1 // Copyright (c) Facebook, Inc. and its affiliates.
2 // All rights reserved.
3 //
4 // Copyright 2019 Google LLC
5 //
6 // This source code is licensed under the BSD-style license found in the
7 // LICENSE file in the root directory of this source tree.
8
9 #include <assert.h>
10 #include <math.h>
11 #include <stdbool.h>
12 #include <stddef.h>
13 #include <stdint.h>
14 #include <stdlib.h>
15 #include <string.h>
16
17 #include <xnnpack.h>
18 #include <xnnpack/allocator.h>
19 #include <xnnpack/common.h>
20 #include <xnnpack/compute.h>
21 #include <xnnpack/indirection.h>
22 #include <xnnpack/log.h>
23 #include <xnnpack/math.h>
24 #include <xnnpack/operator.h>
25 #include <xnnpack/pack.h>
26 #include <xnnpack/params-init.h>
27 #include <xnnpack/params.h>
28
29
compute_output_dimension(size_t padded_input_dimension,size_t kernel_dimension,size_t dilation_dimension,size_t subsampling_dimension)30 static inline size_t compute_output_dimension(
31 size_t padded_input_dimension,
32 size_t kernel_dimension,
33 size_t dilation_dimension,
34 size_t subsampling_dimension)
35 {
36 const size_t effective_kernel_dimension = (kernel_dimension - 1) * dilation_dimension + 1;
37 return doz(padded_input_dimension, effective_kernel_dimension) / subsampling_dimension + 1;
38 }
39
compute_output_dimension_with_tf_same_padding(size_t input_dimension,size_t subsampling_dimension)40 static inline size_t compute_output_dimension_with_tf_same_padding(
41 size_t input_dimension,
42 size_t subsampling_dimension)
43 {
44 return divide_round_up(input_dimension, subsampling_dimension);
45 }
46
find_dwigemm_ukernel(size_t kernel_size,const struct dwconv_parameters * ukernel,size_t num_ukernels)47 static const struct dwconv_parameters* find_dwigemm_ukernel(
48 size_t kernel_size,
49 const struct dwconv_parameters* ukernel,
50 size_t num_ukernels)
51 {
52 while (num_ukernels-- != 0) {
53 if (ukernel->mr == kernel_size) {
54 return ukernel;
55 }
56 ukernel++;
57 }
58 return NULL;
59 }
60
xnn_create_convolution2d_nhwc_q8(uint32_t input_padding_top,uint32_t input_padding_right,uint32_t input_padding_bottom,uint32_t input_padding_left,uint32_t kernel_height,uint32_t kernel_width,uint32_t subsampling_height,uint32_t subsampling_width,uint32_t dilation_height,uint32_t dilation_width,uint32_t groups,size_t group_input_channels,size_t group_output_channels,size_t input_pixel_stride,size_t output_pixel_stride,uint8_t input_zero_point,float input_scale,uint8_t kernel_zero_point,float kernel_scale,const uint8_t * kernel,const int32_t * bias,uint8_t output_zero_point,float output_scale,uint8_t output_min,uint8_t output_max,uint32_t flags,xnn_operator_t * convolution_op_out)61 enum xnn_status xnn_create_convolution2d_nhwc_q8(
62 uint32_t input_padding_top,
63 uint32_t input_padding_right,
64 uint32_t input_padding_bottom,
65 uint32_t input_padding_left,
66 uint32_t kernel_height,
67 uint32_t kernel_width,
68 uint32_t subsampling_height,
69 uint32_t subsampling_width,
70 uint32_t dilation_height,
71 uint32_t dilation_width,
72 uint32_t groups,
73 size_t group_input_channels,
74 size_t group_output_channels,
75 size_t input_pixel_stride,
76 size_t output_pixel_stride,
77 uint8_t input_zero_point,
78 float input_scale,
79 uint8_t kernel_zero_point,
80 float kernel_scale,
81 const uint8_t* kernel,
82 const int32_t* bias,
83 uint8_t output_zero_point,
84 float output_scale,
85 uint8_t output_min,
86 uint8_t output_max,
87 uint32_t flags,
88 xnn_operator_t* convolution_op_out)
89 {
90 xnn_operator_t convolution_op = NULL;
91 enum xnn_status status = xnn_status_uninitialized;
92
93 if (!xnn_params.initialized) {
94 xnn_log_error("failed to create Convolution operator: XNNPACK is not initialized");
95 goto error;
96 }
97
98 status = xnn_status_invalid_parameter;
99
100 if (kernel_width == 0 || kernel_height == 0) {
101 xnn_log_error(
102 "failed to create Convolution operator with %" PRIu32 "x%" PRIu32 " kernel: kernel dimensions must be non-zero",
103 kernel_width, kernel_height);
104 goto error;
105 }
106
107 if (subsampling_width == 0 || subsampling_height == 0) {
108 xnn_log_error(
109 "failed to create Convolution operator with %" PRIu32 "x%" PRIu32 " subsampling: "
110 "subsampling dimensions must be non-zero",
111 subsampling_width, subsampling_height);
112 goto error;
113 }
114
115 if (dilation_width == 0 || dilation_height == 0) {
116 xnn_log_error(
117 "failed to create Convolution operator with %" PRIu32 "x%" PRIu32 " dilation: "
118 "dilation dimensions must be non-zero",
119 dilation_width, dilation_height);
120 goto error;
121 }
122
123 if (groups == 0) {
124 xnn_log_error(
125 "failed to create Convolution operator with %" PRIu32 " groups: number of groups must be non-zero", groups);
126 goto error;
127 }
128
129 if (group_input_channels == 0) {
130 xnn_log_error(
131 "failed to create Convolution operator with %zu input channels per group: "
132 "number of channels must be non-zero",
133 group_input_channels);
134 goto error;
135 }
136
137 if (group_output_channels == 0) {
138 xnn_log_error(
139 "failed to create Convolution operator with %zu output channels per group: "
140 "number of channels must be non-zero",
141 group_output_channels);
142 goto error;
143 }
144
145 const size_t input_channels = groups * group_input_channels;
146 if (input_pixel_stride < input_channels) {
147 xnn_log_error(
148 "failed to create Convolution operator with input pixel stride of %zu: "
149 "stride must be at least as large as the number of input channels (%" PRIu32 "x%zu)",
150 input_pixel_stride, groups, group_input_channels);
151 goto error;
152 }
153
