1 // © 2016 and later: Unicode, Inc. and others. 2 // License & terms of use: http://www.unicode.org/copyright.html 3 /* ------------------------------------------------------------------ */ 4 /* decNumber package local type, tuning, and macro definitions */ 5 /* ------------------------------------------------------------------ */ 6 /* Copyright (c) IBM Corporation, 2000-2016. All rights reserved. */ 7 /* */ 8 /* This software is made available under the terms of the */ 9 /* ICU License -- ICU 1.8.1 and later. */ 10 /* */ 11 /* The description and User's Guide ("The decNumber C Library") for */ 12 /* this software is called decNumber.pdf. This document is */ 13 /* available, together with arithmetic and format specifications, */ 14 /* testcases, and Web links, on the General Decimal Arithmetic page. */ 15 /* */ 16 /* Please send comments, suggestions, and corrections to the author: */ 17 /* mfc@uk.ibm.com */ 18 /* Mike Cowlishaw, IBM Fellow */ 19 /* IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK */ 20 /* ------------------------------------------------------------------ */ 21 /* This header file is included by all modules in the decNumber */ 22 /* library, and contains local type definitions, tuning parameters, */ 23 /* etc. It should not need to be used by application programs. */ 24 /* decNumber.h or one of decDouble (etc.) must be included first. */ 25 /* ------------------------------------------------------------------ */ 26 27 #if !defined(DECNUMBERLOC) 28 #define DECNUMBERLOC 29 #define DECVERSION "decNumber 3.61" /* Package Version [16 max.] */ 30 #define DECNLAUTHOR "Mike Cowlishaw" /* Who to blame */ 31 32 #include <stdlib.h> /* for abs */ 33 #include <string.h> /* for memset, strcpy */ 34 #include "decContext.h" 35 36 /* Conditional code flag -- set this to match hardware platform */ 37 #if !defined(DECLITEND) 38 #define DECLITEND 1 /* 1=little-endian, 0=big-endian */ 39 #endif 40 41 /* Conditional code flag -- set this to 1 for best performance */ 42 #if !defined(DECUSE64) 43 #define DECUSE64 1 /* 1=use int64s, 0=int32 & smaller only */ 44 #endif 45 46 /* Conditional check flags -- set these to 0 for best performance */ 47 #if !defined(DECCHECK) 48 #define DECCHECK 0 /* 1 to enable robust checking */ 49 #endif 50 #if !defined(DECALLOC) 51 #define DECALLOC 0 /* 1 to enable memory accounting */ 52 #endif 53 #if !defined(DECTRACE) 54 #define DECTRACE 0 /* 1 to trace certain internals, etc. */ 55 #endif 56 57 /* Tuning parameter for decNumber (arbitrary precision) module */ 58 #if !defined(DECBUFFER) 59 #define DECBUFFER 36 /* Size basis for local buffers. This */ 60 /* should be a common maximum precision */ 61 /* rounded up to a multiple of 4; must */ 62 /* be zero or positive. */ 63 #endif 64 65 /* ---------------------------------------------------------------- */ 66 /* Definitions for all modules (general-purpose) */ 67 /* ---------------------------------------------------------------- */ 68 69 /* Local names for common types -- for safety, decNumber modules do */ 70 /* not use int or long directly. */ 71 #define Flag uint8_t 72 #define Byte int8_t 73 #define uByte uint8_t 74 #define Short int16_t 75 #define uShort uint16_t 76 #define Int int32_t 77 #define uInt uint32_t 78 #define Unit decNumberUnit 79 #if DECUSE64 80 #define Long int64_t 81 #define uLong uint64_t 82 #endif 83 84 /* Development-use definitions */ 85 typedef long int LI; /* for printf arguments only */ 86 #define DECNOINT 0 /* 1 to check no internal use of 'int' */ 87 /* or stdint types */ 88 #if DECNOINT 89 /* if these interfere with your C includes, do not set DECNOINT */ 90 #define int ? /* enable to ensure that plain C 'int' */ 91 #define long ?? /* .. or 'long' types are not used */ 92 #endif 93 94 /* LONGMUL32HI -- set w=(u*v)>>32, where w, u, and v are uInts */ 95 /* (that is, sets w to be the high-order word of the 64-bit result; */ 96 /* the low-order word is simply u*v.) */ 97 /* This version is derived from Knuth via Hacker's Delight; */ 98 /* it seems to optimize better than some others tried */ 99 #define LONGMUL32HI(w, u, v) { \ 100 uInt u0, u1, v0, v1, w0, w1, w2, t; \ 101 u0=u & 0xffff; u1=u>>16; \ 102 v0=v & 0xffff; v1=v>>16; \ 103 w0=u0*v0; \ 104 t=u1*v0 + (w0>>16); \ 105 w1=t & 0xffff; w2=t>>16; \ 106 w1=u0*v1 + w1; \ 107 (w)=u1*v1 + w2 + (w1>>16);} 108 109 /* ROUNDUP -- round an integer up to a multiple of n */ 110 #define ROUNDUP(i, n) ((((i)+(n)-1)/n)*n) 111 #define ROUNDUP4(i) (((i)+3)&~3) /* special for n=4 */ 112 113 /* ROUNDDOWN -- round an integer down to a multiple of n */ 114 #define ROUNDDOWN(i, n) (((i)/n)*n) 115 #define ROUNDDOWN4(i) ((i)&~3) /* special for n=4 */ 116 117 /* References to multi-byte sequences under different sizes; these */ 118 /* require locally declared variables, but do not violate strict */ 119 /* aliasing or alignment (as did the UINTAT simple cast to uInt). */ 120 /* Variables needed are uswork, uiwork, etc. [so do not use at same */ 121 /* level in an expression, e.g., UBTOUI(x)==UBTOUI(y) may fail]. */ 122 123 /* Return a uInt, etc., from bytes starting at a char* or uByte* */ 124 #define UBTOUS(b) (memcpy((void *)&uswork, b, 2), uswork) 125 #define UBTOUI(b) (memcpy((void *)&uiwork, b, 4), uiwork) 126 127 /* Store a uInt, etc., into bytes starting at a char* or uByte*. */ 128 /* Returns i, evaluated, for convenience; has to use uiwork because */ 129 /* i may be an expression. */ 130 #define UBFROMUS(b, i) (uswork=(i), memcpy(b, (void *)&uswork, 2), uswork) 131 #define UBFROMUI(b, i) (uiwork=(i), memcpy(b, (void *)&uiwork, 4), uiwork) 132 133 /* X10 and X100 -- multiply integer i by 10 or 100 */ 134 /* [shifts are usually faster than multiply; could be conditional] */ 135 #define X10(i) (((i)<<1)+((i)<<3)) 136 #define X100(i) (((i)<<2)+((i)<<5)+((i)<<6)) 137 138 /* MAXI and MINI -- general max & min (not in ANSI) for integers */ 139 #define MAXI(x,y) ((x)<(y)?(y):(x)) 140 #define MINI(x,y) ((x)>(y)?(y):(x)) 141 142 /* Useful constants */ 143 #define BILLION 1000000000 /* 10**9 */ 144 /* CHARMASK: 0x30303030 for ASCII/UTF8; 0xF0F0F0F0 for EBCDIC */ 145 #define CHARMASK ((((((((uInt)'0')<<8)+'0')<<8)+'0')<<8)+'0') 146 147 148 /* ---------------------------------------------------------------- */ 149 /* Definitions for arbitary-precision modules (only valid after */ 150 /* decNumber.h has been included) */ 151 /* ---------------------------------------------------------------- */ 152 153 /* Limits and constants */ 154 #define DECNUMMAXP 999999999 /* maximum precision code can handle */ 155 #define DECNUMMAXE 999999999 /* maximum adjusted exponent ditto */ 156 #define DECNUMMINE -999999999 /* minimum adjusted exponent ditto */ 157 #if (DECNUMMAXP != DEC_MAX_DIGITS) 158 #error Maximum digits mismatch 159 #endif 160 #if (DECNUMMAXE != DEC_MAX_EMAX) 161 #error Maximum exponent mismatch 162 #endif 163 #if (DECNUMMINE != DEC_MIN_EMIN) 164 #error Minimum exponent mismatch 165 #endif 166 167 /* Set DECDPUNMAX -- the maximum integer that fits in DECDPUN */ 168 /* digits, and D2UTABLE -- the initializer for the D2U table */ 169 #ifndef DECDPUN 170 // no-op 171 #elif DECDPUN==1 172 #define DECDPUNMAX 9 173 #define D2UTABLE {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, \ 174 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, \ 175 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, \ 176 48,49} 177 #elif DECDPUN==2 178 #define DECDPUNMAX 99 179 #define D2UTABLE {0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10, \ 180 11,11,12,12,13,13,14,14,15,15,16,16,17,17,18, \ 181 18,19,19,20,20,21,21,22,22,23,23,24,24,25} 182 #elif DECDPUN==3 183 #define DECDPUNMAX 999 184 #define D2UTABLE {0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7, \ 185 8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13, \ 186 13,14,14,14,15,15,15,16,16,16,17} 187 #elif DECDPUN==4 188 #define DECDPUNMAX 9999 189 #define D2UTABLE {0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6, \ 190 6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,11, \ 191 11,11,11,12,12,12,12,13} 192 #elif DECDPUN==5 193 #define DECDPUNMAX 99999 194 #define D2UTABLE {0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5, \ 195 5,5,5,5,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,9,9,9, \ 196 9,9,10,10,10,10} 197 #elif DECDPUN==6 198 #define DECDPUNMAX 999999 199 #define D2UTABLE {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4, \ 200 4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8, \ 201 8,8,8,8,8,9} 202 #elif DECDPUN==7 203 #define DECDPUNMAX 9999999 204 #define D2UTABLE {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3, \ 205 4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7, \ 206 7,7,7,7,7,7} 207 #elif DECDPUN==8 208 #define DECDPUNMAX 99999999 209 #define D2UTABLE {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3, \ 210 3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6, \ 211 6,6,6,6,6,7} 212 #elif DECDPUN==9 213 #define DECDPUNMAX 999999999 214 #define D2UTABLE {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3, \ 215 3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5, \ 216 5,5,6,6,6,6} 217 #else 218 #error DECDPUN must be in the range 1-9 219 #endif 220 221 /* ----- Shared data (in decNumber.c) ----- */ 222 /* Public lookup table used by the D2U macro (see below) */ 223 #define DECMAXD2U 49 224 /*extern const uByte d2utable[DECMAXD2U+1];*/ 225 226 /* ----- Macros ----- */ 227 /* ISZERO -- return true if decNumber dn is a zero */ 228 /* [performance-critical in some situations] */ 229 #define ISZERO(dn) decNumberIsZero(dn) /* now just a local name */ 230 231 /* D2U -- return the number of Units needed to hold d digits */ 232 /* (runtime version, with table lookaside for small d) */ 233 #if defined(DECDPUN) && DECDPUN==8 234 #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+7)>>3)) 235 #elif defined(DECDPUN) && DECDPUN==4 236 #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+3)>>2)) 237 #else 238 #define D2U(d) ((d)<=DECMAXD2U?d2utable[d]:((d)+DECDPUN-1)/DECDPUN) 239 #endif 240 /* SD2U -- static D2U macro (for compile-time calculation) */ 241 #define SD2U(d) (((d)+DECDPUN-1)/DECDPUN) 242 243 /* MSUDIGITS -- returns digits in msu, from digits, calculated */ 244 /* using D2U */ 245 #define MSUDIGITS(d) ((d)-(D2U(d)-1)*DECDPUN) 246 247 /* D2N -- return the number of decNumber structs that would be */ 248 /* needed to contain that number of digits (and the initial */ 249 /* decNumber struct) safely. Note that one Unit is included in the */ 250 /* initial structure. Used for allocating space that is aligned on */ 251 /* a decNumber struct boundary. */ 252 #define D2N(d) \ 253 ((((SD2U(d)-1)*sizeof(Unit))+sizeof(decNumber)*2-1)/sizeof(decNumber)) 254 255 /* TODIGIT -- macro to remove the leading digit from the unsigned */ 256 /* integer u at column cut (counting from the right, LSD=0) and */ 257 /* place it as an ASCII character into the character pointed to by */ 258 /* c. Note that cut must be <= 9, and the maximum value for u is */ 259 /* 2,000,000,000 (as is needed for negative exponents of */ 260 /* subnormals). The unsigned integer pow is used as a temporary */ 261 /* variable. */ 262 #define TODIGIT(u, cut, c, pow) UPRV_BLOCK_MACRO_BEGIN { \ 263 *(c)='0'; \ 264 pow=DECPOWERS[cut]*2; \ 265 if ((u)>pow) { \ 266 pow*=4; \ 267 if ((u)>=pow) {(u)-=pow; *(c)+=8;} \ 268 pow/=2; \ 269 if ((u)>=pow) {(u)-=pow; *(c)+=4;} \ 270 pow/=2; \ 271 } \ 272 if ((u)>=pow) {(u)-=pow; *(c)+=2;} \ 273 pow/=2; \ 