1 # Copyright 2016 The TensorFlow Authors. All Rights Reserved. 2 # 3 # Licensed under the Apache License, Version 2.0 (the "License"); 4 # you may not use this file except in compliance with the License. 5 # You may obtain a copy of the License at 6 # 7 # http://www.apache.org/licenses/LICENSE-2.0 8 # 9 # Unless required by applicable law or agreed to in writing, software 10 # distributed under the License is distributed on an "AS IS" BASIS, 11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 # See the License for the specific language governing permissions and 13 # limitations under the License. 14 # ============================================================================== 15 """Tests for Keras backend.""" 16 from __future__ import absolute_import 17 from __future__ import division 18 from __future__ import print_function 19 20 from absl.testing import parameterized 21 import numpy as np 22 import scipy.sparse 23 24 from tensorflow.core.protobuf import config_pb2 25 from tensorflow.python import keras 26 from tensorflow.python.eager import context 27 from tensorflow.python.framework import config 28 from tensorflow.python.framework import errors_impl 29 from tensorflow.python.framework import ops 30 from tensorflow.python.framework import sparse_tensor 31 from tensorflow.python.framework import test_util 32 from tensorflow.python.ops import array_ops 33 from tensorflow.python.ops import nn 34 from tensorflow.python.ops import variables 35 from tensorflow.python.platform import test 36 from tensorflow.python.util import tf_inspect 37 38 39 def compare_single_input_op_to_numpy(keras_op, 40 np_op, 41 input_shape, 42 dtype='float32', 43 negative_values=True, 44 keras_args=None, 45 keras_kwargs=None, 46 np_args=None, 47 np_kwargs=None): 48 keras_args = keras_args or [] 49 keras_kwargs = keras_kwargs or {} 50 np_args = np_args or [] 51 np_kwargs = np_kwargs or {} 52 inputs = 2. * np.random.random(input_shape) 53 if negative_values: 54 inputs -= 1. 55 keras_output = keras_op(keras.backend.variable(inputs, dtype=dtype), 56 *keras_args, **keras_kwargs) 57 keras_output = keras.backend.eval(keras_output) 58 np_output = np_op(inputs.astype(dtype), *np_args, **np_kwargs) 59 try: 60 np.testing.assert_allclose(keras_output, np_output, atol=1e-4) 61 except AssertionError: 62 raise AssertionError('Test for op `' + str(keras_op.__name__) + '` failed; ' 63 'Expected ' + str(np_output) + ' but got ' + 64 str(keras_output)) 65 66 67 def compare_two_inputs_op_to_numpy(keras_op, 68 np_op, 69 input_shape_a, 70 input_shape_b, 71 dtype='float32', 72 keras_args=None, 73 keras_kwargs=None, 74 np_args=None, 75 np_kwargs=None): 76 keras_args = keras_args or [] 77 keras_kwargs = keras_kwargs or {} 78 np_args = np_args or [] 79 np_kwargs = np_kwargs or {} 80 input_a = np.random.random(input_shape_a) 81 input_b = np.random.random(input_shape_b) 82 keras_output = keras_op(keras.backend.variable(input_a, dtype=dtype), 83 keras.backend.variable(input_b, dtype=dtype), 84 *keras_args, **keras_kwargs) 85 keras_output = keras.backend.eval(keras_output) 86 np_output = np_op(input_a.astype(dtype), input_b.astype(dtype), 87 *np_args, **np_kwargs) 88 try: 89 np.testing.assert_allclose(keras_output, np_output, atol=1e-4) 90 except AssertionError: 91 raise AssertionError('Test for op `' + str(keras_op.__name__) + '` failed; ' 92 'Expected ' + str(np_output) + ' but got ' + 93 str(keras_output)) 94 95 96 class BackendResetTest(test.TestCase, parameterized.TestCase): 97 98 @test_util.run_all_in_graph_and_eager_modes 99 def test_new_config(self): 100 # User defined jit setting 101 config.set_optimizer_jit(False) 102 sess = keras.backend.get_session() 103 default_config = context.context().config 104 self.assertEqual( 105 sess._config.graph_options.optimizer_options.global_jit_level, 106 default_config.graph_options.optimizer_options.global_jit_level) 107 keras.backend.clear_session() 108 109 # New session has the same jit setting 110 sess = keras.backend.get_session() 111 default_config = context.context().config 112 self.assertEqual( 113 sess._config.graph_options.optimizer_options.global_jit_level, 114 default_config.graph_options.optimizer_options.global_jit_level) 115 keras.backend.clear_session() 116 117 # Change respected 118 config.set_optimizer_jit(True) 119 sess = keras.backend.get_session() 120 default_config = context.context().config 121 self.assertEqual( 122 sess._config.graph_options.optimizer_options.global_jit_level, 123 default_config.graph_options.optimizer_options.global_jit_level) 124 keras.backend.clear_session() 125 126 # We can't use the normal parameterized decorator because the test session 127 # will block graph clearing. 128 @parameterized.named_parameters(('_v1', context.graph_mode), 129 ('_v2', context.eager_mode)) 130 def test_new_graph(self, test_context): 131 with test_context(): 132 g_old = keras.backend.get_graph() 133 keras.backend.clear_session() 134 g = keras.backend.get_graph() 135 136 assert g_old is not g 137 138 139 @test_util.run_all_in_graph_and_eager_modes 140 class BackendUtilsTest(test.TestCase): 141 142 def test_backend(self): 143 self.assertEqual(keras.backend.backend(), 'tensorflow') 144 145 def test_get_reset_uids(self): 146 self.assertEqual(keras.backend.get_uid('foo'), 1) 147 self.assertEqual(keras.backend.get_uid('foo'), 2) 148 149 keras.backend.reset_uids() 150 self.assertEqual(keras.backend.get_uid('foo'), 1) 151 152 def test_learning_phase(self): 153 with self.cached_session() as sess: 154 with self.assertRaises(ValueError): 155 keras.backend.set_learning_phase(2) 156 157 # Test running with a learning-phase-consuming layer 158 with keras.backend.learning_phase_scope(0): 159 x = keras.Input((3,)) 160 y = keras.layers.BatchNormalization()(x) 161 if not context.executing_eagerly(): 162 self.evaluate(variables.global_variables_initializer()) 163 sess.run(y, feed_dict={x: np.random.random((2, 3))}) 164 165 def test_learning_phase_name(self): 166 with ops.name_scope('test_scope'): 167 # Test that outer name scopes do not affect the learning phase's name. 168 lp = keras.backend.symbolic_learning_phase() 169 self.assertEqual(lp.name, 'keras_learning_phase:0') 170 171 def test_learning_phase_scope(self): 172 initial_learning_phase = keras.backend.learning_phase() 173 with keras.backend.learning_phase_scope(1): 174 self.assertEqual(keras.backend.learning_phase(), 1) 175 self.assertEqual(keras.backend.learning_phase(), initial_learning_phase) 176 with keras.backend.learning_phase_scope(0): 177 self.assertEqual(keras.backend.learning_phase(), 0) 178 self.assertEqual(keras.backend.learning_phase(), initial_learning_phase) 179 with self.assertRaises(ValueError): 180 with keras.backend.learning_phase_scope(None): 181 pass 182 self.assertEqual(keras.backend.learning_phase(), initial_learning_phase) 183 184 new_learning_phase = 0 185 keras.backend.set_learning_phase(new_learning_phase) 186 self.assertEqual(keras.backend.learning_phase(), new_learning_phase) 187 with keras.backend.learning_phase_scope(1): 188 self.assertEqual(keras.backend.learning_phase(), 1) 189 self.assertEqual(keras.backend.learning_phase(), new_learning_phase) 190 191 def test_learning_phase_scope_in_graph(self): 192 initial_learning_phase_outside_graph = keras.backend.learning_phase() 193 with keras.backend.get_graph().as_default(): 194 initial_learning_phase_in_graph = keras.backend.learning_phase() 195 196 self.assertEqual(keras.backend.learning_phase(), 197 initial_learning_phase_outside_graph) 198 with keras.backend.learning_phase_scope(1): 199 self.assertEqual(keras.backend.learning_phase(), 1) 200 self.assertEqual(keras.backend.learning_phase(), 201 initial_learning_phase_outside_graph) 202 203 with keras.backend.get_graph().as_default(): 204 self.assertIs(keras.backend.learning_phase(), 205 initial_learning_phase_in_graph) 206 207 self.assertEqual(keras.backend.learning_phase(), 208 initial_learning_phase_outside_graph) 209 210 def test_int_shape(self): 211 x = keras.backend.ones(shape=(3, 4)) 212 self.assertEqual(keras.backend.int_shape(x), (3, 4)) 213 214 if not context.executing_eagerly(): 215 x = keras.backend.placeholder(shape=(None, 4)) 216 self.assertEqual(keras.backend.int_shape(x), (None, 4)) 217 218 def test_in_train_phase(self): 219 y1 = keras.backend.variable(1) 220 y2 = keras.backend.variable(2) 221 if context.executing_eagerly(): 222 with keras.backend.learning_phase_scope(0): 223 y_val_test = keras.backend.in_train_phase(y1, y2).numpy() 224 with keras.backend.learning_phase_scope(1): 225 y_val_train = keras.backend.in_train_phase(y1, y2).numpy() 226 else: 227 y = keras.backend.in_train_phase(y1, y2) 228 f = keras.backend.function([keras.backend.learning_phase()], [y]) 229 y_val_test = f([0])[0] 230 y_val_train = f([1])[0] 231 self.assertAllClose(y_val_test, 2) 232 self.assertAllClose(y_val_train, 1) 233 234 def test_is_keras_tensor(self): 235 x = keras.backend.variable(1) 236 self.assertEqual(keras.backend.is_keras_tensor(x), False) 237 x = keras.Input(shape=(1,)) 238 self.assertEqual(keras.backend.is_keras_tensor(x), True) 239 x = keras.Input(shape=(None,), ragged=True) 240 self.assertEqual(keras.backend.is_keras_tensor(x), True) 241 x = keras.Input(shape=(None, None), sparse=True) 242 self.assertEqual(keras.backend.is_keras_tensor(x), True) 243 with self.assertRaises(ValueError): 244 keras.backend.is_keras_tensor(0) 245 246 def test_stop_gradient(self): 247 x = keras.backend.variable(1) 248 y = keras.backend.stop_gradient(x) 249 if not context.executing_eagerly(): 250 self.assertEqual(y.op.name[:12], 'StopGradient') 251 252 xs = [keras.backend.variable(1) for _ in range(3)] 253 ys = keras.backend.stop_gradient(xs) 254 if not context.executing_eagerly(): 255 for y in ys: 256 self.assertEqual(y.op.name[:12], 'StopGradient') 257 258 def test_placeholder(self): 259 x = keras.backend.placeholder(shape=(3, 4)) 260 self.assertEqual(x.shape.as_list(), [3, 4]) 261 x = keras.backend.placeholder(shape=(3, 4), sparse=True) 262 self.assertEqual(x.shape.as_list(), [3, 4]) 263 264 def test_is_placeholder(self): 265 x = keras.backend.placeholder(shape=(1,)) 266 self.assertEqual(keras.backend.is_placeholder(x), True) 267 x = keras.backend.variable(1) 268 self.assertEqual(keras.backend.is_placeholder(x), False) 269 270 def test_print_tensor(self): 271 # Unfortunately it seems impossible to use `mock` (or any other method) 272 # to capture stdout when used inside a graph or graph function, thus 273 # we cannot test correctness. 