1 // Auto-generated file. Do not edit!
2 // Template: src/f32-sigmoid/psimd-p5-div.c.in
3 // Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9
10 #include <assert.h>
11
12 #include <psimd.h>
13
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16
17
xnn_f32_sigmoid_ukernel__psimd_p5_div_x16(size_t n,const float * x,float * y,const void * params)18 void xnn_f32_sigmoid_ukernel__psimd_p5_div_x16(
19 size_t n,
20 const float* x,
21 float* y,
22 const void* params)
23 {
24 assert(n % sizeof(float) == 0);
25
26 const psimd_f32 vmagic_bias = psimd_splat_f32(0x1.8000FEp23f);
27 // The largest z for which sigmoidf(-z) is normalized.
28 // This number is also the largest z for which expf(-z) is normalized.
29 const psimd_f32 vdenorm_cutoff = psimd_splat_f32(0x1.5D589Ep+6f);
30 const psimd_f32 vminus_log2e = psimd_splat_f32(-0x1.715476p+0f);
31 // Last 7 bits are zeroes
32 const psimd_f32 vln2_hi = psimd_splat_f32(0x1.62E400p-1f);
33 const psimd_f32 vln2_lo = psimd_splat_f32(0x1.7F7D1Cp-20f);
34 const psimd_f32 vone = psimd_splat_f32(1.0f);
35
36 const psimd_f32 vc1 = psimd_splat_f32(-0x1.FFFFF6p-1f);
37 const psimd_f32 vc2 = psimd_splat_f32( 0x1.FFFDC6p-2f);
38 const psimd_f32 vc3 = psimd_splat_f32(-0x1.555A80p-3f);
39 const psimd_f32 vc4 = psimd_splat_f32( 0x1.573A1Ap-5f);
40 const psimd_f32 vc5 = psimd_splat_f32(-0x1.0F9F9Cp-7f);
41
42 for (; n >= 16 * sizeof(float); n -= 16 * sizeof(float)) {
43 const psimd_f32 vx0123 = psimd_load_f32(x);
44 const psimd_f32 vx4567 = psimd_load_f32(x + 4);
45 const psimd_f32 vx89AB = psimd_load_f32(x + 8);
46 const psimd_f32 vxCDEF = psimd_load_f32(x + 12);
47 x += 16;
48
49 // General structure of the algorithm:
50 // / exp(x) / (1 + exp(x)) if x <= 0
51 // f[x] :=
52 // \ 1 - f[-x] if x >= 0
53 //
54 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
55 // then replace result with 1 - f[-z] if x >= 0.
56 const psimd_f32 vz0123 = psimd_abs_f32(vx0123);
57 const psimd_f32 vz4567 = psimd_abs_f32(vx4567);
58 const psimd_f32 vz89AB = psimd_abs_f32(vx89AB);
59 const psimd_f32 vzCDEF = psimd_abs_f32(vxCDEF);
60
61 // Compute reduced argument n := round(-z / log(2)).
62 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
63 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
64 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
65 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
66 // anyway. We fixup the result for such inputs at the very end of the algorithm.
67 psimd_f32 vn0123 = psimd_qfma_f32(vmagic_bias, vz0123, vminus_log2e);
68 psimd_f32 vn4567 = psimd_qfma_f32(vmagic_bias, vz4567, vminus_log2e);
69 psimd_f32 vn89AB = psimd_qfma_f32(vmagic_bias, vz89AB, vminus_log2e);
70 psimd_f32 vnCDEF = psimd_qfma_f32(vmagic_bias, vzCDEF, vminus_log2e);
71
72 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
73 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
74 const psimd_f32 vs0123 = (psimd_f32) ((psimd_u32) vn0123 << 23);
75 const psimd_f32 vs4567 = (psimd_f32) ((psimd_u32) vn4567 << 23);
76 const psimd_f32 vs89AB = (psimd_f32) ((psimd_u32) vn89AB << 23);
77 const psimd_f32 vsCDEF = (psimd_f32) ((psimd_u32) vnCDEF << 23);
78
79 // Subtract the large number back to get the final n := round(-z / log(2)) as a floating-point number.
