• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) Facebook, Inc. and its affiliates.
2 // All rights reserved.
3 //
4 // Copyright 2019 Google LLC
5 //
6 // This source code is licensed under the BSD-style license found in the
7 // LICENSE file in the root directory of this source tree.
8 
9 #include <stddef.h>
10 
11 #include <fxdiv.h>
12 
13 #include <xnnpack/indirection.h>
14 #include <xnnpack/operator.h>
15 #include <xnnpack/math.h>
16 
17 
xnn_indirection_init_conv2d(xnn_operator_t op,size_t output_tile_size,uint32_t log2_element_size)18 void xnn_indirection_init_conv2d(
19   xnn_operator_t op,
20   size_t output_tile_size,
21   uint32_t log2_element_size)
22 {
23   const void** indirection_buffer          = op->indirection_buffer;
24   const void* input                        = op->input;
25   const void* zero                         = op->zero_buffer;
26   const size_t input_pixel_stride          = op->input_pixel_stride << log2_element_size;
27   const size_t input_height                = op->input_height;
28   const size_t input_width                 = op->input_width;
29   const size_t output_height               = op->output_height;
30   const size_t output_width                = op->output_width;
31   const size_t kernel_height               = op->kernel_height;
32   const size_t kernel_width                = op->kernel_width;
33   const size_t stride_height               = op->stride_height;
34   const size_t stride_width                = op->stride_width;
35   const size_t dilation_height             = op->dilation_height;
36   const size_t dilation_width              = op->dilation_width;
37   const size_t input_padding_top           = op->padding_top;
38   const size_t input_padding_left          = op->padding_left;
39 
40   const size_t output_size = output_height * output_width;
41   const size_t tiled_output_size = round_up(output_size, output_tile_size);
42   const size_t kernel_size = kernel_height * kernel_width;
43 
44   const struct fxdiv_divisor_size_t output_width_divisor = fxdiv_init_size_t(output_width);
45 
46   for (size_t output_tile_start = 0; output_tile_start < tiled_output_size; output_tile_start += output_tile_size) {
47     for (size_t output_tile_offset = 0; output_tile_offset < output_tile_size; output_tile_offset++) {
48       const size_t output_index = min(output_tile_start + output_tile_offset, output_size - 1);
49       const struct fxdiv_result_size_t output_y_x = fxdiv_divide_size_t(output_index, output_width_divisor);
50       const size_t output_x = output_y_x.remainder;
51       const size_t output_y = output_y_x.quotient;
52       for (size_t kernel_y = 0; kernel_y < kernel_height; kernel_y++) {
53         const size_t input_y = output_y * stride_height + kernel_y * dilation_height - input_padding_top;
54         if (input_y < input_height) {
55           for (size_t kernel_x = 0; kernel_x < kernel_width; kernel_x++) {
56             const size_t input_x = output_x * stride_width + kernel_x * dilation_width - input_padding_left;
57             const size_t kernel_index = kernel_y * kernel_width + kernel_x;
58             const size_t index = output_tile_start * kernel_size + kernel_index * output_tile_size + output_tile_offset;
59             if (input_x < input_width) {
60               indirection_buffer[index] = (const void*)
61                 ((uintptr_t) input + (input_y * input_width + input_x) * input_pixel_stride);
62             } else {
63               indirection_buffer[index] = zero;
64             }
65           }
66         } else {
67           for (size_t kernel_x = 0; kernel_x < kernel_width; kernel_x++) {
68             const size_t kernel_index = kernel_y * kernel_width + kernel_x;
69             const size_t index = output_tile_start * kernel_size + kernel_index * output_tile_size + output_tile_offset;
70             indirection_buffer[index] = zero;
71           }
72         }
73       }
74     }
75   }
76 }
77 
xnn_indirection_init_dwconv2d(xnn_operator_t op,size_t batch_start,size_t step_height,size_t step_width,uint32_t log2_element_size)78 void xnn_indirection_init_dwconv2d(
79   xnn_operator_t op,
80   size_t batch_start,
81   size_t step_height,
82   size_t step_width,
83   uint32_t log2_element_size)
84 {
85   const void** indirection_buffer = op->indirection_buffer;
86   const void* input               = op->input;
87   const size_t input_pixel_stride = op->input_pixel_stride << log2_element_size;
88   const void* zero                = op->zero_buffer;
89   const size_t batch_size         = op->batch_size;
90   const size_t input_height       = op->input_height;
91   const size_t input_width        = op->input_width;
92   const size_t output_height      = op->output_height;
