1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * USB HOST XHCI Controller stack
4 *
5 * Based on xHCI host controller driver in linux-kernel
6 * by Sarah Sharp.
7 *
8 * Copyright (C) 2008 Intel Corp.
9 * Author: Sarah Sharp
10 *
11 * Copyright (C) 2013 Samsung Electronics Co.Ltd
12 * Authors: Vivek Gautam <gautam.vivek@samsung.com>
13 * Vikas Sajjan <vikas.sajjan@samsung.com>
14 */
15
16 #include <common.h>
17 #include <cpu_func.h>
18 #include <dm.h>
19 #include <asm/byteorder.h>
20 #include <usb.h>
21 #include <malloc.h>
22 #include <asm/cache.h>
23 #include <linux/errno.h>
24
25 #include <usb/xhci.h>
26
27 #define CACHELINE_SIZE CONFIG_SYS_CACHELINE_SIZE
28 /**
29 * flushes the address passed till the length
30 *
31 * @param addr pointer to memory region to be flushed
32 * @param len the length of the cache line to be flushed
33 * @return none
34 */
xhci_flush_cache(uintptr_t addr,u32 len)35 void xhci_flush_cache(uintptr_t addr, u32 len)
36 {
37 BUG_ON((void *)addr == NULL || len == 0);
38
39 flush_dcache_range(addr & ~(CACHELINE_SIZE - 1),
40 ALIGN(addr + len, CACHELINE_SIZE));
41 }
42
43 /**
44 * invalidates the address passed till the length
45 *
46 * @param addr pointer to memory region to be invalidates
47 * @param len the length of the cache line to be invalidated
48 * @return none
49 */
xhci_inval_cache(uintptr_t addr,u32 len)50 void xhci_inval_cache(uintptr_t addr, u32 len)
51 {
52 BUG_ON((void *)addr == NULL || len == 0);
53
54 invalidate_dcache_range(addr & ~(CACHELINE_SIZE - 1),
55 ALIGN(addr + len, CACHELINE_SIZE));
56 }
57
58
59 /**
60 * frees the "segment" pointer passed
61 *
62 * @param ptr pointer to "segement" to be freed
63 * @return none
64 */
xhci_segment_free(struct xhci_segment * seg)65 static void xhci_segment_free(struct xhci_segment *seg)
66 {
67 free(seg->trbs);
68 seg->trbs = NULL;
69
70 free(seg);
71 }
72
73 /**
74 * frees the "ring" pointer passed
75 *
76 * @param ptr pointer to "ring" to be freed
77 * @return none
78 */
xhci_ring_free(struct xhci_ring * ring)79 static void xhci_ring_free(struct xhci_ring *ring)
80 {
81 struct xhci_segment *seg;
82 struct xhci_segment *first_seg;
83
84 BUG_ON(!ring);
85
86 first_seg = ring->first_seg;
87 seg = first_seg->next;
88 while (seg != first_seg) {
89 struct xhci_segment *next = seg->next;
90 xhci_segment_free(seg);
91 seg = next;
92 }
93 xhci_segment_free(first_seg);
94
95 free(ring);
96 }
97
98 /**
99 * Free the scratchpad buffer array and scratchpad buffers
100 *
101 * @ctrl host controller data structure
102 * @return none
103 */
xhci_scratchpad_free(struct xhci_ctrl * ctrl)104 static void xhci_scratchpad_free(struct xhci_ctrl *ctrl)
105 {
106 if (!ctrl->scratchpad)
107 return;
108
109 ctrl->dcbaa->dev_context_ptrs[0] = 0;
110
111 free((void *)(uintptr_t)ctrl->scratchpad->sp_array[0]);
112 free(ctrl->scratchpad->sp_array);
113 free(ctrl->scratchpad);
114 ctrl->scratchpad = NULL;
115 }
116
117 /**
118 * frees the "xhci_container_ctx" pointer passed
119 *
120 * @param ptr pointer to "xhci_container_ctx" to be freed
121 * @return none
122 */
xhci_free_container_ctx(struct xhci_container_ctx * ctx)123 static void xhci_free_container_ctx(struct xhci_container_ctx *ctx)
124 {
125 free(ctx->bytes);
126 free(ctx);
127 }
128
129 /**
130 * frees the virtual devices for "xhci_ctrl" pointer passed
131 *
132 * @param ptr pointer to "xhci_ctrl" whose virtual devices are to be freed
133 * @return none
134 */
xhci_free_virt_devices(struct xhci_ctrl * ctrl)135 static void xhci_free_virt_devices(struct xhci_ctrl *ctrl)
136 {
137 int i;