80 vn0123 = psimd_sub_f32(vn0123, vmagic_bias);
81 vn4567 = psimd_sub_f32(vn4567, vmagic_bias);
82 vn89AB = psimd_sub_f32(vn89AB, vmagic_bias);
83 vnCDEF = psimd_sub_f32(vnCDEF, vmagic_bias);
84
85 // Compute reduced argument t := z + n * log(2). Note that -t = -z - n * log(2).
86 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
87 psimd_f32 vt0123 = psimd_qfma_f32(vz0123, vn0123, vln2_hi);
88 psimd_f32 vt4567 = psimd_qfma_f32(vz4567, vn4567, vln2_hi);
89 psimd_f32 vt89AB = psimd_qfma_f32(vz89AB, vn89AB, vln2_hi);
90 psimd_f32 vtCDEF = psimd_qfma_f32(vzCDEF, vnCDEF, vln2_hi);
91
92 vt0123 = psimd_qfma_f32(vt0123, vn0123, vln2_lo);
93 vt4567 = psimd_qfma_f32(vt4567, vn4567, vln2_lo);
94 vt89AB = psimd_qfma_f32(vt89AB, vn89AB, vln2_lo);
95 vtCDEF = psimd_qfma_f32(vtCDEF, vnCDEF, vln2_lo);
96
97 // Compute degree-5 polynomial approximation for exp(-t) on [-log(2)/2, log(2)/2]:
98 // P5(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
99 psimd_f32 vp0123 = psimd_qfma_f32(vc4, vt0123, vc5);
100 psimd_f32 vp4567 = psimd_qfma_f32(vc4, vt4567, vc5);
101 psimd_f32 vp89AB = psimd_qfma_f32(vc4, vt89AB, vc5);
102 psimd_f32 vpCDEF = psimd_qfma_f32(vc4, vtCDEF, vc5);
103
104 vp0123 = psimd_qfma_f32(vc3, vt0123, vp0123);
105 vp4567 = psimd_qfma_f32(vc3, vt4567, vp4567);
106 vp89AB = psimd_qfma_f32(vc3, vt89AB, vp89AB);
107 vpCDEF = psimd_qfma_f32(vc3, vtCDEF, vpCDEF);
108
109 vp0123 = psimd_qfma_f32(vc2, vt0123, vp0123);
110 vp4567 = psimd_qfma_f32(vc2, vt4567, vp4567);
111 vp89AB = psimd_qfma_f32(vc2, vt89AB, vp89AB);
112 vpCDEF = psimd_qfma_f32(vc2, vtCDEF, vpCDEF);
113
114 vp0123 = psimd_qfma_f32(vc1, vt0123, vp0123);
115 vp4567 = psimd_qfma_f32(vc1, vt4567, vp4567);
116 vp89AB = psimd_qfma_f32(vc1, vt89AB, vp89AB);
117 vpCDEF = psimd_qfma_f32(vc1, vtCDEF, vpCDEF);
118
119 // Reconstruct the exp(-z) value:
120 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
121 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
122 // = s + (t * s) * p
123 vt0123 = psimd_mul_f32(vt0123, vs0123);
124 vt4567 = psimd_mul_f32(vt4567, vs4567);
125 vt89AB = psimd_mul_f32(vt89AB, vs89AB);
126 vtCDEF = psimd_mul_f32(vtCDEF, vsCDEF);
127
128 const psimd_f32 ve0123 = psimd_qfma_f32(vs0123, vt0123, vp0123);
129 const psimd_f32 ve4567 = psimd_qfma_f32(vs4567, vt4567, vp4567);
130 const psimd_f32 ve89AB = psimd_qfma_f32(vs89AB, vt89AB, vp89AB);
131 const psimd_f32 veCDEF = psimd_qfma_f32(vsCDEF, vtCDEF, vpCDEF);
132
133 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
134 psimd_f32 vf0123 = psimd_div_f32(ve0123, psimd_add_f32(ve0123, vone));
135 psimd_f32 vf4567 = psimd_div_f32(ve4567, psimd_add_f32(ve4567, vone));
136 psimd_f32 vf89AB = psimd_div_f32(ve89AB, psimd_add_f32(ve89AB, vone));
137 psimd_f32 vfCDEF = psimd_div_f32(veCDEF, psimd_add_f32(veCDEF, vone));
138
139 // For inputs above denormal cutoff, replace output with +0.0f.
