• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Auto-generated file. Do not edit!
2 //   Template: src/f32-sigmoid/sse-p5-div.c.in
3 //   Generator: tools/xngen
4 //
5 // Copyright 2019 Google LLC
6 //
7 // This source code is licensed under the BSD-style license found in the
8 // LICENSE file in the root directory of this source tree.
9 
10 #include <assert.h>
11 
12 #include <emmintrin.h>
13 
14 #include <xnnpack/common.h>
15 #include <xnnpack/vunary.h>
16 
17 
xnn_f32_sigmoid_ukernel__sse2_p5_div_x16(size_t n,const float * x,float * y,const void * params)18 void xnn_f32_sigmoid_ukernel__sse2_p5_div_x16(
19     size_t n,
20     const float* x,
21     float* y,
22     const void* params)
23 {
24   assert(n % sizeof(float) == 0);
25 
26   const __m128 vmagic_bias = _mm_set1_ps(0x1.8000FEp23f);
27   // The smallest x for which sigmoidf(x) is normalized.
28   // This number is also the smallest x for which expf(x) is normalized.
29   const __m128 vdenorm_cutoff = _mm_set1_ps(-0x1.5D589Ep+6f);
30   const __m128 vlog2e = _mm_set1_ps(0x1.715476p+0f);
31   // Last 7 bits are zeroes
32   const __m128 vminus_ln2_hi = _mm_set1_ps(-0x1.62E400p-1f);
33   const __m128 vminus_ln2_lo = _mm_set1_ps(-0x1.7F7D1Cp-20f);
34   const __m128 vone = _mm_set1_ps(1.0f);
35   const __m128 vsign_mask = _mm_set1_ps(-0.0f);
36 
37   const __m128 vc1 = _mm_set1_ps(0x1.FFFFF6p-1f);
38   const __m128 vc2 = _mm_set1_ps(0x1.FFFDC6p-2f);
39   const __m128 vc3 = _mm_set1_ps(0x1.555A80p-3f);
40   const __m128 vc4 = _mm_set1_ps(0x1.573A1Ap-5f);
41   const __m128 vc5 = _mm_set1_ps(0x1.0F9F9Cp-7f);
42 
43   for (; n >= 16 * sizeof(float); n -= 16 * sizeof(float)) {
44     const __m128 vx0123 = _mm_loadu_ps(x);
45     const __m128 vx4567 = _mm_loadu_ps(x + 4);
46     const __m128 vx89AB = _mm_loadu_ps(x + 8);
47     const __m128 vxCDEF = _mm_loadu_ps(x + 12);
48 
49     // General structure of the algorithm:
50     //           / exp(x) / (1 + exp(x)) if x <= 0
51     //   f[x] :=
52     //           \ 1 - f[-x] if x >= 0
53     //
54     // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
55     // then replace result with 1 - f[z] if x >= 0.
56     const __m128 vz0123 = _mm_or_ps(vx0123, vsign_mask);
57     const __m128 vz4567 = _mm_or_ps(vx4567, vsign_mask);
58     const __m128 vz89AB = _mm_or_ps(vx89AB, vsign_mask);
59     const __m128 vzCDEF = _mm_or_ps(vxCDEF, vsign_mask);
60 
61     // Compute reduced argument n := round(z / log(2)).
62     // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
63     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
64     // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
65     // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
66     // the algorithm.
67     __m128 vn0123 = _mm_add_ps(_mm_mul_ps(vz0123, vlog2e), vmagic_bias);
68     __m128 vn4567 = _mm_add_ps(_mm_mul_ps(vz4567, vlog2e), vmagic_bias);
69     __m128 vn89AB = _mm_add_ps(_mm_mul_ps(vz89AB, vlog2e), vmagic_bias);
70     __m128 vnCDEF = _mm_add_ps(_mm_mul_ps(vzCDEF, vlog2e), vmagic_bias);
71 
72     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
73     // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
74     const __m128 vs0123 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn0123), 23));
75     const __m128 vs4567 = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn4567), 23));
76     const __m128 vs89AB = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn89AB), 23));
77     const __m128 vsCDEF = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vnCDEF), 23));
78 
79     // Subtract the large number back to get final n := round(z / log(2)).