274 if ((u)>=pow) {(u)-=pow; *(c)+=1;} \ 275 } UPRV_BLOCK_MACRO_END 276 277 /* ---------------------------------------------------------------- */ 278 /* Definitions for fixed-precision modules (only valid after */ 279 /* decSingle.h, decDouble.h, or decQuad.h has been included) */ 280 /* ---------------------------------------------------------------- */ 281 282 /* bcdnum -- a structure describing a format-independent finite */ 283 /* number, whose coefficient is a string of bcd8 uBytes */ 284 typedef struct { 285 uByte *msd; /* -> most significant digit */ 286 uByte *lsd; /* -> least ditto */ 287 uInt sign; /* 0=positive, DECFLOAT_Sign=negative */ 288 Int exponent; /* Unadjusted signed exponent (q), or */ 289 /* DECFLOAT_NaN etc. for a special */ 290 } bcdnum; 291 292 /* Test if exponent or bcdnum exponent must be a special, etc. */ 293 #define EXPISSPECIAL(exp) ((exp)>=DECFLOAT_MinSp) 294 #define EXPISINF(exp) (exp==DECFLOAT_Inf) 295 #define EXPISNAN(exp) (exp==DECFLOAT_qNaN || exp==DECFLOAT_sNaN) 296 #define NUMISSPECIAL(num) (EXPISSPECIAL((num)->exponent)) 297 298 /* Refer to a 32-bit word or byte in a decFloat (df) by big-endian */ 299 /* (array) notation (the 0 word or byte contains the sign bit), */ 300 /* automatically adjusting for endianness; similarly address a word */ 301 /* in the next-wider format (decFloatWider, or dfw) */ 302 #define DECWORDS (DECBYTES/4) 303 #define DECWWORDS (DECWBYTES/4) 304 #if DECLITEND 305 #define DFBYTE(df, off) ((df)->bytes[DECBYTES-1-(off)]) 306 #define DFWORD(df, off) ((df)->words[DECWORDS-1-(off)]) 307 #define DFWWORD(dfw, off) ((dfw)->words[DECWWORDS-1-(off)]) 308 #else 309 #define DFBYTE(df, off) ((df)->bytes[off]) 310 #define DFWORD(df, off) ((df)->words[off]) 311 #define DFWWORD(dfw, off) ((dfw)->words[off]) 312 #endif 313 314 /* Tests for sign or specials, directly on DECFLOATs */ 315 #define DFISSIGNED(df) (DFWORD(df, 0)&0x80000000) 316 #define DFISSPECIAL(df) ((DFWORD(df, 0)&0x78000000)==0x78000000) 317 #define DFISINF(df) ((DFWORD(df, 0)&0x7c000000)==0x78000000) 318 #define DFISNAN(df) ((DFWORD(df, 0)&0x7c000000)==0x7c000000) 319 #define DFISQNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7c000000) 320 #define DFISSNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7e000000) 321 322 /* Shared lookup tables */ 323 extern const uInt DECCOMBMSD[64]; /* Combination field -> MSD */ 324 extern const uInt DECCOMBFROM[48]; /* exp+msd -> Combination */ 325 326 /* Private generic (utility) routine */ 327 #if DECCHECK || DECTRACE 328 extern void decShowNum(const bcdnum *, const char *); 329 #endif 330 331 /* Format-dependent macros and constants */ 332 #if defined(DECPMAX) 333 334 /* Useful constants */ 335 #define DECPMAX9 (ROUNDUP(DECPMAX, 9)/9) /* 'Pmax' in 10**9s */ 336 /* Top words for a zero */ 337 #define SINGLEZERO 0x22500000 338 #define DOUBLEZERO 0x22380000 339 #define QUADZERO 0x22080000 340 /* [ZEROWORD is defined to be one of these in the DFISZERO macro] */ 341 342 /* Format-dependent common tests: */ 343 /* DFISZERO -- test for (any) zero */ 344 /* DFISCCZERO -- test for coefficient continuation being zero */ 345 /* DFISCC01 -- test for coefficient contains only 0s and 1s */ 346 /* DFISINT -- test for finite and exponent q=0 */ 347 /* DFISUINT01 -- test for sign=0, finite, exponent q=0, and */ 348 /* MSD=0 or 1 */ 349 /* ZEROWORD is also defined here. */ 350 /* In DFISZERO the first test checks the least-significant word */ 351 /* (most likely to be non-zero); the penultimate tests MSD and */ 352 /* DPDs in the signword, and the final test excludes specials and */ 353 /* MSD>7. DFISINT similarly has to allow for the two forms of */ 354 /* MSD codes. DFISUINT01 only has to allow for one form of MSD */ 355 /* code. */ 356 #if DECPMAX==7 357 #define ZEROWORD SINGLEZERO 358 /* [test macros not needed except for Zero] */ 359 #define DFISZERO(df) ((DFWORD(df, 0)&0x1c0fffff)==0 \ 360 && (DFWORD(df, 0)&0x60000000)!