154 const size_t output_channels = groups * group_output_channels;
155 if (output_pixel_stride < output_channels) {
156 xnn_log_error(
157 "failed to create Convolution operator with output pixel stride of %zu: "
158 "stride must be at least as large as the number of output channels (%" PRIu32 "x%zu)",
159 output_pixel_stride, groups, group_output_channels);
160 goto error;
161 }
162
163 if (input_scale <= 0.0f || !isnormal(input_scale)) {
164 xnn_log_error(
165 "failed to create Convolution operator with %.7g input scale: scale must be finite, normalized, and positive",
166 input_scale);
167 goto error;
168 }
169
170 if (kernel_scale <= 0.0f || !isnormal(kernel_scale)) {
171 xnn_log_error(
172 "failed to create Convolution operator with %.7g kernel scale: scale must be finite, normalized, and positive",
173 kernel_scale);
174 goto error;
175 }
176
177 if (output_scale <= 0.0f || !isnormal(output_scale)) {
178 xnn_log_error(
179 "failed to create Convolution operator with %.7g output scale: scale must be finite, normalized, and positive",
180 output_scale);
181 goto error;
182 }
183
184 if (output_min >= output_max) {
185 xnn_log_error(
186 "failed to create Convolution operator with [%" PRIu8 ", %" PRIu8 "] output range: "
187 "range min must be below range max",
188 output_min, output_max);
189 goto error;
190 }
191
192 if ((flags & XNN_FLAG_DEPTHWISE_CONVOLUTION) != 0 && group_input_channels != 1) {
193 xnn_log_error(
194 "failed to create Depthwise Convolution operator with %zu input channels per group: "
195 "Depthwise Convolution must have exactly 1 input channel per group",
196 group_input_channels);
197 goto error;
198 }
199
200 const bool any_padding = (input_padding_left | input_padding_top | input_padding_right | input_padding_bottom) != 0;
201 if ((flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) != 0) {
202 if (any_padding) {
203 xnn_log_error(
204 "failed to create Convolution operator with %" PRIu32 "+%" PRIu32 "x%" PRIu32 "+%" PRIu32" padding: "
205 "TensorFlow SAME padding can't be combined with explicit padding specification",
206 input_padding_top, input_padding_left, input_padding_bottom, input_padding_right);
207 goto error;
208 }
209 }
210
211 status = xnn_status_unsupported_parameter;
212
213 const float convolution_scale = input_scale * kernel_scale / output_scale;
214 if (convolution_scale >= 1.0f) {
215 xnn_log_error(
216 "failed to create Convolution operator with %.7g input scale, %.7g kernel scale, and %.7g output scale: "
217 "convolution scale %.7g is greater or equal to 1.0",
218 input_scale, kernel_scale, output_scale, convolution_scale);
219 goto error;
220 }
221
222 status = xnn_status_out_of_memory;
223
224 convolution_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator));
225 if (convolution_op == NULL) {
226 xnn_log_error("failed to allocate %zu bytes for Convolution operator descriptor", sizeof(struct xnn_operator));
227 goto error;
228 }
229
230 const size_t kernel_size = kernel_height * kernel_width;
231
232 enum xnn_ukernel_type ukernel_type = xnn_ukernel_type_none;
233 const struct dwconv_parameters* dwconv_parameters = NULL;
234 if (group_input_channels == 1 && group_output_channels == 1 && groups > 1 &&
235 (dwconv_parameters = find_dwigemm_ukernel(kernel_size, xnn_params.q8.dwconv, XNN_MAX_Q8_DWCONV_UKERNELS)) != NULL)
236 {
237 ukernel_type = xnn_ukernel_type_dwconv;
238 } else if (kernel_size == 1 && subsampling_height == 1 && subsampling_width == 1 && !any_padding) {
239 ukernel_type = xnn_ukernel_type_gemm;
240 } else {
241 ukernel_type = xnn_ukernel_type_igemm;
242 }
243
244 size_t zero_size = 0;
245 switch (ukernel_type) {
246 case xnn_ukernel_type_dwconv:
247 {
248 assert(dwconv_parameters != NULL);
249 assert(dwconv_parameters->mr == kernel_size);
250
251 const uint32_t c_stride = round_up_po2(groups, dwconv_parameters->cr);
252 const size_t packed_weights_size = (sizeof(uint8_t) * kernel_size + sizeof(int32_t)) * c_stride;
253 convolution_op->packed_weights = xnn_allocate_simd_memory(packed_weights_size);
254 if (convolution_op->packed_weights == NULL) {
255 xnn_log_error("failed to allocate %zu bytes for packed weights", packed_weights_size);
256 goto error;
257 }
258
259 if (flags & XNN_FLAG_DEPTHWISE_CONVOLUTION) {
260 xnn_pack_q8_dwconv_hwg_w(
261 kernel_height, kernel_width,
262 groups, dwconv_parameters->cr,
263 input_zero_point, kernel_zero_point,
264 kernel, bias, convolution_op->packed_weights);
265 } else {
266 xnn_pack_q8_dwconv_ghw_w(
267 kernel_height, kernel_width,
268 groups, dwconv_parameters->cr,
269 input_zero_point, kernel_zero_point,
270 kernel, bias, convolution_op->packed_weights);
271 }
272
273 convolution_op->ukernel.dwconv = (struct xnn_ukernel_dwconv) {
274 .unipass_function = dwconv_parameters->up,
275 .mr = dwconv_parameters->mr,
276 .qr = dwconv_parameters->qr,
277 };
278
279 zero_size = sizeof(uint8_t) * c_stride + XNN_EXTRA_BYTES;
280 break;
281 }
282 case xnn_ukernel_type_gemm:
283 case xnn_ukernel_type_igemm:
284 {
285 const uint32_t nr = xnn_params.q8.gemm.nr;
286 const uint32_t kr = UINT32_C(1) << xnn_params.q8.gemm.log2_kr;
287 const uint32_t n_stride = round_up(group_output_channels, nr);
288 const uint32_t k_stride = round_up_po2(group_input_channels, kr);
289
290 const size_t packed_group_weights_size =
291 (sizeof(uint8_t) * kernel_size * k_stride + sizeof(int32_t)) * n_stride;
292 convolution_op->packed_weights = xnn_allocate_simd_memory(packed_group_weights_size * groups);
293 if (convolution_op->packed_weights == NULL) {
294 xnn_log_error("failed to allocate %zu bytes for packed weights", packed_group_weights_size * groups);