80     vn0123 = _mm_sub_ps(vn0123, vmagic_bias);
81     vn4567 = _mm_sub_ps(vn4567, vmagic_bias);
82     vn89AB = _mm_sub_ps(vn89AB, vmagic_bias);
83     vnCDEF = _mm_sub_ps(vnCDEF, vmagic_bias);
84 
85     // Compute reduced argument t := z - n * log(2).
86     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
87     __m128 vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_hi), vz0123);
88     __m128 vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_hi), vz4567);
89     __m128 vt89AB = _mm_add_ps(_mm_mul_ps(vn89AB, vminus_ln2_hi), vz89AB);
90     __m128 vtCDEF = _mm_add_ps(_mm_mul_ps(vnCDEF, vminus_ln2_hi), vzCDEF);
91 
92     vt0123 = _mm_add_ps(_mm_mul_ps(vn0123, vminus_ln2_lo), vt0123);
93     vt4567 = _mm_add_ps(_mm_mul_ps(vn4567, vminus_ln2_lo), vt4567);
94     vt89AB = _mm_add_ps(_mm_mul_ps(vn89AB, vminus_ln2_lo), vt89AB);
95     vtCDEF = _mm_add_ps(_mm_mul_ps(vnCDEF, vminus_ln2_lo), vtCDEF);
96 
97     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
98     __m128 vp0123 = _mm_add_ps(_mm_mul_ps(vc5, vt0123), vc4);
99     __m128 vp4567 = _mm_add_ps(_mm_mul_ps(vc5, vt4567), vc4);
100     __m128 vp89AB = _mm_add_ps(_mm_mul_ps(vc5, vt89AB), vc4);
101     __m128 vpCDEF = _mm_add_ps(_mm_mul_ps(vc5, vtCDEF), vc4);
102 
103     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc3);
104     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc3);
105     vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc3);
106     vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc3);
107 
108     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc2);
109     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc2);
110     vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc2);
111     vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc2);
112 
113     vp0123 = _mm_add_ps(_mm_mul_ps(vp0123, vt0123), vc1);
114     vp4567 = _mm_add_ps(_mm_mul_ps(vp4567, vt4567), vc1);
115     vp89AB = _mm_add_ps(_mm_mul_ps(vp89AB, vt89AB), vc1);
116     vpCDEF = _mm_add_ps(_mm_mul_ps(vpCDEF, vtCDEF), vc1);
117 
118     // Reconstruct the exp(z) value:
119     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
120     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
121     //     = s + (t * s) * p
122     vt0123 = _mm_mul_ps(vt0123, vs0123);
123     vt4567 = _mm_mul_ps(vt4567, vs4567);
124     vt89AB = _mm_mul_ps(vt89AB, vs89AB);
125     vtCDEF = _mm_mul_ps(vtCDEF, vsCDEF);
126 
127     __m128 ve0123 = _mm_add_ps(_mm_mul_ps(vt0123, vp0123), vs0123);
128     __m128 ve4567 = _mm_add_ps(_mm_mul_ps(vt4567, vp4567), vs4567);
129     __m128 ve89AB = _mm_add_ps(_mm_mul_ps(vt89AB, vp89AB), vs89AB);
130     __m128 veCDEF = _mm_add_ps(_mm_mul_ps(vtCDEF, vpCDEF), vsCDEF);
131 
132     // Denominator of the sigmoid fraction: 1.0 + exp(z)
133     __m128 vd0123 = _mm_add_ps(ve0123, vone);
134     __m128 vd4567 = _mm_add_ps(ve4567, vone);
135     __m128 vd89AB = _mm_add_ps(ve89AB, vone);
136     __m128 vdCDEF = _mm_add_ps(veCDEF, vone);
137 
138     // Reconstruct sigmoid(-z) = exp(z) / (1.0 + exp(z))
139     __m128 vf0123 = _mm_div_ps(ve0123, vd0123);
140     __m128 vf4567 = _mm_div_ps(ve4567, vd4567);
141     __m128 vf89AB = _mm_div_ps(ve89AB, vd89AB);
142     __m128 vfCDEF = _mm_div_ps(veCDEF, vdCDEF);
143 
144     // For inputs below denormal cutoff, replace output with +0.0f.