274 # The message gets correctly printed in practice. 275 x = keras.backend.placeholder(shape=()) 276 y = keras.backend.print_tensor(x, 'eager=%s' % context.executing_eagerly()) 277 f = keras.backend.function(x, y) 278 f(0) 279 280 def test_cast_to_floatx(self): 281 x = keras.backend.variable(1, dtype='float64') 282 x = keras.backend.cast_to_floatx(x) 283 self.assertEqual(x.dtype.name, 'float32') 284 x = keras.backend.cast_to_floatx(2) 285 self.assertEqual(x.dtype.name, 'float32') 286 287 288 @test_util.run_all_in_graph_and_eager_modes 289 class BackendVariableTest(test.TestCase): 290 291 def test_zeros(self): 292 x = keras.backend.zeros((3, 4)) 293 val = keras.backend.eval(x) 294 self.assertAllClose(val, np.zeros((3, 4))) 295 296 def test_ones(self): 297 x = keras.backend.ones((3, 4)) 298 val = keras.backend.eval(x) 299 self.assertAllClose(val, np.ones((3, 4))) 300 301 def test_eye(self): 302 x = keras.backend.eye(4) 303 val = keras.backend.eval(x) 304 self.assertAllClose(val, np.eye(4)) 305 306 def test_zeros_like(self): 307 x = keras.backend.zeros((3, 4)) 308 y = keras.backend.zeros_like(x) 309 val = keras.backend.eval(y) 310 self.assertAllClose(val, np.zeros((3, 4))) 311 312 def test_ones_like(self): 313 x = keras.backend.zeros((3, 4)) 314 y = keras.backend.ones_like(x) 315 val = keras.backend.eval(y) 316 self.assertAllClose(val, np.ones((3, 4))) 317 318 def test_random_uniform_variable(self): 319 x = keras.backend.random_uniform_variable((30, 20), low=1, high=2, seed=0) 320 val = keras.backend.eval(x) 321 self.assertAllClose(val.mean(), 1.5, atol=1e-1) 322 self.assertAllClose(val.max(), 2., atol=1e-1) 323 self.assertAllClose(val.min(), 1., atol=1e-1) 324 325 def test_random_normal_variable(self): 326 x = keras.backend.random_normal_variable((30, 20), 1., 0.5, seed=0) 327 val = keras.backend.eval(x) 328 self.assertAllClose(val.mean(), 1., atol=1e-1) 329 self.assertAllClose(val.std(), 0.5, atol=1e-1) 330 331 def test_count_params(self): 332 x = keras.backend.zeros((4, 5)) 333 val = keras.backend.count_params(x) 334 self.assertAllClose(val, 20) 335 336 def test_constant(self): 337 ref_val = np.random.random((3, 4)).astype('float32') 338 x = keras.backend.constant(ref_val) 339 val = keras.backend.eval(x) 340 self.assertAllClose(val, ref_val) 341 342 def test_sparse_variable(self): 343 val = scipy.sparse.eye(10) 344 x = keras.backend.variable(val) 345 self.assertTrue(isinstance(x, sparse_tensor.SparseTensor)) 346 347 y = keras.backend.to_dense(x) 348 self.assertFalse(keras.backend.is_sparse(y)) 349 350 351 @test_util.run_all_in_graph_and_eager_modes 352 class BackendLinearAlgebraTest(test.TestCase, parameterized.TestCase): 353 354 def test_dot(self): 355 x = keras.backend.ones(shape=(2, 3)) 356 y = keras.backend.ones(shape=(3, 4)) 357 xy = keras.backend.dot(x, y) 358 self.assertEqual(xy.shape.as_list(), [2, 4]) 359 360 x = keras.backend.ones(shape=(32, 28, 3)) 361 y = keras.backend.ones(shape=(3, 4)) 362 xy = keras.backend.dot(x, y) 363 self.assertEqual(xy.shape.as_list(), [32, 28, 4]) 364 365 @parameterized.parameters( 366 [(2, 3, 4, 5), (2, 5, 6, 7), (2, 3, 4, 6, 7), (3, 1)], 367 [(2, 20, 1), (2, 30, 20), (2, 1, 30), (1, 2)], 368 [(4, 2, 3), (4, 5, 3), (4, 2, 5), (2, 2)], 369 [(4, 2), (4, 2, 3), (4, 3), (1, 1)], 370 [(4, 2), (4, 2, 3), (4, 3), 1], 371 [(4, 2, 3), (4, 3), (4, 2), (2, 1)], 372 ) 373 def test_batch_dot(self, x_shape, y_shape, output_shape, axes): 374 x_val = np.random.random(x_shape) 375 y_val = np.random.random(y_shape) 376 x = keras.backend.variable(x_val) 377 y = keras.backend.variable(y_val) 378 xy = keras.backend.batch_dot(x, y, axes=axes) 379 self.assertEqual(tuple(xy.shape.as_list()), output_shape) 380 xy_val = keras.backend.eval(xy) 381 ref_val = self._reference_batch_dot(x_val, y_val, axes) 382 self.assertAllClose(xy_val, ref_val, atol=1e-5) 383 384 def _reference_batch_dot(self, x, y, axes): 385 if isinstance(axes, int): 386 axes = [axes, axes] 387 elif isinstance(axes, tuple): 388 axes = list(axes) 389 if axes is None: 390 if y.ndim == 2: 391 axes = [x.ndim - 1, y.ndim - 1] 392 else: 393 axes = [x.ndim - 1, y.ndim - 2] 394 if axes[0] < 0: 395 axes[0] += x.ndim 396 if axes[1] < 0: 397 axes[1] += y.ndim 398 result = [] 399 axes = [axes[0] - 1, axes[1] - 1] 400 for xi, yi in zip(x, y): 401 result.append(np.tensordot(xi, yi, axes)) 402 result = np.array(result) 403 if result.ndim == 1: 404 result = np.expand_dims(result, -1) 405 return result 406 407 def test_reduction_ops(self): 408 ops_to_test = [ 409 (keras.backend.max, np.max), 410 (keras.backend.min, np.min), 411 (keras.backend.sum, np.sum), 412 (keras.backend.prod, np.prod), 413 (keras.backend.var, np.var), 414 (keras.backend.std, np.std), 415 (keras.backend.mean, np.mean), 416 (keras.backend.argmin, np.argmin), 417 (keras.backend.argmax, np.argmax), 418 ] 419 for keras_op, np_op in ops_to_test: 420 compare_single_input_op_to_numpy(keras_op, np_op, input_shape=(4, 7, 5), 421 keras_kwargs={'axis': 1}, 422 np_kwargs={'axis': 1}) 423 compare_single_input_op_to_numpy(keras_op, np_op, input_shape=(4, 7, 5), 424 keras_kwargs={'axis': -1}, 425 np_kwargs={'axis': -1}) 426 if 'keepdims' in tf_inspect.getargspec(keras_op).args: 427 compare_single_input_op_to_numpy(keras_op, np_op, 428 input_shape=(4, 7, 5), 429 keras_kwargs={'axis': 1, 430 'keepdims': True}, 431 np_kwargs={'axis': 1, 432 'keepdims': True}) 433 434 def test_elementwise_ops(self): 435 ops_to_test = [ 436 (keras.backend.square, np.square), 437 (keras.backend.abs, np.abs), 438 (keras.backend.round, np.round), 439 (keras.backend.sign, np.sign), 440 (keras.backend.sin, np.sin), 441 (keras.backend.cos, np.cos), 442 (keras.backend.exp, np.exp), 443 ] 444 for keras_op, np_op in ops_to_test: 445 compare_single_input_op_to_numpy(keras_op, np_op, input_shape=(4, 7)) 446 447 ops_to_test = [ 448 (keras.backend.sqrt, np.sqrt), 449 (keras.backend.log, np.log), 450 ] 451 for keras_op, np_op in ops_to_test: 452 compare_single_input_op_to_numpy(keras_op, np_op, 453 input_shape=(4, 7), 454 negative_values=False) 455 456 compare_single_input_op_to_numpy( 457 keras.backend.clip, np.clip, 458 input_shape=(6, 4), 459 keras_kwargs={'min_value': 0.1, 'max_value': 2.4}, 460 np_kwargs={'a_min': 0.1, 'a_max': 1.4}) 461 462 compare_single_input_op_to_numpy( 463 keras.backend.pow, np.power, 464 input_shape=(6, 4), 465 keras_args=[3], 466 np_args=[3]) 467 468 def test_two_tensor_ops(self): 469 ops_to_test = [ 470 (keras.backend.equal, np.equal), 471 (keras.backend.not_equal, np.not_equal), 472 (keras.backend.greater, np.greater), 473 (keras.backend.greater_equal, np.greater_equal), 474 (keras.backend.less, np.less), 475 (keras.backend.less_equal, np.less_equal), 476 (keras.backend.maximum, np.maximum), 477 (keras.backend.minimum, np.minimum), 478 ] 479 for keras_op, np_op in ops_to_test: 480 compare_two_inputs_op_to_numpy(keras_op, np_op, 481 input_shape_a=(4, 7), 482 input_shape_b=(4, 7)) 483 484 def test_relu(self): 485 x = ops.convert_to_tensor([[-4, 0], [2, 7]], 'float32') 486 487 # standard relu 488 relu_op = keras.backend.relu(x) 489 self.assertAllClose(keras.backend.eval(relu_op), [[0, 0], [2, 7]]) 490 491 # alpha (leaky relu used) 492 relu_op = keras.backend.relu(x, alpha=0.5) 493 if not context.executing_eagerly(): 494 self.assertTrue('LeakyRelu' in relu_op.name) 495 self.assertAllClose(keras.backend.eval(relu_op), [[-2, 0], [2, 7]]) 496 497 # max_value < some elements 498 relu_op = keras.backend.relu(x, max_value=5) 499 self.assertAllClose(keras.backend.eval(relu_op), [[0, 0], [2, 5]]) 500 501 # nn.relu6 used 502 relu_op = keras.backend.relu(x, max_value=6) 503 if not context.executing_eagerly(): 504 self.assertTrue('Relu6' in relu_op.name) # uses tf.nn.relu6 505 self.assertAllClose(keras.backend.eval(relu_op), [[0, 0], [2, 6]]) 506 507 # max value > 6 508 relu_op = keras.backend.relu(x, max_value=10) 509 self.assertAllClose(keras.backend.eval(relu_op), [[0, 0], [2, 7]]) 510 511 # max value is float 512 relu_op = keras.backend.relu(x, max_value=4.3) 513 self.assertAllClose(keras.backend.eval(relu_op), [[0, 0], [2, 4.3]]) 514 515 # max value == 0 516 relu_op = keras.backend.relu(x, max_value=0) 517 self.assertAllClose(keras.backend.eval(relu_op), [[0, 0], [0, 0]]) 518 519 # alpha and max_value 520 relu_op = keras.backend.relu(x, alpha=0.25, max_value=3) 521 self.assertAllClose(keras.backend.eval(relu_op), [[-1, 0], [2, 3]]) 522 523 # threshold 524 relu_op = keras.backend.relu(x, threshold=3) 525 self.assertAllClose(keras.backend.eval(relu_op), [[0, 0], [0, 7]]) 526 527 # threshold is float 528 relu_op = keras.backend.relu(x, threshold=1.5) 529 self.assertAllClose(keras.backend.eval(relu_op), [[0, 0], [2, 7]]) 530 531 # threshold is negative 532 relu_op = keras.backend.relu(x, threshold=-5) 533 self.assertAllClose(keras.backend.eval(relu_op), [[-4, 0], [2, 7]]) 534 535 # threshold and max_value 536 relu_op = keras.backend.relu(x, threshold=3, max_value=5) 537 self.assertAllClose(keras.backend.eval(relu_op), [[0, 0], [0, 5]]) 538 539 # threshold and alpha 540 relu_op = keras.backend.relu(x, alpha=0.25, threshold=4) 541 self.assertAllClose(keras.backend.eval(relu_op), [[-2, -1], [-0.5, 7]]) 542 543 # threshold, alpha, and max_value 544 relu_op = keras.backend.relu(x, alpha=0.25, threshold=4, max_value=5) 545 self.assertAllClose(keras.backend.eval(relu_op), [[-2, -1], [-0.5, 5]]) 546 547 # Test case for GitHub issue 35430, with integer dtype 548 x = keras.Input(shape=(), name='x', dtype='int64') 549 y = keras.layers.ReLU(max_value=100, dtype='int64')(x) 550 551 552 @test_util.run_all_in_graph_and_eager_modes 553 class BackendShapeOpsTest(test.TestCase): 554 555 def test_reshape(self): 556 compare_single_input_op_to_numpy(keras.backend.reshape, np.reshape, 557 input_shape=(4, 7), 558 keras_args=[(2, 14)], 559 np_args=[(2, 14)]) 560 561 def test_concatenate(self): 562 a = keras.backend.variable(np.ones((1, 2, 3))) 563 b = keras.backend.variable(np.ones((1, 2, 2))) 564 y = keras.backend.concatenate([a, b], axis=-1) 565 self.assertEqual(y.shape.as_list(), [1, 2, 5]) 566 567 def test_permute_dimensions(self): 568 compare_single_input_op_to_numpy(keras.backend.permute_dimensions, 569 np.transpose, 570 input_shape=(4, 7), 571 keras_args=[(1, 0)], 572 np_args=[(1, 0)]) 573 574 def test_resize_images(self): 575 height_factor = 2 576 width_factor = 2 577 data_format = 'channels_last' 578 x = keras.backend.variable(np.ones((1, 2, 2, 3))) 579 y = keras.backend.resize_images(x, 580 height_factor, 581 width_factor, 582 data_format) 583 self.assertEqual(y.shape.as_list(), [1, 4, 4, 3]) 584 585 data_format = 'channels_first' 586 x = keras.backend.variable(np.ones((1, 3, 2, 2))) 587 y = keras.backend.resize_images(x, 588 height_factor, 589 width_factor, 590 data_format) 591 self.assertEqual(y.shape.as_list(), [1, 3, 4, 4]) 592 593 # Invalid use: 594 with self.assertRaises(ValueError): 595 keras.backend.resize_images(x, 596 height_factor, 597 width_factor, 598 data_format='unknown') 599 600 def test_resize_volumes(self): 601 height_factor = 2 602 width_factor = 2 603 depth_factor = 2 604 data_format = 'channels_last' 605 x = keras.backend.variable(np.ones((1, 2, 2, 2, 3))) 606 y = keras.backend.resize_volumes(x, 607 depth_factor, 608 height_factor, 609 width_factor, 610 data_format) 611 self.assertEqual(y.shape.as_list(), [1, 4, 4, 4, 3]) 612 613 data_format = 'channels_first' 614 x = keras.backend.variable(np.ones((1, 3, 2, 2, 2))) 615 y = keras.backend.resize_volumes(x, 616 depth_factor, 617 height_factor, 618 width_factor, 619 data_format) 620 self.assertEqual(y.shape.as_list(), [1, 3, 4, 4, 4]) 621 622 # Invalid use: 623 with self.assertRaises(ValueError): 624 keras.backend.resize_volumes(x, 625 depth_factor, 626 height_factor, 627 width_factor, 628 data_format='unknown') 629 630 def test_repeat_elements(self): 631 x = keras.backend.variable(np.ones((1, 3, 2))) 632 y = keras.backend.repeat_elements(x, 3, axis=1) 633 self.assertEqual(y.shape.as_list(), [1, 9, 2]) 634 635 # Use with a dynamic axis: 636 if not context.executing_eagerly(): 637 x = keras.backend.placeholder(shape=(2, None, 2)) 638 y = keras.backend.repeat_elements(x, 3, axis=1) 639 self.assertEqual(y.shape.as_list(), [2, None, 2]) 640 641 def test_repeat(self): 642 x = keras.backend.variable(np.ones((1, 3))) 643 y = keras.backend.repeat(x, 2) 644 self.assertEqual(y.shape.as_list(), [1, 2, 3]) 645 646 def test_flatten(self): 647 compare_single_input_op_to_numpy(keras.backend.flatten, 648 np.reshape, 649 input_shape=(4, 7, 6), 650 np_args=[(4 * 7 * 6,)]) 651 652 def test_batch_flatten(self): 653 compare_single_input_op_to_numpy(keras.backend.batch_flatten, 654 np.reshape, 655 input_shape=(4, 7, 6), 656 np_args=[(4, 7 * 6)]) 657 658 def test_temporal_padding(self): 659 660 def ref_op(x, padding): 661 shape = list(x.shape) 662 shape[1] += padding[0] + padding[1] 663 y = np.zeros(tuple(shape)) 664 y[:, padding[0]:-padding[1], :] = x 665 return y 666 667 compare_single_input_op_to_numpy(keras.backend.temporal_padding, 668 ref_op, 669 input_shape=(4, 7, 6), 670 keras_args=[(2, 3)], 671 np_args=[(2, 3)]) 672 673 def test_spatial_2d_padding(self): 674 675 def ref_op(x, padding, data_format='channels_last'): 676 shape = list(x.shape) 677 if data_format == 'channels_last': 678 shape[1] += padding[0][0] + padding[0][1] 679 shape[2] += padding[1][0] + padding[1][1] 680 y = np.zeros(tuple(shape)) 681 y[:, padding[0][0]:-padding[0][1], padding[1][0]:-padding[1][1], :] = x 682 else: 683 shape[2] += padding[0][0] + padding[0][1] 684 shape[3] += padding[1][0] + padding[1][1] 685 y = np.zeros(tuple(shape)) 686 y[:, :, padding[0][0]:-padding[0][1], padding[1][0]:-padding[1][1]] = x 687 return y 688 689 compare_single_input_op_to_numpy( 690 keras.backend.spatial_2d_padding, 691 ref_op, 692 input_shape=(2, 3, 2, 3), 693 keras_args=[((2, 3), (1, 2))], 694 keras_kwargs={'data_format': 'channels_last'}, 695 np_args=[((2, 3), (1, 2))], 696 np_kwargs={'data_format': 'channels_last'}) 697 compare_single_input_op_to_numpy( 698 keras.backend.spatial_2d_padding, 699 ref_op, 700 input_shape=(2, 3, 2, 3), 701 keras_args=[((2, 3), (1, 2))], 702 keras_kwargs={'data_format': 'channels_first'}, 703 np_args=[((2, 3), (1, 2))], 704 np_kwargs={'data_format': 'channels_first'}) 705 706 def test_spatial_3d_padding(self): 707 708 def ref_op(x, padding, data_format='channels_last'): 709 shape = list(x.shape) 710 if data_format == 'channels_last': 711 shape[1] += padding[0][0] + padding[0][1] 712 shape[2] += padding[1][0] + padding[1][1] 713 shape[3] += padding[2][0] + padding[2][1] 714 y = np.zeros(tuple(shape)) 715 y[:, 716 padding[0][0]:-padding[0][1], 717 padding[1][0]:-padding[1][1], 718 padding[2][0]:-padding[2][1], 719 :] = x 720 else: 721 shape[2] += padding[0][0] + padding[0][1] 722 shape[3] += padding[1][0] + padding[1][1] 723 shape[4] += padding[2][0] + padding[2][1] 724 y = np.zeros(tuple(shape)) 725 y[:, :, 726 padding[0][0]:-padding[0][1], 727 padding[1][0]:-padding[1][1], 728 padding[2][0]:-padding[2][1]] = x 729 return y 730 731 compare_single_input_op_to_numpy( 732 keras.backend.spatial_3d_padding, 733 ref_op, 734 input_shape=(2, 3, 2, 3, 2), 735 keras_args=[((2, 3), (1, 2), (2, 3))], 736 keras_kwargs={'data_format': 'channels_last'}, 737 np_args=[((2, 3), (1, 2), (2, 3))], 738 np_kwargs={'data_format': 'channels_last'}) 739 compare_single_input_op_to_numpy( 740 keras.backend.spatial_3d_padding, 741 ref_op, 742 input_shape=(2, 3, 2, 3, 2), 743 keras_args=[((2, 3), (1, 2), (2, 3))], 744 keras_kwargs={'data_format': 'channels_first'}, 745 np_args=[((2, 3), (1, 2), (2, 3))], 746 np_kwargs={'data_format': 'channels_first'}) 747 748 749 @test_util.run_all_in_graph_and_eager_modes 750 class BackendNNOpsTest(test.TestCase, parameterized.TestCase): 751 752 def test_bias_add(self): 753 keras_op = keras.backend.bias_add 754 np_op = np.add 755 compare_two_inputs_op_to_numpy(keras_op, np_op, 756 input_shape_a=(4, 7), 757 input_shape_b=(7,)) 758 compare_two_inputs_op_to_numpy(keras_op, np_op, 759 input_shape_a=(4, 3, 7), 760 input_shape_b=(7,)) 761 compare_two_inputs_op_to_numpy(keras_op, np_op, 762 input_shape_a=(4, 3, 5, 7), 763 input_shape_b=(7,)) 764 compare_two_inputs_op_to_numpy(keras_op, np_op, 765 input_shape_a=(4, 3, 5, 2, 7), 766 input_shape_b=(7,)) 767 768 with self.assertRaises((ValueError, errors_impl.InvalidArgumentError)): 769 x = keras.backend.variable((3, 4)) 770 b = keras.backend.variable((3, 4)) 771 keras.backend.bias_add(x, b) 772 with self.assertRaises(ValueError): 773 x = keras.backend.variable((3, 4)) 774 b = keras.backend.variable((4,)) 775 keras.backend.bias_add(x, b, data_format='unknown') 776 777 def test_bias_add_channels_first(self): 778 779 def keras_op(x, b): 780 return keras.backend.bias_add(x, b, data_format='channels_first') 781 782 def np_op(x, b): 783 if x.ndim == 3: 784 b = b.reshape((1, b.shape[0], 1)) 785 if x.ndim == 4: 786 b = b.reshape((1, b.shape[0], 1, 1)) 787 return x + b 788 789 compare_two_inputs_op_to_numpy(keras_op, np_op, 790 input_shape_a=(4, 3, 7), 791 input_shape_b=(3,)) 792 compare_two_inputs_op_to_numpy(keras_op, np_op, 793 input_shape_a=(4, 3, 5, 7), 794 input_shape_b=(3,)) 795 796 def test_pool2d(self): 797 val = np.random.random((10, 3, 10, 10)) 798 x = keras.backend.variable(val) 799 y = keras.backend.pool2d(x, (2, 2), strides=(1, 1), 800 padding='valid', data_format='channels_first', 801 pool_mode='max') 802 self.assertEqual(y.shape.as_list(), [10, 3, 9, 9]) 803 804 y = keras.backend.pool2d(x, (2, 2), strides=(1, 1), 805 padding='valid', data_format='channels_first', 806 pool_mode='avg') 807 self.assertEqual(y.shape.as_list(), [10, 3, 9, 9]) 808 809 val = np.random.random((10, 10, 10, 3)) 810 x = keras.backend.variable(val) 811 y = keras.backend.pool2d(x, (2, 2), strides=(1, 1), 812 padding='valid', data_format='channels_last') 813 self.assertEqual(y.shape.as_list(), [10, 9, 9, 3]) 814 815 val = np.random.random((10, 10, 10, 3)) 816 x = keras.backend.variable(val) 817 y = keras.backend.pool2d(x, (2, 2), strides=(1, 1), 818 padding='same', data_format='channels_last') 819 self.assertEqual(y.shape.as_list(), [10, 10, 10, 3]) 820 821 val = np.random.random((10, 10, 10, 3)) 822 x = keras.backend.variable(val) 823 y = keras.backend.pool2d(x, (2, 2), strides=(2, 2), 824 padding='same', data_format='channels_last') 825 self.assertEqual(y.shape.as_list(), [10, 5, 5, 3]) 826 827 with self.assertRaises(ValueError): 828 y = keras.backend.pool2d(x, (2, 2), strides=(2, 2), 829 padding='other', data_format='channels_last') 830 with self.assertRaises(ValueError): 831 y = keras.backend.pool2d(x, (2, 2), strides=(2, 2), 832 data_format='other') 833 with self.assertRaises(ValueError): 834 y = keras.backend.pool2d(x, (2, 2, 2), strides=(2, 2)) 835 with self.assertRaises(ValueError): 836 y = keras.backend.pool2d(x, (2, 2), strides=(2, 2, 2)) 837 with self.assertRaises(ValueError): 838 y = keras.backend.pool2d(x, (2, 2), strides=(2, 2), pool_mode='other') 839 840 def test_pool3d(self): 841 if test.is_built_with_rocm(): 842 self.skipTest('Pooling with 3D tensors is not supported in ROCm') 843 val = np.random.random((10, 3, 10, 10, 10)) 844 x = keras.backend.variable(val) 845 y = keras.backend.pool3d(x, (2, 2, 2), strides=(1, 1, 1), 846 padding='valid', data_format='channels_first', 847 pool_mode='max') 848 self.assertEqual(y.shape.as_list(), [10, 3, 9, 9, 9]) 849 850 y = keras.backend.pool3d(x, (2, 2, 2), strides=(1, 