295 goto error;
296 }
297 memset(convolution_op->packed_weights, kernel_zero_point, packed_group_weights_size * groups);
298
299 switch (ukernel_type) {
300 case xnn_ukernel_type_gemm:
301 xnn_pack_q8_gemm_goi_w(
302 groups, group_output_channels, group_input_channels,
303 nr, kr,
304 input_zero_point, kernel_zero_point,
305 kernel, bias, convolution_op->packed_weights);
306 convolution_op->ukernel.gemm = (struct xnn_ukernel_gemm) {
307 .mr = xnn_params.q8.gemm.mr,
308 .nr = nr,
309 .kr = kr,
310 .default_function = xnn_params.q8.gemm.gemm,
311 };
312 break;
313 case xnn_ukernel_type_igemm:
314 if (flags & XNN_FLAG_DEPTHWISE_CONVOLUTION) {
315 xnn_pack_q8_conv_kgo_w(
316 groups, group_output_channels, kernel_size,
317 nr, kr,
318 input_zero_point, kernel_zero_point,
319 kernel, bias, convolution_op->packed_weights);
320 } else {
321 xnn_pack_q8_conv_goki_w(
322 groups, group_output_channels, kernel_size, group_input_channels,
323 nr, kr,
324 input_zero_point, kernel_zero_point,
325 kernel, bias, convolution_op->packed_weights);
326 }
327 convolution_op->ukernel.igemm = (struct xnn_ukernel_igemm) {
328 .mr = xnn_params.q8.gemm.mr,
329 .nr = nr,
330 .kr = kr,
331 .default_function = xnn_params.q8.gemm.igemm,
332 };
333 break;
334 default:
335 XNN_UNREACHABLE;
336 }
337
338 zero_size = sizeof(uint8_t) * k_stride + XNN_EXTRA_BYTES;
339 break;
340 }
341 default:
342 XNN_UNREACHABLE;
343 }
344
345 const bool tf_same_padding = (flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) != 0 && kernel_size != 1;
346 if (any_padding || tf_same_padding) {
347 void* zero_buffer = xnn_allocate_simd_memory(zero_size);
348 if (zero_buffer == NULL) {
349 xnn_log_error("failed to allocate %zu bytes for zero padding", zero_size);
350 goto error;
351 }
352 memset(zero_buffer, input_zero_point, zero_size);
353 convolution_op->zero_buffer = zero_buffer;
354 }
355
356 convolution_op->padding_top = input_padding_top;
357 convolution_op->padding_right = input_padding_right;
358 convolution_op->padding_bottom = input_padding_bottom;
359 convolution_op->padding_left = input_padding_left;
360
361 convolution_op->kernel_height = kernel_height;
362 convolution_op->kernel_width = kernel_width;
363 convolution_op->stride_height = subsampling_height;
364 convolution_op->stride_width = subsampling_width;
365 convolution_op->dilation_height = dilation_height;
366 convolution_op->dilation_width = dilation_width;
367 convolution_op->groups = groups;
368 convolution_op->group_input_channels = group_input_channels;
369 convolution_op->group_output_channels = group_output_channels;
370 convolution_op->input_pixel_stride = input_pixel_stride;
371 convolution_op->output_pixel_stride = output_pixel_stride;
372
373 convolution_op->kernel_zero_point = kernel_zero_point;
374
375 convolution_op->q8_gemm_params =
376 xnn_init_q8_gemm_params(
377 input_zero_point, kernel_zero_point,
378 convolution_scale, output_zero_point, output_min, output_max);
379
380 convolution_op->type = xnn_operator_type_convolution_nhwc_q8;
381 convolution_op->ukernel.type = ukernel_type;
382 if (tf_same_padding) {
383 convolution_op->flags |= XNN_FLAG_TENSORFLOW_SAME_PADDING;
384 }
385
386 convolution_op->state = xnn_run_state_invalid;
387
388 *convolution_op_out = convolution_op;
389 return xnn_status_success;
390
391 error:
392 xnn_delete_operator(convolution_op);
393 return status;
394 }
395
xnn_create_convolution2d_nhwc_f32(uint32_t input_padding_top,uint32_t input_padding_right,uint32_t input_padding_bottom,uint32_t input_padding_left,uint32_t kernel_height,uint32_t kernel_width,uint32_t subsampling_height,uint32_t subsampling_width,uint32_t dilation_height,uint32_t dilation_width,uint32_t groups,size_t group_input_channels,size_t group_output_channels,size_t input_pixel_stride,size_t output_pixel_stride,const float * kernel,const float * bias,float output_min,float output_max,uint32_t flags,xnn_operator_t * convolution_op_out)396 enum xnn_status xnn_create_convolution2d_nhwc_f32(
397 uint32_t input_padding_top,
398 uint32_t input_padding_right,
399 uint32_t input_padding_bottom,
400 uint32_t input_padding_left,
401 uint32_t kernel_height,
402 uint32_t kernel_width,
403 uint32_t subsampling_height,
404 uint32_t subsampling_width,
405 uint32_t dilation_height,
406 uint32_t dilation_width,
407 uint32_t groups,
408 size_t group_input_channels,
409 size_t group_output_channels,
410 size_t input_pixel_stride,
411 size_t output_pixel_stride,
412 const float* kernel,
413 const float* bias,
414 float output_min,
415 float output_max,
416 uint32_t flags,
417 xnn_operator_t* convolution_op_out)
418 {
419 xnn_operator_t convolution_op = NULL;
420 enum xnn_status status = xnn_status_uninitialized;
421
422 if (!xnn_params.initialized) {
423 xnn_log_error("failed to create Convolution operator: XNNPACK is not initialized");
424 goto error;
425 }
426
427 status = xnn_status_invalid_parameter;
428
429 if (kernel_width == 0 || kernel_height == 0) {
430 xnn_log_error(
431 "failed to create Convolution operator with %" PRIu32 "x%" PRIu32 " kernel: kernel dimensions must be non-zero",
432 kernel_width, kernel_height);
433 goto error;
434 }
435
436 if (subsampling_width == 0 || subsampling_height == 0) {
437 xnn_log_error(
438 "failed to create Convolution operator with %" PRIu32 "x%" PRIu32 " subsampling: "
439 "subsampling dimensions must be non-zero",
440 subsampling_width, subsampling_height);
441 goto error;
442 }
443
444 if (dilation_width == 0 || dilation_height == 0) {
445 xnn_log_error(
446 "failed to create Convolution operator with %" PRIu32 "x%" PRIu32 " dilation: "
