESP_ENABLED_COMMS      (1 << 0) /* Communication enabled */
4026 #define PD_CTRL_RESP_ENABLED_CONNECTED  (1 << 1) /* Device connected */
4027 #define PD_CTRL_RESP_ENABLED_PD_CAPABLE (1 << 2) /* Partner is PD capable */
4028 
4029 #define PD_CTRL_RESP_ROLE_POWER         (1 << 0) /* 0=SNK/1=SRC */
4030 #define PD_CTRL_RESP_ROLE_DATA          (1 << 1) /* 0=UFP/1=DFP */
4031 #define PD_CTRL_RESP_ROLE_VCONN         (1 << 2) /* Vconn status */
4032 #define PD_CTRL_RESP_ROLE_DR_POWER      (1 << 3) /* Partner is dualrole power */
4033 #define PD_CTRL_RESP_ROLE_DR_DATA       (1 << 4) /* Partner is dualrole data */
4034 #define PD_CTRL_RESP_ROLE_USB_COMM      (1 << 5) /* Partner USB comm capable */
4035 #define PD_CTRL_RESP_ROLE_EXT_POWERED   (1 << 6) /* Partner externally powerd */
4036 
4037 struct __ec_align1 ec_response_usb_pd_control {
4038 	uint8_t enabled;
4039 	uint8_t role;
4040 	uint8_t polarity;
4041 	uint8_t state;
4042 };
4043 
4044 struct __ec_align1 ec_response_usb_pd_control_v1 {
4045 	uint8_t enabled;
4046 	uint8_t role;
4047 	uint8_t polarity;
4048 	char state[32];
4049 };
4050 
4051 #define EC_CMD_USB_PD_PORTS 0x0102
4052 
4053 /* Maximum number of PD ports on a device, num_ports will be <= this */
4054 #define EC_USB_PD_MAX_PORTS 8
4055 
4056 struct __ec_align1 ec_response_usb_pd_ports {
4057 	uint8_t num_ports;
4058 };
4059 
4060 #define EC_CMD_USB_PD_POWER_INFO 0x0103
4061 
4062 #define PD_POWER_CHARGING_PORT 0xff
4063 struct __ec_align1 ec_params_usb_pd_power_info {
4064 	uint8_t port;
4065 };
4066 
4067 enum usb_chg_type {
4068 	USB_CHG_TYPE_NONE,
4069 	USB_CHG_TYPE_PD,
4070 	USB_CHG_TYPE_C,
4071 	USB_CHG_TYPE_PROPRIETARY,
4072 	USB_CHG_TYPE_BC12_DCP,
4073 	USB_CHG_TYPE_BC12_CDP,
4074 	USB_CHG_TYPE_BC12_SDP,
4075 	USB_CHG_TYPE_OTHER,
4076 	USB_CHG_TYPE_VBUS,
4077 	USB_CHG_TYPE_UNKNOWN,
4078 };
4079 enum usb_power_roles {
4080 	USB_PD_PORT_POWER_DISCONNECTED,
4081 	USB_PD_PORT_POWER_SOURCE,
4082 	USB_PD_PORT_POWER_SINK,
4083 	USB_PD_PORT_POWER_SINK_NOT_CHARGING,
4084 };
4085 
4086 struct __ec_align2 usb_chg_measures {
4087 	uint16_t voltage_max;
4088 	uint16_t voltage_now;
4089 	uint16_t current_max;
4090 	uint16_t current_lim;
4091 };
4092 
4093 struct __ec_align4 ec_response_usb_pd_power_info {
4094 	uint8_t role;
4095 	uint8_t type;
4096 	uint8_t dualrole;
4097 	uint8_t reserved1;
4098 	struct usb_chg_measures meas;
4099 	uint32_t max_power;
4100 };
4101 
4102 /* Write USB-PD device FW */
4103 #define EC_CMD_USB_PD_FW_UPDATE 0x0110
4104 
4105 enum usb_pd_fw_update_cmds {
4106 	USB_PD_FW_REBOOT,
4107 	USB_PD_FW_FLASH_ERASE,
4108 	USB_PD_FW_FLASH_WRITE,
4109 	USB_PD_FW_ERASE_SIG,
4110 };
4111 
4112 struct __ec_align4 ec_params_usb_pd_fw_update {
4113 	uint16_t dev_id;
4114 	uint8_t cmd;
4115 	uint8_t port;
4116 	uint32_t size;     /* Size to write in bytes */
4117 	/* Followed by data to write */
4118 };
4119 
4120 /* Write USB-PD Accessory RW_HASH table entry */
4121 #define EC_CMD_USB_PD_RW_HASH_ENTRY 0x0111
4122 /* RW hash is first 20 bytes of SHA-256 of RW section */
4123 #define PD_RW_HASH_SIZE 20
4124 struct __ec_align1 ec_params_usb_pd_rw_hash_entry {
4125 	uint16_t dev_id;
4126 	uint8_t dev_rw_hash[PD_RW_HASH_SIZE];
4127 	uint8_t reserved;        /* For alignment of current_image
4128 				  * TODO(rspangler) but it's not aligned!