138 int slot_id;
139 struct xhci_virt_device *virt_dev;
140
141 /*
142 * refactored here to loop through all virt_dev
143 * Slot ID 0 is reserved
144 */
145 for (slot_id = 0; slot_id < MAX_HC_SLOTS; slot_id++) {
146 virt_dev = ctrl->devs[slot_id];
147 if (!virt_dev)
148 continue;
149
150 ctrl->dcbaa->dev_context_ptrs[slot_id] = 0;
151
152 for (i = 0; i < 31; ++i)
153 if (virt_dev->eps[i].ring)
154 xhci_ring_free(virt_dev->eps[i].ring);
155
156 if (virt_dev->in_ctx)
157 xhci_free_container_ctx(virt_dev->in_ctx);
158 if (virt_dev->out_ctx)
159 xhci_free_container_ctx(virt_dev->out_ctx);
160
161 free(virt_dev);
162 /* make sure we are pointing to NULL */
163 ctrl->devs[slot_id] = NULL;
164 }
165 }
166
167 /**
168 * frees all the memory allocated
169 *
170 * @param ptr pointer to "xhci_ctrl" to be cleaned up
171 * @return none
172 */
xhci_cleanup(struct xhci_ctrl * ctrl)173 void xhci_cleanup(struct xhci_ctrl *ctrl)
174 {
175 xhci_ring_free(ctrl->event_ring);
176 xhci_ring_free(ctrl->cmd_ring);
177 xhci_scratchpad_free(ctrl);
178 xhci_free_virt_devices(ctrl);
179 free(ctrl->erst.entries);
180 free(ctrl->dcbaa);
181 memset(ctrl, '\0', sizeof(struct xhci_ctrl));
182 }
183
184 /**
185 * Malloc the aligned memory
186 *
187 * @param size size of memory to be allocated
188 * @return allocates the memory and returns the aligned pointer
189 */
xhci_malloc(unsigned int size)190 static void *xhci_malloc(unsigned int size)
191 {
192 void *ptr;
193 size_t cacheline_size = max(XHCI_ALIGNMENT, CACHELINE_SIZE);
194
195 ptr = memalign(cacheline_size, ALIGN(size, cacheline_size));
196 BUG_ON(!ptr);
197 memset(ptr, '\0', size);
198
199 xhci_flush_cache((uintptr_t)ptr, size);
200
201 return ptr;
202 }
203
204 /**
205 * Make the prev segment point to the next segment.
206 * Change the last TRB in the prev segment to be a Link TRB which points to the
207 * address of the next segment. The caller needs to set any Link TRB
208 * related flags, such as End TRB, Toggle Cycle, and no snoop.
209 *
210 * @param prev pointer to the previous segment
211 * @param next pointer to the next segment
212 * @param link_trbs flag to indicate whether to link the trbs or NOT
213 * @return none
214 */
xhci_link_segments(struct xhci_segment * prev,struct xhci_segment * next,bool link_trbs)215 static void xhci_link_segments(struct xhci_segment *prev,
216 struct xhci_segment *next, bool link_trbs)
217 {
218 u32 val;
219 u64 val_64 = 0;
220
221 if (!prev || !next)
222 return;
223 prev->next = next;
224 if (link_trbs) {
225 val_64 = (uintptr_t)next->trbs;
226 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = val_64;
227
228 /*
229 * Set the last TRB in the segment to
230 * have a TRB type ID of Link TRB
231 */
232 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
233 val &= ~TRB_TYPE_BITMASK;
234 val |= (TRB_LINK << TRB_TYPE_SHIFT);
235
236 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
237 }
238 }
239
240 /**
241 * Initialises the Ring's enqueue,dequeue,enq_seg pointers
242 *
243 * @param ring pointer to the RING to be intialised
244 * @return none
245 */
xhci_initialize_ring_info(struct xhci_ring * ring)246 static void xhci_initialize_ring_info(struct xhci_ring *ring)
247 {
248 /*
249 * The ring is empty, so the enqueue pointer == dequeue pointer
250 */
251 ring->enqueue = ring->first_seg->trbs;
252 ring->enq_seg = ring->first_seg;
253 ring->dequeue = ring->enqueue;
254 ring->deq_seg = ring->first_seg;
255
256 /*
257 * The ring is initialized to 0. The producer must write 1 to the
258 * cycle bit to handover ownership of the TRB, so PCS = 1.
