• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a transformation that attaches !callees metadata to
11 // indirect call sites. For a given call site, the metadata, if present,
12 // indicates the set of functions the call site could possibly target at
13 // run-time. This metadata is added to indirect call sites when the set of
14 // possible targets can be determined by analysis and is known to be small. The
15 // analysis driving the transformation is similar to constant propagation and
16 // makes uses of the generic sparse propagation solver.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Transforms/IPO/CalledValuePropagation.h"
21 #include "llvm/Analysis/SparsePropagation.h"
22 #include "llvm/Analysis/ValueLatticeUtils.h"
23 #include "llvm/IR/InstVisitor.h"
24 #include "llvm/IR/MDBuilder.h"
25 #include "llvm/Transforms/IPO.h"
26 using namespace llvm;
27 
28 #define DEBUG_TYPE "called-value-propagation"
29 
30 /// The maximum number of functions to track per lattice value. Once the number
31 /// of functions a call site can possibly target exceeds this threshold, it's
32 /// lattice value becomes overdefined. The number of possible lattice values is
33 /// bounded by Ch(F, M), where F is the number of functions in the module and M
34 /// is MaxFunctionsPerValue. As such, this value should be kept very small. We
35 /// likely can't do anything useful for call sites with a large number of
36 /// possible targets, anyway.
37 static cl::opt<unsigned> MaxFunctionsPerValue(
38     "cvp-max-functions-per-value", cl::Hidden, cl::init(4),
39     cl::desc("The maximum number of functions to track per lattice value"));
40 
41 namespace {
42 /// To enable interprocedural analysis, we assign LLVM values to the following
43 /// groups. The register group represents SSA registers, the return group
44 /// represents the return values of functions, and the memory group represents
45 /// in-memory values. An LLVM Value can technically be in more than one group.
46 /// It's necessary to distinguish these groups so we can, for example, track a
47 /// global variable separately from the value stored at its location.
48 enum class IPOGrouping { Register, Return, Memory };
49 
50 /// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings.
51 using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>;
52 
53 /// The lattice value type used by our custom lattice function. It holds the
54 /// lattice state, and a set of functions.
55 class CVPLatticeVal {
56 public:
57   /// The states of the lattice values. Only the FunctionSet state is
58   /// interesting. It indicates the set of functions to which an LLVM value may
59   /// refer.
60   enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked };
61 
62   /// Comparator for sorting the functions set. We want to keep the order
63   /// deterministic for testing, etc.
64   struct Compare {
operator ()__anonb1fa75b00111::CVPLatticeVal::Compare65     bool operator()(const Function *LHS, const Function *RHS) const {
66       return LHS->getName() < RHS->getName();
67     }
68   };
69 
CVPLatticeVal()70   CVPLatticeVal() : LatticeState(Undefined) {}
CVPLatticeVal(CVPLatticeStateTy LatticeState)71   CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {}
CVPLatticeVal(std::vector<Function * > && Functions)72   CVPLatticeVal(std::vector<Function *> &&Functions)
73       : LatticeState(FunctionSet), Functions(std::move(Functions)) {
74     assert(std::is_sorted(this->Functions.begin(), this->Functions.end(),
75                           Compare()));
76   }
77 
78   /// Get a reference to the functions held by this lattice value. The number
79   /// of functions will be zero for states other than FunctionSet.
getFunctions() const80   const std::vector<Function *> &getFunctions() const {
81     return Functions;
82   }
83 
84   /// Returns true if the lattice value is in the FunctionSet state.
isFunctionSet() const85   bool isFunctionSet() const { return LatticeState == FunctionSet; }
86 
operator ==(const CVPLatticeVal & RHS) const87   bool operator==(const CVPLatticeVal &RHS) const {
88     return LatticeState == RHS.LatticeState && Functions == RHS.Functions;
89   }
90 
operator !=(const CVPLatticeVal & RHS) const91   bool operator!=(const CVPLatticeVal &RHS) const {
92     return LatticeState != RHS.LatticeState || Functions != RHS.Functions;
93   }
94 
95 private:
96   /// Holds the state this lattice value is in.
97   CVPLatticeStateTy LatticeState;
98 
99   /// Holds functions indicating the possible targets of call sites. This set
100   /// is empty for lattice values in the undefined, overdefined, and untracked
101   /// states. The maximum size of the set is controlled by
102   /// MaxFunctionsPerValue. Since most LLVM values are expected to be in
103   /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be
104   /// small and efficiently copyable.