4129 				  * Should have been reserved[2]. */
4130 	uint32_t current_image;  /* One of ec_current_image */
4131 };
4132 
4133 /* Read USB-PD Accessory info */
4134 #define EC_CMD_USB_PD_DEV_INFO 0x0112
4135 
4136 struct __ec_align1 ec_params_usb_pd_info_request {
4137 	uint8_t port;
4138 };
4139 
4140 /* Read USB-PD Device discovery info */
4141 #define EC_CMD_USB_PD_DISCOVERY 0x0113
4142 struct __ec_align_size1 ec_params_usb_pd_discovery_entry {
4143 	uint16_t vid;  /* USB-IF VID */
4144 	uint16_t pid;  /* USB-IF PID */
4145 	uint8_t ptype; /* product type (hub,periph,cable,ama) */
4146 };
4147 
4148 /* Override default charge behavior */
4149 #define EC_CMD_PD_CHARGE_PORT_OVERRIDE 0x0114
4150 
4151 /* Negative port parameters have special meaning */
4152 enum usb_pd_override_ports {
4153 	OVERRIDE_DONT_CHARGE = -2,
4154 	OVERRIDE_OFF = -1,
4155 	/* [0, CONFIG_USB_PD_PORT_COUNT): Port# */
4156 };
4157 
4158 struct __ec_align2 ec_params_charge_port_override {
4159 	int16_t override_port; /* Override port# */
4160 };
4161 
4162 /* Read (and delete) one entry of PD event log */
4163 #define EC_CMD_PD_GET_LOG_ENTRY 0x0115
4164 
4165 struct __ec_align4 ec_response_pd_log {
4166 	uint32_t timestamp; /* relative timestamp in milliseconds */
4167 	uint8_t type;       /* event type : see PD_EVENT_xx below */
4168 	uint8_t size_port;  /* [7:5] port number [4:0] payload size in bytes */
4169 	uint16_t data;      /* type-defined data payload */
4170 	uint8_t payload[0]; /* optional additional data payload: 0..16 bytes */
4171 };
4172 
4173 
4174 /* The timestamp is the microsecond counter shifted to get about a ms. */
4175 #define PD_LOG_TIMESTAMP_SHIFT 10 /* 1 LSB = 1024us */
4176 
4177 #define PD_LOG_SIZE_MASK  0x1f
4178 #define PD_LOG_PORT_MASK  0xe0
4179 #define PD_LOG_PORT_SHIFT    5
4180 #define PD_LOG_PORT_SIZE(port, size) (((port) << PD_LOG_PORT_SHIFT) | \
4181 				      ((size) & PD_LOG_SIZE_MASK))
4182 #define PD_LOG_PORT(size_port) ((size_port) >> PD_LOG_PORT_SHIFT)
4183 #define PD_LOG_SIZE(size_port) ((size_port) & PD_LOG_SIZE_MASK)
4184 
4185 /* PD event log : entry types */
4186 /* PD MCU events */
4187 #define PD_EVENT_MCU_BASE       0x00
4188 #define PD_EVENT_MCU_CHARGE             (PD_EVENT_MCU_BASE+0)
4189 #define PD_EVENT_MCU_CONNECT            (PD_EVENT_MCU_BASE+1)
4190 /* Reserved for custom board event */
4191 #define PD_EVENT_MCU_BOARD_CUSTOM       (PD_EVENT_MCU_BASE+2)
4192 /* PD generic accessory events */
4193 #define PD_EVENT_ACC_BASE       0x20
4194 #define PD_EVENT_ACC_RW_FAIL   (PD_EVENT_ACC_BASE+0)
4195 #define PD_EVENT_ACC_RW_ERASE  (PD_EVENT_ACC_BASE+1)
4196 /* PD power supply events */
4197 #define PD_EVENT_PS_BASE        0x40
4198 #define PD_EVENT_PS_FAULT      (PD_EVENT_PS_BASE+0)
4199 /* PD video dongles events */
4200 #define PD_EVENT_VIDEO_BASE     0x60
4201 #define PD_EVENT_VIDEO_DP_MODE (PD_EVENT_VIDEO_BASE+0)
4202 #define PD_EVENT_VIDEO_CODEC   (PD_EVENT_VIDEO_BASE+1)
4203 /* Returned in the "type" field, when there is no entry available */
4204 #define PD_EVENT_NO_ENTRY       0xff
4205 
4206 /*