93   const size_t output_width       = op->output_width;
94   const size_t kernel_height      = op->kernel_height;
95   const size_t kernel_width       = op->kernel_width;
96   const size_t stride_height      = op->stride_height;
97   const size_t stride_width       = op->stride_width;
98   const size_t dilation_height    = op->dilation_height;
99   const size_t dilation_width     = op->dilation_width;
100   const size_t input_padding_top  = op->padding_top;
101   const size_t input_padding_left = op->padding_left;
102 
103   for (size_t batch_index = batch_start; batch_index < batch_size; batch_index++) {
104     for (size_t output_y = 0; output_y < output_height; output_y++) {
105       for (size_t kernel_y = 0; kernel_y < kernel_height; kernel_y++) {
106         const size_t input_y = output_y * stride_height + kernel_y * dilation_height - input_padding_top;
107         if (input_y < input_height) {
108           for (size_t output_x = 0; output_x < output_width; output_x++) {
109             for (size_t kernel_x = 0; kernel_x < kernel_width; kernel_x++) {
110               const size_t input_x = output_x * stride_width + kernel_x * dilation_width - input_padding_left;
111               const size_t index = (batch_index * output_height + output_y) * step_height + output_x * step_width * kernel_height + kernel_x * kernel_height + kernel_y;
112               if (input_x < input_width) {
113                 indirection_buffer[index] =
114                   (const void*) ((uintptr_t) input + ((batch_index * input_height + input_y) * input_width + input_x) * input_pixel_stride);
115               } else {
116                 indirection_buffer[index] = zero;
117               }
118             }
119           }
120         } else {
121           for (size_t output_x = 0; output_x < output_width; output_x++) {
122             for (size_t kernel_x = 0; kernel_x < kernel_width; kernel_x++) {
123               const size_t index = (batch_index * output_height + output_y) * step_height + output_x * step_width * kernel_height + kernel_x * kernel_height + kernel_y;
124               indirection_buffer[index] = zero;
125             }
126           }
127         }
128       }
129     }
130   }
131 }
132 
xnn_indirection_init_deconv2d(xnn_operator_t op,size_t output_tile_size,uint32_t log2_element_size)133 void xnn_indirection_init_deconv2d(
134   xnn_operator_t op,
135   size_t output_tile_size,
136   uint32_t log2_element_size)
137 {
138   const void** indirection_buffer = op->indirection_buffer;
139   const void* input               = op->input;
140   const size_t input_pixel_stride = op->input_pixel_stride << log2_element_size;
141   const void* zero                = op->zero_buffer;
142   const size_t input_height       = op->input_height;
143   const size_t input_width        = op->input_width;
144   const size_t output_height      = op->output_height;
145   const size_t output_width       = op->output_width;
146   const size_t kernel_height      = op->kernel_height;
147   const size_t kernel_width       = op->kernel_width;
148   const size_t stride_height      = op->stride_height;
149   const size_t stride_width       = op->stride_width;
150   const size_t dilation_height    = op->dilation_height;
151   const size_t dilation_width     = op->dilation_width;
152   const size_t padding_top        = op->padding_top;
153   const size_t padding_left       = op->padding_left;
154 
155   const size_t output_size = output_height * output_width;
156   const size_t tiled_output_size = round_up(output_size, output_tile_size);
157   const size_t kernel_size = kernel_height * kernel_width;
158 
159   const struct fxdiv_divisor_size_t output_width_divisor = fxdiv_init_size_t(output_width);
160   const struct fxdiv_divisor_size_t stride_height_divisor = fxdiv_init_size_t(stride_height);
161   const struct fxdiv_divisor_size_t stride_width_divisor = fxdiv_init_size_t(stride_width);
162 
163   for (size_t output_tile_start = 0; output_tile_start < tiled_output_size; output_tile_start += output_tile_size) {
164     for (size_t output_tile_offset = 0; output_tile_offset < output_tile_size; output_tile_offset++) {
165       const size_t output_index = min(output_tile_start + output_tile_offset, output_size - 1);
166       const struct fxdiv_result_size_t output_y_x = fxdiv_divide_size_t(output_index, output_width_divisor);
167       const size_t output_x = output_y_x.remainder;
168       const size_t output_y = output_y_x.quotient;
169       for (size_t kernel_y = 0; kernel_y < kernel_height; kernel_y++) {
170         const size_t y = output_y + padding_top - kernel_y * dilation_height;
171         const size_t input_y = fxdiv_quotient_size_t(y, stride_height_divisor);