259 * The consumer must compare CCS to the cycle bit to
260 * check ownership, so CCS = 1.
261 */
262 ring->cycle_state = 1;
263 }
264
265 /**
266 * Allocates a generic ring segment from the ring pool, sets the dma address,
267 * initializes the segment to zero, and sets the private next pointer to NULL.
268 * Section 4.11.1.1:
269 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
270 *
271 * @param none
272 * @return pointer to the newly allocated SEGMENT
273 */
xhci_segment_alloc(void)274 static struct xhci_segment *xhci_segment_alloc(void)
275 {
276 struct xhci_segment *seg;
277
278 seg = (struct xhci_segment *)malloc(sizeof(struct xhci_segment));
279 BUG_ON(!seg);
280
281 seg->trbs = (union xhci_trb *)xhci_malloc(SEGMENT_SIZE);
282
283 seg->next = NULL;
284
285 return seg;
286 }
287
288 /**
289 * Create a new ring with zero or more segments.
290 * TODO: current code only uses one-time-allocated single-segment rings
291 * of 1KB anyway, so we might as well get rid of all the segment and
292 * linking code (and maybe increase the size a bit, e.g. 4KB).
293 *
294 *
295 * Link each segment together into a ring.
296 * Set the end flag and the cycle toggle bit on the last segment.
297 * See section 4.9.2 and figures 15 and 16 of XHCI spec rev1.0.
298 *
299 * @param num_segs number of segments in the ring
300 * @param link_trbs flag to indicate whether to link the trbs or NOT
301 * @return pointer to the newly created RING
302 */
xhci_ring_alloc(unsigned int num_segs,bool link_trbs)303 struct xhci_ring *xhci_ring_alloc(unsigned int num_segs, bool link_trbs)
304 {
305 struct xhci_ring *ring;
306 struct xhci_segment *prev;
307
308 ring = (struct xhci_ring *)malloc(sizeof(struct xhci_ring));
309 BUG_ON(!ring);
310
311 if (num_segs == 0)
312 return ring;
313
314 ring->first_seg = xhci_segment_alloc();
315 BUG_ON(!ring->first_seg);
316
317 num_segs--;
318
319 prev = ring->first_seg;
320 while (num_segs > 0) {
321 struct xhci_segment *next;
322
323 next = xhci_segment_alloc();
324 BUG_ON(!next);
325
326 xhci_link_segments(prev, next, link_trbs);
327
328 prev = next;
329 num_segs--;
330 }
331 xhci_link_segments(prev, ring->first_seg, link_trbs);
332 if (link_trbs) {
333 /* See section 4.9.2.1 and 6.4.4.1 */
334 prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
335 cpu_to_le32(LINK_TOGGLE);
336 }
337 xhci_initialize_ring_info(ring);
338
339 return ring;
340 }
341
342 /**
343 * Set up the scratchpad buffer array and scratchpad buffers
344 *
345 * @ctrl host controller data structure
346 * @return -ENOMEM if buffer allocation fails, 0 on success
347 */
xhci_scratchpad_alloc(struct xhci_ctrl * ctrl)348 static int xhci_scratchpad_alloc(struct xhci_ctrl *ctrl)
349 {
350 struct xhci_hccr *hccr = ctrl->hccr;
351 struct xhci_hcor *hcor = ctrl->hcor;
352 struct xhci_scratchpad *scratchpad;
353 int num_sp;
354 uint32_t page_size;
355 void *buf;
356 int i;
357
358 num_sp = HCS_MAX_SCRATCHPAD(xhci_readl(&hccr->cr_hcsparams2));
359 if (!num_sp)
360 return 0;
361
362 scratchpad = malloc(sizeof(*scratchpad));
363 if (!scratchpad)
364 goto fail_sp;
365 ctrl->scratchpad = scratchpad;
366
367 scratchpad->sp_array = xhci_malloc(num_sp * sizeof(u64));