=0x60000000) 361 #elif DECPMAX==16 362 #define ZEROWORD DOUBLEZERO 363 #define DFISZERO(df) ((DFWORD(df, 1)==0 \ 364 && (DFWORD(df, 0)&0x1c03ffff)==0 \ 365 && (DFWORD(df, 0)&0x60000000)!=0x60000000)) 366 #define DFISINT(df) ((DFWORD(df, 0)&0x63fc0000)==0x22380000 \ 367 ||(DFWORD(df, 0)&0x7bfc0000)==0x6a380000) 368 #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbfc0000)==0x22380000) 369 #define DFISCCZERO(df) (DFWORD(df, 1)==0 \ 370 && (DFWORD(df, 0)&0x0003ffff)==0) 371 #define DFISCC01(df) ((DFWORD(df, 0)&~0xfffc9124)==0 \ 372 && (DFWORD(df, 1)&~0x49124491)==0) 373 #elif DECPMAX==34 374 #define ZEROWORD QUADZERO 375 #define DFISZERO(df) ((DFWORD(df, 3)==0 \ 376 && DFWORD(df, 2)==0 \ 377 && DFWORD(df, 1)==0 \ 378 && (DFWORD(df, 0)&0x1c003fff)==0 \ 379 && (DFWORD(df, 0)&0x60000000)!=0x60000000)) 380 #define DFISINT(df) ((DFWORD(df, 0)&0x63ffc000)==0x22080000 \ 381 ||(DFWORD(df, 0)&0x7bffc000)==0x6a080000) 382 #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbffc000)==0x22080000) 383 #define DFISCCZERO(df) (DFWORD(df, 3)==0 \ 384 && DFWORD(df, 2)==0 \ 385 && DFWORD(df, 1)==0 \ 386 && (DFWORD(df, 0)&0x00003fff)==0) 387 388 #define DFISCC01(df) ((DFWORD(df, 0)&~0xffffc912)==0 \ 389 && (DFWORD(df, 1)&~0x44912449)==0 \ 390 && (DFWORD(df, 2)&~0x12449124)==0 \ 391 && (DFWORD(df, 3)&~0x49124491)==0) 392 #endif 393 394 /* Macros to test if a certain 10 bits of a uInt or pair of uInts */ 395 /* are a canonical declet [higher or lower bits are ignored]. */ 396 /* declet is at offset 0 (from the right) in a uInt: */ 397 #define CANONDPD(dpd) (((dpd)&0x300)==0 || ((dpd)&0x6e)!=0x6e) 398 /* declet is at offset k (a multiple of 2) in a uInt: */ 399 #define CANONDPDOFF(dpd, k) (((dpd)&(0x300<<(k)))==0 \ 400 || ((dpd)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k))) 401 /* declet is at offset k (a multiple of 2) in a pair of uInts: */ 402 /* [the top 2 bits will always be in the more-significant uInt] */ 403 #define CANONDPDTWO(hi, lo, k) (((hi)&(0x300>>(32-(k))))==0 \ 404 || ((hi)&(0x6e>>(32-(k))))!=(0x6e>>(32-(k))) \ 405 || ((lo)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k))) 406 407 /* Macro to test whether a full-length (length DECPMAX) BCD8 */ 408 /* coefficient, starting at uByte u, is all zeros */ 409 /* Test just the LSWord first, then the remainder as a sequence */ 410 /* of tests in order to avoid same-level use of UBTOUI */ 411 #if DECPMAX==7 412 #define ISCOEFFZERO(u) ( \ 413 UBTOUI((u)+DECPMAX-4)==0 \ 414 && UBTOUS((u)+DECPMAX-6)==0 \ 415 && *(u)==0) 416 #elif DECPMAX==16 417 #define ISCOEFFZERO(u) ( \ 418 UBTOUI((u)+DECPMAX-4)==0 \ 419 && UBTOUI((u)+DECPMAX-8)==0 \ 420 && UBTOUI((u)+DECPMAX-12)==0 \ 421 && UBTOUI(u)==0) 422 #elif DECPMAX==34 423 #define ISCOEFFZERO(u) ( \ 424 UBTOUI((u)+DECPMAX-4)==0 \ 425 && UBTOUI((u)+DECPMAX-8)==0 \ 426 && UBTOUI((u)+DECPMAX-12)==0 \ 427 && UBTOUI((u)+DECPMAX-16)==0 \ 428 && UBTOUI((u)+DECPMAX-20)==0 \ 429 && UBTOUI((u)+DECPMAX-24)==0 \ 430 && UBTOUI((u)+DECPMAX-28)==0 \ 431 && UBTOUI((u)+DECPMAX-32)==0 \ 432 && UBTOUS(u)==0) 433 #endif 434 435 /* Macros and masks for the exponent continuation field and MSD */ 436 /* Get the exponent continuation from a decFloat *df as an Int */ 437 #define GETECON(df) ((Int)((DFWORD((df), 0)&0x03ffffff)>>(32-6-DECECONL))) 438 /* Ditto, from the next-wider format */ 439 #define GETWECON(df) ((Int)((DFWWORD((df), 0)&0x03ffffff)>>(32-6-DECWECONL))) 440 /* Get the biased exponent similarly */ 441 #define GETEXP(df) ((Int)(DECCOMBEXP[DFWORD((df), 0)>>26]+GETECON(df))) 442 /* Get the unbiased exponent similarly */ 443 #define GETEXPUN(df) ((Int)GETEXP(df)-DECBIAS) 444 /* Get the MSD similarly (as uInt) */ 445 #define GETMSD(df) (DECCOMBMSD[DFWORD((df), 0)>>26]) 