172         for (size_t kernel_x = 0; kernel_x < kernel_width; kernel_x++) {
173           const size_t x = output_x + padding_left - kernel_x * dilation_width;
174           const size_t input_x = fxdiv_quotient_size_t(x, stride_width_divisor);
175           const size_t kernel_index = kernel_y * kernel_width + kernel_x;
176           const size_t index = output_tile_start * kernel_size + kernel_index * output_tile_size + output_tile_offset;
177           if (input_y * stride_height == y && input_y < input_height && input_x * stride_width == x && input_x < input_width) {
178             indirection_buffer[index] = (const void*) ((uintptr_t) input + (input_y * input_width + input_x) * input_pixel_stride);
179           } else {
180             indirection_buffer[index] = zero;
181           }
182         }
183       }
184     }
185   }
186 }
187 
xnn_indirection_init_subconv2d(xnn_operator_t op,size_t output_tile_size,uint32_t log2_element_size)188 void xnn_indirection_init_subconv2d(
189   xnn_operator_t op,
190   size_t output_tile_size,
191   uint32_t log2_element_size)
192 {
193   const void** indirection_buffer                     = op->indirection_buffer;
194   struct subconvolution_params* subconvolution_params = op->subconvolution_buffer;
195   const void* input                                   = op->input;
196   const size_t input_pixel_stride                     = op->input_pixel_stride << log2_element_size;
197   const void* zero                                    = op->zero_buffer;
198   const size_t input_height                           = op->input_height;
199   const size_t input_width                            = op->input_width;
200   const size_t output_height                          = op->output_height;
201   const size_t output_width                           = op->output_width;
202   const size_t kernel_height                          = op->kernel_height;
203   const size_t kernel_width                           = op->kernel_width;
204   const size_t stride_height                          = op->stride_height;
205   const size_t stride_width                           = op->stride_width;
206   const size_t padding_top                            = op->padding_top;
207   const size_t padding_left                           = op->padding_left;
208 
209   const size_t modulo_padding_top = padding_top % stride_height;
210   const size_t modulo_padding_left = padding_left % stride_width;
211   for (size_t offset_y = 0; offset_y < stride_height; offset_y++) {
212     const size_t output_y_start = subtract_modulo(offset_y, modulo_padding_top, stride_height);
213     for (size_t offset_x = 0; offset_x < stride_width; offset_x++) {
214       const size_t output_x_start = subtract_modulo(offset_x, modulo_padding_left, stride_width);
215       const size_t sliced_output_width = divide_round_up(output_width - output_x_start, stride_width);
216 
217       subconvolution_params->indirection_buffer = indirection_buffer;
218       subconvolution_params->indirection_y_stride =
219         subconvolution_params->indirection_x_stride * round_up(sliced_output_width, output_tile_size);
220       ++subconvolution_params;
221 
222       for (size_t output_y = output_y_start; output_y < output_height; output_y += stride_height) {
223         for (size_t output_tile_start = 0; output_tile_start < sliced_output_width; output_tile_start += output_tile_size) {
224           for (size_t kernel_y = offset_y; kernel_y < kernel_height; kernel_y += stride_height) {
225             assert(doz(output_y + padding_top, kernel_y) % stride_height == 0);
226             const size_t y = output_y + padding_top - kernel_y;
227             const size_t input_y = y / stride_height;
228 
229             for (size_t kernel_x = offset_x; kernel_x < kernel_width; kernel_x += stride_width) {
230               for (size_t output_tile_offset = 0; output_tile_offset < output_tile_size; output_tile_offset++) {
231                 const size_t sliced_output_x = min(output_tile_start + output_tile_offset, sliced_output_width - 1);
232                 const size_t output_x = output_x_start + sliced_output_x * stride_width;
233 
234                 assert(doz(output_x + padding_left, kernel_x) % stride_width == 0);
235                 const size_t x = output_x + padding_left - kernel_x;
236                 const size_t input_x = x / stride_width;
237 
238                 if (input_y < input_height && input_x < input_width) {
239                   *indirection_buffer++ =
240                     (const void*) ((uintptr_t) input + (input_y * input_width + input_x) * input_pixel_stride);
241                 } else {
242                   *indirection_buffer++ = zero;