1, 1), 851 padding='valid', data_format='channels_first', 852 pool_mode='avg') 853 self.assertEqual(y.shape.as_list(), [10, 3, 9, 9, 9]) 854 855 val = np.random.random((10, 10, 10, 10, 3)) 856 x = keras.backend.variable(val) 857 y = keras.backend.pool3d(x, (2, 2, 2), strides=(1, 1, 1), 858 padding='valid', data_format='channels_last') 859 self.assertEqual(y.shape.as_list(), [10, 9, 9, 9, 3]) 860 861 val = np.random.random((10, 10, 10, 10, 3)) 862 x = keras.backend.variable(val) 863 y = keras.backend.pool3d(x, (2, 2, 2), strides=(1, 1, 1), 864 padding='same', data_format='channels_last') 865 self.assertEqual(y.shape.as_list(), [10, 10, 10, 10, 3]) 866 867 val = np.random.random((10, 10, 10, 10, 3)) 868 x = keras.backend.variable(val) 869 y = keras.backend.pool3d(x, (2, 2, 2), strides=(2, 2, 2), 870 padding='same', data_format='channels_last') 871 self.assertEqual(y.shape.as_list(), [10, 5, 5, 5, 3]) 872 873 def test_conv1d(self): 874 val = np.random.random((10, 4, 10)) 875 x = keras.backend.variable(val) 876 kernel_val = np.random.random((3, 4, 5)) 877 k = keras.backend.variable(kernel_val) 878 y = keras.backend.conv1d(x, k, strides=(1,), 879 padding='valid', data_format='channels_first') 880 self.assertEqual(y.shape.as_list(), [10, 5, 8]) 881 882 val = np.random.random((10, 10, 4)) 883 x = keras.backend.variable(val) 884 y = keras.backend.conv1d(x, k, strides=(1,), 885 padding='valid', data_format='channels_last') 886 self.assertEqual(y.shape.as_list(), [10, 8, 5]) 887 888 val = np.random.random((10, 10, 4)) 889 x = keras.backend.variable(val) 890 y = keras.backend.conv1d(x, k, strides=(1,), 891 padding='same', data_format='channels_last') 892 self.assertEqual(y.shape.as_list(), [10, 10, 5]) 893 894 val = np.random.random((10, 10, 4)) 895 x = keras.backend.variable(val) 896 y = keras.backend.conv1d(x, k, strides=(2,), 897 padding='same', data_format='channels_last') 898 self.assertEqual(y.shape.as_list(), [10, 5, 5]) 899 900 def test_local_conv_channels_dim(self): 901 filters = 3 902 batch_size = 2 903 904 for input_shape in [(3, 5), (2, 3, 5), (2, 5, 3, 4)]: 905 channels_in = input_shape[0] 906 input_spatial_shape = input_shape[1:] 907 dim = len(input_spatial_shape) 908 909 inputs = np.random.normal(0, 1, (batch_size,) + input_shape) 910 inputs_cf = keras.backend.variable(inputs) 911 912 for kernel_size in [1, 2]: 913 for stride in [1, 2]: 914 kernel_sizes = (kernel_size,) * dim 915 strides = (stride,) * dim 916 917 output_shape = tuple([(i - kernel_size + stride) // stride 918 for i in input_spatial_shape]) 919 920 kernel_shape = (np.prod(output_shape), 921 np.prod(kernel_sizes) * channels_in, 922 filters) 923 924 kernel = np.random.normal( 925 0, 926 1, 927 output_shape + (channels_in, np.prod(kernel_sizes), filters) 928 ) 929 930 kernel_cf = np.reshape(kernel, kernel_shape) 931 kernel_cf = keras.backend.variable(kernel_cf) 932 933 conv_cf = keras.backend.local_conv(inputs_cf, 934 kernel_cf, 935 kernel_sizes, 936 strides, 937 output_shape, 938 'channels_first') 939 940 inputs_cl = np.transpose(inputs, [0, 2] + list(range(3, dim + 2)) + 941 [1]) 942 inputs_cl = keras.backend.variable(inputs_cl) 943 944 kernel_cl = np.reshape( 945 np.transpose(kernel, list(range(dim)) + [dim + 1, dim, dim + 2]), 946 kernel_shape 947 ) 948 kernel_cl = keras.backend.variable(kernel_cl) 949 950 conv_cl = keras.backend.local_conv(inputs_cl, 951 kernel_cl, 952 kernel_sizes, 953 strides, 954 output_shape, 955 'channels_last') 956 957 conv_cf = keras.backend.eval(conv_cf) 958 conv_cl = keras.backend.eval(conv_cl) 959 960 self.assertAllCloseAccordingToType( 961 conv_cf, 962 np.transpose(conv_cl, 963 [0, dim + 1] + list(range(1, dim + 1))), 964 atol=1e-5 965 ) 966 967 @parameterized.named_parameters( 968 ('local_conv1d', (5, 6), (3,), (1,), (3,)), 969 ('local_conv2d', (4, 5, 6), (3, 3), (1, 1), (2, 3))) 970 def test_local_conv_1d_and_2d(self, 971 input_shape, 972 kernel_sizes, 973 strides, 974 output_shape): 975 filters = 3 976 batch_size = 2 977 978 inputs = np.random.normal(0, 1, (batch_size,) + input_shape) 979 inputs = keras.backend.variable(inputs) 980 981 kernel = np.random.normal(0, 1, (np.prod(output_shape), 982 np.prod(kernel_sizes) * input_shape[-1], 983 filters)) 984 kernel = keras.backend.variable(kernel) 985 986 local_conv = keras.backend.local_conv(inputs, 987 kernel, 988 kernel_sizes, 989 strides, 990 output_shape, 991 'channels_last') 992 if len(output_shape) == 1: 993 local_conv_dim = keras.backend.local_conv1d(inputs, 994 kernel, 995 kernel_sizes, 996 strides, 997 'channels_last') 998 else: 999 local_conv_dim = keras.backend.local_conv2d(inputs, 1000 kernel, 1001 kernel_sizes, 1002 strides, 1003 output_shape, 1004 'channels_last') 1005 1006 local_conv = keras.backend.eval(local_conv) 1007 local_conv_dim = keras.backend.eval(local_conv_dim) 1008 1009 self.assertAllCloseAccordingToType(local_conv, local_conv_dim) 1010 1011 def test_conv2d(self): 1012 kernel_val = np.random.random((3, 3, 4, 5)) 1013 k = keras.backend.variable(kernel_val) 1014 1015 # Test channels_first 1016 val = np.random.random((10, 4, 10, 10)) 1017 x = keras.backend.variable(val) 1018 y = keras.backend.conv2d(x, k, 1019 padding='valid', data_format='channels_first') 1020 self.assertEqual(y.shape.as_list(), [10, 5, 8, 8]) 1021 1022 # Test channels_last 1023 val = np.random.random((10, 10, 10, 4)) 1024 x = keras.backend.variable(val) 1025 y = keras.backend.conv2d(x, k, strides=(1, 1), 1026 padding='valid', data_format='channels_last') 1027 self.assertEqual(y.shape.as_list(), [10, 8, 8, 5]) 1028 1029 # Test same padding 1030 val = np.random.random((10, 10, 10, 4)) 1031 x = keras.backend.variable(val) 1032 y = keras.backend.conv2d(x, k, 1033 padding='same', data_format='channels_last') 1034 self.assertEqual(y.shape.as_list(), [10, 10, 10, 5]) 1035 1036 # Test dilation_rate 1037 val = np.random.random((10, 10, 10, 4)) 1038 x = keras.backend.variable(val) 1039 y = keras.backend.conv2d(x, k, dilation_rate=(2, 2), 1040 padding='same', data_format='channels_last') 1041 self.assertEqual(y.shape.as_list(), [10, 10, 10, 5]) 1042 1043 # Test strides 1044 val = np.random.random((10, 10, 10, 4)) 1045 x = keras.backend.variable(val) 1046 y = keras.backend.conv2d(x, k, strides=(2, 2), 1047 padding='same', data_format='channels_last') 1048 self.assertEqual(y.shape.as_list(), [10, 5, 5, 5]) 1049 1050 # Test invalid arguments 1051 with self.assertRaises(ValueError): 1052 y = keras.backend.conv2d(x, k, (2, 2), 1053 padding='other', data_format='channels_last') 1054 with self.assertRaises(ValueError): 1055 y = keras.backend.conv2d(x, k, (2, 2), 1056 data_format='other') 1057 with self.assertRaises(ValueError): 1058 y = keras.backend.conv2d(x, k, (2, 2, 2)) 1059 1060 def test_conv2d_transpose(self): 1061 input_size = (7, 8) 1062 kernel_size = (3, 3) 1063 input_depth = 6 1064 filters = 6 1065 batch_size = 2 1066 1067 kernel_val = np.random.random(kernel_size + (input_depth, filters)) 1068 k = keras.backend.variable(kernel_val) 1069 1070 # Test channels_first 1071 input_val = np.random.random((batch_size, input_depth) + input_size) 1072 x = keras.backend.variable(input_val) 1073 y = keras.backend.conv2d_transpose(x, k, (batch_size, filters) + input_size, 1074 padding='same', 1075 data_format='channels_first') 1076 self.assertEqual( 1077 tuple(y.shape.as_list()), (batch_size, filters) + input_size) 1078 1079 # Test channels_last 1080 input_val = np.random.random((batch_size,) + input_size + (input_depth,)) 1081 x = keras.backend.variable(input_val) 1082 y = keras.backend.conv2d_transpose( 1083 x, k, (batch_size,) + input_size + (filters,), 1084 padding='same', 1085 data_format='channels_last') 1086 self.assertEqual( 1087 tuple(y.shape.as_list()), (batch_size,) + input_size + (filters,)) 1088 1089 # Test dilation_rate 1090 y = keras.backend.conv2d_transpose( 1091 x, k, (batch_size,) + input_size + (filters,), 1092 padding='same', 1093 data_format='channels_last', 1094 dilation_rate=(2, 2)) 1095 self.assertEqual( 1096 tuple(y.shape.as_list()), (batch_size,) + input_size + (filters,)) 1097 1098 # Test batch size of None in output_shape 1099 y = keras.backend.conv2d_transpose(x, k, (None,) + input_size + (filters,), 1100 padding='same', 1101 data_format='channels_last') 1102 self.assertEqual( 1103 tuple(y.shape.as_list()), (batch_size,) + input_size + (filters,)) 1104 1105 # Test invalid values 1106 with self.assertRaises(ValueError): 1107 y = keras.backend.conv2d_transpose(x, k, (2, 2, 8, 9), 1108 padding='other', 1109 data_format='channels_last') 1110 with self.assertRaises(ValueError): 1111 y = keras.backend.conv2d_transpose(x, k, (2, 2, 8, 9), 1112 data_format='other') 1113 1114 def test_separable_conv2d(self): 1115 val = np.random.random((10, 4, 10, 10)) 1116 x = keras.backend.variable(val) 1117 depthwise_kernel_val = np.random.random((3, 3, 4, 1)) 1118 pointwise_kernel_val = np.random.random((1, 1, 4, 5)) 1119 dk = keras.backend.variable(depthwise_kernel_val) 1120 pk = keras.backend.variable(pointwise_kernel_val) 1121 y = keras.backend.separable_conv2d( 1122 x, dk, pk, padding='valid', data_format='channels_first') 1123 self.assertEqual(y.shape.as_list(), [10, 5, 8, 8]) 1124 1125 val = np.random.random((10, 10, 10, 4)) 1126 x = keras.backend.variable(val) 1127 y = keras.backend.separable_conv2d( 1128 x, dk, pk, strides=(1, 1), padding='valid', data_format='channels_last') 1129 self.assertEqual(y.shape.as_list(), [10, 8, 8, 5]) 1130 1131 val = np.random.random((10, 10, 10, 4)) 1132 x = keras.backend.variable(val) 1133 y = keras.backend.separable_conv2d( 1134 x, dk, pk, strides=(1, 1), padding='same', data_format='channels_last') 1135 self.assertEqual(y.shape.as_list(), [10, 10, 10, 5]) 1136 1137 val = np.random.random((10, 10, 10, 4)) 1138 x = keras.backend.variable(val) 1139 y = keras.backend.separable_conv2d( 1140 x, dk, pk, strides=(2, 2), padding='same', data_format='channels_last') 1141 self.assertEqual(y.shape.as_list(), [10, 5, 5, 5]) 1142 with