• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2019 Google LLC
2 //
3 // This source code is licensed under the BSD-style license found in the
4 // LICENSE file in the root directory of this source tree.
5 
6 #include <math.h>
7 #include <stddef.h>
8 #include <stdint.h>
9 #include <stdlib.h>
10 
11 #include <xnnpack.h>
12 #include <xnnpack/allocator.h>
13 #include <xnnpack/log.h>
14 #include <xnnpack/operator.h>
15 #include <xnnpack/params-init.h>
16 #include <xnnpack/params.h>
17 
18 
xnn_create_hardswish_nc_f32(size_t channels,size_t input_stride,size_t output_stride,uint32_t flags,xnn_operator_t * hardswish_op_out)19 enum xnn_status xnn_create_hardswish_nc_f32(
20     size_t channels,
21     size_t input_stride,
22     size_t output_stride,
23     uint32_t flags,
24     xnn_operator_t* hardswish_op_out)
25 {
26   xnn_operator_t hardswish_op = NULL;
27   enum xnn_status status = xnn_status_uninitialized;
28 
29   if (!xnn_params.initialized) {
30     xnn_log_error("failed to create HardSwish operator: XNNPACK is not initialized");
31     goto error;
32   }
33 
34   status = xnn_status_invalid_parameter;
35 
36   if (channels == 0) {
37     xnn_log_error(
38       "failed to create HardSwish operator with %zu channels: number of channels must be non-zero", channels);
39     goto error;
40   }
41 
42   if (input_stride < channels) {
43     xnn_log_error(
44       "failed to create HardSwish operator with input element stride of %zu: "
45       "stride must be at least as large as the number of channels (%zu)",
46       input_stride, channels);
47     goto error;
48   }
49 
50   if (output_stride < channels) {
51     xnn_log_error(
52       "failed to create HardSwish operator with output element stride of %zu: "
53       "stride must be at least as large as the number of channels (%zu)",
54       output_stride, channels);
55     goto error;
56   }
57 
58   status = xnn_status_out_of_memory;
59 
60   hardswish_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator));
61   if (hardswish_op == NULL) {
62     xnn_log_error("failed to allocate %zu bytes for xnn_operator structure", sizeof(struct xnn_operator));
63     goto error;
64   }
65 
66   hardswish_op->channels = channels;
67   hardswish_op->input_pixel_stride = input_stride;
68   hardswish_op->output_pixel_stride = output_stride;
69   hardswish_op->f32_hswish_params = xnn_init_f32_hswish_params();
70 
71   hardswish_op->type = xnn_operator_type_hardswish_nc_f32;
72   hardswish_op->ukernel.type = xnn_ukernel_type_hswish;
73 
74   hardswish_op->state = xnn_run_state_invalid;
75 
76   *hardswish_op_out = hardswish_op;
77   return xnn_status_success;
78 
79 error:
80   xnn_delete_operator(hardswish_op);
81   return status;
82 }
83 
xnn_setup_hardswish_nc_f32(xnn_operator_t hardswish_op,size_t batch_size,const float * input,float * output,pthreadpool_t threadpool)84 enum xnn_status xnn_setup_hardswish_nc_f32(
85     xnn_operator_t hardswish_op,
86     size_t batch_size,
87     const float* input,
88     float* output,
89     pthreadpool_t threadpool)
90 {
91   if (hardswish_op->type != xnn_operator_type_hardswish_nc_f32) {
92     xnn_log_error("failed to setup HardSwish (F32) operator: operator type mismatch");
93     return xnn_status_invalid_parameter;
94   }
95   hardswish_op->state = xnn_run_state_invalid;
96 
97   if (!xnn_params.initialized) {
98     xnn_log_error("failed to setup HardSwish operator: XNNPACK is not initialized");
99     return xnn_status_uninitialized;
100   }
101 
102   if (batch_size == 0) {
103     hardswish_op->state = xnn_run_state_skip;
104     return xnn_status_success;
105   }
106 
107   const size_t channels = hardswish_op->channels;
108   const size_t input_stride = hardswish_op->input_pixel_stride;
109   const size_t output_stride = hardswish_op->output_pixel_stride;
110   if ((((input_stride ^ channels) | (output_stride ^ channels)) == 0) || batch_size == 1) {
111     const size_t block_size = 4096;
112     hardswish_op->context.univector_contiguous = (struct univector_contiguous_context) {
113       .x = input,
114       .x_stride = input_stride * sizeof(float),
115       .y = output,
116       .y_stride = output_stride * sizeof(float),
117       .ukernel = xnn_params.f32.hswish,
118       .params.f32_hswish = hardswish_op->f32_hswish_params,
119     };
120     hardswish_op->compute.type = xnn_parallelization_type_1d_tile_1d;
121     hardswish_op->compute.task_1d_tile_1d = (pthreadpool_task_1d_tile_1d_t) xnn_compute_univector_contiguous;
122     hardswish_op->compute.range[0] = batch_size * channels * sizeof(float);
123     hardswish_op->compute.tile[0] = block_size;
124   } else {
125     hardswish_op->context.univector_strided = (struct univector_strided_context) {
126       .n = channels * sizeof(float),
127       .x = input,
128       .x_stride = input_stride * sizeof(float),
129       .y = output,
130       .y_stride = output_stride * sizeof(float),
131       .ukernel = xnn_params.f32.hswish,
132       .params.f32_hswish = hardswish_op->f32_hswish_params,
133     };
134     hardswish_op->compute.type = xnn_parallelization_type_1d_tile_1d;
135     hardswish_op->compute.task_1d_tile_1d = (pthreadpool_task_1d_tile_1d_t) xnn_compute_univector_strided;
136     hardswish_op->compute.range[0] = batch_size;
137     hardswish_op->compute.tile[0] = 1;
138   }
139   hardswish_op->state = xnn_run_state_ready;
140 
141   return xnn_status_success;
142 }
143