368 if (!scratchpad->sp_array)
369 goto fail_sp2;
370 ctrl->dcbaa->dev_context_ptrs[0] =
371 cpu_to_le64((uintptr_t)scratchpad->sp_array);
372
373 xhci_flush_cache((uintptr_t)&ctrl->dcbaa->dev_context_ptrs[0],
374 sizeof(ctrl->dcbaa->dev_context_ptrs[0]));
375
376 page_size = xhci_readl(&hcor->or_pagesize) & 0xffff;
377 for (i = 0; i < 16; i++) {
378 if ((0x1 & page_size) != 0)
379 break;
380 page_size = page_size >> 1;
381 }
382 BUG_ON(i == 16);
383
384 page_size = 1 << (i + 12);
385 buf = memalign(page_size, num_sp * page_size);
386 if (!buf)
387 goto fail_sp3;
388 memset(buf, '\0', num_sp * page_size);
389 xhci_flush_cache((uintptr_t)buf, num_sp * page_size);
390
391 for (i = 0; i < num_sp; i++) {
392 uintptr_t ptr = (uintptr_t)buf + i * page_size;
393 scratchpad->sp_array[i] = cpu_to_le64(ptr);
394 }
395
396 return 0;
397
398 fail_sp3:
399 free(scratchpad->sp_array);
400
401 fail_sp2:
402 free(scratchpad);
403 ctrl->scratchpad = NULL;
404
405 fail_sp:
406 return -ENOMEM;
407 }
408
409 /**
410 * Allocates the Container context
411 *
412 * @param ctrl Host controller data structure
413 * @param type type of XHCI Container Context
414 * @return NULL if failed else pointer to the context on success
415 */
416 static struct xhci_container_ctx
xhci_alloc_container_ctx(struct xhci_ctrl * ctrl,int type)417 *xhci_alloc_container_ctx(struct xhci_ctrl *ctrl, int type)
418 {
419 struct xhci_container_ctx *ctx;
420
421 ctx = (struct xhci_container_ctx *)
422 malloc(sizeof(struct xhci_container_ctx));
423 BUG_ON(!ctx);
424
425 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
426 ctx->type = type;
427 ctx->size = (MAX_EP_CTX_NUM + 1) *
428 CTX_SIZE(readl(&ctrl->hccr->cr_hccparams));
429 if (type == XHCI_CTX_TYPE_INPUT)
430 ctx->size += CTX_SIZE(readl(&ctrl->hccr->cr_hccparams));
431
432 ctx->bytes = (u8 *)xhci_malloc(ctx->size);
433
434 return ctx;
435 }
436
437 /**
438 * Allocating virtual device
439 *
440 * @param udev pointer to USB deivce structure
441 * @return 0 on success else -1 on failure
442 */
xhci_alloc_virt_device(struct xhci_ctrl * ctrl,unsigned int slot_id)443 int xhci_alloc_virt_device(struct xhci_ctrl *ctrl, unsigned int slot_id)
444 {
445 u64 byte_64 = 0;
446 struct xhci_virt_device *virt_dev;
447
448 /* Slot ID 0 is reserved */
449 if (ctrl->devs[slot_id]) {
450 printf("Virt dev for slot[%d] already allocated\n", slot_id);
451 return -EEXIST;
452 }
453
454 ctrl->devs[slot_id] = (struct xhci_virt_device *)
455 malloc(sizeof(struct xhci_virt_device));
456
457 if (!ctrl->devs[slot_id]) {
458 puts("Failed to allocate virtual device\n");
459 return -ENOMEM;
460 }
461
462 memset(ctrl->devs[slot_id], 0, sizeof(struct xhci_virt_device));
463 virt_dev = ctrl->devs[slot_id];
464
465 /* Allocate the (output) device context that will be used in the HC. */
466 virt_dev->out_ctx = xhci_alloc_container_ctx(ctrl,
467 XHCI_CTX_TYPE_DEVICE);
468 if (!virt_dev->out_ctx) {
469 puts("Failed to allocate out context for virt dev\n");
470 return -ENOMEM;
471 }
472
473 /* Allocate the (input) device context for address device command */
474 virt_dev->in_ctx = xhci_alloc_container_ctx(ctrl,
475 XHCI_CTX_TYPE_INPUT);