self.assertRaises(ValueError): 1143 y = keras.backend.separable_conv2d( 1144 x, dk, pk, (2, 2), padding='other', data_format='channels_last') 1145 with self.assertRaises(ValueError): 1146 y = keras.backend.separable_conv2d( 1147 x, dk, pk, (2, 2), data_format='other') 1148 with self.assertRaises(ValueError): 1149 y = keras.backend.separable_conv2d(x, dk, pk, (2, 2, 2)) 1150 1151 def test_conv3d(self): 1152 val = np.random.random((10, 4, 10, 10, 10)) 1153 x = keras.backend.variable(val) 1154 kernel_val = np.random.random((3, 3, 3, 4, 5)) 1155 k = keras.backend.variable(kernel_val) 1156 y = keras.backend.conv3d(x, k, 1157 padding='valid', data_format='channels_first') 1158 self.assertEqual(y.shape.as_list(), [10, 5, 8, 8, 8]) 1159 1160 val = np.random.random((10, 10, 10, 10, 4)) 1161 x = keras.backend.variable(val) 1162 y = keras.backend.conv3d(x, k, strides=(1, 1, 1), 1163 padding='valid', data_format='channels_last') 1164 self.assertEqual(y.shape.as_list(), [10, 8, 8, 8, 5]) 1165 1166 val = np.random.random((10, 10, 10, 10, 4)) 1167 x = keras.backend.variable(val) 1168 y = keras.backend.conv3d(x, k, strides=(1, 1, 1), 1169 padding='same', data_format='channels_last') 1170 self.assertEqual(y.shape.as_list(), [10, 10, 10, 10, 5]) 1171 1172 val = np.random.random((10, 10, 10, 10, 4)) 1173 x = keras.backend.variable(val) 1174 y = keras.backend.conv3d(x, k, strides=(2, 2, 2), 1175 padding='same', data_format='channels_last') 1176 self.assertEqual(y.shape.as_list(), [10, 5, 5, 5, 5]) 1177 with self.assertRaises(ValueError): 1178 y = keras.backend.conv3d(x, k, (2, 2, 2), 1179 padding='other', data_format='channels_last') 1180 with self.assertRaises(ValueError): 1181 y = keras.backend.conv3d(x, k, (2, 2, 2), 1182 data_format='other') 1183 with self.assertRaises(ValueError): 1184 y = keras.backend.conv3d(x, k, (2, 2)) 1185 1186 def test_rnn(self): 1187 # implement a simple RNN 1188 num_samples = 4 1189 input_dim = 5 1190 output_dim = 3 1191 timesteps = 6 1192 1193 input_val = np.random.random( 1194 (num_samples, timesteps, input_dim)).astype(np.float32) 1195 init_state_val = np.random.random( 1196 (num_samples, output_dim)).astype(np.float32) 1197 w_i_val = np.random.random((input_dim, output_dim)).astype(np.float32) 1198 w_o_val = np.random.random((output_dim, output_dim)).astype(np.float32) 1199 np_mask = np.random.randint(2, size=(num_samples, timesteps)) 1200 1201 def rnn_step_fn(): 1202 w_i = keras.backend.variable(w_i_val) 1203 w_o = keras.backend.variable(w_o_val) 1204 1205 def step_function(x, states): 1206 assert len(states) == 1 1207 prev_output = states[0] 1208 output = keras.backend.dot(x, w_i) + keras.backend.dot(prev_output, w_o) 1209 return output, [output] 1210 1211 return step_function 1212 1213 # test default setup 1214 last_output_list = [[], [], [], [], [], []] 1215 outputs_list = [[], [], [], [], [], []] 1216 state_list = [[], [], [], [], [], []] 1217 1218 rnn_fn = rnn_step_fn() 1219 inputs = keras.backend.variable(input_val) 1220 initial_states = [keras.backend.variable(init_state_val)] 1221 mask = keras.backend.variable(np_mask) 1222 1223 kwargs_list = [ 1224 {'go_backwards': False, 'mask': None}, 1225 {'go_backwards': False, 'mask': None, 'unroll': True}, 1226 {'go_backwards': True, 'mask': None}, 1227 {'go_backwards': True, 'mask': None, 'unroll': True}, 1228 {'go_backwards': False, 'mask': mask}, 1229 {'go_backwards': False, 'mask': mask, 'unroll': True}, 1230 ] 1231 for i, kwargs in enumerate(kwargs_list): 1232 last_output, outputs, new_states = keras.backend.rnn(rnn_fn, inputs, 1233 initial_states, 1234 **kwargs) 1235 # check static shape inference 1236 self.assertEqual(last_output.shape.as_list(), [num_samples, output_dim]) 1237 self.assertEqual(outputs.shape.as_list(), 1238 [num_samples, timesteps, output_dim]) 1239 for state in new_states: 1240 self.assertEqual(state.shape.as_list(), [num_samples, output_dim]) 1241 1242 last_output_list[i].append(keras.backend.eval(last_output)) 1243 outputs_list[i].append(keras.backend.eval(outputs)) 1244 self.assertLen(new_states, 1) 1245 state_list[i].append(keras.backend.eval(new_states[0])) 1246 1247 def assert_list_pairwise(z_list, atol=1e-05): 1248 for (z1, z2) in zip(z_list[1:], z_list[:-1]): 1249 self.assertAllClose(z1, z2, atol=atol) 1250 1251 assert_list_pairwise(last_output_list[0], atol=1e-04) 1252 assert_list_pairwise(outputs_list[0], atol=1e-04) 1253 assert_list_pairwise(state_list[0], atol=1e-04) 1254 assert_list_pairwise(last_output_list[2], atol=1e-04) 1255 assert_list_pairwise(outputs_list[2], atol=1e-04) 1256 assert_list_pairwise(state_list[2], atol=1e-04) 1257 1258 for l, u_l in zip(last_output_list[0], last_output_list[1]): 1259 self.assertAllClose(l, u_l, atol=1e-04) 1260 1261 for o, u_o in zip(outputs_list[0], outputs_list[1]): 1262 self.assertAllClose(o, u_o, atol=1e-04) 1263 1264 for s, u_s in zip(state_list[0], state_list[1]): 1265 self.assertAllClose(s, u_s, atol=1e-04) 1266 1267 for b_l, b_u_l in zip(last_output_list[2], last_output_list[3]): 1268 self.assertAllClose(b_l, b_u_l, atol=1e-04) 1269 1270 for b_o, b_u_o in zip(outputs_list[2], outputs_list[3]): 1271 self.assertAllClose(b_o, b_u_o, atol=1e-04) 1272 1273 for b_s, b_u_s in zip(state_list[2], state_list[3]): 1274 self.assertAllClose(b_s, b_u_s, atol=1e-04) 1275 1276 def test_rnn_additional_states(self): 1277 # implement a simple RNN 1278 num_samples = 4 1279 input_dim = 5 1280 output_dim = 3 1281 timesteps = 6 1282 1283 input_val = np.random.random( 1284 (num_samples, timesteps, input_dim)).astype(np.float32) 1285 init_state_val = np.random.random( 1286 (num_samples, output_dim)).astype(np.float32) 1287 w_i_val = np.random.random((input_dim, output_dim)).astype(np.float32) 1288 w_o_val = np.random.random((output_dim, output_dim)).astype(np.float32) 1289 np_mask = np.random.randint(2, size=(num_samples, timesteps)) 1290 1291 def rnn_step_fn(): 1292 w_i = keras.backend.variable(w_i_val) 1293 w_o = keras.backend.variable(w_o_val) 1294 1295 def step_function(x, states): 1296 assert len(states) == 2 1297 prev_output = states[0] 1298 output = keras.backend.dot(x, w_i) + keras.backend.dot(prev_output, w_o) 1299 return output, [output, 1300 keras.backend.concatenate([output, output], axis=-1)] 1301 1302 return step_function 1303 1304 # test default setup 1305 last_output_list = [[], [], [], [], [], []] 1306 outputs_list = [[], [], [], [], [], []] 1307 state_list = [[], [], [], [], [], []] 1308 additional_state_list = [[], [], [], [], [], []] 1309 1310 rnn_fn = rnn_step_fn() 1311 inputs = keras.backend.variable(input_val) 1312 initial_states = [ 1313 keras.backend.variable(init_state_val), 1314 ops.convert_to_tensor( 1315 np.concatenate([init_state_val, init_state_val], axis=-1)) 1316 ] 1317 mask = keras.backend.variable(np_mask) 1318 1319 kwargs_list = [ 1320 {'go_backwards': False, 'mask': None}, 1321 {'go_backwards': False, 'mask': None, 'unroll': True}, 1322 {'go_backwards': True, 'mask': None}, 1323 {'go_backwards': True, 'mask': None, 'unroll': True}, 1324 {'go_backwards': False, 'mask': mask}, 1325 {'go_backwards': False, 'mask': mask, 'unroll': True}, 1326 ] 1327 for i, kwargs in enumerate(kwargs_list): 1328 last_output, outputs, new_states = keras.backend.rnn(rnn_fn, inputs, 1329 initial_states, 1330 **kwargs) 1331 # check static shape inference 1332 self.assertEqual(last_output.shape.as_list(), [num_samples, output_dim]) 1333 self.assertEqual(outputs.shape.as_list(), 1334 [num_samples, timesteps, output_dim]) 1335 # for state in new_states: 1336 # self.assertEqual(state.shape.as_list(), 1337 # [num_samples, output_dim]) 1338 self.assertEqual(new_states[0].shape.as_list(), [num_samples, output_dim]) 1339 self.assertEqual(new_states[1].shape.as_list(), 1340 [num_samples, 2 * output_dim]) 1341 1342 last_output_list[i].append(keras.backend.eval(last_output)) 1343 outputs_list[i].append(keras.backend.eval(outputs)) 1344 self.assertLen(new_states, 2) 1345 state_list[i].append(keras.backend.eval(new_states[0])) 1346 additional_state_list[i].append(keras.backend.eval(new_states[1])) 1347 1348 def assert_list_pairwise(z_list, atol=1e-05): 1349 for (z1, z2) in zip(z_list[1:], z_list[:-1]): 1350 self.assertAllClose(z1, z2, atol=atol) 1351 1352 assert_list_pairwise(last_output_list[0], atol=1e-04) 1353 assert_list_pairwise(outputs_list[0], atol=1e-04) 1354 assert_list_pairwise(state_list[0], atol=1e-04) 1355 assert_list_pairwise(additional_state_list[0], atol=1e-04) 1356 assert_list_pairwise(last_output_list[2], atol=1e-04) 1357 assert_list_pairwise(outputs_list[2], atol=1e-04) 1358 assert_list_pairwise(state_list[2], atol=1e-04) 1359 assert_list_pairwise(additional_state_list[2], atol=1e-04) 1360 1361 for l, u_l in zip(last_output_list[0], last_output_list[1]): 1362 self.assertAllClose(l, u_l, atol=1e-04) 1363 1364 for o, u_o in zip(outputs_list[0], outputs_list[1]): 1365 self.assertAllClose(o, u_o, atol=1e-04) 1366 1367 for s, u_s in zip(state_list[0], state_list[1]): 1368 self.assertAllClose(s, u_s, atol=1e-04) 1369 1370 for s, u_s in zip(additional_state_list[0], additional_state_list[1]): 1371 self.assertAllClose(s, u_s, atol=1e-04) 1372 1373 for b_l, b_u_l in zip(last_output_list[2], last_output_list[3]): 1374 self.assertAllClose(b_l, b_u_l, atol=1e-04) 1375 1376 for b_o, b_u_o in zip(outputs_list[2], outputs_list[3]): 1377 self.assertAllClose(b_o, b_u_o, atol=1e-04) 1378 1379 for b_s, b_u_s in zip(state_list[2], state_list[3]): 1380 self.assertAllClose(b_s, b_u_s, atol=1e-04) 1381 1382 for s, u_s in zip(additional_state_list[2], additional_state_list[3]): 1383 self.assertAllClose(s, u_s, atol=1e-04) 1384 1385 def test_rnn_output_and_state_masking_independent(self): 1386 num_samples = 2 1387 num_timesteps = 4 1388 state_and_io_size = 2 1389 mask_last_num_timesteps = 2 # for second sample only 1390 1391 # a step function that just outputs inputs, 1392 # but increments states +1 per timestep 1393 def step_function(inputs, states): 1394 return inputs, [s + 