4207  * PD_EVENT_MCU_CHARGE event definition :
4208  * the payload is "struct usb_chg_measures"
4209  * the data field contains the port state flags as defined below :
4210  */
4211 /* Port partner is a dual role device */
4212 #define CHARGE_FLAGS_DUAL_ROLE         (1 << 15)
4213 /* Port is the pending override port */
4214 #define CHARGE_FLAGS_DELAYED_OVERRIDE  (1 << 14)
4215 /* Port is the override port */
4216 #define CHARGE_FLAGS_OVERRIDE          (1 << 13)
4217 /* Charger type */
4218 #define CHARGE_FLAGS_TYPE_SHIFT               3
4219 #define CHARGE_FLAGS_TYPE_MASK       (0xf << CHARGE_FLAGS_TYPE_SHIFT)
4220 /* Power delivery role */
4221 #define CHARGE_FLAGS_ROLE_MASK         (7 <<  0)
4222 
4223 /*
4224  * PD_EVENT_PS_FAULT data field flags definition :
4225  */
4226 #define PS_FAULT_OCP                          1
4227 #define PS_FAULT_FAST_OCP                     2
4228 #define PS_FAULT_OVP                          3
4229 #define PS_FAULT_DISCH                        4
4230 
4231 /*
4232  * PD_EVENT_VIDEO_CODEC payload is "struct mcdp_info".
4233  */
4234 struct __ec_align4 mcdp_version {
4235 	uint8_t major;
4236 	uint8_t minor;
4237 	uint16_t build;
4238 };
4239 
4240 struct __ec_align4 mcdp_info {
4241 	uint8_t family[2];
4242 	uint8_t chipid[2];
4243 	struct mcdp_version irom;
4244 	struct mcdp_version fw;
4245 };
4246 
4247 /* struct mcdp_info field decoding */
4248 #define MCDP_CHIPID(chipid) ((chipid[0] << 8) | chipid[1])
4249 #define MCDP_FAMILY(family) ((family[0] << 8) | family[1])
4250 
4251 /* Get/Set USB-PD Alternate mode info */
4252 #define EC_CMD_USB_PD_GET_AMODE 0x0116
4253 struct __ec_align_size1 ec_params_usb_pd_get_mode_request {
4254 	uint16_t svid_idx; /* SVID index to get */
4255 	uint8_t port;      /* port */
4256 };
4257 
4258 struct __ec_align4 ec_params_usb_pd_get_mode_response {
4259 	uint16_t svid;   /* SVID */
4260 	uint16_t opos;    /* Object Position */
4261 	uint32_t vdo[6]; /* Mode VDOs */
4262 };
4263 
4264 #define EC_CMD_USB_PD_SET_AMODE 0x0117
4265 
4266 enum pd_mode_cmd {
4267 	PD_EXIT_MODE = 0,
4268 	PD_ENTER_MODE = 1,
4269 	/* Not a command.  Do NOT remove. */
4270 	PD_MODE_CMD_COUNT,
4271 };
4272 
4273 struct __ec_align4 ec_params_usb_pd_set_mode_request {
4274 	uint32_t cmd;  /* enum pd_mode_cmd */
4275 	uint16_t svid; /* SVID to set */
4276 	uint8_t opos;  /* Object Position */
4277 	uint8_t port;  /* port */
4278 };
4279 
4280 /* Ask the PD MCU to record a log of a requested type */
4281 #define EC_CMD_PD_WRITE_LOG_ENTRY 0x0118
4282 
4283 struct __ec_align1 ec_params_pd_write_log_entry {
4284 	uint8_t type; /* event type : see PD_EVENT_xx above */
4285 	uint8_t port; /* port#, or 0 for events unrelated to a given port */
4286 };
4287 
4288 
4289 /* Control USB-PD chip */
4290 #define EC_CMD_PD_CONTROL 0x0119
4291 
4292 enum ec_pd_control_cmd {
4293 	PD_SUSPEND = 0,      /* Suspend the PD chip (EC: stop talking to PD) */
4294 	PD_RESUME,           /* Resume the PD chip (EC: start talking to PD) */
4295 	PD_RESET,            /* Force reset the PD chip */