476 if (!virt_dev->in_ctx) {
477 puts("Failed to allocate in context for virt dev\n");
478 return -ENOMEM;
479 }
480
481 /* Allocate endpoint 0 ring */
482 virt_dev->eps[0].ring = xhci_ring_alloc(1, true);
483
484 byte_64 = (uintptr_t)(virt_dev->out_ctx->bytes);
485
486 /* Point to output device context in dcbaa. */
487 ctrl->dcbaa->dev_context_ptrs[slot_id] = byte_64;
488
489 xhci_flush_cache((uintptr_t)&ctrl->dcbaa->dev_context_ptrs[slot_id],
490 sizeof(__le64));
491 return 0;
492 }
493
494 /**
495 * Allocates the necessary data structures
496 * for XHCI host controller
497 *
498 * @param ctrl Host controller data structure
499 * @param hccr pointer to HOST Controller Control Registers
500 * @param hcor pointer to HOST Controller Operational Registers
501 * @return 0 if successful else -1 on failure
502 */
xhci_mem_init(struct xhci_ctrl * ctrl,struct xhci_hccr * hccr,struct xhci_hcor * hcor)503 int xhci_mem_init(struct xhci_ctrl *ctrl, struct xhci_hccr *hccr,
504 struct xhci_hcor *hcor)
505 {
506 uint64_t val_64;
507 uint64_t trb_64;
508 uint32_t val;
509 unsigned long deq;
510 int i;
511 struct xhci_segment *seg;
512
513 /* DCBAA initialization */
514 ctrl->dcbaa = (struct xhci_device_context_array *)
515 xhci_malloc(sizeof(struct xhci_device_context_array));
516 if (ctrl->dcbaa == NULL) {
517 puts("unable to allocate DCBA\n");
518 return -ENOMEM;
519 }
520
521 val_64 = (uintptr_t)ctrl->dcbaa;
522 /* Set the pointer in DCBAA register */
523 xhci_writeq(&hcor->or_dcbaap, val_64);
524
525 /* Command ring control pointer register initialization */
526 ctrl->cmd_ring = xhci_ring_alloc(1, true);
527
528 /* Set the address in the Command Ring Control register */
529 trb_64 = (uintptr_t)ctrl->cmd_ring->first_seg->trbs;
530 val_64 = xhci_readq(&hcor->or_crcr);
531 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
532 (trb_64 & (u64) ~CMD_RING_RSVD_BITS) |
533 ctrl->cmd_ring->cycle_state;
534 xhci_writeq(&hcor->or_crcr, val_64);
535
536 /* write the address of db register */
537 val = xhci_readl(&hccr->cr_dboff);
538 val &= DBOFF_MASK;
539 ctrl->dba = (struct xhci_doorbell_array *)((char *)hccr + val);
540
541 /* write the address of runtime register */
542 val = xhci_readl(&hccr->cr_rtsoff);
543 val &= RTSOFF_MASK;
544 ctrl->run_regs = (struct xhci_run_regs *)((char *)hccr + val);
545
546 /* writting the address of ir_set structure */
547 ctrl->ir_set = &ctrl->run_regs->ir_set[0];
548
549 /* Event ring does not maintain link TRB */
550 ctrl->event_ring = xhci_ring_alloc(ERST_NUM_SEGS, false);
551 ctrl->erst.entries = (struct xhci_erst_entry *)
552 xhci_malloc(sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS);
553
554 ctrl->erst.num_entries = ERST_NUM_SEGS;
555
556 for (val = 0, seg = ctrl->event_ring->first_seg;
557 val < ERST_NUM_SEGS;
558 val++) {
559 trb_64 = 0;
560 trb_64 = (uintptr_t)seg->trbs;
561 struct xhci_erst_entry *entry = &ctrl->erst.entries[val];
562 xhci_writeq(&entry->seg_addr, trb_64);
563 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
564 entry->rsvd = 0;
565 seg = seg->next;
566 }
567 xhci_flush_cache((uintptr_t)ctrl->erst.entries,
568 ERST_NUM_SEGS * sizeof(struct xhci_erst_entry));