1 for s in states] 1395 1396 inputs_vals = np.random.random((num_samples, num_timesteps, 1397 state_and_io_size)) 1398 initial_state_vals = np.random.random((num_samples, state_and_io_size)) 1399 # masking of two last timesteps for second sample only 1400 mask_vals = np.ones((num_samples, num_timesteps)) 1401 mask_vals[1, -mask_last_num_timesteps:] = 0 1402 1403 # outputs expected to be same as inputs for the first sample 1404 expected_outputs = inputs_vals.copy() 1405 # but for the second sample all outputs in masked region should be the same 1406 # as last output before masked region 1407 expected_outputs[1, -mask_last_num_timesteps:] = \ 1408 expected_outputs[1, -(mask_last_num_timesteps + 1)] 1409 1410 expected_last_state = initial_state_vals.copy() 1411 # first state should be incremented for every timestep (no masking) 1412 expected_last_state[0] += num_timesteps 1413 # second state should not be incremented for last two timesteps 1414 expected_last_state[1] += (num_timesteps - mask_last_num_timesteps) 1415 1416 # verify same expected output for `unroll=true/false` 1417 inputs = keras.backend.variable(inputs_vals) 1418 initial_states = [keras.backend.variable(initial_state_vals)] 1419 mask = keras.backend.variable(mask_vals) 1420 for unroll in [True, False]: 1421 _, outputs, last_states = keras.backend.rnn( 1422 step_function, 1423 inputs, 1424 initial_states, 1425 mask=mask, 1426 unroll=unroll, 1427 input_length=num_timesteps if unroll else None) 1428 1429 self.assertAllClose(keras.backend.eval(outputs), expected_outputs) 1430 self.assertAllClose( 1431 keras.backend.eval(last_states[0]), expected_last_state) 1432 1433 def test_rnn_output_num_dim_larger_than_2_masking(self): 1434 num_samples = 3 1435 num_timesteps = 4 1436 num_features = 5 1437 1438 def step_function(inputs, states): 1439 outputs = keras.backend.tile(keras.backend.expand_dims(inputs), [1, 1, 2]) 1440 return outputs, [keras.backend.identity(s) for s in states] 1441 # Note: cannot just return states (which can be a problem) -> 1442 # tensorflow/python/ops/resource_variable_ops.py", line 824, in set_shape 1443 # NotImplementedError: ResourceVariable does not implement set_shape() 1444 1445 inputs_vals = np.random.random((num_samples, num_timesteps, num_features)) 1446 initial_state_vals = np.random.random((num_samples, 6)) 1447 mask_vals = np.ones((num_samples, num_timesteps)) 1448 mask_vals[-1, -1] = 0 # final timestep masked for last sample 1449 1450 expected_outputs = np.repeat(inputs_vals[..., None], repeats=2, axis=-1) 1451 # for the last sample, the final timestep (in masked region) should be the 1452 # same as the second to final output (before masked region) 1453 expected_outputs[-1, -1] = expected_outputs[-1, -2] 1454 1455 inputs = keras.backend.variable(inputs_vals) 1456 initial_states = [keras.backend.variable(initial_state_vals)] 1457 mask = keras.backend.variable(mask_vals) 1458 for unroll in [True, False]: 1459 _, outputs, _ = keras.backend.rnn( 1460 step_function, 1461 inputs, 1462 initial_states, 1463 mask=mask, 1464 unroll=unroll, 1465 input_length=num_timesteps if unroll else None) 1466 1467 self.assertAllClose(keras.backend.eval(outputs), expected_outputs) 1468 1469 def test_rnn_state_num_dim_larger_than_2_masking(self): 1470 num_samples = 3 1471 num_timesteps = 4 1472 1473 def step_function(inputs, states): 1474 return inputs, [s + 1 for s in states] 1475 1476 inputs_vals = np.random.random((num_samples, num_timesteps, 5)) 1477 initial_state_vals = np.random.random((num_samples, 6, 7)) 1478 mask_vals = np.ones((num_samples, num_timesteps)) 1479 mask_vals[0, -2:] = 0 # final two timesteps masked for first sample 1480 1481 expected_last_state = initial_state_vals.copy() 1482 expected_last_state[0] += (num_timesteps - 2) 1483 expected_last_state[1:] += num_timesteps 1484 1485 inputs = keras.backend.variable(inputs_vals) 1486 initial_states = [keras.backend.variable(initial_state_vals)] 1487 mask = keras.backend.variable(mask_vals) 1488 for unroll in [True, False]: 1489 _, _, last_states = keras.backend.rnn( 1490 step_function, 1491 inputs, 1492 initial_states, 1493 mask=mask, 1494 unroll=unroll, 1495 input_length=num_timesteps if unroll else None) 1496 1497 self.assertAllClose( 1498 keras.backend.eval(last_states[0]), expected_last_state) 1499 1500 def test_batch_normalization(self): 1501 g_val = np.random.random((3,)) 1502 b_val = np.random.random((3,)) 1503 gamma = keras.backend.variable(g_val) 1504 beta = keras.backend.variable(b_val) 1505 1506 # 3D NHC case 1507 val = np.random.random((10, 5, 3)) 1508 x = keras.backend.variable(val) 1509 mean, var = nn.moments(x, (0, 1), None, None, False) 1510 normed = keras.backend.batch_normalization( 1511 x, mean, var, beta, gamma, axis=-1, epsilon=1e-3) 1512 self.assertEqual(normed.shape.as_list(), [10, 5, 3]) 1513 1514 # 4D NHWC case 1515 val = np.random.random((10, 5, 5, 3)) 1516 x = keras.backend.variable(val) 1517 mean, var = nn.moments(x, (0, 1, 2), None, None, False) 1518 normed = keras.backend.batch_normalization( 1519 x, mean, var, beta, gamma, axis=-1, epsilon=1e-3) 1520 self.assertEqual(normed.shape.as_list(), [10, 5, 5, 3]) 1521 1522 # 4D NCHW case 1523 if not context.executing_eagerly(): 1524 # Eager CPU kernel for NCHW does not exist. 1525 val = np.random.random((10, 3, 5, 5)) 1526 x = keras.backend.variable(val) 1527 mean, var = nn.moments(x, (0, 2, 3), None, None, False) 1528 normed = keras.backend.batch_normalization( 1529 x, mean, var, beta, gamma, axis=1, epsilon=1e-3) 1530 self.assertEqual(normed.shape.as_list(), [10, 3, 5, 5]) 1531 1532 def test_normalize_batch_in_training(self): 1533 val = np.random.random((10, 3, 10, 10)) 1534 x = keras.backend.variable(val) 1535 reduction_axes = (0, 2, 3) 1536 1537 g_val = np.random.random((3,)) 1538 b_val = np.random.random((3,)) 1539 gamma = keras.backend.variable(g_val) 1540 beta = keras.backend.variable(b_val) 1541 normed, mean, var = keras.backend.normalize_batch_in_training( 1542 x, gamma, beta, reduction_axes, epsilon=1e-3) 1543 self.assertEqual(normed.shape.as_list(), [10, 3, 10, 10]) 1544 self.assertEqual(mean.shape.as_list(), [ 1545 3, 1546 ]) 1547 self.assertEqual(var.shape.as_list(), [ 1548 3, 1549 ]) 1550 1551 # case: gamma=None 1552 gamma = None 1553 normed, mean, var = keras.backend.normalize_batch_in_training( 1554 x, gamma, beta, reduction_axes, epsilon=1e-3) 1555 self.assertEqual(normed.shape.as_list(), [10, 3, 10, 10]) 1556 self.assertEqual(mean.shape.as_list(), [ 1557 3, 1558 ]) 1559 self.assertEqual(var.shape.as_list(), [ 1560 3, 1561 ]) 1562 1563 # case: beta=None 1564 beta = None 1565 normed, mean, var = keras.backend.normalize_batch_in_training( 1566 x, gamma, beta, reduction_axes, epsilon=1e-3) 1567 self.assertEqual(normed.shape.as_list(), [10, 3, 10, 10]) 1568 self.assertEqual(mean.shape.as_list(), [ 1569 3, 1570 ]) 1571 self.assertEqual(var.shape.as_list(), [ 1572 3, 1573 ]) 1574 1575 def test_dropout(self): 1576 inputs = array_ops.ones((200, 200)) 1577 outputs = keras.backend.dropout(inputs, 0.2) 1578 outputs_val = keras.backend.eval(outputs) 1579 self.assertEqual(np.min(outputs_val), 0) 1580 self.assertAllClose(np.count_nonzero(outputs_val), 32000, atol=1000) 1581 # Test noise shape 1582 outputs = keras.backend.dropout(inputs, 0.2, noise_shape=(200, 1)) 1583 outputs_val = keras.backend.eval(outputs) 1584 self.assertAllClose(outputs_val[2, :], outputs_val[3, :], atol=1e-5) 1585 1586 1587 class BackendCrossEntropyLossesTest(test.TestCase): 1588 1589 @test_util.run_in_graph_and_eager_modes 1590 def test_binary_crossentropy_with_sigmoid(self): 1591 t = keras.backend.constant([[0, 1, 0]]) 1592 logits = keras.backend.constant([[8., 1., 1.]]) 1593 p = keras.backend.sigmoid(logits) 1594 p = array_ops.identity(array_ops.identity(p)) 1595 result = self.evaluate(keras.backend.binary_crossentropy(t, p)) 1596 self.assertArrayNear(result[0], [8., 0.313, 1.313], 1e-3) 1597 1598 @test_util.run_in_graph_and_eager_modes 1599 def test_categorical_crossentropy_loss(self): 1600 t = keras.backend.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) 1601 1602 p = keras.backend.constant([[.9, .05, .05], [.05, .89, .06], 1603 [.05, .01, .94]]) 1604 result = keras.backend.categorical_crossentropy(t, p) 1605 self.assertArrayNear(self.evaluate(result), [.105, .116, .062], 1e-3) 1606 1607 p = keras.backend.constant([[.9, .05, .05], [.05, .89, .01], 1608 [.05, .06, .94]]) 1609 result = keras.backend.categorical_crossentropy(t, p, axis=0) 1610 self.assertArrayNear(self.evaluate(result), [.105, .116, .062], 1e-3) 1611 1612 p = keras.backend.constant([[8., 1., 1.], [0., 9., 1.], [2., 3., 5.]]) 1613 result = keras.backend.categorical_crossentropy(t, p, from_logits=True), 1614 self.assertArrayNear(self.evaluate(result)[0], [.002, 0, .17], 1e-3) 1615 1616 p = keras.backend.constant([[8., 0., 2.], [1., 9., 3.], [1., 1., 5.]]) 1617 result = keras.backend.categorical_crossentropy( 1618 t, p, from_logits=True, axis=0), 1619 self.assertArrayNear(self.evaluate(result)[0], [.002, 0, .17], 1e-3) 1620 1621 @test_util.run_in_graph_and_eager_modes 1622 def test_categorical_crossentropy_loss_with_unknown_rank_tensor(self): 1623 t = keras.backend.placeholder() 1624 p = keras.backend.placeholder() 1625 o = keras.backend.categorical_crossentropy(t, p) 1626 1627 t_val = ops.convert_to_tensor([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) 1628 p_val = ops.convert_to_tensor([[.9, .05, .05], [.05, .89, .06], 1629 [.05, .01, .94]]) 1630 f = keras.backend.function([t, p], o) 1631 1632 result = f([t_val, p_val]) 1633 self.assertArrayNear(result, [.105, .116, .062], 1e-3) 1634 1635 # With axis set 1636 o = keras.backend.categorical_crossentropy(t, p, axis=0) 1637 f = keras.backend.function([t, p], o) 1638 1639 result = f([t_val, p_val]) 1640 self.assertArrayNear(result, [.105, .065, .111], 1e-3) 1641 1642 # from logits 1643 p_val = ops.convert_to_tensor([[8., 1., 1.], [0., 9., 1.], [2., 3., 5.]]) 