243                 }
244               }
245             }
246           }
247         }
248       }
249     }
250   }
251 }
252 
xnn_indirection_init_maxpool2d(xnn_operator_t op,size_t step_height,size_t step_width,uint32_t log2_element_size)253 void xnn_indirection_init_maxpool2d(
254   xnn_operator_t op,
255   size_t step_height,
256   size_t step_width,
257   uint32_t log2_element_size)
258 {
259   const void** indirection_buffer = op->indirection_buffer;
260   const void* input               = op->input;
261   const size_t input_pixel_stride = op->input_pixel_stride << log2_element_size;
262   const size_t input_height       = op->input_height;
263   const size_t input_width        = op->input_width;
264   const size_t output_height      = op->output_height;
265   const size_t output_width       = op->output_width;
266   const size_t pooling_height     = op->kernel_height;
267   const size_t pooling_width      = op->kernel_width;
268   const size_t stride_height      = op->stride_height;
269   const size_t stride_width       = op->stride_width;
270   const size_t dilation_height    = op->dilation_height;
271   const size_t dilation_width     = op->dilation_width;
272   const size_t input_padding_top  = op->padding_top;
273   const size_t input_padding_left = op->padding_left;
274 
275   for (size_t output_y = 0; output_y < output_height; output_y++) {
276     for (size_t pooling_y = 0; pooling_y < pooling_height; pooling_y++) {
277       const size_t input_y = doz(output_y * stride_height + pooling_y * dilation_height, input_padding_top);
278       const size_t clamped_input_y = min(input_y, input_height - 1);
279       for (size_t output_x = 0; output_x < output_width; output_x++) {
280         for (size_t pooling_x = 0; pooling_x < pooling_width; pooling_x++) {
281           const size_t input_x = doz(output_x * stride_width + pooling_x * dilation_width, input_padding_left);
282           const size_t clamped_input_x = min(input_x, input_width - 1);
283           const size_t index = output_y * step_height + output_x * step_width * pooling_height + pooling_x * pooling_height + pooling_y;
284           indirection_buffer[index] = input + (clamped_input_y * input_width + clamped_input_x) * input_pixel_stride;
285         }
286       }
287     }
288   }
289 }
290 
xnn_indirection_init_resize_bilinear2d_f32(size_t input_pixel_stride,size_t input_height,size_t input_width,size_t output_height,size_t output_width,const void * input,const void ** indirection_buffer,float * packed_weights,bool align_corners,bool tensorflow_legacy)291 void xnn_indirection_init_resize_bilinear2d_f32(
292   size_t input_pixel_stride,
293   size_t input_height,
294   size_t input_width,
295   size_t output_height,
296   size_t output_width,
297   const void* input,
298   const void** indirection_buffer,
299   float* packed_weights,
300   bool align_corners,
301   bool tensorflow_legacy)
302 {
303   assert(input_height != 0);
304   assert(input_height < 16777216 /* 2**24 */);
305   assert(input_width != 0);
306   assert(input_width < 16777216 /* 2**24 */);
307   assert(output_height != 0);
308   assert(output_height < 16777216 /* 2**24 */);
309   assert(output_width != 0);
310   assert(output_width < 16777216 /* 2**24 */);
311 
312   const int32_t width_adjustment = (int32_t) (align_corners && output_width != 1);
313   const int32_t height_adjustment = (int32_t) (align_corners && output_height != 1);
314   const float width_scale =
315     (float) ((int32_t) input_width - width_adjustment) / (float) ((int32_t) output_width - width_adjustment);
316   const float height_scale =
317     (float) ((int32_t) input_height - height_adjustment) / (float) ((int32_t) output_height - height_adjustment);
318 
319   const uint32_t input_y_max = (uint32_t) input_height - 1;
320   const uint32_t input_x_max = (uint32_t) input_width - 1;
321   if (tensorflow_legacy) {
322     for (size_t output_y = 0; output_y < output_height; output_y++) {
323       const float input_y = (float) (int32_t) output_y * height_scale;
324       assert(input_y >= 0.0f);
325       assert(input_y < (float) input_height);
326 
327       const uint32_t input_y_top = (uint32_t) (int32_t) input_y;
328       const uint32_t input_y_bottom = math_min_u32(input_y_top + 1, input_y_max);
329       const float alpha_y = input_y - (float) input_y_top;
330       for (size_t output_x = 0; output_x < output_width; output_x++) {
331         const float input_x = (float) (int32_t) output_x * width_scale;
332         assert(input_x >= 0.0f);
333         assert(input_x < (float) input_width);
334 
335         const uint32_t input_x_left = (uint32_t) (int32_t) input_x;
336         const uint32_t input_x_right = math_min_u32(input_x_left + 1, input_x_max);
