• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-raddstoreexpminusmax/psimd-p5.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <psimd.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/raddstoreexpminusmax.h>
16 
17 
xnn_f32_raddstoreexpminusmax_ukernel__psimd_p5_x16_acc2(size_t elements,const float * input,float * output,float * sum,float max)18 void xnn_f32_raddstoreexpminusmax_ukernel__psimd_p5_x16_acc2(
19     size_t elements,
20     const float* input,
21     float* output,
22     float* sum,
23     float max)
24 {
25   assert(elements % sizeof(float) == 0);
26 
27   const psimd_f32 vmagic_bias = psimd_splat_f32(0x1.8000FEp23f);
28   // The smallest x for which expf(x) is normalized.
29   const psimd_f32 vdenorm_cutoff = psimd_splat_f32(-0x1.5D589Ep6f);
30   const psimd_f32 vlog2e = psimd_splat_f32(0x1.715476p+0f);
31   // Last 7 bits are zeroes
32   const psimd_f32 vminus_ln2_hi = psimd_splat_f32(-0x1.62E400p-1f);
33   const psimd_f32 vminus_ln2_lo = psimd_splat_f32(-0x1.7F7D1Cp-20f);
34 
35   const psimd_f32 vc1 = psimd_splat_f32(0x1.FFFFF6p-1f);
36   const psimd_f32 vc2 = psimd_splat_f32(0x1.FFFDC6p-2f);
37   const psimd_f32 vc3 = psimd_splat_f32(0x1.555A80p-3f);
38   const psimd_f32 vc4 = psimd_splat_f32(0x1.573A1Ap-5f);
39   const psimd_f32 vc5 = psimd_splat_f32(0x1.0F9F9Cp-7f);
40 
41   const psimd_f32 vi_max = psimd_splat_f32(max);
42 
43   psimd_f32 vacc0 = psimd_zero_f32();
44   psimd_f32 vacc1 = psimd_zero_f32();
45   for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
46     // Load 16 (4x4) inputs at a time.
47     const psimd_f32 vi0123 = psimd_load_f32(input);
48     const psimd_f32 vi4567 = psimd_load_f32(input + 4);
49     const psimd_f32 vi89AB = psimd_load_f32(input + 8);
50     const psimd_f32 viCDEF = psimd_load_f32(input + 12);
51     input += 16;
52 
53     // Subtract maximum input x := i - i_max. This implies x <= 0.
54     const psimd_f32 vx0123 = psimd_sub_f32(vi0123, vi_max);
55     const psimd_f32 vx4567 = psimd_sub_f32(vi4567, vi_max);
56     const psimd_f32 vx89AB = psimd_sub_f32(vi89AB, vi_max);
57     const psimd_f32 vxCDEF = psimd_sub_f32(viCDEF, vi_max);
58 
59     // Compute reduced argument elements := round(x / log(2)).
60     psimd_f32 vn0123 = psimd_qfma_f32(vmagic_bias, vx0123, vlog2e);
61     psimd_f32 vn4567 = psimd_qfma_f32(vmagic_bias, vx4567, vlog2e);
62     psimd_f32 vn89AB = psimd_qfma_f32(vmagic_bias, vx89AB, vlog2e);
63     psimd_f32 vnCDEF = psimd_qfma_f32(vmagic_bias, vxCDEF, vlog2e);
64 
65     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
66     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
67     const psimd_f32 vs0123 = (psimd_f32) ((psimd_u32) vn0123 << 23);
68     const psimd_f32 vs4567 = (psimd_f32) ((psimd_u32) vn4567 << 23);
69     const psimd_f32 vs89AB = (psimd_f32) ((psimd_u32) vn89AB << 23);
70     const psimd_f32 vsCDEF = (psimd_f32) ((psimd_u32) vnCDEF << 23);
71 
72     // Subtract the large number back to get final elements := round(x / log(2)).
73     vn0123 = psimd_sub_f32(vn0123, vmagic_bias);
74     vn4567 = psimd_sub_f32(vn4567, vmagic_bias);
75     vn89AB = psimd_sub_f32(vn89AB, vmagic_bias);
76     vnCDEF = psimd_sub_f32(vnCDEF, vmagic_bias);
77 
78     // Compute reduced argument t := x - elements * log(2).