446 447 /* Compile-time computes of the exponent continuation field masks */ 448 /* full exponent continuation field: */ 449 #define ECONMASK ((0x03ffffff>>(32-6-DECECONL))<<(32-6-DECECONL)) 450 /* same, not including its first digit (the qNaN/sNaN selector): */ 451 #define ECONNANMASK ((0x01ffffff>>(32-6-DECECONL))<<(32-6-DECECONL)) 452 453 /* Macros to decode the coefficient in a finite decFloat *df into */ 454 /* a BCD string (uByte *bcdin) of length DECPMAX uBytes. */ 455 456 /* In-line sequence to convert least significant 10 bits of uInt */ 457 /* dpd to three BCD8 digits starting at uByte u. Note that an */ 458 /* extra byte is written to the right of the three digits because */ 459 /* four bytes are moved at a time for speed; the alternative */ 460 /* macro moves exactly three bytes (usually slower). */ 461 #define dpd2bcd8(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 4) 462 #define dpd2bcd83(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 3) 463 464 /* Decode the declets. After extracting each one, it is decoded */ 465 /* to BCD8 using a table lookup (also used for variable-length */ 466 /* decode). Each DPD decode is 3 bytes BCD8 plus a one-byte */ 467 /* length which is not used, here). Fixed-length 4-byte moves */ 468 /* are fast, however, almost everywhere, and so are used except */ 469 /* for the final three bytes (to avoid overrun). The code below */ 470 /* is 36 instructions for Doubles and about 70 for Quads, even */ 471 /* on IA32. */ 472 473 /* Two macros are defined for each format: */ 474 /* GETCOEFF extracts the coefficient of the current format */ 475 /* GETWCOEFF extracts the coefficient of the next-wider format. */ 476 /* The latter is a copy of the next-wider GETCOEFF using DFWWORD. */ 477 478 #if DECPMAX==7 479 #define GETCOEFF(df, bcd) { \ 480 uInt sourhi=DFWORD(df, 0); \ 481 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ 482 dpd2bcd8(bcd+1, sourhi>>10); \ 483 dpd2bcd83(bcd+4, sourhi);} 484 #define GETWCOEFF(df, bcd) { \ 485 uInt sourhi=DFWWORD(df, 0); \ 486 uInt sourlo=DFWWORD(df, 1); \ 487 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ 488 dpd2bcd8(bcd+1, sourhi>>8); \ 489 dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \ 490 dpd2bcd8(bcd+7, sourlo>>20); \ 491 dpd2bcd8(bcd+10, sourlo>>10); \ 492 dpd2bcd83(bcd+13, sourlo);} 493 494 #elif DECPMAX==16 495 #define GETCOEFF(df, bcd) { \ 496 uInt sourhi=DFWORD(df, 0); \ 497 uInt sourlo=DFWORD(df, 1); \ 498 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ 499 dpd2bcd8(bcd+1, sourhi>>8); \ 500 dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \ 501 dpd2bcd8(bcd+7, sourlo>>20); \ 502 dpd2bcd8(bcd+10, sourlo>>10); \ 503 dpd2bcd83(bcd+13, sourlo);} 504 #define GETWCOEFF(df, bcd) { \ 505 uInt sourhi=DFWWORD(df, 0); \ 506 uInt sourmh=DFWWORD(df, 1); \ 507 uInt sourml=DFWWORD(df, 2); \ 508 uInt sourlo=DFWWORD(df, 3); \ 509 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ 510 dpd2bcd8(bcd+1, sourhi>>4); \ 511 dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \ 512 dpd2bcd8(bcd+7, sourmh>>16); \ 513 dpd2bcd8(bcd+10, sourmh>>6); \ 514 dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \ 515 dpd2bcd8(bcd+16, sourml>>18); \ 516 dpd2bcd8(bcd+19, sourml>>8); \ 517 dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \ 518 dpd2bcd8(bcd+25, sourlo>>20); \ 519 dpd2bcd8(bcd+28, sourlo>>10); \ 520 dpd2bcd83(bcd+31, sourlo);} 521 522 #elif DECPMAX==34 523 #define GETCOEFF(df, bcd) { \ 524 uInt sourhi=DFWORD(df, 0); \ 525 uInt sourmh=DFWORD(df, 1); \ 526 uInt sourml=DFWORD(df, 2); \ 527 uInt sourlo=DFWORD(df, 3); \ 528 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \ 529 dpd2bcd8(bcd+1, sourhi>>4); \ 530 dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \ 531 dpd2bcd8(bcd+7, sourmh>>16); \ 532 dpd2bcd8(bcd+10, sourmh>>6); \ 533 dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \ 534 dpd2bcd8(bcd+16, sourml>>18); \ 535 dpd2bcd8(bcd+19, sourml>>8); \ 536 dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \ 537 dpd2bcd8(bcd+25, sourlo>>20); \ 538 dpd2bcd8(bcd+28, sourlo>>10); \ 539 dpd2bcd83(bcd+31, sourlo);} 540 541 #define GETWCOEFF(df, bcd) {??