569
570 deq = (unsigned long)ctrl->event_ring->dequeue;
571
572 /* Update HC event ring dequeue pointer */
573 xhci_writeq(&ctrl->ir_set->erst_dequeue,
574 (u64)deq & (u64)~ERST_PTR_MASK);
575
576 /* set ERST count with the number of entries in the segment table */
577 val = xhci_readl(&ctrl->ir_set->erst_size);
578 val &= ERST_SIZE_MASK;
579 val |= ERST_NUM_SEGS;
580 xhci_writel(&ctrl->ir_set->erst_size, val);
581
582 /* this is the event ring segment table pointer */
583 val_64 = xhci_readq(&ctrl->ir_set->erst_base);
584 val_64 &= ERST_PTR_MASK;
585 val_64 |= ((uintptr_t)(ctrl->erst.entries) & ~ERST_PTR_MASK);
586
587 xhci_writeq(&ctrl->ir_set->erst_base, val_64);
588
589 /* set up the scratchpad buffer array and scratchpad buffers */
590 xhci_scratchpad_alloc(ctrl);
591
592 /* initializing the virtual devices to NULL */
593 for (i = 0; i < MAX_HC_SLOTS; ++i)
594 ctrl->devs[i] = NULL;
595
596 /*
597 * Just Zero'ing this register completely,
598 * or some spurious Device Notification Events
599 * might screw things here.
600 */
601 xhci_writel(&hcor->or_dnctrl, 0x0);
602
603 return 0;
604 }
605
606 /**
607 * Give the input control context for the passed container context
608 *
609 * @param ctx pointer to the context
610 * @return pointer to the Input control context data
611 */
612 struct xhci_input_control_ctx
xhci_get_input_control_ctx(struct xhci_container_ctx * ctx)613 *xhci_get_input_control_ctx(struct xhci_container_ctx *ctx)
614 {
615 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
616 return (struct xhci_input_control_ctx *)ctx->bytes;
617 }
618
619 /**
620 * Give the slot context for the passed container context
621 *
622 * @param ctrl Host controller data structure
623 * @param ctx pointer to the context
624 * @return pointer to the slot control context data
625 */
xhci_get_slot_ctx(struct xhci_ctrl * ctrl,struct xhci_container_ctx * ctx)626 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_ctrl *ctrl,
627 struct xhci_container_ctx *ctx)
628 {
629 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
630 return (struct xhci_slot_ctx *)ctx->bytes;
631
632 return (struct xhci_slot_ctx *)
633 (ctx->bytes + CTX_SIZE(readl(&ctrl->hccr->cr_hccparams)));
634 }
635
636 /**
637 * Gets the EP context from based on the ep_index
638 *
639 * @param ctrl Host controller data structure
640 * @param ctx context container
641 * @param ep_index index of the endpoint
642 * @return pointer to the End point context
643 */
xhci_get_ep_ctx(struct xhci_ctrl * ctrl,struct xhci_container_ctx * ctx,unsigned int ep_index)644 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_ctrl *ctrl,
645 struct xhci_container_ctx *ctx,
646 unsigned int ep_index)
647 {
648 /* increment ep index by offset of start of ep ctx array */
649 ep_index++;
650 if (ctx->type == XHCI_CTX_TYPE_INPUT)
651 ep_index++;
652
653 return (struct xhci_ep_ctx *)
654 (ctx->bytes +
655 (ep_index * CTX_SIZE(readl(&ctrl->hccr->cr_hccparams))));
656 }
657
658 /**
659 * Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
660 * Useful when you want to change one particular aspect of the endpoint
661 * and then issue a configure endpoint command.