140 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
141 vf0123 = psimd_andnotmask_f32(vz0123 > vdenorm_cutoff, vf0123);
142 vf4567 = psimd_andnotmask_f32(vz4567 > vdenorm_cutoff, vf4567);
143 vf89AB = psimd_andnotmask_f32(vz89AB > vdenorm_cutoff, vf89AB);
144 vfCDEF = psimd_andnotmask_f32(vzCDEF > vdenorm_cutoff, vfCDEF);
145
146 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
147 vf0123 = psimd_signblend_f32(vx0123, vf0123, psimd_sub_f32(vone, vf0123));
148 vf4567 = psimd_signblend_f32(vx4567, vf4567, psimd_sub_f32(vone, vf4567));
149 vf89AB = psimd_signblend_f32(vx89AB, vf89AB, psimd_sub_f32(vone, vf89AB));
150 vfCDEF = psimd_signblend_f32(vxCDEF, vfCDEF, psimd_sub_f32(vone, vfCDEF));
151
152 psimd_store_f32(y, vf0123);
153 psimd_store_f32(y + 4, vf4567);
154 psimd_store_f32(y + 8, vf89AB);
155 psimd_store_f32(y + 12, vfCDEF);
156 y += 16;
157 }
158 for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
159 const psimd_f32 vx = psimd_load_f32(x);
160 x += 4;
161
162 // General structure of the algorithm:
163 // / exp(x) / (1 + exp(x)) if x <= 0
164 // f[x] :=
165 // \ 1 - f[-x] if x >= 0
166 //
167 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
168 // then replace result with 1 - f[-z] if x >= 0.
169 const psimd_f32 vz = psimd_abs_f32(vx);
170
171 // Compute reduced argument n := round(-z / log(2)).
172 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
173 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
174 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
175 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
176 // anyway. We fixup the result for such inputs at the very end of the algorithm.
177 psimd_f32 vn = psimd_qfma_f32(vmagic_bias, vz, vminus_log2e);
178
179 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
180 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
181 const psimd_f32 vs = (psimd_f32) ((psimd_u32) vn << 23);
182
183 // Subtract the large number back to get the final n := round(-z / log(2)) as a floating-point number.
184 vn = psimd_sub_f32(vn, vmagic_bias);
185
186 // Compute reduced argument t := z + n * log(2). Note that -t = -z - n * log(2).
187 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
188 psimd_f32 vt = psimd_qfma_f32(vz, vn, vln2_hi);
189 vt = psimd_qfma_f32(vt, vn, vln2_lo);
190
191 // Compute degree-5 polynomial approximation for exp(-t) on [-log(2)/2, log(2)/2]:
192 // P5(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
193 psimd_f32 vp = psimd_qfma_f32(vc4, vt, vc5);
194 vp = psimd_qfma_f32(vc3, vt, vp);
195 vp = psimd_qfma_f32(vc2, vt, vp);
196 vp = psimd_qfma_f32(vc1, vt, vp);
197
198 // Reconstruct the exp(-z) value:
199 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
200 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
201 // = s + (t * s) * p
202 vt = psimd_mul_f32(vt, vs);
203 const psimd_f32 ve = psimd_qfma_f32(vs, vt, vp);
204
205 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
206 psimd_f32 vf = psimd_div_f32(ve, psimd_add_f32(ve, vone));
207
208 // For inputs above denormal cutoff, replace output with +0.0f.