447 "dilation dimensions must be non-zero",
448 dilation_width, dilation_height);
449 goto error;
450 }
451
452 if (groups == 0) {
453 xnn_log_error(
454 "failed to create Convolution operator with %" PRIu32 " groups: number of groups must be non-zero", groups);
455 goto error;
456 }
457
458 if (group_input_channels == 0) {
459 xnn_log_error(
460 "failed to create Convolution operator with %zu input channels per group: "
461 "number of channels must be non-zero",
462 group_input_channels);
463 goto error;
464 }
465
466 if (group_output_channels == 0) {
467 xnn_log_error(
468 "failed to create Convolution operator with %zu output channels per group: "
469 "number of channels must be non-zero",
470 group_output_channels);
471 goto error;
472 }
473
474 const size_t input_channels = groups * group_input_channels;
475 if (input_pixel_stride < input_channels) {
476 xnn_log_error(
477 "failed to create Convolution operator with input pixel stride of %zu: "
478 "stride must be at least as large as the number of input channels (%" PRIu32 "x%zu)",
479 input_pixel_stride, groups, group_input_channels);
480 goto error;
481 }
482
483 const size_t output_channels = groups * group_output_channels;
484 if (output_pixel_stride < output_channels) {
485 xnn_log_error(
486 "failed to create Convolution operator with output pixel stride of %zu: "
487 "stride must be at least as large as the number of output channels (%" PRIu32 "x%zu)",
488 output_pixel_stride, groups, group_output_channels);
489 goto error;
490 }
491
492 if (isnan(output_min)) {
493 xnn_log_error(
494 "failed to create Convolution operator with NaN output lower bound: lower bound must be non-NaN");
495 goto error;
496 }
497
498 if (isnan(output_max)) {
499 xnn_log_error(
500 "failed to create Convolution operator with NaN output upper bound: upper bound must be non-NaN");
501 goto error;
502 }
503
504 if (output_min >= output_max) {
505 xnn_log_error(
506 "failed to create Convolution operator with [%.7g, %.7g] output range: "
507 "lower bound must be below upper bound",
508 output_min, output_max);
509 goto error;
510 }
511
512 if ((flags & XNN_FLAG_DEPTHWISE_CONVOLUTION) != 0 && group_input_channels != 1) {
513 xnn_log_error(
514 "failed to create Depthwise Convolution operator with %zu input channels per group: "
515 "Depthwise Convolution must have exactly 1 input channel per group",
516 group_input_channels);
517 goto error;
518 }
519
520 const bool any_padding = (input_padding_left | input_padding_top | input_padding_right | input_padding_bottom) != 0;
521 if ((flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) != 0) {
522 if (any_padding) {
523 xnn_log_error(
524 "failed to create Convolution operator with %" PRIu32 "+%" PRIu32 "x%" PRIu32 "+%" PRIu32" padding: "
525 "TensorFlow SAME padding can't be combined with explicit padding specification",
526 input_padding_top, input_padding_left, input_padding_bottom, input_padding_right);
527 goto error;
528 }
529 }
530
531 status = xnn_status_out_of_memory;
532
533 convolution_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator));
534 if (convolution_op == NULL) {
535 xnn_log_error("failed to allocate %zu bytes for Convolution operator descriptor", sizeof(struct xnn_operator));
536 goto error;
537 }
538
539 const size_t kernel_size = kernel_height * kernel_width;
540
541 enum xnn_ukernel_type ukernel_type = xnn_ukernel_type_none;
542 const struct dwconv_parameters* dwconv_parameters = NULL;
543 const bool unit_subsampling = (subsampling_width | subsampling_height) == 1;
544 if (group_input_channels == 1 && group_output_channels == 1 && kernel_size == 1 && unit_subsampling && !any_padding) {
545 ukernel_type = xnn_ukernel_type_vmulcaddc;
546 } else if (group_input_channels == 1 && group_output_channels == 1 && (dwconv_parameters =
547 find_dwigemm_ukernel(kernel_size, xnn_params.f32.dwconv, XNN_MAX_F32_DWCONV_UKERNELS)) != NULL)
548 {
549 ukernel_type = xnn_ukernel_type_dwconv;
550 } else if (kernel_size == 1 && unit_subsampling && !any_padding) {
551 ukernel_type = xnn_ukernel_type_gemm;
552 } else {
553 ukernel_type = xnn_ukernel_type_igemm;
554 }
555
556 size_t zero_size = 0;
557 switch (ukernel_type) {
558 case xnn_ukernel_type_vmulcaddc:
559 {
560 const uint32_t c_stride = round_up_po2(groups, xnn_params.f32.vmulcaddc.channel_tile);
561 const size_t packed_weights_size = 2 * sizeof(float) * c_stride;
562 convolution_op->packed_weights = xnn_allocate_simd_memory(packed_weights_size);
563 if (convolution_op->packed_weights == NULL) {
564 xnn_log_error("failed to allocate %zu bytes for packed weights", packed_weights_size);
565 goto error;
566 }
567
568 xnn_pack_f32_vmulcaddc_w(
569 groups, xnn_params.f32.vmulcaddc.channel_tile,
570 kernel, bias, convolution_op->packed_weights);
571
572 convolution_op->ukernel.vmulcaddc = (struct xnn_ukernel_vmulcaddc) {
573 .function = xnn_params.f32.vmulcaddc.ukernel,
574 .mr = xnn_params.f32.vmulcaddc.row_tile,
575 };
576 break;
577 }
578 case xnn_ukernel_type_dwconv:
579 {
580 assert(dwconv_parameters != NULL);
581 assert(dwconv_parameters->mr == kernel_size);
582
583 const uint32_t c_stride = round_up_po2(groups, dwconv_parameters->cr);
584 const size_t packed_weights_size = (kernel_size + 1) * sizeof(float) * c_stride;
585 convolution_op->packed_weights = xnn_allocate_simd_memory(packed_weights_size);
586 if (convolution_op->packed_weights == NULL) {
587 xnn_log_error("failed to allocate %zu bytes for packed weights", packed_weights_size);
588 goto error;
589 }
590
591 if (flags & XNN_FLAG_DEPTHWISE_CONVOLUTION) {
592 xnn_pack_f32_dwconv_hwg_w(