4296 	PD_CONTROL_DISABLE   /* Disable further calls to this command */
4297 };
4298 
4299 struct __ec_align1 ec_params_pd_control {
4300 	uint8_t chip;         /* chip id (should be 0) */
4301 	uint8_t subcmd;
4302 };
4303 
4304 /* Get info about USB-C SS muxes */
4305 #define EC_CMD_USB_PD_MUX_INFO 0x011A
4306 
4307 struct __ec_align1 ec_params_usb_pd_mux_info {
4308 	uint8_t port; /* USB-C port number */
4309 };
4310 
4311 /* Flags representing mux state */
4312 #define USB_PD_MUX_USB_ENABLED       (1 << 0)
4313 #define USB_PD_MUX_DP_ENABLED        (1 << 1)
4314 #define USB_PD_MUX_POLARITY_INVERTED (1 << 2)
4315 #define USB_PD_MUX_HPD_IRQ           (1 << 3)
4316 
4317 struct __ec_align1 ec_response_usb_pd_mux_info {
4318 	uint8_t flags; /* USB_PD_MUX_*-encoded USB mux state */
4319 };
4320 
4321 #define EC_CMD_PD_CHIP_INFO		0x011B
4322 
4323 struct __ec_align1 ec_params_pd_chip_info {
4324 	uint8_t port;	/* USB-C port number */
4325 	uint8_t renew;	/* Force renewal */
4326 };
4327 
4328 struct __ec_align2 ec_response_pd_chip_info {
4329 	uint16_t vendor_id;
4330 	uint16_t product_id;
4331 	uint16_t device_id;
4332 	union {
4333 		uint8_t fw_version_string[8];
4334 		uint64_t fw_version_number;
4335 	};
4336 };
4337 
4338 /* Run RW signature verification and get status */
4339 #define EC_CMD_RWSIG_CHECK_STATUS	0x011C
4340 
4341 struct __ec_align4 ec_response_rwsig_check_status {
4342 	uint32_t status;
4343 };
4344 
4345 /* For controlling RWSIG task */
4346 #define EC_CMD_RWSIG_ACTION	0x011D
4347 
4348 enum rwsig_action {
4349 	RWSIG_ACTION_ABORT = 0,		/* Abort RWSIG and prevent jumping */
4350 	RWSIG_ACTION_CONTINUE = 1,	/* Jump to RW immediately */
4351 };
4352 
4353 struct __ec_align4 ec_params_rwsig_action {
4354 	uint32_t action;
4355 };
4356 
4357 /* Run verification on a slot */
4358 #define EC_CMD_EFS_VERIFY	0x011E
4359 
4360 struct __ec_align1 ec_params_efs_verify {
4361 	uint8_t region;		/* enum ec_flash_region */
4362 };
4363 
4364 /*
4365  * Retrieve info from Cros Board Info store. Response is based on the data
4366  * type. Integers return a uint32. Strings return a string, using the response
4367  * size to determine how big it is.
4368  */
4369 #define EC_CMD_GET_CROS_BOARD_INFO	0x011F
4370 /*
4371  * Write info into Cros Board Info on EEPROM. Write fails if the board has
4372  * hardware write-protect enabled.
4373  */
4374 #define EC_CMD_SET_CROS_BOARD_INFO	0x0120
4375 
4376 enum cbi_data_tag {
4377 	CBI_TAG_BOARD_VERSION = 0, /* uint16_t or uint8_t[] = {minor,major} */
4378 	CBI_TAG_OEM_ID = 1,        /* uint8_t */
4379 	CBI_TAG_SKU_ID = 2,        /* uint8_t */
4380 	CBI_TAG_COUNT,
4381 };
4382 
4383 /*
4384  * Flags to control read operation
4385  *
4386  * RELOAD:  Invalidate cache and read data from EEPROM. Useful to verify
4387  *          write was successful without reboot.
4388  */
4389 #define CBI_GET_RELOAD		(1 << 0)
4390 
4391 struct __ec_align4 ec_params_get_cbi {
4392 	uint32_t type;		/* enum cbi_data_tag */
4393 	uint32_t flag;		/* CBI_GET_* */
4394 };
4395 
4396 /*
4397  * Flags to control write behavior.