209 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
210 vf = psimd_andnotmask_f32(vz > vdenorm_cutoff, vf);
211
212 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
213 vf = psimd_signblend_f32(vx, vf, psimd_sub_f32(vone, vf));
214
215 psimd_store_f32(y, vf);
216 y += 4;
217 }
218 if XNN_UNLIKELY(n != 0) {
219 const psimd_f32 vx = psimd_load_f32(x);
220
221 // General structure of the algorithm:
222 // / exp(x) / (1 + exp(x)) if x <= 0
223 // f[x] :=
224 // \ 1 - f[-x] if x >= 0
225 //
226 // First we compute f[-z] := exp(-z) / (1 + exp(-z)) where z = abs(x),
227 // then replace result with 1 - f[-z] if x >= 0.
228 const psimd_f32 vz = psimd_abs_f32(vx);
229
230 // Compute reduced argument n := round(-z / log(2)).
231 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
232 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
233 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but thats ok, because
234 // inputs x outside of [-87.336544, 17.328678] (i.e. z outsize [0, 87.336544]) underflow or saturate sigmoidf(x)
235 // anyway. We fixup the result for such inputs at the very end of the algorithm.
236 psimd_f32 vn = psimd_qfma_f32(vmagic_bias, vz, vminus_log2e);
237
238 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
239 // -87.336544 <= -z <= 0.0, and -126 <= n <= 0 accordingly.
240 const psimd_f32 vs = (psimd_f32) ((psimd_u32) vn << 23);
241
242 // Subtract the large number back to get the final n := round(-z / log(2)) as a floating-point number.
243 vn = psimd_sub_f32(vn, vmagic_bias);
244
245 // Compute reduced argument t := z + n * log(2). Note that -t = -z - n * log(2).
246 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
247 psimd_f32 vt = psimd_qfma_f32(vz, vn, vln2_hi);
248 vt = psimd_qfma_f32(vt, vn, vln2_lo);
249
250 // Compute degree-5 polynomial approximation for exp(-t) on [-log(2)/2, log(2)/2]:
251 // P5(t) = 1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
252 psimd_f32 vp = psimd_qfma_f32(vc4, vt, vc5);
253 vp = psimd_qfma_f32(vc3, vt, vp);
254 vp = psimd_qfma_f32(vc2, vt, vp);
255 vp = psimd_qfma_f32(vc1, vt, vp);
256
257 // Reconstruct the exp(-z) value:
258 // e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
259 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
260 // = s + (t * s) * p
261 vt = psimd_mul_f32(vt, vs);
262 const psimd_f32 ve = psimd_qfma_f32(vs, vt, vp);
263
264 // Reconstruct sigmoid(-z) = exp(-z) / (1.0 + exp(-z))
265 psimd_f32 vf = psimd_div_f32(ve, psimd_add_f32(ve, vone));
266
267 // For inputs above denormal cutoff, replace output with +0.0f.
268 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
269 vf = psimd_andnotmask_f32(vz > vdenorm_cutoff, vf);
270
271 // Reconstruct sigmoid(x) = x < 0 ? sigmoid(-z) : 1.0 - sigmoid(-z)
272 vf = psimd_signblend_f32(vx, vf, psimd_sub_f32(vone, vf));
273
274 if (n & (2 * sizeof(float))) {
275 psimd_store2_f32(y, vf);
276 vf = psimd_concat_hi_f32(vf, vf);
277 y += 2;
278 }
279 if (n & (1 * sizeof(float))) {
280 psimd_store1_f32(y, vf);
281 }
282 }
283 }
284