593 kernel_height, kernel_width,
594 groups, dwconv_parameters->cr,
595 kernel, bias, convolution_op->packed_weights);
596 } else {
597 xnn_pack_f32_dwconv_ghw_w(
598 kernel_height, kernel_width,
599 groups, dwconv_parameters->cr,
600 kernel, bias, convolution_op->packed_weights);
601 }
602
603 convolution_op->ukernel.dwconv = (struct xnn_ukernel_dwconv) {
604 .unipass_function = dwconv_parameters->up,
605 .mr = dwconv_parameters->mr,
606 .qr = dwconv_parameters->qr,
607 };
608
609 zero_size = sizeof(float) * c_stride;
610 break;
611 }
612 case xnn_ukernel_type_gemm:
613 case xnn_ukernel_type_igemm:
614 {
615 const uint32_t nr = xnn_params.f32.gemm.nr;
616 const uint32_t kr = UINT32_C(1) << xnn_params.f32.gemm.log2_kr;
617 const uint32_t sr = UINT32_C(1) << xnn_params.f32.gemm.log2_sr;
618 const uint32_t n_stride = round_up(group_output_channels, nr);
619 const uint32_t k_stride = round_up_po2(group_input_channels, kr);
620
621 const size_t packed_group_weights_size = (kernel_size * k_stride + 1) * sizeof(float) * n_stride;
622 convolution_op->packed_weights = xnn_allocate_simd_memory(packed_group_weights_size * groups);
623 if (convolution_op->packed_weights == NULL) {
624 xnn_log_error("failed to allocate %zu bytes for packed weights", packed_group_weights_size * groups);
625 goto error;
626 }
627 memset(convolution_op->packed_weights, 0, packed_group_weights_size * groups);
628
629 switch (ukernel_type) {
630 case xnn_ukernel_type_gemm:
631 xnn_pack_f32_gemm_goi_w(
632 groups, group_output_channels, group_input_channels,
633 nr, kr, sr,
634 kernel, bias, convolution_op->packed_weights);
635 convolution_op->ukernel.gemm = (struct xnn_ukernel_gemm) {
636 .mr = xnn_params.f32.gemm.mr,
637 .nr = nr,
638 .kr = kr,
639 .default_function = xnn_params.f32.gemm.gemm,
640 .mr1_function = xnn_params.f32.gemm.gemm1,
641 };
642 break;
643 case xnn_ukernel_type_igemm:
644 if (flags & XNN_FLAG_DEPTHWISE_CONVOLUTION) {
645 xnn_pack_f32_conv_kgo_w(
646 groups, group_output_channels, kernel_size,
647 nr, kr,
648 kernel, bias, convolution_op->packed_weights);
649 } else {
650 xnn_pack_f32_conv_goki_w(
651 groups, group_output_channels, kernel_size, group_input_channels,
652 nr, kr, sr,
653 kernel, bias, convolution_op->packed_weights);
654 }
655 convolution_op->ukernel.igemm = (struct xnn_ukernel_igemm) {
656 .mr = xnn_params.f32.gemm.mr,
657 .nr = nr,
658 .kr = kr,
659 .default_function = xnn_params.f32.gemm.igemm,
660 .mr1_function = xnn_params.f32.gemm.igemm1,
661 };
662 break;
663 default:
664 XNN_UNREACHABLE;
665 }
666
667 zero_size = sizeof(float) * k_stride;
668 break;
669 }
670 default:
671 XNN_UNREACHABLE;
672 }
673
674 const bool tf_same_padding = (flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) != 0 && kernel_size != 1;
675 if (any_padding || tf_same_padding) {
676 void* zero_buffer = xnn_allocate_zero_simd_memory(zero_size);
677 if (zero_buffer == NULL) {
678 xnn_log_error("failed to allocate %zu bytes for zero padding", zero_size);
679 goto error;
680 }
681 convolution_op->zero_buffer = zero_buffer;
682 }
683
684 convolution_op->padding_top = input_padding_top;
685 convolution_op->padding_right = input_padding_right;
686 convolution_op->padding_bottom = input_padding_bottom;
687 convolution_op->padding_left = input_padding_left;
688
689 convolution_op->kernel_height = kernel_height;
690 convolution_op->kernel_width = kernel_width;
691 convolution_op->stride_height = subsampling_height;
692 convolution_op->stride_width = subsampling_width;
693 convolution_op->dilation_height = dilation_height;
694 convolution_op->dilation_width = dilation_width;
695 convolution_op->groups = groups;
696 convolution_op->group_input_channels = group_input_channels;
697 convolution_op->group_output_channels = group_output_channels;
698 convolution_op->input_pixel_stride = input_pixel_stride;
699 convolution_op->output_pixel_stride = output_pixel_stride;
700
701 convolution_op->f32_output_params = xnn_init_f32_output_params(output_min, output_max);
702
703 convolution_op->type = xnn_operator_type_convolution_nhwc_f32;
704 convolution_op->ukernel.type = ukernel_type;
705 if (tf_same_padding) {
706 convolution_op->flags |= XNN_FLAG_TENSORFLOW_SAME_PADDING;
707 }
708
709 convolution_op->state = xnn_run_state_invalid;
710
711 *convolution_op_out = convolution_op;
712 return xnn_status_success;
713
714 error:
715 xnn_delete_operator(convolution_op);
716 return status;
717 }
718
setup_convolution2d_nhwc(xnn_operator_t convolution_op,size_t batch_size,size_t input_height,size_t input_width,const void * input,void * output,uint32_t log2_input_element_size,uint32_t log2_filter_element_size,uint32_t bias_element_size,uint32_t log2_output_element_size,const void * params,size_t num_threads)719 static enum xnn_status setup_convolution2d_nhwc(
720 xnn_operator_t convolution_op,
721 size_t batch_size,
722 size_t input_height,
723 size_t input_width,
724 const void* input,
725 void* output,
726 uint32_t log2_input_element_size,
727 uint32_t log2_filter_element_size,
728 uint32_t bias_element_size,
729 uint32_t log2_output_element_size,
730 const void* params,
731 size_t num_threads)
732 {
733 convolution_op->state = xnn_run_state_invalid;
734
735 if (!xnn_params.initialized) {
736 xnn_log_error("failed to setup Convolution operator: XNNPACK is not initialized");
737 return xnn_status_uninitialized;
738 }
739
740 if (input_width == 0 || input_height == 0) {
741 xnn_log_error(
742 "failed to setup Convolution operator with %zux%zu input: input dimensions must be non-zero",
743 input_width, input_height);
744 return xnn_status_invalid_parameter;
745 }