1644 o = keras.backend.categorical_crossentropy(t, p, from_logits=True) 1645 f = keras.backend.function([t, p], o) 1646 1647 result = f([t_val, p_val]) 1648 self.assertArrayNear(result, [.002, 0, .17], 1e-3) 1649 1650 # from logits and axis set 1651 o = keras.backend.categorical_crossentropy(t, p, from_logits=True, axis=0) 1652 f = keras.backend.function([t, p], o) 1653 1654 result = f([t_val, p_val]) 1655 self.assertArrayNear(result, [.002, .003, .036], 1e-3) 1656 1657 @test_util.run_in_graph_and_eager_modes 1658 def test_categorical_crossentropy_with_softmax(self): 1659 t = keras.backend.constant([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) 1660 logits = keras.backend.constant([[8., 1., 1.], [0., 9., 1.], [2., 3., 5.]]) 1661 p = keras.backend.softmax(logits) 1662 p = array_ops.identity(array_ops.identity(p)) 1663 result = self.evaluate(keras.backend.categorical_crossentropy(t, p)) 1664 self.assertArrayNear(result, [0.002, 0.0005, 0.17], 1e-3) 1665 1666 @test_util.run_in_graph_and_eager_modes 1667 def test_sparse_categorical_crossentropy_loss(self): 1668 t = keras.backend.constant([0, 1, 2]) 1669 1670 p = keras.backend.constant([[.9, .05, .05], [.05, .89, .06], 1671 [.05, .01, .94]]) 1672 result = keras.backend.sparse_categorical_crossentropy(t, p) 1673 self.assertArrayNear(self.evaluate(result), [.105, .116, .062], 1e-3) 1674 1675 p = keras.backend.constant([[.9, .05, .05], [.05, .89, .01], 1676 [.05, .06, .94]]) 1677 result = keras.backend.sparse_categorical_crossentropy(t, p, axis=0) 1678 self.assertArrayNear(self.evaluate(result), [.105, .116, .062], 1e-3) 1679 1680 p = keras.backend.constant([[8., 1., 1.], [0., 9., 1.], [2., 3., 5.]]) 1681 result = keras.backend.sparse_categorical_crossentropy( 1682 t, p, from_logits=True), 1683 self.assertArrayNear(self.evaluate(result)[0], [.002, 0, .17], 1e-3) 1684 1685 p = keras.backend.constant([[8., 0., 2.], [1., 9., 3.], [1., 1., 5.]]) 1686 result = keras.backend.sparse_categorical_crossentropy( 1687 t, p, from_logits=True, axis=0), 1688 self.assertArrayNear(self.evaluate(result)[0], [.002, 0, .17], 1e-3) 1689 1690 @test_util.run_in_graph_and_eager_modes 1691 def test_sparse_categorical_crossentropy_loss_with_unknown_rank_tensor(self): 1692 t = keras.backend.placeholder() 1693 p = keras.backend.placeholder() 1694 o = keras.backend.sparse_categorical_crossentropy(t, p) 1695 1696 t_val = ops.convert_to_tensor([0, 1, 2]) 1697 p_val = ops.convert_to_tensor([[.9, .05, .05], [.05, .89, .06], 1698 [.05, .01, .94]]) 1699 f = keras.backend.function([t, p], o) 1700 1701 result = f([t_val, p_val]) 1702 self.assertArrayNear(result, [.105, .116, .062], 1e-3) 1703 1704 # With axis set 1705 with self.assertRaisesRegex( 1706 ValueError, 1707 'Cannot compute sparse categorical crossentropy with `axis=0`'): 1708 o = keras.backend.sparse_categorical_crossentropy(t, p, axis=0) 1709 f = keras.backend.function([t, p], o) 1710 1711 _ = f([t_val, p_val]) 1712 1713 # from logits 1714 p_val = ops.convert_to_tensor([[8., 1., 1.], [0., 9., 1.], [2., 3., 5.]]) 1715 o = keras.backend.sparse_categorical_crossentropy(t, p, from_logits=True) 1716 f = keras.backend.function([t, p], o) 1717 1718 result = f([t_val, p_val]) 1719 self.assertArrayNear(result, [.002, 0, .17], 1e-3) 1720 1721 # from logits and axis set 1722 with self.assertRaisesRegex( 1723 ValueError, 1724 'Cannot compute sparse categorical crossentropy with `axis=0`'): 1725 o = keras.backend.sparse_categorical_crossentropy( 1726 t, p, from_logits=True, axis=0) 1727 f = keras.backend.function([t, p], o) 1728 1729 _ = f([t_val, p_val]) 1730 1731 @test_util.run_in_graph_and_eager_modes 1732 def test_sparse_categorical_crossentropy_with_softmax(self): 1733 t = keras.backend.constant([0, 1, 2]) 1734 logits = keras.backend.constant([[8., 1., 1.], [0., 9., 1.], [2., 3., 5.]]) 1735 p = keras.backend.softmax(logits) 1736 p = array_ops.identity(array_ops.identity(p)) 1737 result = self.evaluate(keras.backend.sparse_categorical_crossentropy(t, p)) 1738 self.assertArrayNear(result, [0.002, 0.0005, 0.17], 1e-3) 1739 1740 1741 @test_util.run_all_in_graph_and_eager_modes 1742 @test_util.with_control_flow_v2 1743 class TestCTC(test.TestCase): 1744 1745 def test_ctc_decode(self): 1746 depth = 6 1747 seq_len_0 = 5 1748 input_prob_matrix_0 = np.asarray( 1749 [[0.30999, 0.309938, 0.0679938, 0.0673362, 0.0708352, 0.173908], 1750 [0.215136, 0.439699, 0.0370931, 0.0393967, 0.0381581, 0.230517], 1751 [0.199959, 0.489485, 0.0233221, 0.0251417, 0.0233289, 0.238763], 1752 [0.279611, 0.452966, 0.0204795, 0.0209126, 0.0194803, 0.20655], 1753 [0.51286, 0.288951, 0.0243026, 0.0220788, 0.0219297, 0.129878], 1754 # Random entry added in at time=5 1755 [0.155251, 0.164444, 0.173517, 0.176138, 0.169979, 0.160671]], 1756 dtype=np.float32) 1757 1758 # len max_time_steps array of batch_size x depth matrices 1759 inputs = ([input_prob_matrix_0[t, :][np.newaxis, :] 1760 for t in range(seq_len_0)] + # Pad to max_time_steps = 8 1761 2 * [np.zeros((1, depth), dtype=np.float32)]) 1762 1763 inputs = keras.backend.variable(np.asarray(inputs).transpose((1, 0, 2))) 1764 1765 # batch_size length vector of sequence_lengths 1766 input_length = keras.backend.variable( 1767 np.array([seq_len_0], dtype=np.int32)) 1768 # batch_size length vector of negative log probabilities 1769 log_prob_truth = np.array([ 1770 -3.5821197, # output beam 0 1771 -3.777835 # output beam 1 1772 ], np.float32)[np.newaxis, :] 1773 1774 decode_truth = [np.array([1, 0]), np.array([0, 1, 0])] 1775 beam_width = 2 1776 top_paths = 2 1777 1778 decode_pred_tf, log_prob_pred_tf = keras.backend.ctc_decode( 1779 inputs, 1780 input_length, 1781 greedy=False, 1782 beam_width=beam_width, 1783 top_paths=top_paths) 1784 1785 self.assertEqual(len(decode_pred_tf), top_paths) 1786 log_prob_pred = keras.backend.eval(log_prob_pred_tf) 1787 for i in range(top_paths): 1788 self.assertTrue( 1789 np.alltrue( 1790 decode_truth[i] == keras.backend.eval(decode_pred_tf[i]))) 1791 self.assertAllClose(log_prob_truth, log_prob_pred) 1792 1793 def test_ctc_batch_cost(self): 1794 with self.cached_session(): 1795 label_lens = np.expand_dims(np.asarray([5, 4]), 1) 1796 input_lens = np.expand_dims(np.asarray([5, 5]), 1) # number of timesteps 1797 loss_log_probs = [3.34211, 5.42262] 1798 1799 # dimensions are batch x time x categories 1800 labels = np.asarray([[0, 1, 2, 1, 0], [0, 1, 1, 0, -1]]) 1801 inputs = np.asarray( 1802 [[[0.633766, 0.221185, 0.0917319, 0.0129757, 0.0142857, 0.0260553], 1803 [0.111121, 0.588392, 0.278779, 0.0055756, 0.00569609, 0.010436], 1804 [0.0357786, 0.633813, 0.321418, 0.00249248, 0.00272882, 0.0037688], 1805 [0.0663296, 0.643849, 0.280111, 0.00283995, 0.0035545, 0.00331533], 1806 [0.458235, 0.396634, 0.123377, 0.00648837, 0.00903441, 0.00623107]], 1807 [[0.30176, 0.28562, 0.0831517, 0.0862751, 0.0816851, 0.161508], 1808 [0.24082, 0.397533, 0.0557226, 0.0546814, 0.0557528, 0.19549], 1809 [0.230246, 0.450868, 0.0389607, 0.038309, 0.0391602, 0.202456], 1810 [0.280884, 0.429522, 0.0326593, 0.0339046, 0.0326856, 0.190345], 1811 [0.423286, 0.315517, 0.0338439, 0.0393744, 0.0339315, 0.154046]]], 1812 dtype=np.float32) 1813 1814 labels = keras.backend.variable(labels, dtype='int32') 1815 inputs = keras.backend.variable(inputs, dtype='float32') 1816 input_lens = keras.backend.variable(input_lens, dtype='int32') 1817 label_lens = keras.backend.variable(label_lens, dtype='int32') 1818 res = keras.backend.eval( 1819 keras.backend.ctc_batch_cost(labels, inputs, input_lens, label_lens)) 1820 self.assertAllClose(res[:, 0], loss_log_probs, atol=1e-05) 1821 1822 # test when batch_size = 1, that is, one sample only 1823 ref = [3.34211] 1824 input_lens = np.expand_dims(np.asarray([5]), 1) 1825 label_lens = np.expand_dims(np.asarray([5]), 1) 1826 1827 labels = np.asarray([[0, 1, 2, 1, 0]]) 1828 inputs = np.asarray( 1829 [[[0.633766, 0.221185, 0.0917319, 0.0129757, 0.0142857, 0.0260553], [ 1830 0.111121, 0.588392, 0.278779, 0.0055756, 0.00569609, 0.010436 1831 ], [0.0357786, 0.633813, 0.321418, 0.00249248, 0.00272882, 0.0037688], 1832 [0.0663296, 0.643849, 0.280111, 0.00283995, 0.0035545, 0.00331533], 1833 [0.458235, 0.396634, 0.123377, 0.00648837, 0.00903441, 0.00623107]] 1834 ], 1835 dtype=np.float32) 1836 1837 k_labels = keras.backend.variable(labels, dtype='int32') 1838 k_inputs = keras.backend.variable(inputs, dtype='float32') 1839 k_input_lens = keras.backend.variable(input_lens, dtype='int32') 1840 k_label_lens = keras.backend.variable(label_lens, dtype='int32') 1841 res = keras.backend.eval( 1842 keras.backend.ctc_batch_cost(k_labels, k_inputs, k_input_lens, 1843 k_label_lens)) 1844 self.assertAllClose(res[:, 0], ref, atol=1e-05) 1845 1846 1847 @test_util.run_all_in_graph_and_eager_modes 1848 class TestRandomOps(test.TestCase): 1849 1850 def test_random_normal(self): 1851 np.random.seed(123) 1852 x = keras.backend.random_normal((500, 500)) 1853 val = keras.backend.eval(x) 1854 self.assertAllClose(np.mean(val), 0., atol=0.01) 1855 self.assertAllClose(np.std(val), 1., atol=0.01) 1856 1857 def test_random_uniform(self): 1858 np.random.seed(123) 1859 x = keras.backend.random_uniform((500, 500)) 1860 val = keras.backend.eval(x) 1861 self.assertAllClose(np.mean(val), 0.5, atol=0.01) 1862 self.assertAllClose(np.max(val), 1., atol=0.01) 1863 self.assertAllClose(np.min(val), 0., atol=0.01) 1864 1865 def test_random_binomial(self): 1866 np.random.seed(123) 1867 x = keras.backend.random_binomial((500, 500), p=0.5) 1868 self.assertAllClose(np.mean(keras.backend.eval(x)), 0.5, atol=0.01) 1869 1870 def test_truncated_normal(self): 1871 np.random.seed(123) 1872 x = keras.backend.truncated_normal((500, 500), mean=0.0, stddev=1.0) 1873 x = keras.backend.truncated_normal((1000, 1000), mean=0.0, stddev=1.0) 1874 y = keras.backend.eval(x) 1875 self.assertAllClose(np.mean(y), 0., atol=0.01) 1876 self.assertAllClose(np.std(y), 0.88, atol=0.01) 1877 self.assertAllClose(np.max(y), 2., atol=0.01) 1878 self.assertAllClose(np.min(y), -2., atol=0.01) 1879 1880 1881 @test_util.run_all_in_graph_and_eager_modes 1882 class FunctionTest(test.TestCase): 1883 1884 def test_function_basics(self): 1885 x1 = keras.backend.placeholder(shape=(), dtype='float32') 1886 x2 = keras.backend.placeholder(shape=(), dtype='int32') 1887 v = keras.backend.variable(10.) 