} /* [should never be used] */ 542 #endif 543 544 /* Macros to decode the coefficient in a finite decFloat *df into */ 545 /* a base-billion uInt array, with the least-significant */ 546 /* 0-999999999 'digit' at offset 0. */ 547 548 /* Decode the declets. After extracting each one, it is decoded */ 549 /* to binary using a table lookup. Three tables are used; one */ 550 /* the usual DPD to binary, the other two pre-multiplied by 1000 */ 551 /* and 1000000 to avoid multiplication during decode. These */ 552 /* tables can also be used for multiplying up the MSD as the DPD */ 553 /* code for 0 through 9 is the identity. */ 554 #define DPD2BIN0 DPD2BIN /* for prettier code */ 555 556 #if DECPMAX==7 557 #define GETCOEFFBILL(df, buf) { \ 558 uInt sourhi=DFWORD(df, 0); \ 559 (buf)[0]=DPD2BIN0[sourhi&0x3ff] \ 560 +DPD2BINK[(sourhi>>10)&0x3ff] \ 561 +DPD2BINM[DECCOMBMSD[sourhi>>26]];} 562 563 #elif DECPMAX==16 564 #define GETCOEFFBILL(df, buf) { \ 565 uInt sourhi, sourlo; \ 566 sourlo=DFWORD(df, 1); \ 567 (buf)[0]=DPD2BIN0[sourlo&0x3ff] \ 568 +DPD2BINK[(sourlo>>10)&0x3ff] \ 569 +DPD2BINM[(sourlo>>20)&0x3ff]; \ 570 sourhi=DFWORD(df, 0); \ 571 (buf)[1]=DPD2BIN0[((sourhi<<2) | (sourlo>>30))&0x3ff] \ 572 +DPD2BINK[(sourhi>>8)&0x3ff] \ 573 +DPD2BINM[DECCOMBMSD[sourhi>>26]];} 574 575 #elif DECPMAX==34 576 #define GETCOEFFBILL(df, buf) { \ 577 uInt sourhi, sourmh, sourml, sourlo; \ 578 sourlo=DFWORD(df, 3); \ 579 (buf)[0]=DPD2BIN0[sourlo&0x3ff] \ 580 +DPD2BINK[(sourlo>>10)&0x3ff] \ 581 +DPD2BINM[(sourlo>>20)&0x3ff]; \ 582 sourml=DFWORD(df, 2); \ 583 (buf)[1]=DPD2BIN0[((sourml<<2) | (sourlo>>30))&0x3ff] \ 584 +DPD2BINK[(sourml>>8)&0x3ff] \ 585 +DPD2BINM[(sourml>>18)&0x3ff]; \ 586 sourmh=DFWORD(df, 1); \ 587 (buf)[2]=DPD2BIN0[((sourmh<<4) | (sourml>>28))&0x3ff] \ 588 +DPD2BINK[(sourmh>>6)&0x3ff] \ 589 +DPD2BINM[(sourmh>>16)&0x3ff]; \ 590 sourhi=DFWORD(df, 0); \ 591 (buf)[3]=DPD2BIN0[((sourhi<<6) | (sourmh>>26))&0x3ff] \ 592 +DPD2BINK[(sourhi>>4)&0x3ff] \ 593 +DPD2BINM[DECCOMBMSD[sourhi>>26]];} 594 595 #endif 596 597 /* Macros to decode the coefficient in a finite decFloat *df into */ 598 /* a base-thousand uInt array (of size DECLETS+1, to allow for */ 599 /* the MSD), with the least-significant 0-999 'digit' at offset 0.*/ 600 601 /* Decode the declets. After extracting each one, it is decoded */ 602 /* to binary using a table lookup. */ 603 #if DECPMAX==7 604 #define GETCOEFFTHOU(df, buf) { \ 605 uInt sourhi=DFWORD(df, 0); \ 606 (buf)[0]=DPD2BIN[sourhi&0x3ff]; \ 607 (buf)[1]=DPD2BIN[(sourhi>>10)&0x3ff]; \ 608 (buf)[2]=DECCOMBMSD[sourhi>>26];} 609 610 #elif DECPMAX==16 611 #define GETCOEFFTHOU(df, buf) { \ 612 uInt sourhi, sourlo; \ 613 sourlo=DFWORD(df, 1); \ 614 (buf)[0]=DPD2BIN[sourlo&0x3ff]; \ 615 (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \ 616 (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \ 617 sourhi=DFWORD(df, 0); \ 618 (buf)[3]=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \ 619 (buf)[4]=DPD2BIN[(sourhi>>8)&0x3ff]; \ 620 (buf)[5]=DECCOMBMSD[sourhi>>26];} 621 622 #elif DECPMAX==34 623 #define GETCOEFFTHOU(df, buf) { \ 624 uInt sourhi, sourmh, sourml, sourlo; \ 625 sourlo=DFWORD(df, 3); \ 626 (buf)[0]=DPD2BIN[sourlo&0x3ff]; \ 627 (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \ 628 (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \ 629 sourml=DFWORD(df, 2); \ 630 (buf)[3]=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \ 631 (buf)[4]=DPD2BIN[(sourml>>8)&0x3ff]; \ 632 (buf)[5]=DPD2BIN[(sourml>>18)&0x3ff]; \ 633 sourmh=DFWORD(df, 