662 *
663 * @param ctrl Host controller data structure
664 * @param in_ctx contains the input context
665 * @param out_ctx contains the input context
666 * @param ep_index index of the end point
667 * @return none
668 */
xhci_endpoint_copy(struct xhci_ctrl * ctrl,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,unsigned int ep_index)669 void xhci_endpoint_copy(struct xhci_ctrl *ctrl,
670 struct xhci_container_ctx *in_ctx,
671 struct xhci_container_ctx *out_ctx,
672 unsigned int ep_index)
673 {
674 struct xhci_ep_ctx *out_ep_ctx;
675 struct xhci_ep_ctx *in_ep_ctx;
676
677 out_ep_ctx = xhci_get_ep_ctx(ctrl, out_ctx, ep_index);
678 in_ep_ctx = xhci_get_ep_ctx(ctrl, in_ctx, ep_index);
679
680 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
681 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
682 in_ep_ctx->deq = out_ep_ctx->deq;
683 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
684 }
685
686 /**
687 * Copy output xhci_slot_ctx to the input xhci_slot_ctx.
688 * Useful when you want to change one particular aspect of the endpoint
689 * and then issue a configure endpoint command.
690 * Only the context entries field matters, but
691 * we'll copy the whole thing anyway.
692 *
693 * @param ctrl Host controller data structure
694 * @param in_ctx contains the inpout context
695 * @param out_ctx contains the inpout context
696 * @return none
697 */
xhci_slot_copy(struct xhci_ctrl * ctrl,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx)698 void xhci_slot_copy(struct xhci_ctrl *ctrl, struct xhci_container_ctx *in_ctx,
699 struct xhci_container_ctx *out_ctx)
700 {
701 struct xhci_slot_ctx *in_slot_ctx;
702 struct xhci_slot_ctx *out_slot_ctx;
703
704 in_slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx);
705 out_slot_ctx = xhci_get_slot_ctx(ctrl, out_ctx);
706
707 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
708 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
709 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
710 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
711 }
712
713 /**
714 * Setup an xHCI virtual device for a Set Address command
715 *
716 * @param udev pointer to the Device Data Structure
717 * @return returns negative value on failure else 0 on success
718 */
xhci_setup_addressable_virt_dev(struct xhci_ctrl * ctrl,struct usb_device * udev,int hop_portnr)719 void xhci_setup_addressable_virt_dev(struct xhci_ctrl *ctrl,
720 struct usb_device *udev, int hop_portnr)
721 {
722 struct xhci_virt_device *virt_dev;
723 struct xhci_ep_ctx *ep0_ctx;
724 struct xhci_slot_ctx *slot_ctx;
725 u32 port_num = 0;
726 u64 trb_64 = 0;
727 int slot_id = udev->slot_id;
728 int speed = udev->speed;
729 int route = 0;
730 #if CONFIG_IS_ENABLED(DM_USB)
731 struct usb_device *dev = udev;
732 struct usb_hub_device *hub;
733 #endif
734
735 virt_dev = ctrl->devs[slot_id];
736
737 BUG_ON(!virt_dev);
738
739 /* Extract the EP0 and Slot Ctrl */
740 ep0_ctx = xhci_get_ep_ctx(ctrl, virt_dev->in_ctx, 0);
741 slot_ctx = xhci_get_slot_ctx(ctrl, virt_dev->in_ctx);
742
743 /* Only the control endpoint is valid - one endpoint context */
744 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
745
746 #if CONFIG_IS_ENABLED(DM_USB)
747 /* Calculate the route string for this device */
748 port_num = dev->portnr;
749 while (!usb_hub_is_root_hub(dev->dev)) {
750 hub = dev_get_uclass_priv(dev->dev);
751 /*
752 * Each hub in the topology is expected to have no more than
753 * 15 ports in order for the route string of a device to be
754 * unique. SuperSpeed hubs are restricted to only having 15
755 * ports, but FS/LS/HS hubs are not. The xHCI specification
756 * says that if the port number the device is greater than 15,
757 * that portion of the route string shall be set to 15.