746
747 if (batch_size == 0) {
748 convolution_op->state = xnn_run_state_skip;
749 return xnn_status_success;
750 }
751
752 convolution_op->batch_size = batch_size;
753 convolution_op->input_height = input_height;
754 convolution_op->input_width = input_width;
755 convolution_op->input = input;
756
757 if (convolution_op->flags & XNN_FLAG_TENSORFLOW_SAME_PADDING) {
758 convolution_op->output_height = compute_output_dimension_with_tf_same_padding(
759 input_height, convolution_op->stride_height);
760 convolution_op->output_width = compute_output_dimension_with_tf_same_padding(
761 input_width, convolution_op->stride_width);
762
763 const uint32_t effective_kernel_height = (convolution_op->kernel_height - 1) * convolution_op->dilation_height + 1;
764 const uint32_t effective_kernel_width = (convolution_op->kernel_width - 1) * convolution_op->dilation_width + 1;
765 const uint32_t total_padding_height =
766 (convolution_op->output_height - 1) * convolution_op->stride_height + effective_kernel_height - input_height;
767 const uint32_t total_padding_width =
768 (convolution_op->output_width - 1) * convolution_op->stride_width + effective_kernel_width - input_width;
769 convolution_op->padding_top = total_padding_height / 2;
770 convolution_op->padding_left = total_padding_width / 2;
771 convolution_op->padding_bottom = total_padding_height - convolution_op->padding_top;
772 convolution_op->padding_right = total_padding_width - convolution_op->padding_left;
773 } else {
774 convolution_op->output_height = compute_output_dimension(
775 convolution_op->padding_top + input_height + convolution_op->padding_bottom,
776 convolution_op->kernel_height,
777 convolution_op->dilation_height,
778 convolution_op->stride_height);
779 convolution_op->output_width = compute_output_dimension(
780 convolution_op->padding_left + input_width + convolution_op->padding_right,
781 convolution_op->kernel_width,
782 convolution_op->dilation_width,
783 convolution_op->stride_width);
784 }
785 convolution_op->output = output;
786
787 switch (convolution_op->ukernel.type) {
788 case xnn_ukernel_type_gemm:
789 {
790 // Convolution maps directly to GEMM and doesn't use indirection buffer.
791
792 const size_t output_height = convolution_op->output_height;
793 const size_t output_width = convolution_op->output_width;
794 const size_t output_size = output_height * output_width;
795 const size_t batch_output_size = batch_size * output_size;
796
797 const size_t groups = convolution_op->groups;
798 const size_t group_input_channels = convolution_op->group_input_channels;
799 const size_t w_stride = (round_up_po2(group_input_channels, convolution_op->ukernel.gemm.kr) << log2_filter_element_size) + bias_element_size;
800 const size_t group_output_channels = convolution_op->group_output_channels;
801
802 uint32_t mr = convolution_op->ukernel.gemm.mr;
803 const uint32_t nr = convolution_op->ukernel.gemm.nr;
804 xnn_gemm_ukernel_function gemm_ukernel = convolution_op->ukernel.gemm.default_function;
805 if (batch_output_size == 1 && convolution_op->ukernel.gemm.mr1_function != NULL) {
806 mr = 1;
807 gemm_ukernel = convolution_op->ukernel.gemm.mr1_function;
808 }
809
810 convolution_op->context.gemm = (struct gemm_context) {
811 .k_scaled = group_input_channels << log2_input_element_size,
812 .a = input,
813 .a_stride = convolution_op->input_pixel_stride << log2_input_element_size,
814 .packed_w = convolution_op->packed_weights,
815 .w_stride = w_stride,
816 .wg_stride = w_stride * round_up(group_output_channels, nr),
817 .c = output,
818 .cm_stride = convolution_op->output_pixel_stride << log2_output_element_size,
819 .cn_stride = nr << log2_output_element_size,
820 .cg_stride = group_output_channels << log2_output_element_size,
821 .log2_csize = log2_output_element_size,
822 .ukernel = gemm_ukernel,
823 };
824 memcpy(&convolution_op->context.gemm.params, params, sizeof(convolution_op->context.gemm.params));
825
826 size_t nc = group_output_channels;
827 if (num_threads > 1) {
828 const size_t num_other_tiles = groups * divide_round_up(batch_output_size, mr);
829 const size_t target_tiles_per_thread = 5;
830 const size_t max_nc = divide_round_up(group_output_channels * num_other_tiles, num_threads * target_tiles_per_thread);
831 if (max_nc < nc) {
832 nc = min(nc, divide_round_up(nc, max_nc * nr) * nr);
833 }
834 }
835 if (groups == 1) {
836 convolution_op->compute.type = xnn_parallelization_type_2d_tile_2d;
837 convolution_op->compute.task_2d_tile_2d = (pthreadpool_task_2d_tile_2d_t) xnn_compute_gemm;
838 convolution_op->compute.range[0] = batch_output_size;
839 convolution_op->compute.range[1] = group_output_channels;
840 convolution_op->compute.tile[0] = mr;
841 convolution_op->compute.tile[1] = nc;
842 } else {
843 convolution_op->compute.type = xnn_parallelization_type_3d_tile_2d;
844 convolution_op->compute.task_3d_tile_2d = (pthreadpool_task_3d_tile_2d_t) xnn_compute_ggemm;
845 convolution_op->compute.range[0] = groups;
846 convolution_op->compute.range[1] = batch_output_size;
847 convolution_op->compute.range[2] = group_output_channels;
848 convolution_op->compute.tile[0] = mr;
849 convolution_op->compute.tile[1] = nc;
850 }
851 convolution_op->state = xnn_run_state_ready;
852
853 return xnn_status_success;
854 }
855 case xnn_ukernel_type_igemm:
856 {
857 const size_t groups = convolution_op->groups;
858 const size_t kernel_height = convolution_op->kernel_height;
859 const size_t kernel_width = convolution_op->kernel_width;
860 const size_t kernel_size = kernel_height * kernel_width;
861 const size_t output_height = convolution_op->output_height;