145     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
146     vf0123 = _mm_andnot_ps(_mm_cmplt_ps(vz0123, vdenorm_cutoff), vf0123);
147     vf4567 = _mm_andnot_ps(_mm_cmplt_ps(vz4567, vdenorm_cutoff), vf4567);
148     vf89AB = _mm_andnot_ps(_mm_cmplt_ps(vz89AB, vdenorm_cutoff), vf89AB);
149     vfCDEF = _mm_andnot_ps(_mm_cmplt_ps(vzCDEF, vdenorm_cutoff), vfCDEF);
150 
151     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
152     __m128 vm0123 = _mm_castsi128_ps(_mm_cmpgt_epi32(_mm_setzero_si128(), _mm_castps_si128(vx0123)));
153     __m128 vm4567 = _mm_castsi128_ps(_mm_cmpgt_epi32(_mm_setzero_si128(), _mm_castps_si128(vx4567)));
154     __m128 vm89AB = _mm_castsi128_ps(_mm_cmpgt_epi32(_mm_setzero_si128(), _mm_castps_si128(vx89AB)));
155     __m128 vmCDEF = _mm_castsi128_ps(_mm_cmpgt_epi32(_mm_setzero_si128(), _mm_castps_si128(vxCDEF)));
156 
157     vf0123 = _mm_or_ps(_mm_and_ps(vf0123, vm0123), _mm_andnot_ps(vm0123, _mm_sub_ps(vone, vf0123)));
158     vf4567 = _mm_or_ps(_mm_and_ps(vf4567, vm4567), _mm_andnot_ps(vm4567, _mm_sub_ps(vone, vf4567)));
159     vf89AB = _mm_or_ps(_mm_and_ps(vf89AB, vm89AB), _mm_andnot_ps(vm89AB, _mm_sub_ps(vone, vf89AB)));
160     vfCDEF = _mm_or_ps(_mm_and_ps(vfCDEF, vmCDEF), _mm_andnot_ps(vmCDEF, _mm_sub_ps(vone, vfCDEF)));
161 
162     _mm_storeu_ps(y, vf0123);
163     _mm_storeu_ps(y + 4, vf4567);
164     _mm_storeu_ps(y + 8, vf89AB);
165     _mm_storeu_ps(y + 12, vfCDEF);
166 
167     x += 16;
168     y += 16;
169   }
170   for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
171     const __m128 vx = _mm_loadu_ps(x);
172 
173     // General structure of the algorithm:
174     //           / exp(x) / (1 + exp(x)) if x <= 0
175     //   f[x] :=
176     //           \ 1 - f[-x] if x >= 0
177     //
178     // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
179     // then replace result with 1 - f[z] if x >= 0.
180     const __m128 vz = _mm_or_ps(vx, vsign_mask);
181 
182     // Compute reduced argument n := round(z / log(2)).
183     // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
184     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
185     // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
186     // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
187     // the algorithm.
188     __m128 vn = _mm_add_ps(_mm_mul_ps(vz, vlog2e), vmagic_bias);
189 
190     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
191     // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
192     const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
193 
194     // Subtract the large number back to get final n := round(z / log(2)).