4398  *
4399  * NO_SYNC: Makes EC update data in RAM but skip writing to EEPROM. It's
4400  *          useful when writing multiple fields in a row.
4401  * INIT:    Needs to be set when creating a new CBI from scratch. All fields
4402  *          will be initialized to zero first.
4403  */
4404 #define CBI_SET_NO_SYNC		(1 << 0)
4405 #define CBI_SET_INIT		(1 << 1)
4406 
4407 struct __ec_align1 ec_params_set_cbi {
4408 	uint32_t tag;		/* enum cbi_data_tag */
4409 	uint32_t flag;		/* CBI_SET_* */
4410 	uint32_t size;		/* Data size */
4411 	uint8_t data[];		/* For string and raw data */
4412 };
4413 
4414 /*****************************************************************************/
4415 /* The command range 0x200-0x2FF is reserved for Rotor. */
4416 
4417 /*****************************************************************************/
4418 /*
4419  * Reserve a range of host commands for the CR51 firmware.
4420  */
4421 #define EC_CMD_CR51_BASE 0x0300
4422 #define EC_CMD_CR51_LAST 0x03FF
4423 
4424 /*****************************************************************************/
4425 /* Fingerprint MCU commands: range 0x0400-0x040x */
4426 
4427 /* Fingerprint SPI sensor passthru command: prototyping ONLY */
4428 #define EC_CMD_FP_PASSTHRU 0x0400
4429 
4430 #define EC_FP_FLAG_NOT_COMPLETE 0x1
4431 
4432 struct __ec_align2 ec_params_fp_passthru {
4433 	uint16_t len;		/* Number of bytes to write then read */
4434 	uint16_t flags;		/* EC_FP_FLAG_xxx */
4435 	uint8_t data[];		/* Data to send */
4436 };
4437 
4438 /* Fingerprint sensor configuration command: prototyping ONLY */
4439 #define EC_CMD_FP_SENSOR_CONFIG 0x0401
4440 
4441 #define EC_FP_SENSOR_CONFIG_MAX_REGS 16
4442 
4443 struct __ec_align2 ec_params_fp_sensor_config {
4444 	uint8_t count;		/* Number of setup registers */
4445 	/*
4446 	 * the value to send to each of the 'count' setup registers
4447 	 * is stored in the 'data' array for 'len' bytes just after
4448 	 * the previous one.
4449 	 */
4450 	uint8_t len[EC_FP_SENSOR_CONFIG_MAX_REGS];
4451 	uint8_t data[];
4452 };
4453 
4454 /* Configure the Fingerprint MCU behavior */
4455 #define EC_CMD_FP_MODE 0x0402
4456 
4457 /* Put the sensor in its lowest power mode */
4458 #define FP_MODE_DEEPSLEEP     (1<<0)
4459 /* Wait to see a finger on the sensor */
4460 #define FP_MODE_FINGER_DOWN   (1<<1)
4461 /* Poll until the finger has left the sensor */
4462 #define FP_MODE_FINGER_UP     (1<<2)
4463 /* Capture the current finger image */
4464 #define FP_MODE_CAPTURE       (1<<3)
4465 /* special value: don't change anything just read back current mode */
4466 #define FP_MODE_DONT_CHANGE   (1<<31)
4467 
4468 struct __ec_align4 ec_params_fp_mode {
4469 	uint32_t mode; /* as defined by FP_MODE_ constants */
4470 	/* TBD */
4471 };
4472 
4473 struct __ec_align4 ec_response_fp_mode {
4474 	uint32_t mode; /* as defined by FP_MODE_ constants */
4475 	/* TBD */
4476 };
4477 
4478 /* Retrieve Fingerprint sensor information */
4479 #define EC_CMD_FP_INFO 0x0403
4480 
4481 struct __ec_align2 ec_response_fp_info {
4482 	/* Sensor identification */
4483 	uint32_t vendor_id;
4484 	uint32_t product_id;
4485 	uint32_t model_id;
4486 	uint32_t version;
4487 	/* Image frame characteristics */
4488 	uint32_t frame_size;
4489 	uint32_t pixel_format; /* using V4L2_PIX_FMT_ */
4490 	uint16_t width;
4491 	uint16_t height;
4492 	uint16_t bpp;
4493 };
4494 
4495 /* Get the last captured finger frame: TODO: will be AES-encrypted */
4496 #define EC_CMD_FP_FRAME 0x0404
4497 
4498 struct __ec_align4 ec_params_fp_frame {
4499 	uint32_t offset;
4500 	uint32_t size;
4501 };
4502 
4503 /*****************************************************************************/
4504 /* Touchpad MCU commands: range 0x0500-0x05FF */
4505 
4506 /* Perform touchpad self test */
4507 #define EC_CMD_TP_SELF_TEST 0x0500
4508 
4509 /* Get number of frame types, and the size of each type */
4510 #define EC_CMD_TP_FRAME_INFO 0x0501
4511 
4512 struct __ec_align4 ec_response_tp_frame_info {
4513 	uint32_t n_frames;
4514 	uint32_t frame_sizes[0];
4515 };
4516 
4517 /* Create a snapshot of current frame readings */
4518 #define EC_CMD_TP_FRAME_SNAPSHOT 0x0502
4519 
4520 /* Read the frame */
4521 #define EC_CMD_TP_FRAME_GET 0x0503
4522 
4523 struct __ec_align4 ec_params_tp_frame_get {
4524 	uint32_t frame_index;
4525 	uint32_t offset;
4526 	uint32_t size;
4527 };
4528 
4529 /*****************************************************************************/
4530 /*
4531  * Reserve a range of host commands for board-specific, experimental, or
4532  * special purpose features. These can be (re)used without updating this file.