862 const size_t output_width = convolution_op->output_width;
863 const size_t output_size = output_height * output_width;
864
865 uint32_t mr = convolution_op->ukernel.igemm.mr;
866 const uint32_t nr = convolution_op->ukernel.igemm.nr;
867 xnn_igemm_ukernel_function igemm_ukernel = convolution_op->ukernel.igemm.default_function;
868 if (output_size == 1 && convolution_op->ukernel.igemm.mr1_function != NULL) {
869 mr = 1;
870 igemm_ukernel = convolution_op->ukernel.igemm.mr1_function;
871 }
872
873 const size_t tiled_output_size = round_up(output_size, mr);
874 const size_t indirection_buffer_size = sizeof(void*) * kernel_size * tiled_output_size;
875
876 if (input_height != convolution_op->last_input_height ||
877 input_width != convolution_op->last_input_width)
878 {
879 const void** indirection_buffer = (const void**) xnn_reallocate_memory(convolution_op->indirection_buffer, indirection_buffer_size);
880 if (indirection_buffer == NULL) {
881 xnn_log_error("failed to allocate %zu bytes for indirection buffer", indirection_buffer_size);
882 return xnn_status_out_of_memory;
883 }
884 convolution_op->indirection_buffer = indirection_buffer;
885 convolution_op->last_input = input;
886 convolution_op->last_input_height = input_height;
887 convolution_op->last_input_width = input_width;
888
889 xnn_indirection_init_conv2d(convolution_op, mr, log2_input_element_size);
890 }
891
892 const size_t group_input_channels = convolution_op->group_input_channels;
893 const size_t w_stride = (round_up_po2(group_input_channels, convolution_op->ukernel.igemm.kr) * kernel_size << log2_filter_element_size) + bias_element_size;
894 const size_t group_output_channels = convolution_op->group_output_channels;
895 convolution_op->context.igemm = (struct igemm_context) {
896 .ks = kernel_size,
897 .ks_scaled = kernel_size * mr * sizeof(void*),
898 .kc = group_input_channels << log2_input_element_size,
899 .w_stride = w_stride,
900 .indirect_a = convolution_op->indirection_buffer,
901 .a_offset = (size_t) ((uintptr_t) input - (uintptr_t) convolution_op->last_input),
902 .zero = convolution_op->zero_buffer,
903 .packed_w = convolution_op->packed_weights,
904 .c = convolution_op->output,
905 .cm_stride = convolution_op->output_pixel_stride << log2_output_element_size,
906 .cn_stride = nr << log2_output_element_size,
907 .ga_stride = group_input_channels << log2_input_element_size,
908 .gw_stride = w_stride * round_up(group_output_channels, nr),
909 .gc_stride = group_output_channels << log2_output_element_size,
910 .ba_stride = input_height * input_width * convolution_op->input_pixel_stride << log2_input_element_size,
911 .bc_stride = output_size * convolution_op->output_pixel_stride << log2_output_element_size,
912 .log2_csize = log2_output_element_size,
913 .ukernel = igemm_ukernel,
914 };
915 memcpy(&convolution_op->context.igemm.params, params, sizeof(convolution_op->context.igemm.params));
916
917 size_t nc = group_output_channels;
918 if (num_threads > 1) {
919 const size_t num_other_tiles = groups * batch_size * divide_round_up(output_size, mr);
920 const size_t target_tiles_per_thread = 5;
921 const size_t max_nc = divide_round_up(group_output_channels * num_other_tiles, num_threads * target_tiles_per_thread);
922 if (max_nc < nc) {
923 nc = min(nc, divide_round_up(nc, max_nc * nr) * nr);
924 }
925 }
926 if (groups == 1) {
927 convolution_op->compute.type = xnn_parallelization_type_3d_tile_2d;
928 convolution_op->compute.task_3d_tile_2d = (pthreadpool_task_3d_tile_2d_t) xnn_compute_igemm;
929 convolution_op->compute.range[0] = batch_size;
930 convolution_op->compute.range[1] = output_size;
931 convolution_op->compute.range[2] = group_output_channels;
932 convolution_op->compute.tile[0] = mr;
933 convolution_op->compute.tile[1] = nc;
934 } else {
935 convolution_op->compute.type = xnn_parallelization_type_4d_tile_2d;
936 convolution_op->compute.task_4d_tile_2d = (pthreadpool_task_4d_tile_2d_t) xnn_compute_gigemm;
937 convolution_op->compute.range[0] = batch_size;
938 convolution_op->compute.range[1] = groups;
939 convolution_op->compute.range[2] = output_size;
940 convolution_op->compute.range[3] = group_output_channels;
941 convolution_op->compute.tile[0] = mr;
942 convolution_op->compute.tile[1] = nc;
943 }
944 convolution_op->state = xnn_run_state_ready;
945
946 return xnn_status_success;
947 }
948 case xnn_ukernel_type_dwconv:
949 {
950 size_t valid_batch_size = 0;
951 if (input == convolution_op->last_input &&
952 input_height == convolution_op->last_input_height &&
953 input_width == convolution_op->last_input_width)
954 {
955 valid_batch_size = convolution_op->valid_batch_size;
956 if (batch_size <= valid_batch_size) {
957 convolution_op->compute.range[0] = batch_size * convolution_op->output_height;
958 convolution_op->context.dwconv.output = output;
959 convolution_op->state = xnn_run_state_ready;
960 return xnn_status_success;
961 }
962 }
963
964 const size_t kernel_height = convolution_op->kernel_height;
965 const size_t kernel_width = convolution_op->kernel_width;
966 const size_t kernel_size = kernel_height * kernel_width;
967 const size_t output_height = convolution_op->output_height;
968 const size_t output_width = convolution_op->output_width;
969 const size_t step_width = convolution_op->dilation_width == 1 ? convolution_op->stride_width : kernel_width;
970 const size_t step_height = kernel_size + (output_width - 1) * step_width * kernel_height;
971 const size_t indirection_buffer_size = sizeof(void*) * batch_size * output_height * step_height;
972
973 const void** indirection_buffer =