1); \ 634 (buf)[6]=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \ 635 (buf)[7]=DPD2BIN[(sourmh>>6)&0x3ff]; \ 636 (buf)[8]=DPD2BIN[(sourmh>>16)&0x3ff]; \ 637 sourhi=DFWORD(df, 0); \ 638 (buf)[9]=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \ 639 (buf)[10]=DPD2BIN[(sourhi>>4)&0x3ff]; \ 640 (buf)[11]=DECCOMBMSD[sourhi>>26];} 641 #endif 642 643 644 /* Macros to decode the coefficient in a finite decFloat *df and */ 645 /* add to a base-thousand uInt array (as for GETCOEFFTHOU). */ 646 /* After the addition then most significant 'digit' in the array */ 647 /* might have a value larger then 10 (with a maximum of 19). */ 648 #if DECPMAX==7 649 #define ADDCOEFFTHOU(df, buf) { \ 650 uInt sourhi=DFWORD(df, 0); \ 651 (buf)[0]+=DPD2BIN[sourhi&0x3ff]; \ 652 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ 653 (buf)[1]+=DPD2BIN[(sourhi>>10)&0x3ff]; \ 654 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ 655 (buf)[2]+=DECCOMBMSD[sourhi>>26];} 656 657 #elif DECPMAX==16 658 #define ADDCOEFFTHOU(df, buf) { \ 659 uInt sourhi, sourlo; \ 660 sourlo=DFWORD(df, 1); \ 661 (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \ 662 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ 663 (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \ 664 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ 665 (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \ 666 if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \ 667 sourhi=DFWORD(df, 0); \ 668 (buf)[3]+=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \ 669 if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \ 670 (buf)[4]+=DPD2BIN[(sourhi>>8)&0x3ff]; \ 671 if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \ 672 (buf)[5]+=DECCOMBMSD[sourhi>>26];} 673 674 #elif DECPMAX==34 675 #define ADDCOEFFTHOU(df, buf) { \ 676 uInt sourhi, sourmh, sourml, sourlo; \ 677 sourlo=DFWORD(df, 3); \ 678 (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \ 679 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \ 680 (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \ 681 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \ 682 (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \ 683 if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \ 684 sourml=DFWORD(df, 2); \ 685 (buf)[3]+=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \ 686 if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \ 687 (buf)[4]+=DPD2BIN[(sourml>>8)&0x3ff]; \ 688 if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \ 689 (buf)[5]+=DPD2BIN[(sourml>>18)&0x3ff]; \ 690 if (buf[5]>999) {buf[5]-=1000; buf[6]++;} \ 691 sourmh=DFWORD(df, 1); \ 692 (buf)[6]+=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \ 693 if (buf[6]>999) {buf[6]-=1000; buf[7]++;} \ 694 (buf)[7]+=DPD2BIN[(sourmh>>6)&0x3ff]; \ 695 if (buf[7]>999) {buf[7]-=1000; buf[8]++;} \ 696 (buf)[8]+=DPD2BIN[(sourmh>>16)&0x3ff]; \ 697 if (buf[8]>999) {buf[8]-=1000; buf[9]++;} \ 698 sourhi=DFWORD(df, 0); \ 699 (buf)[9]+=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \ 700 if (buf[9]>999) {buf[9]-=1000; buf[10]++;} \ 701 (buf)[10]+=DPD2BIN[(sourhi>>4)&0x3ff]; \ 702 if (buf[10]>999) {buf[10]-=1000; buf[11]++;} \ 703 (buf)[11]+=DECCOMBMSD[sourhi>>26];} 704 #endif 705 706 707 /* Set a decFloat to the maximum positive finite number (Nmax) */ 708 #if DECPMAX==7 709 #define DFSETNMAX(df) \ 710 {DFWORD(df, 0)=0x77f3fcff;} 711 #elif DECPMAX==16 712 #define DFSETNMAX(df) \ 713 {DFWORD(df, 0)=0x77fcff3f; \ 714 DFWORD(df, 1)=0xcff3fcff;} 715 #elif DECPMAX==34 716 #define DFSETNMAX(df) \ 717 {DFWORD(df, 0)=0x77ffcff3; \ 718 DFWORD(df, 1)=0xfcff3fcf; \ 719 DFWORD(df, 2)=0xf3fcff3f; \ 720 DFWORD(df, 3)=0xcff3fcff;} 721 #endif 722 723 /* [end of format-dependent macros and constants] */ 724 #endif 725 726 #else 727 #error decNumberLocal included more than once 728 #endif 729