195     vn = _mm_sub_ps(vn, vmagic_bias);
196 
197     // Compute reduced argument t := z - n * log(2).
198     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
199     __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vz);
200     vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
201 
202     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
203     __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
204     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
205     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
206     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
207 
208     // Reconstruct the exp(z) value:
209     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
210     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
211     //     = s + (t * s) * p
212     vt = _mm_mul_ps(vt, vs);
213     __m128 ve = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
214 
215     // Denominator of the sigmoid fraction: 1.0 + exp(z)
216     __m128 vd = _mm_add_ps(ve, vone);
217 
218     // Reconstruct sigmoid(-z) = exp(z) / (1.0 + exp(z))
219     __m128 vf = _mm_div_ps(ve, vd);
220 
221     // For inputs below denormal cutoff, replace output with +0.0f.
222     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
223     vf = _mm_andnot_ps(_mm_cmplt_ps(vz, vdenorm_cutoff), vf);
224 
225     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
226     __m128 vm = _mm_castsi128_ps(_mm_cmpgt_epi32(_mm_setzero_si128(), _mm_castps_si128(vx)));
227     vf = _mm_or_ps(_mm_and_ps(vf, vm), _mm_andnot_ps(vm, _mm_sub_ps(vone, vf)));
228 
229     _mm_storeu_ps(y, vf);
230 
231     x += 4;
232     y += 4;
233   }
234   if XNN_UNLIKELY(n != 0) {
235     const __m128 vx = _mm_loadu_ps(x);
236 
237     // General structure of the algorithm:
238     //           / exp(x) / (1 + exp(x)) if x <= 0
239     //   f[x] :=
240     //           \ 1 - f[-x] if x >= 0
241     //
242     // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
243     // then replace result with 1 - f[z] if x >= 0.
244     const __m128 vz = _mm_or_ps(vx, vsign_mask);
245 
246     // Compute reduced argument n := round(z / log(2)).
247     // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
248     // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
249     // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
250     // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
251     // the algorithm.
252     __m128 vn = _mm_add_ps(_mm_mul_ps(vz, vlog2e), vmagic_bias);
253 
254     // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
255     // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
256     const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
257 
258     // Subtract the large number back to get final n := round(z / log(2)).
259     vn = _mm_sub_ps(vn, vmagic_bias);
260 
261     // Compute reduced argument t := z - n * log(2).
262     // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
263     __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vz);
264     vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
265 
266     // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
267     __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
268     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
269     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
270     vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc1);
271 
272     // Reconstruct the exp(z) value:
273     //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
274     //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
275     //     = s + (t * s) * p
276     vt = _mm_mul_ps(vt, vs);
277     __m128 ve = _mm_add_ps(_mm_mul_ps(vt, vp), vs);
278 
279     // Denominator of the sigmoid fraction: 1.0 + exp(z)
280     __m128 vd = _mm_add_ps(ve, vone);
281 
282     // Reconstruct sigmoid(-z) = exp(z) / (1.0 + exp(z))
283     __m128 vf = _mm_div_ps(ve, vd);
284 
285     // For inputs below denormal cutoff, replace output with +0.0f.
286     // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
287     vf = _mm_andnot_ps(_mm_cmplt_ps(vz, vdenorm_cutoff), vf);
288 
289     // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
290     __m128 vm = _mm_castsi128_ps(_mm_cmpgt_epi32(_mm_setzero_si128(), _mm_castps_si128(vx)));
291     vf = _mm_or_ps(_mm_and_ps(vf, vm), _mm_andnot_ps(vm, _mm_sub_ps(vone, vf)));
292 
293     if (n & (2 * sizeof(float))) {
294       _mm_storel_pi((__m64*) y, vf);
295       vf = _mm_movehl_ps(vf, vf);
296       y += 2;
297     }
298     if (n & (1 * sizeof(float))) {
299       _mm_store_ss(y, vf);
300     }
301   }
302 }
303