79     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
80     psimd_f32 vt0123 = psimd_qfma_f32(vx0123, vn0123, vminus_ln2_hi);
81     psimd_f32 vt4567 = psimd_qfma_f32(vx4567, vn4567, vminus_ln2_hi);
82     psimd_f32 vt89AB = psimd_qfma_f32(vx89AB, vn89AB, vminus_ln2_hi);
83     psimd_f32 vtCDEF = psimd_qfma_f32(vxCDEF, vnCDEF, vminus_ln2_hi);
84 
85     vt0123 = psimd_qfma_f32(vt0123, vn0123, vminus_ln2_lo);
86     vt4567 = psimd_qfma_f32(vt4567, vn4567, vminus_ln2_lo);
87     vt89AB = psimd_qfma_f32(vt89AB, vn89AB, vminus_ln2_lo);
88     vtCDEF = psimd_qfma_f32(vtCDEF, vnCDEF, vminus_ln2_lo);
89 
90     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
91     psimd_f32 vp0123 = psimd_qfma_f32(vc4, vc5, vt0123);
92     psimd_f32 vp4567 = psimd_qfma_f32(vc4, vc5, vt4567);
93     psimd_f32 vp89AB = psimd_qfma_f32(vc4, vc5, vt89AB);
94     psimd_f32 vpCDEF = psimd_qfma_f32(vc4, vc5, vtCDEF);
95 
96     vp0123 = psimd_qfma_f32(vc3, vp0123, vt0123);
97     vp4567 = psimd_qfma_f32(vc3, vp4567, vt4567);
98     vp89AB = psimd_qfma_f32(vc3, vp89AB, vt89AB);
99     vpCDEF = psimd_qfma_f32(vc3, vpCDEF, vtCDEF);
100 
101     vp0123 = psimd_qfma_f32(vc2, vp0123, vt0123);
102     vp4567 = psimd_qfma_f32(vc2, vp4567, vt4567);
103     vp89AB = psimd_qfma_f32(vc2, vp89AB, vt89AB);
104     vpCDEF = psimd_qfma_f32(vc2, vpCDEF, vtCDEF);
105 
106     vp0123 = psimd_qfma_f32(vc1, vp0123, vt0123);
107     vp4567 = psimd_qfma_f32(vc1, vp4567, vt4567);
108     vp89AB = psimd_qfma_f32(vc1, vp89AB, vt89AB);
109     vpCDEF = psimd_qfma_f32(vc1, vpCDEF, vtCDEF);
110 
111     // Reconstruct the final f value:
112     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
113     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
114     //     = s + (t * s) * p
115     vt0123 = psimd_mul_f32(vt0123, vs0123);
116     vt4567 = psimd_mul_f32(vt4567, vs4567);
117     vt89AB = psimd_mul_f32(vt89AB, vs89AB);
118     vtCDEF = psimd_mul_f32(vtCDEF, vsCDEF);
119 
120     psimd_f32 vf0123 = psimd_qfma_f32(vs0123, vt0123, vp0123);
121     psimd_f32 vf4567 = psimd_qfma_f32(vs4567, vt4567, vp4567);
122     psimd_f32 vf89AB = psimd_qfma_f32(vs89AB, vt89AB, vp89AB);
123     psimd_f32 vfCDEF = psimd_qfma_f32(vsCDEF, vtCDEF, vpCDEF);
124 
125     // For inputs below zero cutoff, replace output with +0.0f.
126     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
127     vf0123 = psimd_andnotmask_f32(vx0123 < vdenorm_cutoff, vf0123);
128     vf4567 = psimd_andnotmask_f32(vx4567 < vdenorm_cutoff, vf4567);
129     vf89AB = psimd_andnotmask_f32(vx89AB < vdenorm_cutoff, vf89AB);
130     vfCDEF = psimd_andnotmask_f32(vxCDEF < vdenorm_cutoff, vfCDEF);
131 
132     // Store 16 (4x4) outputs at a time.
133     psimd_store_f32(output, vf0123);
134     psimd_store_f32(output + 4, vf4567);
135     psimd_store_f32(output + 8, vf89AB);
136     psimd_store_f32(output + 12, vfCDEF);
137     output += 16;
138 
139     // Accumulate computed exponents.
140     vacc0 = psimd_add_f32(vacc0, vf0123);
141     vacc0 = psimd_add_f32(vacc0, vf4567);
142     vacc0 = psimd_add_f32(vacc0, vf89AB);
143     vacc0 = psimd_add_f32(vacc0, vfCDEF);
144   }
145   // Add up all accumulators to vacc0
146   vacc0 = psimd_add_f32(vacc0, vacc1);
147 
148   psimd_f32 vacc = vacc0;
149   for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
150     // Load 4 inputs at a time.
151     const psimd_f32 vi = psimd_load_f32(input);
152     input += 4;
153 
154     // Subtract maximum input x := i - i_max. This implies x <= 0.
155     const psimd_f32 vx = psimd_sub_f32(vi, vi_max);
156 
157     // Compute reduced argument elements := round(x / log(2)).