105   // FIXME: This could be a TinyPtrVector and/or merge with LatticeState.
106   std::vector<Function *> Functions;
107 };
108 
109 /// The custom lattice function used by the generic sparse propagation solver.
110 /// It handles merging lattice values and computing new lattice values for
111 /// constants, arguments, values returned from trackable functions, and values
112 /// located in trackable global variables. It also computes the lattice values
113 /// that change as a result of executing instructions.
114 class CVPLatticeFunc
115     : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> {
116 public:
CVPLatticeFunc()117   CVPLatticeFunc()
118       : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined),
119                                 CVPLatticeVal(CVPLatticeVal::Overdefined),
120                                 CVPLatticeVal(CVPLatticeVal::Untracked)) {}
121 
122   /// Compute and return a CVPLatticeVal for the given CVPLatticeKey.
ComputeLatticeVal(CVPLatticeKey Key)123   CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override {
124     switch (Key.getInt()) {
125     case IPOGrouping::Register:
126       if (isa<Instruction>(Key.getPointer())) {
127         return getUndefVal();
128       } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) {
129         if (canTrackArgumentsInterprocedurally(A->getParent()))
130           return getUndefVal();
131       } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) {
132         return computeConstant(C);
133       }
134       return getOverdefinedVal();
135     case IPOGrouping::Memory:
136     case IPOGrouping::Return:
137       if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) {
138         if (canTrackGlobalVariableInterprocedurally(GV))
139           return computeConstant(GV->getInitializer());
140       } else if (auto *F = cast<Function>(Key.getPointer()))
141         if (canTrackReturnsInterprocedurally(F))
142           return getUndefVal();
143     }
144     return getOverdefinedVal();
145   }
146 
147   /// Merge the two given lattice values. The interesting cases are merging two
148   /// FunctionSet values and a FunctionSet value with an Undefined value. For
149   /// these cases, we simply union the function sets. If the size of the union
150   /// is greater than the maximum functions we track, the merged value is
151   /// overdefined.
MergeValues(CVPLatticeVal X,CVPLatticeVal Y)152   CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override {
153     if (X == getOverdefinedVal() || Y == getOverdefinedVal())
154       return getOverdefinedVal();
155     if (X == getUndefVal() && Y == getUndefVal())
156       return getUndefVal();
157     std::vector<Function *> Union;
158     std::set_union(X.getFunctions().begin(), X.getFunctions().end(),
159                    Y.getFunctions().begin(), Y.getFunctions().end(),
160                    std::back_inserter(Union), CVPLatticeVal::Compare{});
161     if (Union.size() > MaxFunctionsPerValue)
162       return getOverdefinedVal();
163     return CVPLatticeVal(std::move(Union));
164   }
165 
166   /// Compute the lattice values that change as a result of executing the given
167   /// instruction. The changed values are stored in \p ChangedValues. We handle
168   /// just a few kinds of instructions since we're only propagating values that
169   /// can be called.
ComputeInstructionState(Instruction & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)170   void ComputeInstructionState(
171       Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
172       SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override {
173     switch (I.getOpcode()) {
174     case Instruction::Call:
175       return visitCallSite(cast<CallInst>(&I), ChangedValues, SS);
176     case Instruction::Invoke:
177       return visitCallSite(cast<InvokeInst>(&I), ChangedValues, SS);
178     case Instruction::Load:
179       return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS);
180     case Instruction::Ret:
181       return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS);
182     case Instruction::Select:
183       return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS);
184     case Instruction::Store:
185       return visitStore(*cast<StoreInst>(&I), ChangedValues, SS);
186     default:
187       return visitInst(I, ChangedValues, SS);
188     }
189   }
190 
191   /// Print the given CVPLatticeVal to the specified stream.
PrintLatticeVal(CVPLatticeVal LV,raw_ostream & OS)192   void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override {
193     if (LV == getUndefVal())
194       OS << "Undefined  ";
195     else if (LV == getOverdefinedVal())
196       OS << "Overdefined";
197     else if (LV == getUntrackedVal())
198       OS << "Untracked  ";
199     else
200       OS << "FunctionSet";
201   }
202 
203   /// Print the given CVPLatticeKey to the specified stream.