337         const float alpha_x = input_x - (float) input_x_left;
338         indirection_buffer[0] =
339           (void*) ((uintptr_t) input + (input_y_top * input_width + input_x_left) * input_pixel_stride);
340         indirection_buffer[1] =
341           (void*) ((uintptr_t) input + (input_y_top * input_width + input_x_right) * input_pixel_stride);
342         indirection_buffer[2] =
343           (void*) ((uintptr_t) input + (input_y_bottom * input_width + input_x_left) * input_pixel_stride);
344         indirection_buffer[3] =
345           (void*) ((uintptr_t) input + (input_y_bottom * input_width + input_x_right) * input_pixel_stride);
346         packed_weights[0] = alpha_x;
347         packed_weights[1] = alpha_y;
348         indirection_buffer += 4;
349         packed_weights += 2;
350       }
351     }
352   } else {
353     const float height_offset = 0.5f * height_scale - 0.5f;
354     const float width_offset = 0.5f * width_scale - 0.5f;
355     for (size_t output_y = 0; output_y < output_height; output_y++) {
356       float input_y = (float) (int32_t) output_y * height_scale + height_offset;
357       input_y = math_min_f32(math_max_f32(input_y, 0.0f), (float) input_y_max);
358       const uint32_t input_y_top = (uint32_t) (int32_t) input_y;
359       assert((int32_t) input_y_top >= 0);
360       const uint32_t input_y_bottom = math_min_u32(input_y_top + 1, input_y_max);
361       const float alpha_y = input_y - (float) input_y_top;
362       for (size_t output_x = 0; output_x < output_width; output_x++) {
363         float input_x = (float) (int32_t) output_x * width_scale + width_offset;
364         input_x = math_min_f32(math_max_f32(input_x, 0.0f), (float) input_x_max);
365         const uint32_t input_x_left = (uint32_t) (int32_t) input_x;
366         assert((int32_t) input_x_left >= 0);
367         const uint32_t input_x_right = math_min_u32(input_x_left + 1, input_x_max);
368         const float alpha_x = input_x - (float) input_x_left;
369         indirection_buffer[0] =
370           (void*) ((uintptr_t) input + (input_y_top * input_width + input_x_left) * input_pixel_stride);
371         indirection_buffer[1] =
372           (void*) ((uintptr_t) input + (input_y_top * input_width + input_x_right) * input_pixel_stride);
373         indirection_buffer[2] =
374           (void*) ((uintptr_t) input + (input_y_bottom * input_width + input_x_left) * input_pixel_stride);
375         indirection_buffer[3] =
376           (void*) ((uintptr_t) input + (input_y_bottom * input_width + input_x_right) * input_pixel_stride);
377         packed_weights[0] = alpha_x;
378         packed_weights[1] = alpha_y;
379         indirection_buffer += 4;
380         packed_weights += 2;
381       }
382     }
383   }
384 }
385 
xnn_indirection_init_unpool2d(xnn_operator_t op,size_t batch_start,uint32_t log2_element_size)386 void xnn_indirection_init_unpool2d(
387   xnn_operator_t op,
388   size_t batch_start,
389   uint32_t log2_element_size)
390 {
391   const void** indirection_buffer  = op->indirection_buffer;
392   const void* output               = op->output;
393   const size_t output_pixel_stride = op->output_pixel_stride << log2_element_size;
394   const size_t batch_size          = op->batch_size;
395   const size_t input_height        = op->input_height;
396   const size_t input_width         = op->input_width;
397   const size_t output_height       = op->output_height;
398   const size_t output_width        = op->output_width;
399   const size_t pooling_height      = op->kernel_height;
400   const size_t pooling_width       = op->kernel_width;
401   const size_t output_padding_top  = op->padding_top;
402   const size_t output_padding_left = op->padding_left;
403 
404   for (size_t image = batch_start; image < batch_size; image++) {
405     for (size_t input_y = 0; input_y < input_height; input_y++) {
406       for (size_t pooling_y = 0; pooling_y < pooling_height; pooling_y++) {
407         const size_t output_y = min(doz(input_y * pooling_height + pooling_y, output_padding_top), output_height - 1);
408         for (size_t input_x = 0; input_x < input_width; input_x++) {
409           for (size_t pooling_x = 0; pooling_x < pooling_width; pooling_x++) {
410             const size_t output_x = min(doz(input_x * pooling_width + pooling_x, output_padding_left), output_width - 1);
411             indirection_buffer[(((image * input_height + input_y) * input_width + input_x) * pooling_width + pooling_x) * pooling_height + pooling_y] =
412               output + ((image * output_height + output_y) * output_width + output_x) * output_pixel_stride;
413           }
414         }
415       }
416     }
417   }
418 }
419