158     psimd_f32 vn = psimd_qfma_f32(vmagic_bias, vx, vlog2e);
159 
160     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
161     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
162     const psimd_f32 vs = (psimd_f32) ((psimd_u32) vn << 23);
163 
164     // Subtract the large number back to get final elements := round(x / log(2)).
165     vn = psimd_sub_f32(vn, vmagic_bias);
166 
167     // Compute reduced argument t := x - elements * log(2).
168     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
169     psimd_f32 vt = psimd_qfma_f32(vx, vn, vminus_ln2_hi);
170     vt = psimd_qfma_f32(vt, vn, vminus_ln2_lo);
171 
172     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
173     psimd_f32 vp = psimd_qfma_f32(vc4, vc5, vt);
174     vp = psimd_qfma_f32(vc3, vp, vt);
175     vp = psimd_qfma_f32(vc2, vp, vt);
176     vp = psimd_qfma_f32(vc1, vp, vt);
177 
178     // Reconstruct the final f value:
179     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
180     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
181     //     = s + (t * s) * p
182     vt = psimd_mul_f32(vt, vs);
183     psimd_f32 vf = psimd_qfma_f32(vs, vt, vp);
184 
185     // For inputs below zero cutoff, replace output with +0.0f.
186     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
187     vf = psimd_andnotmask_f32(vx < vdenorm_cutoff, vf);
188 
189     // Store 4 outputs at a time.
190     psimd_store_f32(output, vf);
191     output += 4;
192 
193     // Accumulate computed exponents.
194     vacc = psimd_add_f32(vacc, vf);
195   }
196   if (elements != 0) {
197     assert(elements >= 1 * sizeof(float));
198     assert(elements <= 3 * sizeof(float));
199     // Load 4 inputs at a time.
200     const psimd_f32 vi = psimd_load_f32(input);
201 
202     // Subtract maximum input x := i - i_max. This implies x <= 0.
203     const psimd_f32 vx = psimd_sub_f32(vi, vi_max);
204 
205     // Compute reduced argument elements := round(x / log(2)).
206     psimd_f32 vn = psimd_qfma_f32(vmagic_bias, vx, vlog2e);
207 
208     // Create a floating-point number s (scale) such that s == 2**elements for inputs which don't cause underflow, i.e.
209     // -87.33642 <= x <= 0.0, and -126 <= elements <= 0 accordingly.
210     const psimd_f32 vs = (psimd_f32) ((psimd_u32) vn << 23);
211 
212     // Subtract the large number back to get final elements := round(x / log(2)).
213     vn = psimd_sub_f32(vn, vmagic_bias);
214 
215     // Compute reduced argument t := x - elements * log(2).
216     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
217     psimd_f32 vt = psimd_qfma_f32(vx, vn, vminus_ln2_hi);
218     vt = psimd_qfma_f32(vt, vn, vminus_ln2_lo);
219 
220     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
221     psimd_f32 vp = psimd_qfma_f32(vc4, vc5, vt);
222     vp = psimd_qfma_f32(vc3, vp, vt);
223     vp = psimd_qfma_f32(vc2, vp, vt);
224     vp = psimd_qfma_f32(vc1, vp, vt);
225 
226     // Reconstruct the final f value:
227     //   f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
228     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
229     //     = s + (t * s) * p
230     vt = psimd_mul_f32(vt, vs);
231     psimd_f32 vf = psimd_qfma_f32(vs, vt, vp);
232 
233     // For inputs below zero cutoff, replace output with +0.0f.
234     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
235     vf = psimd_andnotmask_f32(vx < vdenorm_cutoff, vf);
236 
237     if (elements & (2 * sizeof(float))) {
238       // Store 2 outputs at a time.
239       psimd_store2_f32(output, vf);
240       output += 2;
241 
242       // Accumulate 2 computed exponents.
243       vacc = psimd_add_f32(vacc, psimd_concat_lo_f32(vf, psimd_zero_f32()));
244 
245       vf = psimd_concat_hi_f32(vf, vf);
246     }
247     if (elements & (1 * sizeof(float))) {
248       // Store 1 output at a time.
249       psimd_store1_f32(output, vf);
250 
251       // Accumulate 1 computed exponent.
252       const psimd_f32 vzero = psimd_zero_f32();
253       vf = psimd_concat_lo_f32(vf, vzero);
254       vf = psimd_concat_even_f32(vf, vzero);
255       vacc = psimd_add_f32(vacc, vf);
256     }
257   }
258   // Reduce 4 elements in the SIMD register
259   *sum = psimd_reduce_sum_f32(vacc);
260 }
261