758 */
759 if (port_num > 15)
760 port_num = 15;
761 route |= port_num << (hub->hub_depth * 4);
762 dev = dev_get_parent_priv(dev->dev);
763 port_num = dev->portnr;
764 dev = dev_get_parent_priv(dev->dev->parent);
765 }
766
767 debug("route string %x\n", route);
768 #endif
769 slot_ctx->dev_info |= route;
770
771 switch (speed) {
772 case USB_SPEED_SUPER:
773 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
774 break;
775 case USB_SPEED_HIGH:
776 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
777 break;
778 case USB_SPEED_FULL:
779 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
780 break;
781 case USB_SPEED_LOW:
782 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
783 break;
784 default:
785 /* Speed was set earlier, this shouldn't happen. */
786 BUG();
787 }
788
789 #if CONFIG_IS_ENABLED(DM_USB)
790 /* Set up TT fields to support FS/LS devices */
791 if (speed == USB_SPEED_LOW || speed == USB_SPEED_FULL) {
792 struct udevice *parent = udev->dev;
793
794 dev = udev;
795 do {
796 port_num = dev->portnr;
797 dev = dev_get_parent_priv(parent);
798 if (usb_hub_is_root_hub(dev->dev))
799 break;
800 parent = dev->dev->parent;
801 } while (dev->speed != USB_SPEED_HIGH);
802
803 if (!usb_hub_is_root_hub(dev->dev)) {
804 hub = dev_get_uclass_priv(dev->dev);
805 if (hub->tt.multi)
806 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
807 slot_ctx->tt_info |= cpu_to_le32(TT_PORT(port_num));
808 slot_ctx->tt_info |= cpu_to_le32(TT_SLOT(dev->slot_id));
809 }
810 }
811 #endif
812
813 port_num = hop_portnr;
814 debug("port_num = %d\n", port_num);
815
816 slot_ctx->dev_info2 |=
817 cpu_to_le32(((port_num & ROOT_HUB_PORT_MASK) <<
818 ROOT_HUB_PORT_SHIFT));
819
820 /* Step 4 - ring already allocated */
821 /* Step 5 */
822 ep0_ctx->ep_info2 = cpu_to_le32(CTRL_EP << EP_TYPE_SHIFT);
823 debug("SPEED = %d\n", speed);
824
825 switch (speed) {
826 case USB_SPEED_SUPER:
827 ep0_ctx->ep_info2 |= cpu_to_le32(((512 & MAX_PACKET_MASK) <<
828 MAX_PACKET_SHIFT));
829 debug("Setting Packet size = 512bytes\n");
830 break;
831 case USB_SPEED_HIGH:
832 /* USB core guesses at a 64-byte max packet first for FS devices */
833 case USB_SPEED_FULL:
834 ep0_ctx->ep_info2 |= cpu_to_le32(((64 & MAX_PACKET_MASK) <<
835 MAX_PACKET_SHIFT));
836 debug("Setting Packet size = 64bytes\n");
837 break;
838 case USB_SPEED_LOW:
839 ep0_ctx->ep_info2 |= cpu_to_le32(((8 & MAX_PACKET_MASK) <<
840 MAX_PACKET_SHIFT));
841 debug("Setting Packet size = 8bytes\n");
842 break;
843 default:
844 /* New speed? */
845 BUG();
846 }
847
848 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
849 ep0_ctx->ep_info2 |=
850 cpu_to_le32(((0 & MAX_BURST_MASK) << MAX_BURST_SHIFT) |
851 ((3 & ERROR_COUNT_MASK) << ERROR_COUNT_SHIFT));
852
853 trb_64 = (uintptr_t)virt_dev->eps[0].ring->first_seg->trbs;
854 ep0_ctx->deq = cpu_to_le64(trb_64 | virt_dev->eps[0].ring->cycle_state);
855
856 /*
857 * xHCI spec 6.2.3:
858 * software shall set 'Average TRB Length' to 8 for control endpoints.
859 */
860 ep0_ctx->tx_info = cpu_to_le32(EP_AVG_TRB_LENGTH(8));
861
862 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
863
864 xhci_flush_cache((uintptr_t)ep0_ctx, sizeof(struct xhci_ep_ctx));
865 xhci_flush_cache((uintptr_t)slot_ctx, sizeof(struct xhci_slot_ctx));
866 }
867