4533  *
4534  * CAUTION: Don't go nuts with this. Shipping products should document ALL
4535  * their EC commands for easier development, testing, debugging, and support.
4536  *
4537  * All commands MUST be #defined to be 4-digit UPPER CASE hex values
4538  * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
4539  *
4540  * In your experimental code, you may want to do something like this:
4541  *
4542  *   #define EC_CMD_MAGIC_FOO 0x0000
4543  *   #define EC_CMD_MAGIC_BAR 0x0001
4544  *   #define EC_CMD_MAGIC_HEY 0x0002
4545  *
4546  *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_FOO, magic_foo_handler,
4547  *      EC_VER_MASK(0);
4548  *
4549  *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_BAR, magic_bar_handler,
4550  *      EC_VER_MASK(0);
4551  *
4552  *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_HEY, magic_hey_handler,
4553  *      EC_VER_MASK(0);
4554  */
4555 #define EC_CMD_BOARD_SPECIFIC_BASE 0x3E00
4556 #define EC_CMD_BOARD_SPECIFIC_LAST 0x3FFF
4557 
4558 /*
4559  * Given the private host command offset, calculate the true private host
4560  * command value.
4561  */
4562 #define EC_PRIVATE_HOST_COMMAND_VALUE(command) \
4563 	(EC_CMD_BOARD_SPECIFIC_BASE + (command))
4564 
4565 /*****************************************************************************/
4566 /*
4567  * Passthru commands
4568  *
4569  * Some platforms have sub-processors chained to each other.  For example.
4570  *
4571  *     AP <--> EC <--> PD MCU
4572  *
4573  * The top 2 bits of the command number are used to indicate which device the
4574  * command is intended for.  Device 0 is always the device receiving the
4575  * command; other device mapping is board-specific.
4576  *
4577  * When a device receives a command to be passed to a sub-processor, it passes
4578  * it on with the device number set back to 0.  This allows the sub-processor
4579  * to remain blissfully unaware of whether the command originated on the next
4580  * device up the chain, or was passed through from the AP.
4581  *
4582  * In the above example, if the AP wants to send command 0x0002 to the PD MCU,
4583  *     AP sends command 0x4002 to the EC
4584  *     EC sends command 0x0002 to the PD MCU
4585  *     EC forwards PD MCU response back to the AP
4586  */
4587 
4588 /* Offset and max command number for sub-device n */
4589 #define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n))
4590 #define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff)
4591 
4592 /*****************************************************************************/
4593 /*
4594  * Deprecated constants. These constants have been renamed for clarity. The
4595  * meaning and size has not changed. Programs that use the old names should
4596  * switch to the new names soon, as the old names may not be carried forward
4597  * forever.
4598  */
4599 #define EC_HOST_PARAM_SIZE      EC_PROTO2_MAX_PARAM_SIZE
4600 #define EC_LPC_ADDR_OLD_PARAM   EC_HOST_CMD_REGION1
4601 #define EC_OLD_PARAM_SIZE       EC_HOST_CMD_REGION_SIZE
4602 
4603 #endif  /* !__ACPI__ && !__KERNEL__ */
4604 
4605 #endif  /* __CROS_EC_COMMANDS_H */
4606