PrintLatticeKey(CVPLatticeKey Key,raw_ostream & OS)204   void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override {
205     if (Key.getInt() == IPOGrouping::Register)
206       OS << "<reg> ";
207     else if (Key.getInt() == IPOGrouping::Memory)
208       OS << "<mem> ";
209     else if (Key.getInt() == IPOGrouping::Return)
210       OS << "<ret> ";
211     if (isa<Function>(Key.getPointer()))
212       OS << Key.getPointer()->getName();
213     else
214       OS << *Key.getPointer();
215   }
216 
217   /// We collect a set of indirect calls when visiting call sites. This method
218   /// returns a reference to that set.
getIndirectCalls()219   SmallPtrSetImpl<Instruction *> &getIndirectCalls() { return IndirectCalls; }
220 
221 private:
222   /// Holds the indirect calls we encounter during the analysis. We will attach
223   /// metadata to these calls after the analysis indicating the functions the
224   /// calls can possibly target.
225   SmallPtrSet<Instruction *, 32> IndirectCalls;
226 
227   /// Compute a new lattice value for the given constant. The constant, after
228   /// stripping any pointer casts, should be a Function. We ignore null
229   /// pointers as an optimization, since calling these values is undefined
230   /// behavior.
computeConstant(Constant * C)231   CVPLatticeVal computeConstant(Constant *C) {
232     if (isa<ConstantPointerNull>(C))
233       return CVPLatticeVal(CVPLatticeVal::FunctionSet);
234     if (auto *F = dyn_cast<Function>(C->stripPointerCasts()))
235       return CVPLatticeVal({F});
236     return getOverdefinedVal();
237   }
238 
239   /// Handle return instructions. The function's return state is the merge of
240   /// the returned value state and the function's return state.
visitReturn(ReturnInst & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)241   void visitReturn(ReturnInst &I,
242                    DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
243                    SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
244     Function *F = I.getParent()->getParent();
245     if (F->getReturnType()->isVoidTy())
246       return;
247     auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register);
248     auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
249     ChangedValues[RetF] =
250         MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
251   }
252 
253   /// Handle call sites. The state of a called function's formal arguments is
254   /// the merge of the argument state with the call sites corresponding actual
255   /// argument state. The call site state is the merge of the call site state
256   /// with the returned value state of the called function.
visitCallSite(CallSite CS,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)257   void visitCallSite(CallSite CS,
258                      DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
259                      SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
260     Function *F = CS.getCalledFunction();
261     Instruction *I = CS.getInstruction();
262     auto RegI = CVPLatticeKey(I, IPOGrouping::Register);
263 
264     // If this is an indirect call, save it so we can quickly revisit it when
265     // attaching metadata.
266     if (!F)
267       IndirectCalls.insert(I);
268 
269     // If we can't track the function's return values, there's nothing to do.
270     if (!F || !canTrackReturnsInterprocedurally(F)) {
271       // Void return, No need to create and update CVPLattice state as no one
272       // can use it.
273       if (I->getType()->isVoidTy())
274         return;
275       ChangedValues[RegI] = getOverdefinedVal();
276       return;
277     }
278 
279     // Inform the solver that the called function is executable, and perform
280     // the merges for the arguments and return value.
281     SS.MarkBlockExecutable(&F->front());
282     auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
283     for (Argument &A : F->args()) {
284       auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register);
285       auto RegActual =
286           CVPLatticeKey(CS.getArgument(A.getArgNo()), IPOGrouping::Register);
287       ChangedValues[RegFormal] =
288           MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual));
289     }
290 
291     // Void return, No need to create and update CVPLattice state as no one can
292     // use it.
293     if (I->getType()->isVoidTy())
294       return;
295 
296     ChangedValues[RegI] =
297         MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
298   }
299 
300   /// Handle select instructions. The select instruction state is the merge the
301   /// true and false value states.
visitSelect(SelectInst & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)302   void visitSelect(SelectInst &I,
303                    DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
304                    SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
305     auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
306     auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register);
307     auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register);
308     ChangedValues[RegI] =
309         MergeValues(SS.getValueState(RegT), SS.getValueState(RegF));
310   }
311 
312   /// Handle load instructions. If the pointer operand of the load is a global
313   /// variable, we attempt to track the value. The loaded value state is the
314   /// merge of the loaded value state with the global variable state.