974 (const void**) xnn_reallocate_memory(convolution_op->indirection_buffer, indirection_buffer_size);
975 if (indirection_buffer == NULL) {
976 xnn_log_error("failed to allocate %zu bytes for indirection buffer", indirection_buffer_size);
977 return xnn_status_out_of_memory;
978 }
979 convolution_op->indirection_buffer = indirection_buffer;
980
981 xnn_indirection_init_dwconv2d(convolution_op, valid_batch_size, step_height, step_width, log2_input_element_size);
982
983 const size_t groups = convolution_op->groups;
984 convolution_op->context.dwconv = (struct dwconv_context) {
985 .groups = groups,
986 .indirection_buffer = convolution_op->indirection_buffer,
987 .indirection_buffer_row_stride = step_height,
988 .indirection_buffer_col_stride = kernel_height * step_width * sizeof(void*),
989 .packed_weights = convolution_op->packed_weights,
990 .output = convolution_op->output,
991 .output_width = output_width,
992 .output_row_stride = output_width * convolution_op->output_pixel_stride << log2_output_element_size,
993 .output_col_increment = (convolution_op->output_pixel_stride - groups) << log2_output_element_size,
994 .unipass_ukernel = convolution_op->ukernel.dwconv.unipass_function,
995 };
996 memcpy(&convolution_op->context.dwconv.params, params, sizeof(convolution_op->context.dwconv.params));
997
998 convolution_op->compute.type = xnn_parallelization_type_1d;
999 convolution_op->compute.task_1d = (pthreadpool_task_1d_t) xnn_compute_dwconv_unipass;
1000 convolution_op->compute.range[0] = batch_size * output_height;
1001 convolution_op->state = xnn_run_state_ready;
1002
1003 convolution_op->last_input = input;
1004 convolution_op->last_input_height = input_height;
1005 convolution_op->last_input_width = input_width;
1006 convolution_op->valid_batch_size = max(valid_batch_size, batch_size);
1007
1008 return xnn_status_success;
1009 }
1010 case xnn_ukernel_type_vmulcaddc:
1011 {
1012 const size_t batch_output_size = batch_size * convolution_op->output_height * convolution_op->output_width;
1013
1014 convolution_op->context.vmulcaddc = (struct vmulcaddc_context) {
1015 .n = convolution_op->groups << log2_input_element_size,
1016 .x = input,
1017 .x_stride = convolution_op->input_pixel_stride << log2_input_element_size,
1018 .w = convolution_op->packed_weights,
1019 .y = output,
1020 .y_stride = convolution_op->output_pixel_stride << log2_output_element_size,
1021 .ukernel = convolution_op->ukernel.vmulcaddc.function,
1022 };
1023 memcpy(&convolution_op->context.vmulcaddc.params, params, sizeof(convolution_op->context.vmulcaddc.params));
1024
1025 size_t mc = batch_output_size;
1026 if (num_threads > 1) {
1027 const size_t target_tiles_per_thread = 5;
1028 const size_t max_mc = divide_round_up(batch_output_size, num_threads * target_tiles_per_thread);
1029 if (max_mc < mc) {
1030 const uint32_t mr = convolution_op->ukernel.vmulcaddc.mr;
1031 mc = min(mc, divide_round_up(mc, max_mc * mr) * mr);
1032 }
1033 }
1034 convolution_op->compute.type = xnn_parallelization_type_1d_tile_1d;
1035 convolution_op->compute.task_1d_tile_1d = (pthreadpool_task_1d_tile_1d_t) xnn_compute_vmulcaddc;
1036 convolution_op->compute.range[0] = batch_output_size;
1037 convolution_op->compute.tile[0] = mc;
1038 convolution_op->state = xnn_run_state_ready;
1039
1040 return xnn_status_success;
1041 }
1042 default:
1043 XNN_UNREACHABLE;
1044 }
1045 }
1046
xnn_setup_convolution2d_nhwc_q8(xnn_operator_t convolution_op,size_t batch_size,size_t input_height,size_t input_width,const uint8_t * input,uint8_t * output,pthreadpool_t threadpool)1047 enum xnn_status xnn_setup_convolution2d_nhwc_q8(
1048 xnn_operator_t convolution_op,
1049 size_t batch_size,
1050 size_t input_height,
1051 size_t input_width,
1052 const uint8_t* input,
1053 uint8_t* output,
1054 pthreadpool_t threadpool)
1055 {
1056 if (convolution_op->type != xnn_operator_type_convolution_nhwc_q8) {
1057 xnn_log_error("failed to setup Convolution (NHWC, Q8) operator: operator type mismatch");
1058 return xnn_status_invalid_parameter;
1059 }
1060
1061 return setup_convolution2d_nhwc(
1062 convolution_op,
1063 batch_size, input_height, input_width,
1064 input, output,
1065 0 /* log2(sizeof(input element)) = log2(sizeof(uint8_t)) */,
1066 0 /* log2(sizeof(filter element)) = log2(sizeof(uint8_t)) */,
1067 sizeof(int32_t) /* sizeof(bias element) */,
1068 0 /* log2(sizeof(output element)) = log2(sizeof(uint8_t)) */,
1069 &convolution_op->q8_gemm_params,
1070 pthreadpool_get_threads_count(threadpool));
1071 }
1072
xnn_setup_convolution2d_nhwc_f32(xnn_operator_t convolution_op,size_t batch_size,size_t input_height,size_t input_width,const float * input,float * output,pthreadpool_t threadpool)1073 enum xnn_status xnn_setup_convolution2d_nhwc_f32(
1074 xnn_operator_t convolution_op,
1075 size_t batch_size,
1076 size_t input_height,
1077 size_t input_width,
1078 const float* input,
1079 float* output,
1080 pthreadpool_t threadpool)
1081 {
1082 if (convolution_op->type != xnn_operator_type_convolution_nhwc_f32) {
1083 xnn_log_error("failed to setup Convolution (NHWC, F32) operator: operator type mismatch");
1084 return xnn_status_invalid_parameter;
1085 }
1086
1087 return setup_convolution2d_nhwc(
1088 convolution_op,
1089 batch_size, input_height, input_width,
1090 input, output,
1091 2 /* log2(sizeof(input element)) = log2(sizeof(float)) */,
1092 2 /* log2(sizeof(filter element)) = log2(sizeof(float)) */,
1093 sizeof(float) /* sizeof(bias element) */,
1094 2 /* log2(sizeof(output element)) = log2(sizeof(float)) */,
1095 &convolution_op->f32_output_params,
1096 pthreadpool_get_threads_count(threadpool));
1097 }
1098