1888 1889 y1 = x1 + keras.backend.cast(x2, 'float32') + v 1890 y2 = x1 * keras.backend.cast(x2, 'float32') 1891 1892 with ops.control_dependencies([y1]): 1893 u = keras.backend.update(v, x1) 1894 1895 f = keras.backend.function([x1, x2], [y1, y2], updates=[u]) 1896 output_values = f([2, 3]) 1897 self.assertEqual(output_values, [15., 6.]) 1898 self.assertEqual(keras.backend.eval(v), 2.) 1899 1900 def test_function_dict_outputs(self): 1901 x_ph = keras.backend.placeholder(shape=(), name='x') 1902 y_ph = keras.backend.placeholder(shape=(), name='y') 1903 outputs = {'x*y': y_ph * x_ph, 'x*x': x_ph * x_ph} 1904 1905 f = keras.backend.function(inputs=[x_ph, y_ph], outputs=outputs) 1906 x, y = 2., 5. 1907 results = f([x, y]) 1908 1909 self.assertEqual(results['x*y'], 10.) 1910 self.assertEqual(results['x*x'], 4) 1911 1912 def test_function_dict_inputs(self): 1913 placeholders = { 1914 'x': keras.backend.placeholder(shape=()), 1915 'y': keras.backend.placeholder(shape=()) 1916 } 1917 outputs = [placeholders['x'] * placeholders['y']] 1918 1919 f = keras.backend.function(inputs=placeholders, outputs=outputs) 1920 results = f({'x': 2., 'y': 3.}) 1921 self.assertEqual(results[0], 6.) 1922 1923 def test_function_single_input_output(self): 1924 x_ph = keras.backend.placeholder(shape=(), name='x') 1925 output = x_ph * x_ph 1926 f = keras.backend.function(x_ph, output) 1927 result = f(2.) 1928 self.assertEqual(result, 4.) 1929 1930 def test_tuple_updates(self): 1931 x_ph = keras.backend.placeholder(ndim=2) 1932 v = keras.backend.variable(np.ones((4, 2))) 1933 output = x_ph ** 2 + v 1934 new_v = v + x_ph 1935 f = keras.backend.function(x_ph, output, updates=[(v, new_v)]) 1936 input_val = np.random.random((4, 2)) 1937 result = f(input_val) 1938 self.assertAllClose(result, input_val ** 2 + 1) 1939 self.assertAllClose(keras.backend.get_value(v), np.ones((4, 2)) + input_val) 1940 1941 1942 class BackendGraphTests(test.TestCase): 1943 1944 @test_util.run_in_graph_and_eager_modes 1945 def test_function_placeholder_with_default(self): 1946 with keras.backend.get_graph().as_default(): 1947 x1 = array_ops.placeholder_with_default( 1948 np.array(2., dtype='float32'), shape=()) 1949 x2 = array_ops.placeholder_with_default( 1950 np.array(3, dtype='int32'), shape=()) 1951 y1 = x1 + keras.backend.cast(x2, 'float32') 1952 y2 = x1 * keras.backend.cast(x2, 'float32') 1953 f = keras.backend.function([x1, x2], [y1, y2]) 1954 output_values = f([4, 5]) 1955 self.assertEqual(output_values, [9., 20.]) 1956 output_values = f([None, None]) 1957 self.assertEqual(output_values, [5., 6.]) 1958 1959 @test_util.run_deprecated_v1 1960 def test_function_tf_feed_symbols(self): 1961 # Test Keras backend functions with TF tensor inputs. 1962 with self.cached_session(): 1963 # Test feeding a resource variable to `function`. 1964 x1 = keras.backend.placeholder(shape=()) 1965 x2 = keras.backend.placeholder(shape=()) 1966 lr = keras.backend.learning_phase() # Include a placeholder_with_default. 1967 1968 y1 = keras.backend.variable(10.) 1969 y2 = 3 1970 1971 f = keras.backend.function( 1972 inputs=[x1, x2, lr], 1973 outputs=[x1 + 1, keras.backend.in_train_phase(x2 + 2, x2 - 1)]) 1974 outs = f([y1, y2, None]) # Use default learning_phase value. 1975 self.assertEqual(outs, [11., 2.]) 1976 outs = f([y1, y2, 1]) # Set learning phase value. 1977 self.assertEqual(outs, [11., 5.]) 1978 1979 # Test triggering a callable refresh by changing the input. 1980 y3 = keras.backend.constant(20.) # Test with tensor 1981 outs = f([y3, y2, None]) 1982 self.assertEqual(outs, [21., 2.]) 1983 1984 y4 = 4 # Test with non-symbol 1985 outs = f([y4, y2, None]) 1986 self.assertEqual(outs, [5., 2.]) 1987 1988 # Test with a different dtype 1989 y5 = keras.backend.constant(10., dtype='float64') 1990 outs = f([y5, y2, None]) 1991 self.assertEqual(outs, [11., 2.]) 1992 1993 @test_util.run_deprecated_v1 1994 def test_function_tf_fetches(self): 1995 # Additional operations can be passed to tf.compat.v1.Session().run() via 1996 # its `fetches` arguments. In contrast to `updates` argument of 1997 # keras.backend.function() these do not have control dependency on `outputs` 1998 # so they can run in parallel. Also they should not contribute to output of 1999 # keras.backend.function(). 2000 with self.cached_session(): 2001 x = keras.backend.variable(0.) 2002 y = keras.backend.variable(0.) 2003 x_placeholder = keras.backend.placeholder(shape=()) 2004 y_placeholder = keras.backend.placeholder(shape=()) 2005 2006 f = keras.backend.function( 2007 inputs=[x_placeholder, y_placeholder], 2008 outputs=[x_placeholder + y_placeholder], 2009 updates=[(x, x_placeholder + 1.)], 2010 fetches=[keras.backend.update(y, 5.)]) 2011 output = f([10., 20.]) 2012 self.assertEqual(output, [30.]) 2013 self.assertEqual(keras.backend.get_session().run(fetches=[x, y]), 2014 [11., 5.]) 2015 2016 @test_util.run_deprecated_v1 2017 def test_function_tf_feed_dict(self): 2018 # Additional substitutions can be passed to `tf.compat.v1.Session().run()` 2019 # via its `feed_dict` arguments. Note that the feed_dict is passed once in 2020 # the constructor but we can modify the values in the dictionary. Through 2021 # this feed_dict we can provide additional substitutions besides Keras 2022 # inputs. 2023 with self.cached_session(): 2024 x = keras.backend.variable(0.) 2025 y = keras.backend.variable(0.) 2026 x_placeholder = keras.backend.placeholder(shape=()) 2027 y_placeholder = keras.backend.placeholder(shape=()) 2028 2029 feed_dict = {y_placeholder: 3.} 2030 fetches = [keras.backend.update(y, y_placeholder * 10.)] 2031 f = keras.backend.function( 2032 inputs=[x_placeholder], 2033 outputs=[x_placeholder + 1.], 2034 updates=[(x, x_placeholder + 10.)], 2035 feed_dict=feed_dict, 2036 fetches=fetches) 2037 output = f([10.]) 2038 self.assertEqual(output, [11.]) 2039 self.assertEqual(keras.backend.get_session().run(fetches=[x, y]), 2040 [20., 30.]) 2041 2042 # updated value in feed_dict will be modified within the K.function() 2043 feed_dict[y_placeholder] = 4. 2044 output = f([20.]) 2045 self.assertEqual(output, [21.]) 2046 self.assertEqual(keras.backend.get_session().run(fetches=[x, y]), 2047 [30., 40.]) 2048 2049 @test_util.run_deprecated_v1 2050 def test_function_tf_run_options_with_run_metadata(self): 2051 with self.cached_session(): 2052 x_placeholder = keras.backend.placeholder(shape=()) 2053 y_placeholder = keras.backend.placeholder(shape=()) 2054 2055 run_options = config_pb2.RunOptions(output_partition_graphs=True) 2056 run_metadata = config_pb2.RunMetadata() 2057 # enable run_options. 2058 f = keras.backend.function( 2059 inputs=[x_placeholder, y_placeholder], 2060 outputs=[x_placeholder + y_placeholder], 2061 options=run_options, 2062 run_metadata=run_metadata) 2063 output = f([10., 20.]) 2064 self.assertEqual(output, [30.]) 2065 self.assertGreater(len(run_metadata.partition_graphs), 0) 2066 # disable run_options. 2067 f1 = keras.backend.function( 2068 inputs=[x_placeholder, y_placeholder], 2069 outputs=[x_placeholder + y_placeholder], 2070 run_metadata=run_metadata) 2071 output1 = f1([10., 20.]) 2072 self.assertEqual(output1, [30.]) 2073 self.assertEqual(len(run_metadata.partition_graphs), 0) 2074 2075 @test_util.run_deprecated_v1 2076 def test_function_fetch_callbacks(self): 2077 2078 class CallbackStub(object): 2079 2080 def __init__(self): 2081 self.times_called = 0 2082 self.callback_result = 0 2083 2084 def _fetch_callback(self, result): 2085 self.times_called += 1 2086 self.callback_result = result 2087 2088 with self.cached_session(): 2089 callback = CallbackStub() 2090 x_placeholder = keras.backend.placeholder(shape=()) 2091 y_placeholder = keras.backend.placeholder(shape=()) 2092 2093 callback_op = x_placeholder * y_placeholder 2094 2095 f = keras.backend.function( 2096 inputs=[x_placeholder, y_placeholder], 2097 outputs=[x_placeholder + y_placeholder]) 2098 f.fetches.append(callback_op) 2099 f.fetch_callbacks[callback_op] = callback._fetch_callback 2100 2101 _ = f([10., 20.]) 2102 2103 self.assertEqual(callback.times_called, 1) 2104 self.assertEqual(callback.callback_result, 200) 2105 2106 def test_get_session_different_graphs(self): 2107 with ops.Graph().as_default(): 2108 x = keras.backend.constant(1) 2109 session = keras.backend.get_session() 2110 self.assertIs(session, keras.backend.get_session((x,))) 2111 self.assertIs(session, keras.backend.get_session()) 2112 with ops.Graph().as_default(): 2113 self.assertIs(session, keras.backend.get_session((x,))) 2114 self.assertIsNot(session, keras.backend.get_session()) 2115 2116 2117 @test_util.run_all_in_graph_and_eager_modes 2118 class ControlOpsTests(test.TestCase): 2119 2120 def test_function_switch_basics(self): 2121 x = array_ops.constant(2.0) 2122 y = array_ops.constant(3.0) 2123 2124 def xpowy(): 2125 return keras.backend.pow(x, y) 2126 2127 def ypowx(): 2128 return keras.backend.pow(y, x) 2129 2130 tensor = keras.backend.switch(keras.backend.less(x, y), xpowy, ypowx) 2131 self.assertEqual(keras.backend.eval(tensor), [8.0]) 2132 2133 tensor = keras.backend.switch(keras.backend.greater(x, y), xpowy, ypowx) 2134 self.assertEqual(keras.backend.eval(tensor), [9.0]) 2135 2136 def test_unequal_rank(self): 2137 x = ops.convert_to_tensor(np.array([[1, 2, 3], [4, 5, 6]]), dtype='float32') 2138 y = ops.convert_to_tensor(np.array([1, 2, 3]), dtype='float32') 2139 2140 def true_func(): 2141 return x 2142 2143 def false_func(): 2144 return y 2145 2146 with self.assertRaisesRegexp(ValueError, 2147 'Rank of `condition` should be less than'): 2148 keras.backend.switch(keras.backend.equal(x, x), false_func, true_func) 2149 2150 2151 if __name__ == '__main__': 2152 test.main() 2153