visitLoad(LoadInst & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)315   void visitLoad(LoadInst &I,
316                  DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
317                  SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
318     auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
319     if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) {
320       auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
321       ChangedValues[RegI] =
322           MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
323     } else {
324       ChangedValues[RegI] = getOverdefinedVal();
325     }
326   }
327 
328   /// Handle store instructions. If the pointer operand of the store is a
329   /// global variable, we attempt to track the value. The global variable state
330   /// is the merge of the stored value state with the global variable state.
visitStore(StoreInst & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)331   void visitStore(StoreInst &I,
332                   DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
333                   SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
334     auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand());
335     if (!GV)
336       return;
337     auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register);
338     auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
339     ChangedValues[MemGV] =
340         MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
341   }
342 
343   /// Handle all other instructions. All other instructions are marked
344   /// overdefined.
visitInst(Instruction & I,DenseMap<CVPLatticeKey,CVPLatticeVal> & ChangedValues,SparseSolver<CVPLatticeKey,CVPLatticeVal> & SS)345   void visitInst(Instruction &I,
346                  DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
347                  SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
348     auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
349     ChangedValues[RegI] = getOverdefinedVal();
350   }
351 };
352 } // namespace
353 
354 namespace llvm {
355 /// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver
356 /// must translate between LatticeKeys and LLVM Values when adding Values to
357 /// its work list and inspecting the state of control-flow related values.
358 template <> struct LatticeKeyInfo<CVPLatticeKey> {
getValueFromLatticeKeyllvm::LatticeKeyInfo359   static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) {
360     return Key.getPointer();
361   }
getLatticeKeyFromValuellvm::LatticeKeyInfo362   static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) {
363     return CVPLatticeKey(V, IPOGrouping::Register);
364   }
365 };
366 } // namespace llvm
367 
runCVP(Module & M)368 static bool runCVP(Module &M) {
369   // Our custom lattice function and generic sparse propagation solver.
370   CVPLatticeFunc Lattice;
371   SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice);
372 
373   // For each function in the module, if we can't track its arguments, let the
374   // generic solver assume it is executable.
375   for (Function &F : M)
376     if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F))
377       Solver.MarkBlockExecutable(&F.front());
378 
379   // Solver our custom lattice. In doing so, we will also build a set of
380   // indirect call sites.
381   Solver.Solve();
382 
383   // Attach metadata to the indirect call sites that were collected indicating
384   // the set of functions they can possibly target.
385   bool Changed = false;
386   MDBuilder MDB(M.getContext());
387   for (Instruction *C : Lattice.getIndirectCalls()) {
388     CallSite CS(C);
389     auto RegI = CVPLatticeKey(CS.getCalledValue(), IPOGrouping::Register);
390     CVPLatticeVal LV = Solver.getExistingValueState(RegI);
391     if (!LV.isFunctionSet() || LV.getFunctions().empty())
392       continue;
393     MDNode *Callees = MDB.createCallees(LV.getFunctions());
394     C->setMetadata(LLVMContext::MD_callees, Callees);
395     Changed = true;
396   }
397 
398   return Changed;
399 }
400 
run(Module & M,ModuleAnalysisManager &)401 PreservedAnalyses CalledValuePropagationPass::run(Module &M,
402                                                   ModuleAnalysisManager &) {
403   runCVP(M);
404   return PreservedAnalyses::all();
405 }
406 
407 namespace {
408 class CalledValuePropagationLegacyPass : public ModulePass {
409 public:
410   static char ID;
411 
getAnalysisUsage(AnalysisUsage & AU) const412   void getAnalysisUsage(AnalysisUsage &AU) const override {
413     AU.setPreservesAll();
414   }
415 
CalledValuePropagationLegacyPass()416   CalledValuePropagationLegacyPass() : ModulePass(ID) {
417     initializeCalledValuePropagationLegacyPassPass(
418         *PassRegistry::getPassRegistry());
419   }
420 
runOnModule(Module & M)421   bool runOnModule(Module &M) override {
422     if (skipModule(M))
423       return false;
424     return runCVP(M);
425   }
426 };
427 } // namespace
428 
429 char CalledValuePropagationLegacyPass::ID = 0;
430 INITIALIZE_PASS(CalledValuePropagationLegacyPass, "called-value-propagation",
431                 "Called Value Propagation", false, false)
432 
createCalledValuePropagationPass()433 ModulePass *llvm::createCalledValuePropagationPass() {
434   return new CalledValuePropagationLegacyPass();
435 }
436